JP2008223179A - Method and apparatus for producing polymer web - Google Patents

Method and apparatus for producing polymer web Download PDF

Info

Publication number
JP2008223179A
JP2008223179A JP2007064435A JP2007064435A JP2008223179A JP 2008223179 A JP2008223179 A JP 2008223179A JP 2007064435 A JP2007064435 A JP 2007064435A JP 2007064435 A JP2007064435 A JP 2007064435A JP 2008223179 A JP2008223179 A JP 2008223179A
Authority
JP
Japan
Prior art keywords
polymer
high voltage
nanofibers
producing
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007064435A
Other languages
Japanese (ja)
Other versions
JP4915258B2 (en
Inventor
Takahiro Kurokawa
崇裕 黒川
Hiroto Sumita
寛人 住田
Kazunobu Ishikawa
和宜 石川
Mitsuhiro Takahashi
光弘 高橋
Mikio Takezawa
幹夫 竹澤
Yoshiaki Tominaga
善章 冨永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007064435A priority Critical patent/JP4915258B2/en
Publication of JP2008223179A publication Critical patent/JP2008223179A/en
Application granted granted Critical
Publication of JP4915258B2 publication Critical patent/JP4915258B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a polymer web by which the uniform polymer web can efficiently be produced, and to provide an apparatus therefor. <P>SOLUTION: The apparatus includes a spinning head part 2 for extruding a polymer solution from a plurality of small holes and applying high voltage thereto to form nanofibers 7 comprising the polymer material by elongating the polymer material by electrostatic explosion; a conductive collecting body 8 arranged so as to face to the spinning head part 2 at an interval, energized by a high voltage having the polarity reverse to the high voltage energizing the polymer solution, or grounded, and having ventilation apertures 16; an air-permeable carrier sheet 11 on which the formed nanofibers 7 are accumulated to form web W; a carrier sheet-moving means 15 for moving the carrier sheet 11 along on the collecting body 8, and a sucking means 20 for sucking gas from a face reverse to the spinning head part 2 of the collecting body 8. In the apparatus, a gas flow 21 for flowing the nanofibers 7 to the carrier sheet 11 in one direction may be formed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高分子物質から成るナノファイバーを堆積した高多孔性の高分子ウェブの製造方法及び装置に関するものである。   The present invention relates to a method and apparatus for producing a highly porous polymer web on which nanofibers made of a polymer material are deposited.

従来、高分子物質から成るサブミクロンスケールの直径を有するナノファイバーを製造する方法として、電荷誘導紡糸法(エレクトロスピニング法)が知られている。従来の電荷誘導紡糸法では、高電圧を印加した針状のノズルに高分子溶液を供給することで、この針状のノズルから線状に流出する高分子溶液に電荷が帯電され、高分子溶液の溶媒蒸発に伴って帯電電荷間の距離が小さくなって作用するクーロン力が大きくなり、そのクーロン力が線状の高分子溶液の表面張力より勝った時点で線状の高分子溶液が爆発的に延伸される現象が生じ、この静電爆発と称する現象が、一次、二次、場合によっては三次と繰り返されることで、サブミクロンの直径の高分子から成るナノファイバーが製造されるものである。   Conventionally, a charge-induced spinning method (electrospinning method) is known as a method for producing a nanofiber having a submicron-scale diameter made of a polymer material. In the conventional charge-induced spinning method, a polymer solution is supplied to a needle-like nozzle to which a high voltage is applied, whereby the polymer solution that flows out linearly from this needle-like nozzle is charged, and the polymer solution As the solvent evaporates, the distance between the charged charges decreases and the acting Coulomb force increases. When the Coulomb force exceeds the surface tension of the linear polymer solution, the linear polymer solution explodes. The phenomenon called electrostatic explosion is repeated as primary, secondary, and in some cases tertiary, so that nanofibers made of macromolecules of submicron diameter are produced. .

こうして製造されたナノファイバーを電気的に接地された基板上に堆積させることで、立体的な網目を持つ3次元構造の薄膜を得ることができ、さらに厚く形成することでサブミクロンの網目を持つ高多孔性ウェブを製造することができる。こうして製造された高多孔性ウェブはフィルタや電池のセパレータや燃料電池の高分子電解質膜や電極等に好適に適用することができるとともに、このナノファイバーから成る高多孔性ウェブを適用することによってそれぞれの性能を飛躍的に向上させることが期待できる。   By depositing the nanofibers thus manufactured on an electrically grounded substrate, a three-dimensional thin film having a three-dimensional network can be obtained, and by forming it thicker, it has a submicron network. A highly porous web can be produced. The highly porous webs thus produced can be suitably applied to filters, battery separators, polymer electrolyte membranes and electrodes of fuel cells, etc., and by applying this highly porous web made of nanofibers, respectively. It can be expected to dramatically improve the performance.

高分子ウェブの製造方法としては、高電圧に帯電された高分子溶液を並列配置された複数のノズルから流出させて電荷誘導紡糸法にてナノファイバーを製造し、このナノファイバーを電気的に接地された収集体上を移動するシート上に堆積させることで製造する方法が知られている(例えば、特許文献1参照)。   As a method for producing a polymer web, a polymer solution charged at a high voltage is discharged from a plurality of nozzles arranged in parallel, and nanofibers are produced by a charge-induced spinning method, and the nanofibers are electrically grounded. A method of manufacturing by depositing on a moving sheet on a collected body is known (for example, see Patent Document 1).

