JP2008223911A - Damper structure - Google Patents

Damper structure Download PDF

Info

Publication number
JP2008223911A
JP2008223911A JP2007063879A JP2007063879A JP2008223911A JP 2008223911 A JP2008223911 A JP 2008223911A JP 2007063879 A JP2007063879 A JP 2007063879A JP 2007063879 A JP2007063879 A JP 2007063879A JP 2008223911 A JP2008223911 A JP 2008223911A
Authority
JP
Japan
Prior art keywords
valve
piezoelectric element
piston
damper structure
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007063879A
Other languages
Japanese (ja)
Inventor
Tatsuhiro Tomari
辰弘 泊
Kiyoshi Nakajima
清志 中島
Yoshi Sukigara
宜 鋤柄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2007063879A priority Critical patent/JP2008223911A/en
Publication of JP2008223911A publication Critical patent/JP2008223911A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fluid-Damping Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a damper structure having a wide variable range of damping force even when a piezoelectric element is used as a drive source. <P>SOLUTION: In the damper structure 11, a cylinder 12 and a rod 13 receiving force such as vibration are combined via a piston 14, a valve 15 is disposed through which fluid pressed by the piston 14 flows, and the piezoelectric element 16 is disposed for applying driving force of a valve 15. The piezoelectric element 16 is connected to a valve element 45 of the valve 15 via a booster mechanism 17. Thereby, a driving amount of the piezoelectric element 16 becomes a large moving amount by the booster mechanism 17 to move the valve element 45. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、振動などの力に応じて、減衰力を調節することができるダンパー構造に関するものである。   The present invention relates to a damper structure capable of adjusting a damping force according to a force such as vibration.

ダンパー構造には、シリンダ内の流量を変更するバルブを設け、バルブを圧電素子によって駆動しているものがある(例えば、特許文献1参照。)。
特開平11−30266号公報(第8頁、図1)
Some damper structures are provided with a valve for changing the flow rate in the cylinder, and the valve is driven by a piezoelectric element (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 11-30266 (page 8, FIG. 1)

次に、特許文献1を簡単に説明する。
図6は、従来の技術(特許文献1)の説明図であり、従来の減衰特性可変型緩衝器201は、シリンダ202の外部に可変バルブ203が設けられ、可変バルブ203を背圧室204内のパイロット圧で制御する。パイロット圧を形成するパイロット圧室205には開閉するパイロット弁206が設けられ、パイロット弁206(パイロット弁体208)の閉方向(図の右)への駆動を圧電セラミック板207によって行っている。
Next, Patent Document 1 will be briefly described.
FIG. 6 is an explanatory diagram of a conventional technique (Patent Document 1). In a conventional damping characteristic variable shock absorber 201, a variable valve 203 is provided outside the cylinder 202, and the variable valve 203 is placed in the back pressure chamber 204. The pilot pressure is controlled. A pilot valve 206 that opens and closes is provided in the pilot pressure chamber 205 that forms the pilot pressure, and the piezoelectric valve 206 (pilot valve body 208) is driven in the closing direction (right in the drawing) by the piezoelectric ceramic plate 207.

しかし、特許文献1の減衰特性可変型緩衝器201では、減衰特性の可変量が小さいという問題がある。
パイロット弁体208は圧電セラミック板207によって移動するが、移動量(ストローク量)を圧電セラミック板207に対応させると、圧電素子の特性からパイロット弁体208の最大の開き量は小さいという問題がある。
However, the damping characteristic variable buffer 201 of Patent Document 1 has a problem that the variable amount of the damping characteristic is small.
The pilot valve body 208 is moved by the piezoelectric ceramic plate 207. However, if the movement amount (stroke amount) is made to correspond to the piezoelectric ceramic plate 207, there is a problem that the maximum opening amount of the pilot valve body 208 is small due to the characteristics of the piezoelectric element. .

