JP2008239479A - Synthetic quartz glass optical member and its production method - Google Patents

Synthetic quartz glass optical member and its production method Download PDF

Info

Publication number
JP2008239479A
JP2008239479A JP2008097281A JP2008097281A JP2008239479A JP 2008239479 A JP2008239479 A JP 2008239479A JP 2008097281 A JP2008097281 A JP 2008097281A JP 2008097281 A JP2008097281 A JP 2008097281A JP 2008239479 A JP2008239479 A JP 2008239479A
Authority
JP
Japan
Prior art keywords
quartz glass
optical member
synthetic quartz
ppb
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008097281A
Other languages
Japanese (ja)
Other versions
JP5050969B2 (en
Inventor
Yorisuke Ikuta
順亮 生田
Masaaki Ikemura
政昭 池村
Shinya Kikukawa
信也 菊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2008097281A priority Critical patent/JP5050969B2/en
Publication of JP2008239479A publication Critical patent/JP2008239479A/en
Application granted granted Critical
Publication of JP5050969B2 publication Critical patent/JP5050969B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1407Deposition reactors therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1484Means for supporting, rotating or translating the article being formed
    • C03B19/1492Deposition substrates, e.g. targets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a synthetic quartz glass optical member which suppresses light absorption at about 240 nm and 270 nm and has a high transmittance to the UV in a wavelength range of ≤400 nm and a method for producing the same. <P>SOLUTION: The method for producing the synthetic quartz glass optical member includes: using a silicon compound as the raw material; depositing and growing fine quartz glass grains by a flame hydrolysis reaction to synthesize a porous quartz glass body; and vitrifying the body to obtain the synthetic quartz glass optical member used in the UV light in a wavelength range of ≤400 nm, wherein a reaction vessel made of quartz glass and a burner made of quartz glass are used in the flame hydrolysis reaction so that the synthetic quartz glass optical member has an Ni content of ≤1 ppb, an Fe content of ≤0.5 ppb and an Na content of ≤1 ppb. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、波長400nm以下の紫外線を光源とする装置に用いられる光学部材に関し、詳しくはエキシマレーザ(Xe−Cl:308nm、Kr−F:248nm、Ar−F:193nm)、低圧水銀ランプ(185nm)、エキシマランプ(Xe−Xe:172nm)などの真空紫外〜紫外光用のレンズ、プリズム、窓材などの光学部品として用いられる合成石英ガラス光学部材に関する。   The present invention relates to an optical member used in an apparatus using ultraviolet light having a wavelength of 400 nm or less as a light source. Specifically, an excimer laser (Xe-Cl: 308 nm, Kr-F: 248 nm, Ar-F: 193 nm), a low-pressure mercury lamp (185 nm). ), An excimer lamp (Xe-Xe: 172 nm) or the like, and a synthetic quartz glass optical member used as an optical component such as a lens for vacuum ultraviolet to ultraviolet light, a prism, or a window material.

合成石英ガラスは、近赤外から真空紫外域までの広範囲の波長域にわたって透明な材料であること、熱膨張係数が極めて小さく寸法安定性に優れていること、また、金属不純物をほとんど含有せず高純度であることなどの特徴がある。そのため、従来のg線、i線を光源として用いた光学装置の光学部材には合成石英ガラスが主に用いられてきた。   Synthetic quartz glass is a transparent material over a wide wavelength range from the near infrared to the vacuum ultraviolet, has an extremely small coefficient of thermal expansion and excellent dimensional stability, and contains almost no metal impurities. It is characterized by high purity. Therefore, synthetic quartz glass has been mainly used as an optical member of an optical device using conventional g-line and i-line as a light source.

近年、LSIの高集積化に伴い、ウエハ上に集積回路パターンを描画する光リソグラフィ技術において、より線幅の短い微細な描画技術が要求されており、これに対応するために露光光源の短波長化が進められている。すなわち、例えばリソグラフィ用ステッパの光源は、従来のg線(436nm)、i線(365nm)から進んで、Kr−Fエキシマレーザ(248nm)またはAr−Fエキシマレーザ(193nm)が用いられようとしている。   In recent years, with the high integration of LSI, optical lithography technology that draws an integrated circuit pattern on a wafer requires a finer drawing technology with a shorter line width. Is being promoted. That is, for example, the light source of a lithography stepper advances from the conventional g-line (436 nm) and i-line (365 nm), and a Kr-F excimer laser (248 nm) or an Ar-F excimer laser (193 nm) is about to be used. .