また、図7に示すように、紡糸部31から帯電した高分子化合物溶液を吐出させ、電荷誘導紡糸法により繊維を生成し、紡糸部31とは逆極性に帯電させた板状の電極32に向けて紡出し、繊維構造体を堆積させる不織布の製造方法において、孔があいていないと均一な電荷分布が得られないため、好ましくは5μm〜1mmの複数の孔を設けた、ステンレスの金網や打抜金網や多孔板等から成る平面状構造体33を紡糸部31と電極32の間に配置することで、高電圧が印加される電極32とは別に配置した平面状構造体33上に高分子化合物の繊維構造体を良好な秩序を保ちながら堆積させ、均一な不織布を得るようにしたものも知られている(例えば、特許文献2参照)。なお、図7において、34は紡糸部31及び電極32に印加する電圧を発生する高電圧発生部である。
米国特許第6713011号明細書 特開2005−273067号公報
Further, as shown in FIG. 7, a charged polymer compound solution is discharged from the spinning unit 31, a fiber is generated by a charge-induced spinning method, and the plate-like electrode 32 is charged to a polarity opposite to that of the spinning unit 31. In the method for producing a nonwoven fabric in which the fiber structure is spun out, a uniform charge distribution cannot be obtained unless there is a hole. Therefore, a stainless steel wire mesh preferably provided with a plurality of holes of 5 μm to 1 mm, By arranging the planar structure 33 made of a punched wire mesh or a perforated plate between the spinning section 31 and the electrode 32, the planar structure 33 is placed on the planar structure 33 arranged separately from the electrode 32 to which a high voltage is applied. There is also known a technique in which a fibrous structure of molecular compounds is deposited while maintaining good order to obtain a uniform nonwoven fabric (for example, see Patent Document 2). In FIG. 7, reference numeral 34 denotes a high voltage generation unit that generates a voltage to be applied to the spinning unit 31 and the electrode 32.
US Pat. No. 6,713,011 JP 2005-273067 A

ところが、特許文献1に示された構成では、効率的に高分子ウェブを製造するために、複数のノズルを近距離で並列配置しているが、ノズルには高電圧を印加しているため、隣り合うノズル間で電界干渉が発生し、ナノファイバーがシート上に均一に堆積せず、均一な高分子ウェブを製造できないという問題があり、またシートから外れて収集体の側面や裏面側にもナノファイバーが付着堆積し易く、シートの円滑な移動に障害となる場合があるという問題も生じる。   However, in the configuration shown in Patent Document 1, in order to efficiently produce a polymer web, a plurality of nozzles are arranged in parallel at a short distance, but a high voltage is applied to the nozzles. There is a problem that electric field interference occurs between adjacent nozzles, nanofibers do not deposit uniformly on the sheet, and a uniform polymer web cannot be produced. There is also a problem that nanofibers are easily deposited and deposited, which may hinder smooth movement of the sheet.

また、特許文献2に示された図7の構成では、紡糸部31と電極32の間に平面状構造体33を配置するようにしているため、紡糸部31と平面状構造体33との間の距離をナノフアイバーの生成に必要な距離を確保しようとすると、紡糸部31と電極32の間の距離が大きくなり、紡糸部31と電極32間の電界強度が低下してナノフアイバーが確実かつ効率的に堆積せず、高分子ウェブを効率的に製造することができず、またこの構成で効率的に高分子ウェブを製造しようとすると、より高い電圧を印加する必要があり、紡糸部31から帯電して出た高分子溶液の電界干渉によって均一な高分子ウェブを製造できないという問題がある。   Further, in the configuration of FIG. 7 shown in Patent Document 2, since the planar structure 33 is disposed between the spinning portion 31 and the electrode 32, the space between the spinning portion 31 and the planar structure 33 is set. If the distance necessary for the generation of nanofibers is to be secured, the distance between the spinning portion 31 and the electrode 32 increases, the electric field strength between the spinning portion 31 and the electrode 32 decreases, and the nanofiber is reliably and The polymer web cannot be efficiently deposited, and the polymer web cannot be produced efficiently. In addition, when the polymer web is produced efficiently with this configuration, it is necessary to apply a higher voltage. There is a problem that a uniform polymer web cannot be produced due to electric field interference of the polymer solution charged from the surface.

本発明は、上記従来の課題を解決するもので、効率的に均一な高分子ウェブを製造できる高分子ウェブの製造方法と装置を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object thereof is to provide a polymer web manufacturing method and apparatus capable of efficiently manufacturing a uniform polymer web.

本発明の高分子ウェブの製造方法は、高分子物質を溶媒に溶解した高分子溶液を複数の***から流出させ、流出する高分子溶液に高電圧を印加して静電爆発にて延伸させることで高分子物質から成るナノファイバーを生成する生成工程と、気体流を形成して生成されたナノファイバーを一方向に流動させる気体流動工程と、気体流にて一方向に流動するナノファイバーを、移動する通風可能な担持シート上に堆積させる堆積工程とを有するものである。   In the method for producing a polymer web of the present invention, a polymer solution in which a polymer substance is dissolved in a solvent is caused to flow out from a plurality of small holes, and a high voltage is applied to the flowing polymer solution to cause stretching by electrostatic explosion. In the production process of generating nanofibers made of a polymer material in, a gas flow process of flowing the nanofiber generated by forming a gas flow in one direction, and a nanofiber flowing in one direction in the gas flow, And a deposition step of depositing on a moving supportable sheet.

上記構成によれば、高分子ウェブを効率的に製造するために複数の***からナノファイバーを生成するに際して、生成されたナノファイバーが気体流にて一方向に流動されることで、生成されるナノファイバーに高電圧が印加されていても電界干渉の影響が抑制されて均一な分布状態を維持しつつ、また担持シート上からはみ出すことなく、担持シート上に確実に堆積し、均一な高分子ウェブを効率的に製造することができる。   According to the above configuration, when producing nanofibers from a plurality of small holes in order to efficiently produce a polymer web, the produced nanofibers are generated by flowing in one direction with a gas flow. Even when a high voltage is applied to the nanofibers, the effect of electric field interference is suppressed, maintaining a uniform distribution state, and reliably depositing on the support sheet without protruding from the support sheet, a uniform polymer The web can be manufactured efficiently.

また、気体流が温風であると、生成されるナノファイバーや製造される高分子ウェブの中に含まれる溶媒が蒸発し易くなるので、効率的に品質の良い高分子ウェブを製造できて好適である。   In addition, when the gas flow is warm, the solvent contained in the produced nanofibers and the polymer web to be produced is likely to evaporate, which makes it possible to efficiently produce a high-quality polymer web. It is.