可変バルブ203を他の緩衝器に採用した場合、必要な流量を確保できず、結果的に、必要な減衰力の可変範囲を得ることができないという問題がある。   When the variable valve 203 is employed in another shock absorber, there is a problem that a necessary flow rate cannot be secured and, as a result, a necessary variable range of damping force cannot be obtained.

本発明は、圧電素子を駆動源に用いても、減衰力の可変範囲が大きいダンパー構造を提供することを課題とする。   An object of the present invention is to provide a damper structure having a large variable range of damping force even when a piezoelectric element is used as a drive source.

請求項1に係る発明は、振動などの力を受けるシリンダとロッドをピストンを介して組合わせ、ピストンで押圧された流体が通るバルブを配置し、バルブの駆動力を付与する圧電素子が配置されているダンパー構造において、バルブの弁体に圧電素子が倍力機構を介して連結されていることを特徴とする。   In the first aspect of the invention, a cylinder and a rod that receive a force such as vibration are combined via a piston, a valve through which a fluid pressed by the piston passes, and a piezoelectric element that provides a driving force for the valve is disposed. In the damper structure, the piezoelectric element is connected to the valve body of the valve via a booster mechanism.

請求項2に係る発明は、圧電素子は、ロッド内にロッドと同軸に配置され、倍力機構は、ピストンの半径方向に伸びて弁体と圧電素子を連結しているレバー部材と、レバー部材の支点を支持する支点支持部と、を備えていることを特徴とする。   According to a second aspect of the present invention, the piezoelectric element is disposed coaxially with the rod in the rod, and the boosting mechanism extends in the radial direction of the piston to connect the valve element and the piezoelectric element, and the lever member And a fulcrum support part for supporting the fulcrum.

請求項3に係る発明は、支点支持部は、ピストンの中央に形成され、レバー部材は、一端が弁体に連結され、他端が支点支持部に連結され、他端の近傍に圧電素子の駆動力を加える力点連結部材を連結したことを特徴とする。   In the invention according to claim 3, the fulcrum support portion is formed at the center of the piston, and the lever member has one end connected to the valve body, the other end connected to the fulcrum support portion, and the piezoelectric element near the other end. A power point connecting member for applying a driving force is connected.

請求項1に係る発明では、振動などの力を受けるシリンダとロッドをピストンを介して組合わせ、ピストンで押圧された流体が通るバルブを配置し、バルブの駆動力を付与する圧電素子が配置されているダンパー構造において、バルブの弁体に圧電素子が倍力機構を介して連結されているので、圧電素子の駆動量が倍力機構によって大きな移動量となって弁体を移動させる。その結果、バルブの流量の範囲が大きくなり、圧電素子を駆動源に用いても、減衰力の可変範囲を大きくすることができるという利点がある。   In the invention according to claim 1, a cylinder and a rod that receive a force such as vibration are combined via a piston, a valve through which a fluid pressed by the piston passes, and a piezoelectric element that provides a driving force for the valve is disposed. In the damper structure, since the piezoelectric element is connected to the valve body of the valve via a booster mechanism, the driving amount of the piezoelectric element is increased by the booster mechanism to move the valve body. As a result, the range of the flow rate of the valve is increased, and there is an advantage that the variable range of the damping force can be increased even when the piezoelectric element is used as a drive source.

請求項2に係る発明では、圧電素子は、ロッド内にロッドと同軸に配置され、倍力機構は、ピストンの半径方向に伸びて弁体と圧電素子を連結しているレバー部材と、レバー部材の支点を支持する支点支持部と、を備えているので、圧電素子をロッドの軸線方向に駆動させ、且つ、ロッドの軸線方向の圧電素子の変位(駆動量)を大きくすることができる。   In the invention according to claim 2, the piezoelectric element is disposed coaxially with the rod in the rod, and the boosting mechanism extends in the radial direction of the piston and connects the valve body and the piezoelectric element, and the lever member Since the piezoelectric element is driven in the axial direction of the rod, the displacement (driving amount) of the piezoelectric element in the axial direction of the rod can be increased.