また、低圧水銀ランプ(185nm)やエキシマランプ(Xe−Xe:172nm)は、光CVDなどの装置、シリコンウェハのアッシングやエッチングまたはオゾン発生装置などに用いられており、また今後光リソグラフィ技術に適用すべく開発が進められている。
低圧水銀ランプやエキシマランプに用いられるランプのガス封入管、または前述の短波長光源を用いた光学装置に用いられる光学素子、にも合成石英ガラスを用いる必要がある。
Low-pressure mercury lamps (185 nm) and excimer lamps (Xe-Xe: 172 nm) are used in devices such as optical CVD, ashing and etching of silicon wafers or ozone generators, and will be applied to photolithography technology in the future. Development is underway.
It is necessary to use synthetic quartz glass also for a gas sealed tube of a lamp used for a low-pressure mercury lamp or an excimer lamp, or an optical element used for an optical device using the above-mentioned short wavelength light source.

これらの光学系に用いられる石英ガラスは、紫外域から真空紫外域までの広い波長域での光透過性が要求されるとともに、使用波長での耐光性が高いこと(光照射後に透過率が低下しないこと)が要求される。特にリソグラフィ用ステッパの場合、光路長が1〜2mに及ぶためきわめて高い光透過性が必要であり、使用波長での内部透過率は99.5%/cm以上、より好ましくは99.8%/cm以上が要求される。   Quartz glass used in these optical systems is required to have light transmission in a wide wavelength range from the ultraviolet region to the vacuum ultraviolet region, and has high light resistance at the wavelength used (the transmittance decreases after light irradiation). Is not required). In particular, in the case of a stepper for lithography, since the optical path length ranges from 1 to 2 m, an extremely high light transmittance is required, and the internal transmittance at the wavelength used is 99.5% / cm or more, more preferably 99.8% / cm or more is required.

石英ガラス中に不純物としてアルカリ金属やアルカリ土類金属、遷移金属が含まれると、紫外域から真空紫外域までの波長域における光透過性が悪化することは公知であり、高い光透過性を確保するためにはこれらの不純物を微量に抑える必要がある。その許容しうる不純物含有量については、アルカリ金属Li、Na、Kの含有量をそれぞれ50ppb以下、アルカリ土類金属Mg、Caの含有量をそれぞれ10ppb以下、遷移金属Ti、Cr、Fe、Ni、Cuの含有量をそれぞれ10ppb以下に抑える方法が開示されている(例えば特公平6−53593)。   It is well known that light transmittance in the wavelength region from the ultraviolet region to the vacuum ultraviolet region deteriorates when alkali metals, alkaline earth metals, and transition metals are contained as impurities in quartz glass, ensuring high light transmittance. In order to achieve this, it is necessary to suppress these impurities to a very small amount. Regarding the allowable impurity contents, the contents of alkali metals Li, Na, K are 50 ppb or less, the contents of alkaline earth metals Mg, Ca are 10 ppb or less, transition metals Ti, Cr, Fe, Ni, A method for suppressing the Cu content to 10 ppb or less is disclosed (for example, Japanese Patent Publication No. 6-53593).

しかし、本発明者は、石英ガラス中の不純物と光透過特性との関係について検討した結果、不純物含有量が前記公知例の範囲内に入っている場合でも、十分な透過特性が得られない場合がある、すなわち、240nmおよび270nm付近を中心とする光吸収があるという知見を得た。
240nmおよび270nm付近を中心とする光吸収帯は、紫外域から真空紫外域までの広い範囲に及ぶため、前記光学系で使用する場合に光透過性が低下する問題があった。
However, the present inventor has examined the relationship between the impurities in the silica glass and the light transmission characteristics, and as a result, even when the impurity content is within the range of the known examples, sufficient transmission characteristics cannot be obtained. It was found that there is light absorption centered around 240 nm and 270 nm.
Since the light absorption band centered around 240 nm and 270 nm covers a wide range from the ultraviolet region to the vacuum ultraviolet region, there is a problem that the light transmittance is lowered when used in the optical system.