また、本発明の高分子ウェブの製造装置は、高分子物質を溶媒に溶解した高分子溶液を複数の***から流出させ、流出する高分子溶液に高電圧を印加し、静電爆発にて延伸させて高分子物質から成るナノファイバーを生成するナノファイバー生成手段と、ナノファイバー生成手段と間隔をあけて対向して配設され、高分子溶液に印加する高電圧とは逆極性の高電圧を印加され又は接地された導電性でかつ通風開口を有する収集体と、生成されたナノファイバーを堆積させてウェブを生成する通風可能な担持シートと、担持シートを収集体上に沿って移動させる移動手段と、収集体のナノファイバー生成手段とは反対側面から気体を吸引する吸引手段とを備えたものである。   The polymer web manufacturing apparatus of the present invention allows a polymer solution in which a polymer substance is dissolved in a solvent to flow out from a plurality of small holes, applies a high voltage to the flowing polymer solution, and stretches by electrostatic explosion. A nanofiber generating means for generating a nanofiber made of a polymer substance, and a high voltage having a polarity opposite to the high voltage applied to the polymer solution. A conductive collector that is applied or grounded and has a vent opening, a ventable carrier sheet that deposits the generated nanofibers to produce a web, and a movement that moves the carrier sheet along the collector. Means and suction means for sucking gas from the side opposite to the nanofiber generating means of the collector.

この構成によると、吸引手段を動作させると、収集体及び担持シートを通して、生成されたナノファイバーを担持シートに向けて一方向に流動させる気体流が形成され、この気体流にてナノファイバーを均一な分布状態を乱すことなく、担持シート上に確実にかつ効率的に堆積させることができ、均一な高分子ウェブを効率的に製造することができる。   According to this configuration, when the suction means is operated, a gas flow is formed through the collector and the support sheet so that the generated nanofibers flow in one direction toward the support sheet. Without disturbing the distribution state, it can be reliably and efficiently deposited on the support sheet, and a uniform polymer web can be efficiently produced.

また、ナノファイバー生成手段と担持シートとが対向する空間の側部に送風手段を配設すると、上記気体流をナノファイバーが生成されて担持シートに向かって流動する領域に確実に形成でき、上記効果がより確実に得られる。   Further, when the air blowing means is disposed on the side of the space where the nanofiber generating means and the support sheet face each other, the gas flow can be reliably formed in the region where the nanofiber is generated and flows toward the support sheet, The effect can be obtained more reliably.

また、送風手段は、所定温度の温風を発生して送風する温風送風手段にて構成されていると、生成されるナノファイバーや製造される高分子ウェブの中に含まれる溶媒が蒸発し易くなるので、効率的に品質の良い高分子ウェブを製造できて好適である。   Further, when the air blowing means is constituted by the hot air air blowing means for generating and blowing hot air at a predetermined temperature, the solvent contained in the produced nanofibers and the polymer web to be produced evaporates. Since it becomes easy, a high-quality polymer web can be efficiently produced, which is preferable.

また、収集体には、ほぼ全面に複数の通風開口が規則的に配置されていると、全面にわたって均一な気体流を形成できて上記効果がより確実に得られる。   In addition, when a plurality of ventilation openings are regularly arranged on almost the entire surface of the collector, a uniform gas flow can be formed over the entire surface, and the above-described effect can be obtained more reliably.

また、担持シートは、ほぼ全面に均一に多数の孔が形成された樹脂シート又は樹脂フィルムにて構成されていると、担持シートの全面にわたって均一な気体流を形成できて上記効果がより確実に得られる。   In addition, when the supporting sheet is composed of a resin sheet or a resin film in which a large number of holes are uniformly formed on almost the entire surface, a uniform gas flow can be formed on the entire surface of the supporting sheet, and the above effect is more reliably achieved. can get.

本発明の高分子ウェブの製造方法及び装置によれば、高分子ウェブを効率的に製造するために複数の***からナノファイバーを生成するに際して、生成されたナノファイバーが気体流にて一方向に流動されることで、生成されるナノファイバーに高電圧が印加されていても電界干渉の影響が抑制されて均一な分布状態を維持しつつ担持シート上に確実に堆積させることができるので、均一な高分子ウェブを効率的に製造することができる。   According to the method and apparatus for producing a polymer web of the present invention, when producing nanofibers from a plurality of small holes in order to produce a polymer web efficiently, the produced nanofibers are unidirectionally generated by a gas flow. By flowing, even if a high voltage is applied to the generated nanofiber, the influence of electric field interference is suppressed, and it can be reliably deposited on the support sheet while maintaining a uniform distribution state. Can be produced efficiently.

以下、本発明の高分子ウェブの製造方法と装置の一実施形態について、図1〜図6を参照しながら説明する。   Hereinafter, an embodiment of a method and an apparatus for producing a polymer web of the present invention will be described with reference to FIGS.

図1〜図3において、1は紡糸部で、ナノファイバーの材料である高分子物質を溶媒に溶解した高分子溶液が内部に供給されるとともに、その高分子溶液を流出させる複数の***が並列配置された紡糸ヘッド部2と、1kV〜100kV、好適には5kV〜100kVの高電圧を発生させて紡糸ヘッド部2の***に印加する第1の高電圧発生手段3とを備えている。紡糸部1には、図1〜図3での図示は省略しているが、図5に示すように、高分子溶液を収容した収容容器4と、収容容器4から紡糸ヘッド部2に高分子溶液を供給するポンプ5が配設され、また第1の高電圧発生手段3から紡糸ヘッド部2への高電圧の印加をオンオフ制御する第1の接続手段6が設けられている。   In FIG. 1 to FIG. 3, reference numeral 1 denotes a spinning unit, in which a polymer solution obtained by dissolving a polymer substance, which is a nanofiber material, in a solvent is supplied inside, and a plurality of small holes for allowing the polymer solution to flow out are arranged in parallel. The arranged spinning head section 2 and first high voltage generating means 3 for generating a high voltage of 1 kV to 100 kV, preferably 5 kV to 100 kV, and applying the high voltage to the small holes of the spinning head section 2 are provided. Although not shown in FIG. 1 to FIG. 3, the spinning unit 1 contains a container 4 containing a polymer solution and a polymer from the container 4 to the spinning head unit 2 as shown in FIG. 5. A pump 5 for supplying a solution is provided, and a first connecting means 6 for controlling on / off of application of a high voltage from the first high voltage generating means 3 to the spinning head unit 2 is provided.