また、ロッドの軸線方向の圧電素子の変位が倍力機構によって大きな移動量となって弁体を移動させる。従って、減衰力の可変範囲をより大きくすることができるという利点がある。   Further, the displacement of the piezoelectric element in the axial direction of the rod becomes a large movement amount by the boost mechanism, and the valve body is moved. Therefore, there is an advantage that the variable range of the damping force can be increased.

請求項3に係る発明では、支点支持部は、ピストンの中央に形成され、レバー部材は、一端が弁体に連結され、他端が支点支持部に連結され、他端の近傍に圧電素子の駆動力を加える力点連結部材を連結したので、支点支持部から力点連結部材までの距離と力点連結部材から弁体までの距離の比が大きくなり、弁体の移動量をより大きくすることができる。従って、減衰力の可変範囲をより大きくすることができるという利点がある。   In the invention according to claim 3, the fulcrum support portion is formed at the center of the piston, and the lever member has one end connected to the valve body, the other end connected to the fulcrum support portion, and the piezoelectric element near the other end. Since the power point connecting member for applying the driving force is connected, the ratio of the distance from the fulcrum support part to the power point connecting member and the distance from the power point connecting member to the valve body is increased, and the amount of movement of the valve body can be further increased. . Therefore, there is an advantage that the variable range of the damping force can be increased.

本発明を実施するための最良の形態を添付図に基づいて以下に説明する。
図1は、本発明のダンパー構造の断面図である。
図2は、本発明のダンパー構造の斜視図である。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view of the damper structure of the present invention.
FIG. 2 is a perspective view of the damper structure of the present invention.

ダンパー構造11は、シリンダ12と、ロッド13と、ピストン14と、ピストン14に設けたバルブ15と、バルブ15を駆動する圧電素子16と、倍力機構17を備え、例えば、自動車の懸架装置に用いられる。   The damper structure 11 includes a cylinder 12, a rod 13, a piston 14, a valve 15 provided on the piston 14, a piezoelectric element 16 that drives the valve 15, and a booster mechanism 17. Used.

自動車は、走行状態を検出する車両状態検出装置21と、自動車の全体を制御する制御装置22を備え、制御装置22の減衰情報に基づいて圧電素子16は制御される。
シリンダ12は、ピストン14で仕切られてロッド13が配置されている前室25と、ロッド13が配置されていない後室26を有する。
The automobile includes a vehicle state detection device 21 that detects a traveling state and a control device 22 that controls the entire automobile, and the piezoelectric element 16 is controlled based on attenuation information of the control device 22.
The cylinder 12 has a front chamber 25 that is partitioned by the piston 14 and in which the rod 13 is disposed, and a rear chamber 26 in which the rod 13 is not disposed.

ピストン14は、シリンダ12の内径よりわずかに小さい外周面28を形成し、外周面28にシートリング31、31を取付け、前室25の壁をなす前壁32を形成し、後室26の壁をなす後壁33を形成し、後壁33と前壁32を結合部材34で結合して、バルブ室35を形成している。
結合部材34を用いることで、ピストン14の軽量化を図ることができる。
前壁32には、ロッド13を接続する第1めねじ部が形成されている。
The piston 14 forms an outer peripheral surface 28 that is slightly smaller than the inner diameter of the cylinder 12, seat rings 31, 31 are attached to the outer peripheral surface 28, a front wall 32 that forms the wall of the front chamber 25 is formed, and the wall of the rear chamber 26 A rear wall 33 is formed, and the rear wall 33 and the front wall 32 are coupled by a coupling member 34 to form a valve chamber 35.
By using the coupling member 34, the weight of the piston 14 can be reduced.
A first female thread portion for connecting the rod 13 is formed on the front wall 32.