本発明は、240nmおよび270nm付近を中心とする光吸収が抑えられ、400nm以下の紫外線波長域で高い透過率を有する合成石英ガラス光学部材の提供を目的とする。
本発明は、また、不純物(特にNiおよびFe)の含有量が低減され、400nm以下の紫外線波長域で高い透過率を有する合成石英ガラス光学部材の製造方法の提供を目的とする。
An object of the present invention is to provide a synthetic quartz glass optical member that suppresses light absorption around 240 nm and 270 nm and has high transmittance in an ultraviolet wavelength region of 400 nm or less.
It is another object of the present invention to provide a method for producing a synthetic quartz glass optical member having a reduced content of impurities (particularly Ni and Fe) and having a high transmittance in the ultraviolet wavelength region of 400 nm or less.

本発明は、ケイ素化合物を原料とし、火炎加水分解反応により石英ガラス微粒子を堆積、成長させ、多孔質石英ガラス体を合成した後、ガラス化して、400nm以下の紫外線波長域の光に使用される合成石英ガラス光学部材を得る合成石英ガラス光学部材を製造する方法において、該火炎加水分解反応を石英ガラス製反応容器および石英ガラス製バーナーを用いて、Niの含有量が1ppb以下かつFeの含有量が0.5ppb以下かつNaの含有量が1ppb以下の合成石英ガラスを得ることを特徴とする合成石英ガラス光学部材の製造方法を提供する。   The present invention uses a silicon compound as a raw material, deposits and grows quartz glass fine particles by a flame hydrolysis reaction, synthesizes a porous quartz glass body, and then vitrifies and is used for light in an ultraviolet wavelength region of 400 nm or less. In a method for producing a synthetic quartz glass optical member to obtain a synthetic quartz glass optical member, the flame hydrolysis reaction is carried out using a quartz glass reaction vessel and a quartz glass burner, and the Ni content is 1 ppb or less and the Fe content A synthetic quartz glass optical member, characterized in that a synthetic quartz glass having a Na content of 0.5 ppb or less and a Na content of 1 ppb or less is provided.

本発明の合成石英ガラス光学部材は、Niの含有量が0.5ppb以下であることが好ましい。   The synthetic quartz glass optical member of the present invention preferably has a Ni content of 0.5 ppb or less.

本発明の合成石英ガラス光学部材は、さらにNaの含有量が0.5ppb以下であることが好ましい。   The synthetic quartz glass optical member of the present invention preferably further has a Na content of 0.5 ppb or less.

本発明者は、光透過特性に及ぼす合成石英ガラス光学部材中のFeおよびNiの影響についてさらに詳細な検討を行った。本発明は、400nm以下の紫外線波長域の光を光源とする装置で使用される合成石英ガラス光学部材において、使用波長での十分な光透過性を確保するためには、Niの含有量を1ppb以下かつFeの含有量を0.5ppb以下にする必要があるという新規知見に基づく。   The inventor conducted further detailed studies on the influence of Fe and Ni in the synthetic quartz glass optical member on the light transmission characteristics. In the synthetic quartz glass optical member used in an apparatus using light in the ultraviolet wavelength region of 400 nm or less as a light source, the present invention has a Ni content of 1 ppb in order to ensure sufficient light transmission at the wavelength used. And based on the new finding that the Fe content needs to be 0.5 ppb or less.

合成石英ガラス光学部材中のNiの含有量を1ppb以下かつFeの含有量を0.5ppb以下とすれば、NiおよびFeに起因する240nmおよび270nmの吸収を実用上問題ない程度に抑制でき、具体的には270nm内部透過率が99.9%/cm以上である合成石英ガラス光学部材が得られる。
特に、Niの含有量を0.5ppbとすれば、270nm内部透過率が99.95%/cm以上である合成石英ガラス光学部材が得られる。
If the Ni content in the synthetic quartz glass optical member is 1 ppb or less and the Fe content is 0.5 ppb or less, the 240 nm and 270 nm absorptions caused by Ni and Fe can be suppressed to a practically satisfactory level. Specifically, a synthetic quartz glass optical member having an internal transmittance of 270 nm of 99.9% / cm or more is obtained.
In particular, if the Ni content is 0.5 ppb, a synthetic quartz glass optical member having a 270 nm internal transmittance of 99.95% / cm or more can be obtained.