高分子溶液を構成する高分子物質としては、ポリフッ化ビニリデン(FVDF)、ポリフッ化ビニリデン−コ−ヘキサフルオロプロピレン、ポリアクリルニトリル、ポリメチルメタクリレート、ポリエチレン、ポリプロピレン等の石油系ポリマーや、バイオポリマーなどの様々な高分子、それらの共重合体や混合物などが適用可能であり、溶媒はこれら高分子物質を溶解する任意の溶媒を適用できる。   Examples of the polymer substance constituting the polymer solution include petroleum-based polymers such as polyvinylidene fluoride (FVDF), polyvinylidene fluoride-co-hexafluoropropylene, polyacrylonitrile, polymethyl methacrylate, polyethylene, and polypropylene, and biopolymers. Various polymers, copolymers and mixtures thereof can be applied, and any solvent that dissolves these polymer substances can be used as the solvent.

このような構成の紡糸部1において、紡糸ヘッド部2から高分子溶液が電荷を帯電された状態で各***から線状に流出されて細い高分子線状体が生成され、その後高分子溶液の溶媒が蒸発することで高分子線状体の径が細くなり、それに伴って帯電されていた電荷が集中し、そのクーロン力が高分子溶液の表面張力を超えた時点で一次静電爆発が生じて爆発的に延伸され、その後さらに溶媒が蒸発して同様に二次静電爆発が生じて爆発的に延伸され、場合によってはさらに三次静電爆発が生じて延伸されることで、サブミクロンの直径を有する高分子物質から成るナノファイバー7が効率的に製造される。   In the spinning unit 1 having such a configuration, the polymer solution is discharged from the spinning heads 2 in a linear manner in a state of being charged, and a thin polymer linear body is generated. As the solvent evaporates, the diameter of the polymer linear body is reduced, and the charged charge is concentrated accordingly. When the Coulomb force exceeds the surface tension of the polymer solution, a primary electrostatic explosion occurs. Then, the solvent evaporates, and a secondary electrostatic explosion occurs in the same manner, resulting in an explosive stretching, and in some cases, a third electrostatic explosion occurs and the submicron is stretched. Nanofibers 7 made of a polymer material having a diameter are efficiently produced.

紡糸ヘッド部2の***を配置した面に対して適当距離あけて対向するように導電性を有する収集体8が配設されている。収集体8には、第2の高電圧発生手段9にて発生させた、紡糸ヘッド部2に対する印加電圧とは逆極性の高電圧が印加されている。なお、第2の高電圧発生手段9から収集体8への高電圧の印加は、第2の接続手段10(図5参照)にてオンオフ制御される。また、収集体8と紡糸ヘッド部2との間に大きな電位差を付与すればよいので、単に収集体8を接地するだけでもよい。この紡糸ヘッド部2と収集体8との間の大きな電位差によって生じた電界によって、帯電したナノファイバー7が収集体8に向けて付勢されて流動する。   A collecting body 8 having conductivity is disposed so as to face the surface of the spinning head portion 2 where a small hole is disposed with an appropriate distance. A high voltage having a polarity opposite to the voltage applied to the spinning head unit 2 generated by the second high voltage generating means 9 is applied to the collecting body 8. The application of a high voltage from the second high voltage generating means 9 to the collector 8 is controlled on and off by the second connecting means 10 (see FIG. 5). Further, since a large potential difference may be applied between the collecting body 8 and the spinning head unit 2, the collecting body 8 may be simply grounded. The charged nanofibers 7 are urged toward the collection body 8 and flow by an electric field generated by a large potential difference between the spinning head unit 2 and the collection body 8.

収集体8上には、帯状の担持シート11が配置され、その上にナノファイバー7を堆積させて高分子ウェブWを連続的に製造するように構成されている。担持シート11は、ポリエチレンやポリプロピレンなどの樹脂シート又は樹脂フィルムにて構成され、その全面に多数の通気穴(図示せず)が均等に形成されている。通気穴の開口率(一定面積の担持シート11における通気穴の合計面積の割合)は、20%〜50%程度が好適である。20%未満では通風抵抗が大きくなり、50%を超える担持シート11の強度を確保するのが困難となる。また、通気穴の形状は任意でよく、通気穴の径は、0.1mm〜1mm程度が好適である。0.1mm以下では十分な通気性を確保するのが困難であり、1mmを超えると、ナノファイバー7の一部が通過して堆積されない恐れがある。   A strip-shaped carrier sheet 11 is disposed on the collection body 8, and the nanofibers 7 are deposited thereon to continuously produce the polymer web W. The support sheet 11 is made of a resin sheet or resin film such as polyethylene or polypropylene, and a large number of ventilation holes (not shown) are formed uniformly on the entire surface. The opening ratio of the ventilation holes (the ratio of the total area of the ventilation holes in the carrier sheet 11 having a constant area) is preferably about 20% to 50%. If it is less than 20%, the ventilation resistance increases, and it becomes difficult to ensure the strength of the carrier sheet 11 exceeding 50%. The shape of the vent hole may be arbitrary, and the diameter of the vent hole is preferably about 0.1 mm to 1 mm. If it is 0.1 mm or less, it is difficult to ensure sufficient air permeability, and if it exceeds 1 mm, a part of the nanofibers 7 may not pass through and be deposited.

担持シート11は、収集体8の上面に沿って移動するように、収集体8の一側に配設された送り出しローラ12と、収集体8の他側に配設された巻き取りローラ13と、送り出しローラ12と収集体8との間及び収集体8と巻き取りローラ13との間に配置されたガイドローラ14a、14bからなる担持シート移動手段15にて移動駆動される。ガイドローラ14a、14bは、担持シート11の移動経路をほぼ収集体8の上面位置に規制するものである。   The carrying sheet 11 moves along the upper surface of the collection body 8, and a feed roller 12 disposed on one side of the collection body 8 and a take-up roller 13 disposed on the other side of the collection body 8. The carrier sheet is moved by a carrying sheet moving means 15 including guide rollers 14a and 14b disposed between the feeding roller 12 and the collecting body 8 and between the collecting body 8 and the take-up roller 13. The guide rollers 14 a and 14 b are for restricting the movement path of the carrier sheet 11 to substantially the upper surface position of the collecting body 8.