ロッド13は、前壁32の第1めねじ部にねじ込んだおねじ部が切られ、一端37に嵌合穴41が深く形成され、嵌合穴41の端に第2めねじ部が形成されている。   The rod 13 has a male thread portion screwed into the first female thread portion of the front wall 32, a fitting hole 41 is deeply formed at one end 37, and a second female thread portion is formed at the end of the fitting hole 41. ing.

図3は、図1の3−3線断面図である。図1、図2を併用して説明する。
バルブ15は、ピストン14内(バルブ室35)に設けられ、後壁33に貫通している後流路43と、前壁32に向いている後流路43の角に形成した弁座44と、弁座44に、閉じるときに当たる弁体45と、ピストン14の前壁32に貫通させた前流路46と、を備える。
3 is a cross-sectional view taken along line 3-3 of FIG. This will be described with reference to FIGS.
The valve 15 is provided in the piston 14 (valve chamber 35), and includes a rear passage 43 that penetrates the rear wall 33, and a valve seat 44 that is formed at a corner of the rear passage 43 that faces the front wall 32. The valve seat 44 is provided with a valve body 45 that contacts the valve seat 44 and a front passage 46 that penetrates the front wall 32 of the piston 14.

倍力機構17は、弁体45に連結しているレバー部材48と、レバー部材48に連結している支点支持部51と、レバー部材48と圧電素子16を接続している力点連結部材52と、力点連結部材52を圧電素子16に押圧している弾性部材53と、圧電素子16をロッド13の半径方向に対して支持し、ロッド13の嵌合穴41に嵌合している固定カラー54と、を備える。具体的に説明する。   The booster mechanism 17 includes a lever member 48 connected to the valve body 45, a fulcrum support portion 51 connected to the lever member 48, and a force point connecting member 52 connecting the lever member 48 and the piezoelectric element 16. The elastic member 53 pressing the force point connecting member 52 against the piezoelectric element 16, and the fixed collar 54 that supports the piezoelectric element 16 in the radial direction of the rod 13 and is fitted in the fitting hole 41 of the rod 13. And comprising. This will be specifically described.

レバー部材48は、一端(先端)に弁体45がピンで揺動自在(矢印a1の方向)に連結され、他端が支点支持部51にピンで揺動自在(矢印a2の方向)に連結され、支点支持部51側に力点連結部材52が連結されている。
支点支持部51から力点連結部材52までの距離はL1で、レバー部材48の約1/4であり、力点連結部材52から弁体45までの距離をL2とし、距離L2は、L2>L1で、L1の約3倍である。
The lever member 48 is connected to one end (tip) of the valve body 45 so as to be swingable with a pin (in the direction of arrow a1), and the other end is connected to the fulcrum support 51 with a pin so as to be swingable (in the direction of arrow a2). The force point connecting member 52 is connected to the fulcrum support portion 51 side.
The distance from the fulcrum support 51 to the force point connecting member 52 is L1, which is about ¼ of the lever member 48, the distance from the force point connecting member 52 to the valve body 45 is L2, and the distance L2 is L2> L1. , About 3 times L1.

弁体45は、円錐形に形成され、円錐の底面に連ねてレバー部材48に連結している取付け部58を形成している。
支点支持部51は、後壁33の内面(前壁32に向いている面)の中央にボス部61が形成され、ボス部61の端部にレバー部材48を支持する溝部62が形成されている。
The valve body 45 is formed in a conical shape, and forms a mounting portion 58 connected to the lever member 48 so as to be connected to the bottom surface of the cone.
The fulcrum support portion 51 has a boss portion 61 formed at the center of the inner surface of the rear wall 33 (the surface facing the front wall 32), and a groove portion 62 that supports the lever member 48 at the end portion of the boss portion 61. Yes.