合成石英ガラス光学部材の光損失は吸収損失によるものと散乱損失によるものとの2つに分類できる。本発明の合成石英ガラス光学部材の270nmにおける散乱損失量は約0.04%/cmである。特にNiの含有量を0.5ppbとすれば、270nmにおいて吸収損失がほとんどない合成石英ガラス光学部材が得られる。   The optical loss of the synthetic quartz glass optical member can be classified into two due to absorption loss and due to scattering loss. The amount of scattering loss at 270 nm of the synthetic quartz glass optical member of the present invention is about 0.04% / cm. In particular, if the Ni content is 0.5 ppb, a synthetic quartz glass optical member having almost no absorption loss at 270 nm can be obtained.

本発明によれば、240nmおよび270nm付近を中心とする光吸収が抑えられ、400nm以下の紫外線波長域で高い透過率を有する合成石英ガラス光学部材を得ることができ、400nm以下の紫外線を光源とする光学装置の光学部材として適用できる。   According to the present invention, it is possible to obtain a synthetic quartz glass optical member that suppresses light absorption around 240 nm and 270 nm and has high transmittance in an ultraviolet wavelength region of 400 nm or less, and uses ultraviolet light of 400 nm or less as a light source. It can be applied as an optical member of an optical device.

また本発明の製造方法によれば、不純物(特にNiおよびFe)の含有量が低減され、400nm以下の紫外線波長域で高い透過率を有する合成石英ガラス光学部材を容易に製造できる。したがって、240nmおよび270nm付近を中心とする光吸収が抑えられ、400nm以下の紫外線波長域で高い透過率を有する合成石英ガラス光学部材の製造方法として好適である。   Further, according to the production method of the present invention, it is possible to easily produce a synthetic quartz glass optical member that has a reduced content of impurities (particularly Ni and Fe) and has a high transmittance in the ultraviolet wavelength region of 400 nm or less. Therefore, light absorption centering around 240 nm and 270 nm is suppressed, and it is suitable as a method for producing a synthetic quartz glass optical member having high transmittance in the ultraviolet wavelength region of 400 nm or less.

本発明の合成石英ガラス光学部材は、FeおよびNi以外の不純物の含有量、すなわち、アルカリ金属(Na、K)、アルカリ土類金属(Mg、Ca)、FeおよびNi以外の遷移金属(Ti、Cr、Cu、Al)の含有量は、それぞれ1ppb以下であることが好ましい。これらの不純物が合成石英ガラス光学部材中に含まれると、紫外域〜真空紫外域での光透過性、特に250nm以下の光透過性が低下する傾向にある。   The synthetic quartz glass optical member of the present invention contains impurities other than Fe and Ni, that is, alkali metals (Na, K), alkaline earth metals (Mg, Ca), transition metals other than Fe and Ni (Ti, The content of (Cr, Cu, Al) is preferably 1 ppb or less. When these impurities are contained in the synthetic quartz glass optical member, the light transmittance in the ultraviolet region to the vacuum ultraviolet region, particularly the light transmittance of 250 nm or less tends to be lowered.

本発明はまた、ケイ素化合物を原料とし、火炎加水分解反応により石英ガラス微粒子を堆積、成長させ、多孔質石英ガラス体を合成した後、ガラス化して、合成石英ガラス光学部材を得る合成石英ガラス光学部材の製造方法において、該火炎加水分解反応を石英ガラス製反応容器および石英ガラス製バーナーを用いて行う合成石英ガラス光学部材の製造方法を提供する。   The present invention also provides a synthetic quartz glass optical material that uses a silicon compound as a raw material, deposits and grows quartz glass fine particles by a flame hydrolysis reaction, synthesizes a porous quartz glass body, and then vitrifies to obtain a synthetic quartz glass optical member. In the method for producing a member, a method for producing a synthetic quartz glass optical member in which the flame hydrolysis reaction is performed using a quartz glass reaction vessel and a quartz glass burner is provided.