なお、図2、図3においては、収集体8と担持シート11を模式的に示し、それらの間に間隔がある状態で図示しているが、実際には担持シート11が収集体8に強く密着して担持シート11の移動抵抗が大きくならず、かつ担持シート11と収集体8の間の隙間から大量の外気が流入することがないように、収集体8に対して軽く当接又は微小な隙間をあけるように担持シート11の移動経路を規制するのが好適である。また、図3に仮想線で示すように、収集体8の上面の外周縁全周と必要に応じてその間に、表面の摩擦係数の小さい支持リブ8aを突設して、接触面積及び摩擦係数の小さい状態で担持シート11を支持するようにすると、移動抵抗を小さくかつ外気の流入を防止できて好適である。さらに、支持リブ8aから担持シート11を微小量浮き上がらせるエア流を収集体8の外側に向けて吹き出すようにすると、移動抵抗を小さくできて好適である。   2 and 3 schematically show the collecting body 8 and the carrying sheet 11 with a gap between them, but the carrying sheet 11 is actually strongly attached to the collecting body 8. In order to prevent a large amount of outside air from flowing in through the gap between the carrying sheet 11 and the collecting body 8 due to close contact, the movement resistance of the carrying sheet 11 does not increase, and lightly abuts or minutely contacts the collecting body 8. It is preferable to regulate the movement path of the carrier sheet 11 so as to open a large gap. Further, as indicated by phantom lines in FIG. 3, a support rib 8a having a small surface friction coefficient protrudes between the entire outer peripheral edge of the upper surface of the collector 8 and, if necessary, the contact area and the friction coefficient. It is preferable to support the carrier sheet 11 in a small state because the movement resistance is small and the inflow of outside air can be prevented. Furthermore, it is preferable that the air flow that lifts the carrier sheet 11 from the support rib 8a is blown toward the outside of the collecting body 8 because the movement resistance can be reduced.

収集体8には、図3に示すように、その上面の担持シート11の通過範囲の略全面にわたって配置された多数の通風開口16が形成されている。収集体8の下部には、下端に向かって先細となる吸引ホッパー17が気密状態で接合して配設され、その下端開口17aが吸引ダクト18を介して排気用のブロア19に接続され、これら吸引ホッパー17と吸引ダクト18とブロア19にて、紡糸ヘッド部2と収集体8との間の領域に、図2、図3に矢印で示すように、収集体8に向かって流れる気体流21を形成する吸引手段20が構成されている。   As shown in FIG. 3, the collector 8 is formed with a large number of ventilation openings 16 disposed over substantially the entire surface of the upper surface of the collection sheet 11. A suction hopper 17 that tapers toward the lower end is joined and disposed in the airtight state at the lower part of the collection body 8, and the lower end opening 17 a is connected to an exhaust blower 19 through a suction duct 18. A gas flow 21 flowing toward the collecting body 8 in the region between the spinning head unit 2 and the collecting body 8 by the suction hopper 17, the suction duct 18 and the blower 19 as shown by arrows in FIGS. The suction means 20 for forming the structure is configured.

収集体8に形成される通気開口16はその配置領域の全面にわたって均等に配置され、均一性のある気体流21を形成するようにしている。具体的には、図4(a)に示すように、収集体8に穴明けした比較的小径の穴16aにて通気開口16を構成しても、図4(b)に示すように、比較的大径の穴16bにて通気開口16を構成しても、図4(c)に示すように、収集体8をメッシュ状体にて構成してその目穴16cにて通気開口16を構成しても良い。   The ventilation openings 16 formed in the collection body 8 are arranged uniformly over the entire surface of the arrangement area so as to form a uniform gas flow 21. Specifically, as shown in FIG. 4A, even if the ventilation opening 16 is configured by a relatively small diameter hole 16a drilled in the collection body 8, as shown in FIG. Even if the ventilation opening 16 is formed by the hole 16b having a large diameter, as shown in FIG. 4C, the collection body 8 is formed by a mesh-like body and the ventilation opening 16 is formed by the eye hole 16c. You may do it.

また、図1に示すように、紡糸ヘッド部2と収集体8の間の空間内に向けて、担持シート11の移動方向と直交する方向の両側部から、温風を発生して上記空間に向けて送風する温風送風手段22が配設されている。   Further, as shown in FIG. 1, hot air is generated from both sides in a direction perpendicular to the moving direction of the carrier sheet 11 toward the space between the spinning head unit 2 and the collection body 8 to enter the space. A hot air blowing means 22 for blowing air is provided.

次に、制御構成を図5を参照して説明する。図5において、制御部23にて、紡糸部1における高分子溶液を供給するポンプ5及び高電圧を供給する第1の接続手段6と、担持シート11を移動する担持シート移動手段15と、収集体8に紡糸部1とは逆極性の高電圧を供給する第2の接続手段10と、吸引手段20のブロア19と、温風送風手段21とを動作制御するように構成されている。   Next, the control configuration will be described with reference to FIG. In FIG. 5, in the control unit 23, the pump 5 for supplying the polymer solution in the spinning unit 1, the first connecting means 6 for supplying high voltage, the supporting sheet moving means 15 for moving the supporting sheet 11, and the collection The second connecting means 10 for supplying a high voltage having a polarity opposite to that of the spinning unit 1 to the body 8, the blower 19 of the suction means 20, and the hot air blowing means 21 are configured to control the operation.