力点連結部材52は、レバー部材48に連結している凸部64が形成され、凸部64に連ねて円盤部65が形成され、円盤部65の中央に素子支持ガイド部材66が形成され、素子支持ガイド部材66がロッド13の嵌合穴41に、ロッド13の長手方向(Z軸方向)にスライド自在に嵌合し、素子支持ガイド部材66の掛止部67に弾性部材53の一端を当接するとともに弾性部材53を嵌合穴41に収納し、収納した弾性部材53の他端を蓋部材68に当接して蓋部材68をロッド13の接続めねじ部にねじ込んだものである。   The force point connecting member 52 is formed with a convex portion 64 connected to the lever member 48, a disk portion 65 is formed continuously with the convex portion 64, and an element support guide member 66 is formed at the center of the disk portion 65. The support guide member 66 is slidably fitted in the fitting hole 41 of the rod 13 in the longitudinal direction (Z-axis direction) of the rod 13, and one end of the elastic member 53 is brought into contact with the latching portion 67 of the element support guide member 66. The elastic member 53 is accommodated in the fitting hole 41, and the other end of the accommodated elastic member 53 is brought into contact with the lid member 68, and the lid member 68 is screwed into the connecting female thread portion of the rod 13.

圧電素子16は、既存のもので、電圧を印加するとひずむ。円柱に形成し、且つ、長さLと直径Dの比(L/D)を大きく形成している。つまり、細長いものである。そして、圧電素子16の軸線Cをロッド13と軸線C1と同軸に配置している。   The piezoelectric element 16 is an existing element and is distorted when a voltage is applied. It is formed in a cylinder and has a large ratio (L / D) between the length L and the diameter D. That is, it is elongated. The axis C of the piezoelectric element 16 is arranged coaxially with the rod 13 and the axis C1.

次に、本発明のダンパー構造の作用を説明する。
図1に示しているダンパー構造11は、通電していない状態で、通電していないときは、弾性部材53によって、常時、バルブ15を全開にしている。
弾性部材53は、力点連結部材52を圧電素子16に押圧し続けているので、力点連結部材52はレバー部材48を開限位置Kに保持し続け、弁体45を全開位置Mに保持する。
Next, the operation of the damper structure of the present invention will be described.
In the damper structure 11 shown in FIG. 1, the valve 15 is always fully opened by the elastic member 53 when not energized and when not energized.
Since the elastic member 53 continues to press the force point connecting member 52 against the piezoelectric element 16, the force point connecting member 52 continues to hold the lever member 48 in the open limit position K and holds the valve body 45 in the fully open position M.

図4は、本発明のダンパー構造の減衰力の調節機構を説明する図である。図1を併用して説明する。
まず、図4を用いて油71(点模様で示した)の流れを説明し、引き続き、図4でバルブ15を絞る機構を説明する。
FIG. 4 is a diagram for explaining a damping force adjusting mechanism of the damper structure according to the present invention. This will be described with reference to FIG.
First, the flow of the oil 71 (shown as a dot pattern) will be described with reference to FIG. 4, and the mechanism for restricting the valve 15 will be described with reference to FIG.

ダンパー構造11は、図4のように圧縮(矢印a3の方向)の荷重が加わると、ピストン14が移動するので、後室26内の油71は、後室26から後流路43を矢印b1のように流れ、続けて、前流路46を矢印b2のように流れて、前室25に移動する。従って、圧縮荷重(振動)を吸収することができる。   In the damper structure 11, when a compression load (in the direction of arrow a <b> 3) is applied as shown in FIG. 4, the piston 14 moves, so that the oil 71 in the rear chamber 26 moves from the rear chamber 26 to the rear flow path 43 by the arrow b <b> 1. Then, the front channel 46 flows as indicated by the arrow b2 and moves to the front chamber 25. Therefore, a compressive load (vibration) can be absorbed.

逆に、引張りの荷重が加わると、圧縮とは逆方向に油が流れるから、引張り荷重(振動)を吸収することができる。   Conversely, when a tensile load is applied, oil flows in the opposite direction to compression, so that the tensile load (vibration) can be absorbed.