石英ガラス製反応容器および石英ガラス製バーナーを用いた製造方法は、本発明の合成石英ガラス光学部材を得るうえできわめて好適である。石英ガラス製反応容器および石英ガラス製バーナーに用いられる石英ガラスとしては、天然の石英砂を原料とした溶融石英ガラス(例えば、シリカを主成分としAlを8ppm、Feを0.8ppm、Naを1ppm、Kを0.02ppm、Cuを0.02ppm、Bを0.3ppm、OHを1ppm含有する石英ガラス)などが好ましく用いられる。   The production method using the reaction vessel made of quartz glass and the burner made of quartz glass is very suitable for obtaining the synthetic quartz glass optical member of the present invention. The quartz glass used in the quartz glass reaction vessel and the quartz glass burner is fused silica glass made from natural quartz sand (for example, silica as the main component, Al 8 ppm, Fe 0.8 ppm, Na 1 ppm). , K is 0.02 ppm, Cu is 0.02 ppm, B is 0.3 ppm, and OH is 1 ppm.

例えば、SiCl4、HSiCl3、CH3SiCl3、(CH32SiCl2、CH3Si(OCH33、Si(OCH34などのケイ素化合物を原料とし、酸水素またはプロパンなどの火炎中で加水分解反応(火炎加水分解反応)させ、石英ガラス微粒子を堆積、成長させ、多孔質石英ガラス体を製造する。次いでこの多孔質石英ガラス体を大気中または窒素雰囲気下で、かつ減圧下(例えば1Torr以下)で焼成し、ガラス化する。ガラス化するときの焼成温度は1200〜1500℃が好ましく、焼成時間は10〜100時間が好ましい。
各工程において不純物の混入を制御しながら行うことで本発明の合成石英ガラス光学部材を得ることができる。
For example, a silicon compound such as SiCl 4 , HSiCl 3 , CH 3 SiCl 3 , (CH 3 ) 2 SiCl 2 , CH 3 Si (OCH 3 ) 3 , Si (OCH 3 ) 4 is used as a raw material, such as oxyhydrogen or propane. Hydrolysis reaction (flame hydrolysis reaction) is performed in a flame, and quartz glass fine particles are deposited and grown to produce a porous quartz glass body. Next, this porous quartz glass body is fired in the air or in a nitrogen atmosphere and under reduced pressure (for example, 1 Torr or less) to be vitrified. The firing temperature when vitrifying is preferably 1200 to 1500 ° C., and the firing time is preferably 10 to 100 hours.
The synthetic quartz glass optical member of the present invention can be obtained by controlling the mixing of impurities in each step.

本発明においては、ステッパレンズその他の光学部材として用いるために、必要に応じて、均質化、成形、アニールなどの各種熱処理を行うことができる。これらの熱処理は、例えば、多孔質石英ガラス体をガラス化した後に800〜2000℃の温度に加熱して行うことができる。   In the present invention, various heat treatments such as homogenization, molding, and annealing can be performed as necessary for use as a stepper lens or other optical member. These heat treatments can be performed, for example, by heating the porous quartz glass body to a temperature of 800 to 2000 ° C. after vitrification.

SiCl4を原料とし、酸水素火炎加水分解させて直径35cm、長さ100cmの多孔質石英ガラス体を合成した。次いで、雰囲気制御可能な電気炉内で多孔質石英ガラス体をガラス化した。ガラス化は、ヘリウムガス100%、圧力0.1Torrの雰囲気下で1450℃まで昇温し、1450℃で10時間保持するという条件で行った。ガラス化した後、カーボン製発熱体を有する雰囲気炉内で、軟化点以上(1750℃)に加熱して自重変形させ、250×250×120mmのブロック形状に成形した。引き続いて、温度を1200℃にまで降温させ、それ以降は30℃/hrの冷却速度で徐冷し、炉内温度が1000℃になったところで給電を停止して炉内放冷して合成石英ガラス光学部材を合成した。 A porous quartz glass body having a diameter of 35 cm and a length of 100 cm was synthesized using SiCl 4 as a raw material and hydrolyzing with oxyhydrogen flame. Subsequently, the porous quartz glass body was vitrified in an electric furnace capable of controlling the atmosphere. Vitrification was performed under the condition that the temperature was raised to 1450 ° C. in an atmosphere of helium gas 100% and pressure 0.1 Torr, and held at 1450 ° C. for 10 hours. After vitrification, it was heated to the softening point or higher (1750 ° C.) and deformed by its own weight in an atmosphere furnace having a carbon heating element, and formed into a 250 × 250 × 120 mm block shape. Subsequently, the temperature was lowered to 1200 ° C., thereafter, it was gradually cooled at a cooling rate of 30 ° C./hr, and when the furnace temperature reached 1000 ° C., the power supply was stopped and the furnace was allowed to cool, thereby synthesizing quartz. A glass optical member was synthesized.

なお、例1〜2においては石英ガラス製反応容器を用いて酸水素火炎加水分解法を行い、例3〜5についてはステンレス製反応容器を用いて酸水素火炎加水分解法を行った。例1〜3においては石英ガラス製バーナーを用いて酸水素火炎加水分解法を行い、例4〜5においてはステンレス製バーナーを用いて酸水素火炎加水分解法を行って、表1に示す各種不純物濃度の実施例(例1〜2)および比較例(例3〜5)の合成石英ガラス光学部材を合成した。
得られた合成石英ガラス光学部材について、下記に示す評価を行った。なお不純物濃度については、ICP質量分析法(セイコーインスツルメント社製SPQ9000)により分析した。
In Examples 1 and 2, an oxyhydrogen flame hydrolysis method was performed using a quartz glass reaction vessel, and in Examples 3 to 5, an oxyhydrogen flame hydrolysis method was performed using a stainless steel reaction vessel. In Examples 1 to 3, oxyhydrogen flame hydrolysis was performed using a quartz glass burner. In Examples 4 to 5, oxyhydrogen flame hydrolysis was performed using a stainless steel burner. The synthetic quartz glass optical members of the concentration examples (Examples 1 to 2) and comparative examples (Examples 3 to 5) were synthesized.
The obtained synthetic quartz glass optical member was evaluated as follows. The impurity concentration was analyzed by ICP mass spectrometry (SPQ9000 manufactured by Seiko Instruments Inc.).

評価1として、厚さが35mmの試料について、分光光度計を用いて波長190〜400nmの透過率を測定した。測定結果を図1に示す。
評価2として、厚さが10mmおよび35mmの2種の異なる厚さの試料について、波長270nmのそれぞれの透過率(T10およびT35)を測定し、式(1)に従って波長270nm内部透過率T270(単位:%/cm)を算出した。その結果を表1に示す。なお、式(1)において、T10は厚さ10mmの試料の波長270nmの透過率(単位:%)を、T35は厚さ35mmの試料の波長270nmの透過率(単位:%)を示し、指数および対数の底はeである。
また、T270の算出方法と同様の算出方法により波長240nm内部透過率T240(単位:%/cm)も算出した。
270=exp[ln(T10/T35)/2.5]×100 (1)
As Evaluation 1, the transmittance at a wavelength of 190 to 400 nm was measured for a sample having a thickness of 35 mm using a spectrophotometer. The measurement results are shown in FIG.
As evaluation 2, the transmittances (T 10 and T 35 ) at the wavelength of 270 nm were measured for two different thickness samples having a thickness of 10 mm and 35 mm, and the internal transmittance T at the wavelength of 270 nm was measured according to the equation (1). 270 (unit:% / cm) was calculated. The results are shown in Table 1. In Equation (1), T 10 indicates the transmittance (unit:%) of the sample having a thickness of 10 mm at a wavelength of 270 nm, and T 35 indicates the transmittance (unit:%) of the sample having a thickness of 35 mm at a wavelength of 270 nm. The base of the exponent and logarithm is e.
In addition, a wavelength 240 nm internal transmittance T 240 (unit:% / cm) was also calculated by the same calculation method as the T 270 calculation method.
T 270 = exp [ln (T 10 / T 35 ) /2.5] × 100 (1)

Figure 2008239479
Figure 2008239479

本発明によれば、240nmおよび270nm付近を中心とする光吸収が抑えられ、400nm以下の紫外線波長域で高い透過率を有する合成石英ガラス光学部材を得ることができ、400nm以下の紫外線を光源とする光学装置の光学部材として適用できる。   According to the present invention, it is possible to obtain a synthetic quartz glass optical member that suppresses light absorption around 240 nm and 270 nm and has high transmittance in an ultraviolet wavelength region of 400 nm or less, and uses ultraviolet light of 400 nm or less as a light source. It can be applied as an optical member of an optical device.

例1〜5で得られた合成石英ガラス光学部材の波長190〜400mmにおける透過率曲線。The transmittance | permeability curve in wavelength 190-400mm of the synthetic quartz glass optical member obtained in Examples 1-5.

Claims (3)

ケイ素化合物を原料とし、火炎加水分解反応により石英ガラス微粒子を堆積、成長させ、多孔質石英ガラス体を合成した後、ガラス化して、400nm以下の紫外線波長域の光に使用される合成石英ガラス光学部材を得る合成石英ガラス光学部材を製造する方法において、該火炎加水分解反応を石英ガラス製反応容器および石英ガラス製バーナーを用いて、Niの含有量が1ppb以下かつFeの含有量が0.5ppb以下かつNaの含有量が1ppb以下の合成石英ガラスを得ることを特徴とする合成石英ガラス光学部材製造方法。   Synthetic quartz glass optics used for light in the ultraviolet wavelength region of 400 nm or less, using a silicon compound as a raw material, depositing and growing quartz glass fine particles by flame hydrolysis reaction, synthesizing a porous quartz glass body, and then vitrifying it In a method for producing a synthetic quartz glass optical member to obtain a member, the flame hydrolysis reaction is carried out using a quartz glass reaction vessel and a quartz glass burner, with a Ni content of 1 ppb or less and a Fe content of 0.5 ppb. A synthetic quartz glass optical member manufacturing method, characterized in that a synthetic quartz glass having a Na content of 1 ppb or less is obtained. Niの含有量が0.5ppb以下である請求項1に記載の合成石英ガラス光学部材の製造方法。   The method for producing a synthetic quartz glass optical member according to claim 1, wherein the Ni content is 0.5 ppb or less. Naの含有量が0.5ppb以下である請求項1または請求項2に記載の合成石英ガラス光学部材の製造方法。   The method for producing a synthetic quartz glass optical member according to claim 1 or 2, wherein the Na content is 0.5 ppb or less.
JP2008097281A 1998-08-24 2008-04-03 Synthetic quartz glass optical member and manufacturing method thereof Expired - Lifetime JP5050969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008097281A JP5050969B2 (en) 1998-08-24 2008-04-03 Synthetic quartz glass optical member and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1998237681 1998-08-24
JP23768198 1998-08-24
JP2008097281A JP5050969B2 (en) 1998-08-24 2008-04-03 Synthetic quartz glass optical member and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP20678899A Division JP2000143259A (en) 1998-08-24 1999-07-21 Synthetic quartz glass optical member and its production

Publications (2)

Publication Number Publication Date
JP2008239479A true JP2008239479A (en) 2008-10-09
JP5050969B2 JP5050969B2 (en) 2012-10-17

Family

ID=39911250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008097281A Expired - Lifetime JP5050969B2 (en) 1998-08-24 2008-04-03 Synthetic quartz glass optical member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5050969B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015178422A (en) * 2014-03-18 2015-10-08 信越石英株式会社 Method for heat-treating synthetic quartz glass

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60215515A (en) * 1984-04-10 1985-10-28 Mitsubishi Metal Corp Preparation of synthetic quartz mass and device therefor
JPS61101428A (en) * 1984-10-03 1986-05-20 Furukawa Electric Co Ltd:The Production of porous parent material of optical system
JPS62187121A (en) * 1986-02-10 1987-08-15 Furukawa Electric Co Ltd:The Device for producing synthetic glass
JPH06171965A (en) * 1992-12-02 1994-06-21 Furukawa Electric Co Ltd:The Formation of porous glass body
JPH0748136A (en) * 1993-08-09 1995-02-21 Furukawa Electric Co Ltd:The Flame-detection apparatus and apparatus and method for producing porous glass preform using the detection apparatus
JPH09241030A (en) * 1996-03-07 1997-09-16 Shinetsu Quartz Prod Co Ltd High purity silica glass for far ultraviolet and its production
JPH10279319A (en) * 1997-04-02 1998-10-20 Nikon Corp Production of synthetic quartz glass and aperture therefor
JPH1192153A (en) * 1997-09-11 1999-04-06 Nikon Corp Quartz glass and its production

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60215515A (en) * 1984-04-10 1985-10-28 Mitsubishi Metal Corp Preparation of synthetic quartz mass and device therefor
JPS61101428A (en) * 1984-10-03 1986-05-20 Furukawa Electric Co Ltd:The Production of porous parent material of optical system
JPS62187121A (en) * 1986-02-10 1987-08-15 Furukawa Electric Co Ltd:The Device for producing synthetic glass
JPH06171965A (en) * 1992-12-02 1994-06-21 Furukawa Electric Co Ltd:The Formation of porous glass body
JPH0748136A (en) * 1993-08-09 1995-02-21 Furukawa Electric Co Ltd:The Flame-detection apparatus and apparatus and method for producing porous glass preform using the detection apparatus
JPH09241030A (en) * 1996-03-07 1997-09-16 Shinetsu Quartz Prod Co Ltd High purity silica glass for far ultraviolet and its production
JPH10279319A (en) * 1997-04-02 1998-10-20 Nikon Corp Production of synthetic quartz glass and aperture therefor
JPH1192153A (en) * 1997-09-11 1999-04-06 Nikon Corp Quartz glass and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015178422A (en) * 2014-03-18 2015-10-08 信越石英株式会社 Method for heat-treating synthetic quartz glass

Also Published As

Publication number Publication date
JP5050969B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
US5958809A (en) Fluorine-containing silica glass
KR100382776B1 (en) Quartz glass, optical member containing the same, and manufacturing method thereof
US7491475B2 (en) Photomask substrate made of synthetic quartz glass and photomask
KR100359947B1 (en) Excimer laser and silica glass optical material for the same and its manufacturing method
JP3228732B2 (en) Method for producing silica glass optical material for projection lens used in vacuum ultraviolet lithography
JP5796492B2 (en) Deep UV optical member and method of manufacturing the same
JP2005336047A (en) Optical member made of synthetic quartz glass and process for its production
JP2008189547A (en) Synthetic quartz glass and its production method
JP5050969B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
JP3510224B2 (en) Silica glass optical material for projection lens used in vacuum ultraviolet lithography and projection lens
JP2000290026A (en) Optical quartz glass member for excimer laser
US6701752B2 (en) Synthesized silica glass optical member and method for manufacturing the same
JPH1053432A (en) Quartz glass optical member, its production, and projection exposure device
EP1458651B1 (en) Fused silica having improved index homogeneity
EP1067097A1 (en) Synthetic quartz glass and method for preparation thereof
US6630418B2 (en) Fused silica containing aluminum
JPH0881225A (en) Synthetic quartz glass for light transmission and its production
JP4831328B2 (en) Method for manufacturing synthetic quartz glass substrate for excimer laser
CN107459256A (en) Quartz glass parts and preparation method thereof
JP4240709B2 (en) Synthetic quartz glass and manufacturing method thereof
JP2000143259A (en) Synthetic quartz glass optical member and its production
JP2003201125A (en) Synthetic quartz glass and its manufacturing method
JP2003201126A (en) Synthetic quartz glass for optical member and method of manufacturing the same
JP4093393B2 (en) Highly homogeneous synthetic quartz glass for vacuum ultraviolet light, method for producing the same, and mask substrate for vacuum ultraviolet light using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

R151 Written notification of patent or utility model registration

Ref document number: 5050969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term