以上の構成において、紡糸部1で収容容器4からポンプ5にて所定量の高分子溶液を紡糸ヘッド部2内に供給し、第1の高電圧発生手段3から所定の高電圧を印加して紡糸ヘッド部2内に収容された高分子溶液に電荷を帯電させることで、上記のように電荷を帯電された高分子溶液が複数の***から線状に流出して高分子線状体が形成され、その高分子線状体中の溶媒が蒸発することで一次静電爆発が生じて爆発的に延伸され、その後さらに溶媒が蒸発して同様に二次静電爆発が生じて爆発的にさらに延伸され、場合によってはさらに三次静電爆発が生じて延伸されることで、複数の***から流出した高分子溶液線状体からサブミクロンの直径を有する高分子物質から成るナノファイバー7が製造される。   In the above configuration, a predetermined amount of polymer solution is supplied from the container 4 to the spinning head unit 2 by the pump 5 in the spinning unit 1 and a predetermined high voltage is applied from the first high voltage generating means 3. By charging the polymer solution accommodated in the spinning head unit 2 with charges, the polymer solution charged with charge as described above flows out linearly from a plurality of small holes to form a polymer linear body. When the solvent in the polymer linear body evaporates, a primary electrostatic explosion occurs and the film is stretched explosively, and then the solvent evaporates to generate a secondary electrostatic explosion and further explosively further. The nanofibers 7 made of a polymer material having a submicron diameter are produced from the polymer solution linear bodies flowing out from the plurality of small holes by being drawn and possibly further subjected to a third electrostatic explosion. The

製造されたナノファイバー7は紡糸ヘッド部2にて帯電された状態となっているので、第1の高電圧発生手段3にて高電圧が印加された紡糸ヘッド部2と、第2の高電圧発生手段9にて逆極性の高電圧が印加された収集体8との間に作用する電界によって収集体8に向けて強く付勢されて流動し、収集体8上を担持シート移動手段15にて移動する帯状の担持シート11上に堆積され、高分子ウェブWが担持シート11上に連続的に高い生産性をもって製造される。   Since the manufactured nanofiber 7 is in a state of being charged by the spinning head unit 2, the spinning head unit 2 to which a high voltage is applied by the first high voltage generating means 3, and the second high voltage The generating means 9 is strongly biased toward the collecting body 8 by the electric field acting between the collecting body 8 to which a high voltage of reverse polarity is applied by the generating means 9 and flows on the collecting body 8 to the carrying sheet moving means 15. Thus, the polymer web W is continuously produced with high productivity on the carrier sheet 11.

この高分子ウェブWの堆積工程において、吸引手段20を動作させると、収集体8の通風開口16及び担持シート11の通気穴(図示せず)を通して担持シート11上の雰囲気が吸引され、担持シート11に向けて一方向に流動させる気体流21が形成され、この気体流21によって、生成されたナノファイバー7が高電圧に帯電していてもその電界干渉の影響を抑制して均一な分布状態を維持しつつ、担持シート11に向けて流動し、生成されたナノファイバー7が均一な分布状態を乱すことなく、また担持シート11上からはみ出すことなく、確実にかつ効率的に担持シート11上に堆積させることができ、均質な高分子ウェブWを効率的に製造することができる
また、紡糸ヘッド部2と担持シート11とが対向する空間の側部に温風送風手段22を配設しているので、ナノファイバー7が担持シート11に向かって流動する領域に上記気体流21を確実に形成でき、さらにその送風が温風であるため、生成されたナノファイバー7や製造される高分子ウェブWの中に含まれる溶媒が蒸発し易くなるので、さらに効率的に品質の良い高分子ウェブWを製造することができる。
When the suction means 20 is operated in the deposition process of the polymer web W, the atmosphere on the support sheet 11 is sucked through the ventilation openings 16 of the collector 8 and the vent holes (not shown) of the support sheet 11, and the support sheet 11 is sucked. A gas flow 21 that flows in one direction toward the surface 11 is formed. Even if the generated nanofiber 7 is charged at a high voltage, the gas flow 21 suppresses the influence of the electric field interference and has a uniform distribution state. The nanofibers 7 that have flowed toward the support sheet 11 while maintaining the above are not disturbed in the uniform distribution state and do not protrude from the support sheet 11, and reliably and efficiently on the support sheet 11. The homogeneous polymer web W can be efficiently produced. Further, warm air is fed to the side of the space where the spinning head 2 and the carrier sheet 11 face each other. Since the air means 22 is disposed, the gas flow 21 can be reliably formed in the region where the nanofibers 7 flow toward the carrier sheet 11, and the blown air is warm air. 7 and the solvent contained in the polymer web W to be produced are easily evaporated, so that the polymer web W with good quality can be produced more efficiently.

以上の説明においては、ナノファイバー生成手段として、図6(a)に示すように、高分子溶液を高電圧を印加して流出させる***を構成するノズル部材24を一平面上にマトリックス状に配置した紡糸ヘッド部2を適用した例を示したが、ノズル部材24は1列又は複数列に配置したり、多重環状に配置してもよい。また、図6(b)に示すように、ナノファイバーの生成方向と直交する軸芯回りに回転駆動され、周面に複数の***25が設けられた円筒容器26に第1の高電圧発生手段3から高電圧を印加するとともに、内部に高分子溶液を供給して遠心力と静電爆発でナノファイバーを生成し、生成されたナノファイバーを円筒容器26の外周に配設された放物反射電極(図示せず)等にて一方向に流動させるようにしても良く、また図6(c)に示すように、ナノファイバーの生成方向に沿う軸芯回りに回転駆動され、周面に複数の***25が設けられた円筒容器27と、円筒容器27の軸芯方向のナノファイバーの生成方向とは反対側の一側に配置した反射電極28とを組み合わせ、円筒容器27から遠心力と静電爆発にて放射状に生成されたナノファイバーを反射電極28によって一方向に流動させるようにしても良い。   In the above description, as nanofiber generating means, as shown in FIG. 6 (a), nozzle members 24 constituting small holes for allowing a polymer solution to flow out by applying a high voltage are arranged in a matrix on one plane. Although the example which applied the spinning head part 2 was shown, the nozzle member 24 may be arrange | positioned at 1 row or multiple rows, or may be arrange | positioned at multiple annular | circular shape. Further, as shown in FIG. 6 (b), the first high-voltage generating means is provided in a cylindrical container 26 that is rotationally driven around an axis perpendicular to the nanofiber generation direction and has a plurality of small holes 25 on the peripheral surface. A high voltage is applied from 3 and a polymer solution is supplied inside to generate nanofibers by centrifugal force and electrostatic explosion. The generated nanofibers are parabolically reflected on the outer periphery of the cylindrical container 26. It may be made to flow in one direction with an electrode (not shown) or the like, and as shown in FIG. 6 (c), it is rotationally driven around the axis along the nanofiber generation direction, A cylindrical container 27 provided with a small hole 25 and a reflective electrode 28 arranged on one side of the cylindrical container 27 opposite to the axial direction of the nanofibers are combined, and centrifugal force and static Nano generated radially by electric explosion Aiba may be caused to flow in one direction by the reflective electrode 28.