ダンパー構造11は、制御装置22によって圧電素子16に電圧を印加すると、圧電素子16は、長手方向(Z軸方向)に矢印b3のように伸びて、倍力機構17を介してバルブ15を閉じ方向に移動させるので、バルブ15の移動量を大きくすることができる。
なお、バルブ15を閉じるので、開度が変化し、ダンパー構造11の減衰力は変化する。
In the damper structure 11, when a voltage is applied to the piezoelectric element 16 by the control device 22, the piezoelectric element 16 extends in the longitudinal direction (Z-axis direction) as indicated by an arrow b 3, and the valve 15 is closed via the booster mechanism 17. Since it is moved in the direction, the amount of movement of the valve 15 can be increased.
Since the valve 15 is closed, the opening degree changes and the damping force of the damper structure 11 changes.

具体的には、圧電素子16が長手方向に伸びると、弾性部材53に抗して、力点連結部材52を矢印b3のように押すと同時にレバー部材48を押す。レバー部材48はピストン14の中央の支点支持部51を支点に揺動して、一端に取付けている弁体45を後流路43に形成している弁座44に押圧するので、後流路43は閉じられる。   Specifically, when the piezoelectric element 16 extends in the longitudinal direction, the lever member 48 is pushed at the same time as the force point connecting member 52 is pushed as shown by the arrow b3 against the elastic member 53. The lever member 48 swings around the fulcrum support 51 at the center of the piston 14 and presses the valve body 45 attached to one end against the valve seat 44 formed in the rear flow path 43. 43 is closed.

その際、圧電素子16が伸びδpだけ伸びると、倍力機構17の距離L1と距離L2の比によって、弁体45はストローク(距離)B(B>δp)だけ移動するので、弁体45のストローク量を大きくすることができる。従って、減衰力の可変範囲を大きくすることができる。   At this time, when the piezoelectric element 16 is extended by δp, the valve body 45 is moved by the stroke (distance) B (B> δp) depending on the ratio of the distance L1 and the distance L2 of the booster mechanism 17. Stroke amount can be increased. Therefore, the variable range of the damping force can be increased.

図5は、ダンパーのピストンの速度とダンパーの減衰力の関係を示したグラフであり、横軸をダンパーのピストンの速度とし、縦軸をダンパーの減衰力としたものである。
破線は、比較例で、減衰力を変更できない一般的なダンパーを示し、ピストンの速度が速い領域では減衰力は高く、ピストンの速度が遅い領域では減衰力は低い。
FIG. 5 is a graph showing the relationship between the speed of the damper piston and the damping force of the damper, in which the horizontal axis is the speed of the damper piston and the vertical axis is the damping force of the damper.
A broken line shows a general damper in which the damping force cannot be changed in the comparative example. The damping force is high in a region where the piston speed is high, and the damping force is low in a region where the piston speed is slow.

実線は、実施の形態を示している。
実施の形態のダンパーは、圧電素子16を用いても弁体45のストローク量が大きく、上限Uと下限Wの幅が大きくなり、減衰力の範囲を大きくすることができる。
The solid line indicates the embodiment.
In the damper of the embodiment, even when the piezoelectric element 16 is used, the stroke amount of the valve body 45 is large, the width between the upper limit U and the lower limit W is increased, and the range of the damping force can be increased.

ピストンの速度が極めて低いときに、車両状態検出装置21に基づいて、圧電素子16に通電することで、バルブ15を完全に閉じる(後流路43の流量をゼロにする)。その結果、ピストンの速度が極めて低いときに、減衰力を付与することができる。   When the speed of the piston is extremely low, the valve 15 is completely closed by energizing the piezoelectric element 16 based on the vehicle state detection device 21 (the flow rate of the rear flow path 43 is made zero). As a result, a damping force can be applied when the speed of the piston is extremely low.

走行状態に応じて、車両状態検出装置21に基づいて、圧電素子16への通電量を変化させることで、必要な減衰力を発生させることができる。   A necessary damping force can be generated by changing the energization amount to the piezoelectric element 16 based on the vehicle state detection device 21 according to the traveling state.

尚、本発明のダンパー構造は、実施の形態ではレバー部材48の他端が支点支持部51に連結されているが、他端に力点連結部材52を連結してもよい。その際には、支点支持部51をレバー部材48の中央側へ移動して、レバー部材48の比を設定することで、同様の効果を発揮する。   In the damper structure of the present invention, the other end of the lever member 48 is connected to the fulcrum support 51 in the embodiment, but a force point connecting member 52 may be connected to the other end. In that case, the same effect is demonstrated by moving the fulcrum support part 51 to the center side of the lever member 48, and setting the ratio of the lever member 48. FIG.

バルブ15は、ピストン14に流路を4個形成したが数は任意である。すなわち、後流路43や弁体45を4個設けたが、4個以下でもよく、4個超えでもよい。   The valve 15 has four flow paths formed in the piston 14, but the number is arbitrary. That is, although the four rear flow paths 43 and the valve bodies 45 are provided, the number may be four or less or may be more than four.

本発明のダンパー構造は、自動車の懸架装置に好適である。   The damper structure of the present invention is suitable for an automobile suspension device.

本発明のダンパー構造の断面図である。It is sectional drawing of the damper structure of this invention. 本発明のダンパー構造の斜視図である。It is a perspective view of the damper structure of the present invention. 図1の3−3線断面図である。FIG. 3 is a sectional view taken along line 3-3 in FIG. 1. 本発明のダンパー構造の減衰力の調節機構を説明する図である。It is a figure explaining the adjustment mechanism of damping force of the damper structure of the present invention. ダンパーのピストンの速度とダンパーの減衰力の関係を示したグラフである。It is the graph which showed the relationship between the speed of the piston of a damper, and the damping force of a damper. 従来の技術(特許文献1)の説明図である。It is explanatory drawing of a prior art (patent document 1).

符号の説明Explanation of symbols

11…ダンパー構造、12…シリンダ、13…ロッド、14…ピストン、15…バルブ、16…圧電素子、17…倍力機構、45…弁体、48…レバー部材、51…支点支持部、52…力点連結部材。   DESCRIPTION OF SYMBOLS 11 ... Damper structure, 12 ... Cylinder, 13 ... Rod, 14 ... Piston, 15 ... Valve, 16 ... Piezoelectric element, 17 ... Booster mechanism, 45 ... Valve body, 48 ... Lever member, 51 ... Supporting point part, 52 ... Power point connecting member.

Claims (3)

振動などの力を受けるシリンダとロッドをピストンを介して組合わせ、該ピストンで押圧された流体が通るバルブを配置し、該バルブの駆動力を付与する圧電素子が配置されているダンパー構造において、
前記バルブの弁体に前記圧電素子が倍力機構を介して連結されていることを特徴とするダンパー構造。
In a damper structure in which a cylinder and a rod that receive a force such as vibration are combined via a piston, a valve through which a fluid pressed by the piston passes, and a piezoelectric element that applies driving force of the valve is arranged,
A damper structure, wherein the piezoelectric element is connected to a valve body of the valve via a booster mechanism.
前記圧電素子は、前記ロッド内にロッドと同軸に配置され、
前記倍力機構は、前記ピストンの半径方向に伸びて前記弁体と前記圧電素子を連結しているレバー部材と、該レバー部材の支点を支持する支点支持部と、を備えていることを特徴とする請求項1記載のダンパー構造。
The piezoelectric element is disposed coaxially with the rod in the rod,
The booster mechanism includes a lever member that extends in a radial direction of the piston and connects the valve body and the piezoelectric element, and a fulcrum support portion that supports a fulcrum of the lever member. The damper structure according to claim 1.
前記支点支持部は、前記ピストンの中央に形成され、
前記レバー部材は、一端が前記弁体に連結され、他端が前記支点支持部に連結され、前記他端の近傍に前記圧電素子の駆動力を加える力点連結部材を連結したことを特徴とする請求項2記載のダンパー構造。
The fulcrum support is formed at the center of the piston,
One end of the lever member is connected to the valve body, the other end is connected to the fulcrum support, and a force point connecting member for applying a driving force of the piezoelectric element is connected in the vicinity of the other end. The damper structure according to claim 2.
JP2007063879A 2007-03-13 2007-03-13 Damper structure Pending JP2008223911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007063879A JP2008223911A (en) 2007-03-13 2007-03-13 Damper structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007063879A JP2008223911A (en) 2007-03-13 2007-03-13 Damper structure