本発明の高分子ウェブの製造方法及び装置によれば、生成されたナノファイバーが気体流にて一方向に流動されることで、生成されるナノファイバーに高電圧が印加されていても電界干渉の影響が抑制されて均一な分布状態を維持しつつ担持シート上に確実に堆積させることができるので、均一な高分子ウェブを効率的に製造することができ、フィルタや電池のセパレータや燃料電池の高分子電解質膜や電極等に好適に適用される高多孔性ウェブを高い生産性をもって製造するのに好適に利用することができる。   According to the polymer web manufacturing method and apparatus of the present invention, the generated nanofibers are flowed in one direction by a gas flow, so that even if a high voltage is applied to the generated nanofibers, the electric field interference. Can be reliably deposited on the support sheet while maintaining a uniform distribution state, so that a uniform polymer web can be efficiently produced, and can be used as a filter, battery separator or fuel cell. It can be suitably used to produce a highly porous web that is suitably applied to the polymer electrolyte membrane, electrode, etc. with high productivity.

本発明の高分子ウェブの製造装置の一実施形態の概略構成を示す斜視図。The perspective view which shows schematic structure of one Embodiment of the manufacturing apparatus of the polymer web of this invention. 同実施形態の全体構成を示す正面図。The front view which shows the whole structure of the embodiment. 同実施形態における要部構成を示す縦断面図。The longitudinal cross-sectional view which shows the principal part structure in the embodiment. (a)〜(c)は各々同実施形態における収集体の構成例を示す斜視図。(A)-(c) is a perspective view which shows the structural example of the collection body in the same embodiment, respectively. 同実施形態の制御構成を示すブロック図。The block diagram which shows the control structure of the embodiment. (a)〜(c)は同実施形態の高分子ウェブの製造装置における紡糸ヘッド部の各種構成例を示す斜視図。(A)-(c) is a perspective view which shows the various structural examples of the spinning head part in the manufacturing apparatus of the polymeric web of the embodiment. 従来例の高分子ウェブの製造装置の概略構成図。The schematic block diagram of the manufacturing apparatus of the polymer web of a prior art example.

符号の説明Explanation of symbols

2 紡糸ヘッド部(ナノファイバー生成手段)
3 第1の高電圧発生手段
7 ナノファイバー
8 収集体
9 第2の高電圧発生手段
11 担持シート
15 担持シート移動手段
16 通風開口
20 吸引手段
21 気体流
22 温風送風手段
W 高分子ウェブ
2 Spinning head (nanofiber generation means)
DESCRIPTION OF SYMBOLS 3 1st high voltage generation means 7 Nanofiber 8 Collecting body 9 2nd high voltage generation means 11 Carrying sheet 15 Carrying sheet moving means 16 Ventilation opening 20 Suction means 21 Gas flow 22 Hot air blowing means W Polymer web

Claims (7)

高分子物質を溶媒に溶解した高分子溶液を複数の***から流出させ、流出する高分子溶液に高電圧を印加して静電爆発にて延伸させることで高分子物質から成るナノファイバーを生成する生成工程と、気体流を形成して生成されたナノファイバーを一方向に流動させる気体流動工程と、気体流にて一方向に流動するナノファイバーを、移動する通風可能な担持シート上に堆積させる堆積工程とを有することを特徴とする高分子ウェブの製造方法。   A polymer solution in which a polymer substance is dissolved in a solvent is allowed to flow out from a plurality of small holes, and a high voltage is applied to the flowing polymer solution to stretch it by electrostatic explosion to generate nanofibers made of the polymer substance. The generation step, the gas flow step of flowing the nanofibers generated by forming the gas flow in one direction, and the nanofibers flowing in the one direction by the gas flow are deposited on the moving supportable sheet. A method for producing a polymer web comprising a deposition step. 気体流は温風であることを特徴とする請求項1記載の高分子ウェブの製造方法。   The method for producing a polymer web according to claim 1, wherein the gas flow is warm air. 高分子物質を溶媒に溶解した高分子溶液を複数の***から流出させ、流出する高分子溶液に高電圧を印加し、静電爆発にて延伸させて高分子物質から成るナノファイバーを生成するナノファイバー生成手段と、ナノファイバー生成手段と間隔をあけて対向して配設され、高分子溶液に印加する高電圧とは逆極性の高電圧を印加され又は接地された導電性でかつ通風開口を有する収集体と、生成されたナノファイバーを堆積させてウェブを生成する通風可能な担持シートと、担持シートを収集体上に沿って移動させる移動手段と、収集体のナノファイバー生成手段とは反対側面から気体を吸引する吸引手段とを備えたことを特徴とする高分子ウェブの製造装置。   Nano that creates a nanofiber composed of a polymer substance by flowing a polymer solution in which a polymer substance is dissolved in a solvent from multiple small holes, applying a high voltage to the polymer solution that is flowing out, and stretching it by electrostatic explosion The fiber generating means and the nanofiber generating means are arranged opposite to each other at an interval, and are electrically conductive and ventilated openings to which a high voltage having a polarity opposite to the high voltage applied to the polymer solution is applied or grounded. A collection body having an airflow, a ventilated carrier sheet for depositing the produced nanofibers to produce a web, a moving means for moving the carrier sheet along the collection body, and a nanofiber production means for the collection body opposite An apparatus for producing a polymer web, comprising: suction means for sucking gas from a side surface. ナノファイバー生成手段と担持シートとが対向する空間の側部に送風手段を配設したことを特徴とする請求項3記載の高分子ウェブの製造装置。   4. The apparatus for producing a polymer web according to claim 3, wherein an air blowing means is disposed on a side portion of a space where the nanofiber generating means and the carrying sheet face each other. 送風手段は、所定温度の温風を発生して送風する温風送風手段にて構成されていることを特徴とする請求項4記載の高分子ウェブの製造装置。   The apparatus for producing a polymer web according to claim 4, wherein the blowing means is constituted by warm air blowing means that generates and blows hot air having a predetermined temperature. 収集体には、ほぼ全面に複数の通風開口が規則的に配置されていることを特徴とする請求項3〜5の何れかに記載の高分子ウェブの製造装置。   6. The apparatus for producing a polymer web according to claim 3, wherein a plurality of ventilation openings are regularly arranged on substantially the entire surface of the collecting body. 担持シートは、ほぼ全面に均一に多数の孔が形成された樹脂シート又は樹脂フィルムにて構成されていることを特徴とする請求項3〜6の何れかに記載の高分子ウェブの製造装置。   The apparatus for producing a polymer web according to any one of claims 3 to 6, wherein the carrier sheet is formed of a resin sheet or a resin film in which a large number of holes are uniformly formed on substantially the entire surface.
JP2007064435A 2007-03-14 2007-03-14 Polymer web production equipment Expired - Fee Related JP4915258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007064435A JP4915258B2 (en) 2007-03-14 2007-03-14 Polymer web production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007064435A JP4915258B2 (en) 2007-03-14 2007-03-14 Polymer web production equipment