Publications (1)

Publication Number Publication Date
JP2008223911A true JP2008223911A (en) 2008-09-25

Family

ID=39842774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007063879A Pending JP2008223911A (en) 2007-03-13 2007-03-13 Damper structure

Country Status (1)

Country Link
JP (1) JP2008223911A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011812A1 (en) * 2011-07-17 2013-01-24 本田技研工業株式会社 Damper with variable damping force
JP2013024268A (en) * 2011-07-17 2013-02-04 Honda Motor Co Ltd Damping force variable damper
KR20160131310A (en) * 2015-05-06 2016-11-16 현대자동차주식회사 Variable damper
KR20190048541A (en) * 2017-10-31 2019-05-09 충북대학교 산학협력단 Linear type one-way damper
DE102019210578A1 (en) * 2019-07-18 2021-01-21 Zf Friedrichshafen Ag Adjustable damping valve device with a piezo actuator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011812A1 (en) * 2011-07-17 2013-01-24 本田技研工業株式会社 Damper with variable damping force
JP2013024268A (en) * 2011-07-17 2013-02-04 Honda Motor Co Ltd Damping force variable damper
JP5617038B2 (en) * 2011-07-17 2014-10-29 本田技研工業株式会社 Variable damping force damper
US9126467B2 (en) 2011-07-17 2015-09-08 Honda Motor Co., Ltd. Damper with variable damping force
KR20160131310A (en) * 2015-05-06 2016-11-16 현대자동차주식회사 Variable damper
KR101683503B1 (en) * 2015-05-06 2016-12-07 현대자동차 주식회사 Variable damper
KR20190048541A (en) * 2017-10-31 2019-05-09 충북대학교 산학협력단 Linear type one-way damper
KR101993645B1 (en) * 2017-10-31 2019-06-26 충북대학교 산학협력단 Linear type one-way damper
DE102019210578A1 (en) * 2019-07-18 2021-01-21 Zf Friedrichshafen Ag Adjustable damping valve device with a piezo actuator

Similar Documents

Publication Publication Date Title
JP5387841B2 (en) Damping force adjustable shock absorber
JP5582322B2 (en) Suspension control device
WO2019239521A1 (en) Pressure shock absorber
US20150198214A1 (en) Shock absorber
JP2010500510A (en) damper
JP2008267489A (en) Hydraulic shock absorber
JPH1172133A (en) Adjustable vibration damper for power vehicle
US8196723B1 (en) Pneumatic damper
JP2008223911A (en) Damper structure
JP4825723B2 (en) Vehicle damping force variable damper
JP2007303545A (en) Shock absorber
JP2011007322A (en) Damping force adjustment type shock absorber
JP4453000B2 (en) Hydraulic shock absorber
JP2009052703A (en) Damping force adjustable hydraulic shock absorber
JPH1130264A (en) Variable damping characteristic type shock absorber
JP5543864B2 (en) Valve structure
JP6442247B2 (en) valve
JP5678348B2 (en) Damping force adjustable shock absorber
JP2012002336A (en) Shock absorber
JP3781461B2 (en) Variable damping force hydraulic shock absorber
JP5106287B2 (en) Damping valve
JP2009287748A (en) Fluid pressure shock absorber
JP6621352B2 (en) Pressure shock absorber
JP2007046667A (en) Valve structure
JP4584844B2 (en) Shock absorber valve structure and shock absorber