Publications (2)

Publication Number Publication Date
JP2008223179A true JP2008223179A (en) 2008-09-25
JP4915258B2 JP4915258B2 (en) 2012-04-11

Family

ID=39842121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007064435A Expired - Fee Related JP4915258B2 (en) 2007-03-14 2007-03-14 Polymer web production equipment

Country Status (1)

Country Link
JP (1) JP4915258B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180499A (en) * 2009-02-04 2010-08-19 Panasonic Corp Apparatus and method for producing nanofiber
JP2011089240A (en) * 2009-10-26 2011-05-06 Shinshu Univ Ultrafine fiber production apparatus and ultrafine fiber production method
JP2012012711A (en) * 2010-06-29 2012-01-19 Kao Corp Nanofiber sheet
JP2012207351A (en) * 2011-03-30 2012-10-25 Kurita Water Ind Ltd Method and device for producing nanofiber nonwoven fabric
CN112877913A (en) * 2021-01-28 2021-06-01 河南曼博睿新材料科技有限公司 Production equipment of electrostatic 3D printing method nanofiber membrane

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59204957A (en) * 1983-05-04 1984-11-20 旭化成株式会社 Production of nonwoven article
JP2005264374A (en) * 2004-03-18 2005-09-29 Japan Vilene Co Ltd Method and apparatus for producing fiber assembly by electrostatic spinning method
WO2006017360A1 (en) * 2004-07-13 2006-02-16 E.I. Dupont De Nemours And Company Improved electroblowing web formation process
JP2006112023A (en) * 2004-09-17 2006-04-27 Japan Vilene Co Ltd Method for producing fiber assembly and apparatus for producing the fiber assembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59204957A (en) * 1983-05-04 1984-11-20 旭化成株式会社 Production of nonwoven article
JP2005264374A (en) * 2004-03-18 2005-09-29 Japan Vilene Co Ltd Method and apparatus for producing fiber assembly by electrostatic spinning method
WO2006017360A1 (en) * 2004-07-13 2006-02-16 E.I. Dupont De Nemours And Company Improved electroblowing web formation process
JP2006112023A (en) * 2004-09-17 2006-04-27 Japan Vilene Co Ltd Method for producing fiber assembly and apparatus for producing the fiber assembly

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180499A (en) * 2009-02-04 2010-08-19 Panasonic Corp Apparatus and method for producing nanofiber
JP2011089240A (en) * 2009-10-26 2011-05-06 Shinshu Univ Ultrafine fiber production apparatus and ultrafine fiber production method
JP2012012711A (en) * 2010-06-29 2012-01-19 Kao Corp Nanofiber sheet
JP2012207351A (en) * 2011-03-30 2012-10-25 Kurita Water Ind Ltd Method and device for producing nanofiber nonwoven fabric
CN112877913A (en) * 2021-01-28 2021-06-01 河南曼博睿新材料科技有限公司 Production equipment of electrostatic 3D printing method nanofiber membrane

Also Published As

Publication number Publication date
JP4915258B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP5226151B2 (en) Nanofiber manufacturing apparatus and nanofiber manufacturing method
JP4962605B2 (en) Polymer web production method and apparatus
RU2365686C2 (en) Method of producing nanofibres from polymer solution and device for its realisation
US20100072674A1 (en) Method and apparatus for producing nanofibers and polymer web
JP4915258B2 (en) Polymer web production equipment
US8475692B2 (en) Nanofiber manufacturing apparatus and nanofiber manufacturing method
JP2009127150A (en) Electrospinning apparatus
KR101479194B1 (en) Electrospinning device and method of manufacturing nanofiber mat using the electrospinning device
US11162193B2 (en) Apparatus and process for uniform deposition of polymeric nanofibers on substrate
JP4848970B2 (en) Polymer web production method and apparatus
JP2020045591A (en) Electrospinning apparatus and manufacturing method of nanofiber aggregates
JP2011052337A (en) Electrospinning apparatus
JP5754703B2 (en) Method and apparatus for producing nanofiber nonwoven fabric
JP5417276B2 (en) Nanofiber manufacturing apparatus and nanofiber manufacturing method
JP5789773B2 (en) Fiber deposition apparatus and fiber deposition method
JP5216551B2 (en) Nanofiber manufacturing apparatus and nanofiber manufacturing method
JP5417285B2 (en) Nanofiber manufacturing apparatus and nanofiber manufacturing method
WO2014089458A9 (en) Apparatus and method using an electric field for creating uniform nanofiber patterns on nonconductive materials to enhance filtration and for embedment of fibers into materials for other applications
JP2010133039A (en) Method and apparatus for producing nanofiber
JP2018035475A (en) Method for producing fiber aggregate and fiber aggregate
JP2018066092A (en) Manufacturing apparatus for collective structure and manufacturing method for collective structure
JP2010189778A (en) Apparatus and method for producing nanofiber
JP2017197874A (en) Laminate, and method and device for manufacturing the same
JP4907139B2 (en) Method for manufacturing fiber assembly and apparatus for manufacturing the same
US10188973B2 (en) Apparatus and method using an electric field for creating uniform nanofiber patterns on nonconductive materials to enhance filtration and for embedment of fibers into materials for other applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090210

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090403

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4915258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees