JP2008221353A - Polishing device and method of manufacturing same - Google Patents

Polishing device and method of manufacturing same Download PDF

Info

Publication number
JP2008221353A
JP2008221353A JP2007059551A JP2007059551A JP2008221353A JP 2008221353 A JP2008221353 A JP 2008221353A JP 2007059551 A JP2007059551 A JP 2007059551A JP 2007059551 A JP2007059551 A JP 2007059551A JP 2008221353 A JP2008221353 A JP 2008221353A
Authority
JP
Japan
Prior art keywords
abrasive grains
binder
polishing
polishing tool
primary particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007059551A
Other languages
Japanese (ja)
Inventor
Susumu Cho
軍 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2007059551A priority Critical patent/JP2008221353A/en
Publication of JP2008221353A publication Critical patent/JP2008221353A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing device having a binder for fixing abrasive grains which is also removed by a polishing fluid according to the wear of the abrasive grains and simply manufacturable at low cost, and also to provide a method of manufacturing the polishing device. <P>SOLUTION: This polishing device for fixing abrasive grains is formed of the abrasive grains and the binder for fixing the abrasive grains. During the polishing, the surface layer portion of the binder is dissolved or peeled by the polishing fluid, and the abrasive grains are made to project from the surface layer. The binder is formed of a binder polymer, a photopolymerizable polyfunctional monomer, and a photopolymerization initiator. The binder fixes the abrasive grains since it is formed of the binder polymer, the photopolymerizable polyfunctional monomer, and the photopolymerization initiator, and the photopolymerizable polyfunctional monomer is radically photopolymerized with an optical initiator by the exposure of ultraviolet, twined with the binder polymer, and bridged and hardened. Also, since an alkali polishing fluid is added to the polishing fluid during the processing, the binder is ruptured and peeled, and the abrasive grains are made to project. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、ガラス、セラミックス、シリコン等の硬脆材料を仕上げ加工するための研磨具(研磨砥石)およびその製造方法に関するものであり、特に、高加工面品位と高加工能率の両立を実現し、耐用寿命の長い研磨具及びその製造方法を提供するものである。   The present invention relates to a polishing tool (polishing grindstone) for finishing hard and brittle materials such as glass, ceramics, and silicon, and a method for manufacturing the same, and in particular, achieves both high processing surface quality and high processing efficiency. An abrasive having a long service life and a method for manufacturing the same are provided.

シリコンウェーハやガラスディスクをはじめ、各種硬脆材料や金属材料からなる部品の最終仕上げには、研磨剤スラリーを用いた研磨加工(遊離砥粒研磨加工)が用いられてきた。この遊離砥粒研磨加工法では微細な砥粒を使用しやすいため優れた仕上げ面粗さを容易に得ることができ、また大量の研磨剤スラリーを使用することで安定した加工特性を維持することができるため、多くの加工現場で用いられてきた。   Polishing using abrasive slurry (free abrasive polishing) has been used for final finishing of parts made of various hard and brittle materials and metal materials such as silicon wafers and glass disks. In this free abrasive polishing method, it is easy to use fine abrasive grains, so it is possible to easily obtain excellent finished surface roughness, and to maintain stable processing characteristics by using a large amount of abrasive slurry. Has been used in many processing sites.

しかし、遊離砥粒研磨加工においては大量の研磨剤スラリーを要するとともに、大量の廃液を排出するため環境への負荷が極めて高く、また加工能率の向上にも限界がある。こうしたことから、遊離と粒研磨加工仕上げと同等に優れた仕上げ面粗さが得られる固定砥粒加研磨具の開発が各方面で活発に行われている。遊離と粒研磨加工によって良好な加工面粗さを得るには、通常、微細な砥粒を使用することが有利であるが、固定砥粒研磨加工においてもそれは同様である。ところで、鏡面仕上げのような優れた研磨仕上げ加工をするのに、固定砥粒加工工具において粒径数μm以下の砥粒を使用すると、加工時に砥粒結合材と工作物(ワーク)との接触が生じやすく、あるいは切りくずが砥粒同士の間に蓄積されて目詰まりが発生しやすく、その結果、加工抵抗の急増、最悪の場合には加工不可の状態に陥ってしまう。   However, the loose abrasive polishing process requires a large amount of abrasive slurry and discharges a large amount of waste liquid. Therefore, the load on the environment is extremely high, and there is a limit to improving the processing efficiency. For these reasons, development of fixed abrasive grinders that can achieve a finished surface roughness as excellent as free and grain polishing finishes has been actively conducted in various fields. Usually, it is advantageous to use fine abrasive grains in order to obtain a good surface roughness by liberation and grain polishing, but the same applies to fixed abrasive polishing. By the way, when an abrasive with a grain size of several μm or less is used in a fixed abrasive machining tool to perform excellent polishing finishing such as mirror finish, contact between the abrasive binder and workpiece (workpiece) during machining Or chips are accumulated between the abrasive grains and clogging is likely to occur. As a result, the processing resistance increases rapidly, and in the worst case, the processing becomes impossible.

また、砥粒結合材と工作物との接触を抑制する手段を講じることもできるが、この場合は、砥粒径が小さいために加工能率が低下してしまうといった問題があるので、加工能率を向上させるには大粒径の砥粒を選択しなければならず、その結果、加工面品位が落ちることが避けられない。   Although it is possible to take measures to suppress contact between the abrasive grain binder and the workpiece, in this case, since the abrasive grain size is small, there is a problem that the machining efficiency is lowered. In order to improve, abrasive grains having a large particle size must be selected. As a result, it is inevitable that the quality of the machined surface is deteriorated.

これに対し、研磨加工進行に伴う目詰まり(研磨くずが砥石の加工面に留まって切れ味が低下すること)や目つぶれ(切れ刃の鈍化)などの問題点に対し、機械的、あるいは電気的な手法でドレッシングが行われている。しかし、ドレッシング工程は煩雑で、経験を要するので、固定砥粒研磨具の開発において、加工中に砥粒結合材(バインダー)のみを選択的に除去して、絶えず砥粒を目立てして加工面に供給することができる新規な固定砥粒研磨具が求められる。   In contrast, mechanical or electrical problems such as clogging (polishing scraps stay on the surface of the grindstone and cutting sharpness) and clogging (blunting of the cutting edge) accompanying polishing progress The dressing is done by a simple technique. However, the dressing process is cumbersome and requires experience, so in developing fixed abrasive polishing tools, only the abrasive binder (binder) is selectively removed during processing, and the surface is continuously sharpened and processed. There is a need for a novel fixed abrasive polishing tool that can be supplied to the market.

この問題を解決するものとして、例えば、特開2002−187072公報には、固定砥粒工具である砥石の結合材に寒天を用いた技術を開示している。結合材としての寒天は熱水に溶解し、そして冷やせば凝固する特性は可逆的ではあるが、これを研磨加工中制御するのは難しい。また、仮に可逆反応を制御できるとしても、研磨具から寒天を選択的にかつ均一に除去することは、実際上極めて困難である。   In order to solve this problem, for example, Japanese Patent Application Laid-Open No. 2002-187072 discloses a technique using agar as a binding material for a grindstone which is a fixed abrasive tool. Agar as a binder dissolves in hot water and solidifies when cooled, but it is difficult to control this during polishing. Even if the reversible reaction can be controlled, it is actually very difficult to selectively and uniformly remove agar from the polishing tool.

一方、結合材ではなく、自生発刃のできる砥粒の視点に立った開発も活発であり、例えば、特開2002−187072公報にその一例が記載されている。この公知技術は、多数の1次粒子が凝集して形成された2次粒子を1次粒子同士の結合点にネックが形成される温度で加熱処理して得た、多数の微細な切刃形成粒子が部分的に、かつ、空隙を形成して、互いに結合してなる粒状の多孔質体を砥粒とし、加工中にその砥粒が平坦磨耗により、自生発刃を加工と同時に絶えず自発させることができるというものである。しかし、この工具では、砥粒を含む砥粒層は単層であり、その砥粒は磨耗進行が進めば、砥粒層からその砥粒の突き出し量がどんどん減っていくため、使用寿命が短いという問題が残る。   On the other hand, development is not active from the viewpoint of abrasive grains capable of self-generated blades rather than binders. For example, Japanese Patent Application Laid-Open No. 2002-187072 describes an example thereof. This known technique forms a large number of fine cutting edges obtained by heat-treating secondary particles formed by aggregation of a large number of primary particles at a temperature at which a neck is formed at the bonding point between the primary particles. A granular porous body in which the particles partially and form voids are bonded to each other as abrasive grains, and the abrasive grains are flatly worn during processing, and the self-generated blade is continuously and spontaneously spun at the same time as processing. It can be done. However, in this tool, the abrasive layer containing the abrasive grains is a single layer, and as the abrasive progresses, the protruding amount of the abrasive grains gradually decreases from the abrasive layer, so the service life is short. The problem remains.

また、この砥粒を多層化した研磨具においても、ドレッシングなどの手法では、砥粒自身が通常の砥粒に比べ弱く、磨耗しやすいため、結合材と共に、除去される問題点がある。
以上のような問題に対し、様々に研究を重ね分析を行った結果、加工対象物にもよるが、高加工面品位(スクラッチフリー、高形状精度)を維持しながら、高加工能率を実現し、そしてその加工能率を長く維持させ、長時間加工できる特性を得るには、前記凝集砥粒の磨耗に合わせて、砥粒を固定する結合材が研磨加工中に研磨液により選択的に除去されるようにすることで、工具の最表層(研磨面)に、絶えず、砥粒の突き出し量を確保することが極めて効果的であることが判明した。
特開2002−187072公報
Further, even in a polishing tool in which the abrasive grains are multi-layered, the technique such as dressing has a problem of being removed together with the binder because the abrasive grains themselves are weaker than ordinary abrasive grains and easily worn.
As a result of various researches and analyzes on the above problems, high machining efficiency was achieved while maintaining high machining surface quality (scratch-free, high shape accuracy), depending on the workpiece. In order to maintain the processing efficiency for a long time and to obtain the characteristics that can be processed for a long time, the bonding material for fixing the abrasive grains is selectively removed by the polishing liquid during the polishing process in accordance with the wear of the aggregated abrasive grains. By doing so, it has been found that it is extremely effective to constantly ensure the protruding amount of abrasive grains on the outermost layer (polishing surface) of the tool.
JP 2002-187072 A

この発明は、固定砥粒加工工具の構成要件である、砥粒とそれを固定する結合材の両方に着目して、砥粒の磨耗に合わせて、それを固定する結合材も研磨液により除去されるよう工夫し、耐えずに研磨具の研磨面に新しい切刃を供することを目的とし、ナノメータオーダの優れた加工面品位を損なうことなく、高研磨能率化と長寿命化を実現でき、目詰まり解消のためのドレッシングを必要とせず、かつ安価で簡単に製造できる研磨具およびその製造方法を工夫することをその課題とするものである。   This invention focuses on both the abrasive grains and the binder that fixes the abrasive grains, which is a constituent of the fixed abrasive machining tool, and removes the binder that fixes the abrasive grains with the polishing liquid as the abrasive wears. In order to provide a new cutting edge to the polishing surface of the polishing tool without enduring it, it is possible to achieve high polishing efficiency and long life without damaging the excellent machined surface quality of the nanometer order, An object of the present invention is to devise a polishing tool that does not require dressing for eliminating clogging and that can be easily manufactured at low cost and a manufacturing method thereof.

〔解決手段1〕(請求項1に対応)
この発明の解決手段1は、砥粒と、該砥粒を固定する結合材から構成され、研磨加工中に、前記結合材が研磨液により表層の部分が溶解あるいは剥離され、砥粒を表層に突き出させる固定砥粒研磨具について、前記結合材はバインダーポリマー、光重合性の多官能モノマー、光重合開始剤から構成されていることである。
[Solution 1] (corresponding to claim 1)
The solution 1 of the present invention is composed of abrasive grains and a binder for fixing the abrasive grains, and during the polishing process, a portion of the surface layer of the binder is dissolved or peeled off by a polishing liquid, so that the abrasive grains become a surface layer. In the fixed abrasive polishing tool to be protruded, the binder is composed of a binder polymer, a photopolymerizable polyfunctional monomer, and a photopolymerization initiator.

〔作用〕
前記結合材はバインダーポリマー、光重合性の多官能モノマー、光重合開始剤から構成されることによって、紫外線露光により、光重合性多官能モノマーは光重合開始剤によってラジカル重合し、バインダーポリマーに絡み合って架橋硬化することによって、砥粒を固定することができる。
また、後述するように、加工中にアルカリ研磨液を添加することにより、それが破壊され、剥離されて、砥粒の突き出しが実現される。
[Action]
The binder is composed of a binder polymer, a photopolymerizable polyfunctional monomer, and a photopolymerization initiator. By UV exposure, the photopolymerizable polyfunctional monomer is radically polymerized by the photopolymerization initiator and entangled with the binder polymer. The abrasive grains can be fixed by crosslinking and curing.
Further, as will be described later, by adding an alkaline polishing liquid during processing, it is broken and peeled off, and the protrusion of abrasive grains is realized.

〔実施態様1〕(請求項2に対応)
実施態様1は、上記解決手段1について、バインダーポリマーはメチルメタクリレートを主成分とする(メタ)アクリレート、スチレン、アクリロニトリルのいずれかのものと(メタ)アクリル酸との共重合体で、光重合性多官能モノマーはトリメチロールプロパントリアクリレート(TMP−TA)、ポリエチレングリコールジ(メタ)アクリート(PEG−D(M)A)、ポリアルキレングリコールジ(メタ)アクリレート、(ジ)ペンタエリスリトール(トリ〜ヘキサ)アクリレートのいずれかの2種類以上のもの、光重合開始剤は分子間水素引抜型のベンゾフェノン系、チオキサントン系、アンスラキノン系、あるいは分子内結合開裂型のアセトフェノン系、ベンゾインエーテル系のいずれかで構成される。そして、所望な特性にもよるが、バインダーポリマーは50wt%以上、光重合性多官能モノマーは30wt%以上であることが望ましい。
[Embodiment 1] (corresponding to claim 2)
Embodiment 1 relates to Solution 1, wherein the binder polymer is a copolymer of (meth) acrylate, styrene, or acrylonitrile mainly composed of methyl methacrylate and (meth) acrylic acid, and is photopolymerizable. Polyfunctional monomers are trimethylolpropane triacrylate (TMP-TA), polyethylene glycol di (meth) acrylate (PEG-D (M) A), polyalkylene glycol di (meth) acrylate, (di) pentaerythritol (tri-hexa ) Any two or more of acrylates, the photopolymerization initiator is either intermolecular hydrogen abstraction type benzophenone, thioxanthone, anthraquinone, intramolecular bond cleavage type acetophenone or benzoin ether Composed. Depending on the desired properties, it is desirable that the binder polymer is 50 wt% or more and the photopolymerizable polyfunctional monomer is 30 wt% or more.

〔作用〕
この実施態様1により、特に、光重合性多官能モノマーの2種類以上を採用することで、より確実にラジカル重合を生じさせて架橋硬化させることが可能となる。また、バインダーポリマーは50wt%以上、光重合性多官能モノマーは30wt%以上に採用すると、混合液に流動性、可撓性をもたらし、より確実に砥粒との混合をし易くし、研磨具の結合材としての強度を高める。
[Action]
According to this embodiment 1, in particular, by adopting two or more kinds of photopolymerizable polyfunctional monomers, it becomes possible to cause radical polymerization more reliably and to cure by crosslinking. In addition, when the binder polymer is used at 50 wt% or more and the photopolymerizable polyfunctional monomer is used at 30 wt% or more, the mixed solution is fluid and flexible, and can be more reliably mixed with abrasive grains. Increases strength as a binder.

〔実施態様2〕(請求項3に対応)
実施態様2は、上記解決手段1において、砥粒は凝集砥粒であり、それの内部にバインダーが含まれない凝集体であり、あるいは、多数の1次粒子が凝集して形成された2次粒子を1次粒子同士の結合点にネックが形成される温度で加熱処理して得た、多数の1次粒子が部分的に、かつ、その間に空隙が形成されている状態で結合している粒状の多孔質体であることである。
[Embodiment 2] (corresponding to claim 3)
In Embodiment 2, in the above solution 1, the abrasive grains are agglomerated abrasive grains and are agglomerates that do not contain a binder therein, or a secondary formed by agglomeration of a large number of primary particles. A number of primary particles obtained by heat-treating the particles at a temperature at which a neck is formed at the bonding point between the primary particles are partially bonded together with voids formed therebetween. It is a granular porous body.

〔作用〕
このように、砥粒は凝集砥粒であり、そして多数の1次粒子が部分的に、かつ、その間に空隙が形成されている状態で結合している粒状の多孔質体であるため、大粒径でありながら、加工時の切り込みは微細な1次粒子であり、このために、高能率と高加工面品位とが共に実現される。
[Action]
As described above, the abrasive grains are agglomerated abrasive grains, and are a granular porous body in which a large number of primary particles are partially bonded together with voids formed therebetween. In spite of the particle size, the cuts during processing are fine primary particles, and for this reason, both high efficiency and high processing surface quality are realized.

〔実施態様3〕(請求項4に対応)
実施態様3は、上記実施態様2を実現するために、前記凝集砥粒の1次粒子の結合状態、即ち圧縮破壊強度が20MPaから160MPaの範囲内で調整されていることである。
[Embodiment 3] (corresponding to claim 4)
In the third embodiment, in order to realize the second embodiment, the bonded state of the primary particles of the aggregated abrasive grains, that is, the compressive fracture strength is adjusted within a range of 20 MPa to 160 MPa.

〔作用〕
これにより、研磨加工中に凝集砥粒の平坦化磨耗が起き、加工物に対し新しい切刃(1次粒子)を絶えず供給できるとともに、切り屑も砥粒の磨耗部分と一緒に排出されるから、加工面品位を損なうことがなく、かつ加工能率を安定させることができる。しかし、凝集砥粒の1次粒子同士の結合状態が弱い、即ち圧縮破壊強度が20MPaより弱いと、凝集砥粒自身が研磨加工中に破壊され、加工物に対する除去加工ができなくなる。一方、もし、凝集砥粒の圧縮破壊強度が160MPaよりも強すぎると、凝集砥粒は通常の大粒径単粒子砥粒と同じように、加工中に平坦化磨耗が起き難くなり、逆に加工による新たな加工ダメージ、例えばスクラッチをもたらし、加工面品位を大きく低下させることになる。
[Action]
As a result, the flattened wear of the aggregated abrasive grains occurs during the polishing process, and new cutting edges (primary particles) can be continuously supplied to the work piece, and the chips are also discharged together with the worn parts of the abrasive grains. Further, the processing surface quality is not impaired, and the processing efficiency can be stabilized. However, when the bonding state between the primary particles of the aggregated abrasive grains is weak, that is, the compressive fracture strength is weaker than 20 MPa, the aggregated abrasive grains themselves are destroyed during the polishing process, and the removal processing for the workpiece becomes impossible. On the other hand, if the compressive fracture strength of the agglomerated abrasive grains is too much higher than 160 MPa, the agglomerated abrasive grains are less likely to cause flattening wear during processing, as is the case with ordinary large grain single grain abrasive grains. This causes new processing damage due to processing, such as scratches, and greatly reduces the quality of the processed surface.

〔実施態様4〕(請求項5に対応)
砥粒は酸化セリウム(CeO)、二酸化ケイ素(SiO)、酸化鉄(FeO・Fe)、酸化ジルコニウム(ZrO)、酸化アルミニウム(Al)、二酸化ケイ素(SiO)いずれかの金属酸化物である。
[Embodiment 4] (corresponding to claim 5)
The abrasive grains are cerium oxide (CeO 2 ), silicon dioxide (SiO 2 ), iron oxide (FeO · Fe 2 O 3 ), zirconium oxide (ZrO 2 ), aluminum oxide (Al 2 O 3 ), silicon dioxide (SiO 2 ). Any metal oxide.

〔作用〕
上記砥粒を用いることで、シリコンやガラスなどの硬脆材料を、確実に研磨加工することが可能である。
[Action]
By using the abrasive grains, it is possible to surely polish hard and brittle materials such as silicon and glass.

〔解決手段2〕(請求項6に対応)
解決手段2は、上記解決手段1による研磨具について、砥粒の外に紫外光線を乱反射する微粒子を添加したものである。
[Solution 2] (corresponding to claim 6)
Solution 2 is a polishing tool according to Solution 1, in which fine particles that irregularly reflect ultraviolet rays are added to the abrasive grains.

〔作用〕
結合材はUV露光により硬化するため、凝集砥粒により紫外線が吸収される恐れがある。結合材に感光性を高めるために、微粒子の添加で、凝集砥粒の露光の影にある結合材にも完全にラジカル重合を生じさせ、架橋硬化を強めることが可能である。
[Action]
Since the binder is cured by UV exposure, ultraviolet rays may be absorbed by the aggregated abrasive grains. In order to increase the photosensitivity of the binder, it is possible to completely cause radical polymerization in the binder in the shadow of exposure of the aggregated abrasive grains by adding fine particles, thereby enhancing the cross-linking and hardening.

この発明の効果を請求項毎に整理すれば次のとおりである。
〔請求項1の発明〕
請求項1の発明によれば、結合材はバインダーポリマー、光重合性の多官能モノマー、光重合開始剤から構成されることよって、紫外線露光により、光重合性多官能モノマーは光重合開始剤によってラジカル重合し、バインダーポリマーに絡み合って架橋硬化することによって、砥粒を固定することができる。そして、研磨加工中にアルカリ研磨液が添加されることにより、結合材が破壊され、剥離されて砥粒の突き出しが実現され、これによって、加工面品位を損なうことなしに、加工能率を安定させることができ、また、長時間の研磨加工が可能であり、研磨具の寿命が著しく延長された。
The effects of the present invention are summarized as follows for each claim.
[Invention of Claim 1]
According to the first aspect of the present invention, the binder is composed of a binder polymer, a photopolymerizable polyfunctional monomer, and a photopolymerization initiator, so that the photopolymerizable polyfunctional monomer is formed by the photopolymerization initiator by ultraviolet exposure. Abrasive grains can be fixed by radical polymerization and entanglement with the binder polymer to cure by crosslinking. Then, by adding an alkaline polishing liquid during the polishing process, the binding material is broken and peeled off to realize protrusion of the abrasive grains, thereby stabilizing the processing efficiency without impairing the processed surface quality. In addition, the polishing process for a long time is possible, and the life of the polishing tool is significantly extended.

〔請求項2の発明〕
請求項2の発明によれば、結合材の光重合性多官能モノマーとして2種類以上のものを採用することで、ラジカル重合を一層確実にし、架橋硬化を高めることができる。
[Invention of Claim 2]
According to the invention of claim 2, by adopting two or more kinds of the photopolymerizable polyfunctional monomer of the binder, radical polymerization can be further ensured and cross-linking hardening can be enhanced.

〔請求項3の発明〕
請求項3の発明によれば、多数の1次粒子が部分的に、かつ、その間に空隙が形成されている状態で結合している粒状の多孔質体であるため、大粒径でありながら、研磨加工時の切り込みは微細な1次粒子であるため、高能率と高加工面品位とが共に実現される。
[Invention of claim 3]
According to the invention of claim 3, since it is a granular porous body in which a large number of primary particles are bonded partially and with voids formed therebetween, In addition, since the notch at the time of polishing is fine primary particles, both high efficiency and high surface quality are realized.

〔請求項4の発明〕
請求項4の発明によれば、加工中に凝集砥粒が平坦化磨耗が起き、加工物に対し耐えず新しい切刃(1次粒子)を研磨面に供給でき、加工面品位を損なうことなしに、加工能率を安定させることができる。圧縮破壊強度が20MPaより弱すぎると、凝集砥粒は加工中につぶされ、加工物対し除去ができなくなる。一方、凝集砥粒の圧縮破壊強度が160MPaよりも強すぎると、凝集砥粒は通常の大粒径単粒子砥粒と同じように、加工中に平坦化磨耗が起き難くなり、加工により新たなダメージ、例えばスクラッチにもたらし、加工面品位を大きく劣化させる。
[Invention of claim 4]
According to the fourth aspect of the present invention, flattening wear occurs in the aggregated abrasive grains during processing, and a new cutting edge (primary particle) that cannot withstand the workpiece can be supplied to the polished surface without impairing the quality of the processed surface. In addition, the processing efficiency can be stabilized. If the compression fracture strength is too weak than 20 MPa, the aggregated abrasive grains are crushed during processing and cannot be removed from the workpiece. On the other hand, if the compressive fracture strength of the agglomerated abrasive grains is too much higher than 160 MPa, the agglomerated abrasive grains are less likely to cause flattening wear during processing, as with normal large-diameter single-particle abrasive grains. This causes damage, for example, scratches, and greatly degrades the surface finish.

〔請求項5の発明〕
請求項5の発明によれば、シリコンやガラスなどの硬脆材料に対し、確実に研磨除去加工が可能となる。
[Invention of Claim 5]
According to the fifth aspect of the present invention, it is possible to reliably polish and remove hard and brittle materials such as silicon and glass.

〔請求項6の発明〕
請求項6の発明によれば、凝集砥粒の影にある結合材にも完全にラジカル重合を生じさせ、架橋硬化をもたらすことが可能となる。
[Invention of claim 6]
According to the sixth aspect of the present invention, it is possible to completely cause radical polymerization even in the binder in the shadow of the aggregated abrasive grains, thereby bringing about cross-linking hardening.

以下、図面を参照して実施の形態を説明する。
バインダーポリマー、光重合性の多官能モノマー、光重合開始剤はフォトレジストの主要組成成分である。必要な感光度が求められるのはもちろん、研磨具の結合材として必要な硬度を有し、可撓性や混練に必要な流動性を有することが必要とされ、そして研磨加工中におけるアルカリ液による剥離性なども必要とされる。また、親水性と疏水性や軟性と硬性などの相反する性質のバランスを取るために、上記の三つの主要組成成分の選択が品質設計にもっとも重要である。バインダーポリマーはメチルメタクリレートを主成分とする(メタ)アクリレート、スチレン、アクリロニトリルのいずれかのものと(メタ)アクリル酸との共重合体で、光重合性多官能モノマーはトリメチロールプロパントリアクリレート(TMP−TA)、ポリエチレングリコールジ(メタ)アクリート(PEG−D(M)A)、ポリアルキレングリコールジ(メタ)アクリレート、(ジ)ペンタエリスリトール(トリ〜ヘキサ)アクリレートのいずれかの2種類以上のもの、光重合開始剤は分子間水素引抜型のベンゾフェノン系、チオキサントン系、アンスラキノン系、あるいは分子内結合開裂型のアセトフェノン系、ベンゾインエーテル系などが挙げられる。また、バインダーポリマーは50wt%以上、光重合性多官能モノマーは30wt%以上にすると、混合液の流動性、可撓性が増し、より確実に砥粒との混合が容易になり、結合材としての強度が強められる。
Hereinafter, embodiments will be described with reference to the drawings.
The binder polymer, the photopolymerizable polyfunctional monomer, and the photopolymerization initiator are the main composition components of the photoresist. Of course, the required photosensitivity is required, and it is necessary to have the necessary hardness as a binder for polishing tools, to have flexibility and fluidity necessary for kneading, and due to the alkali liquid during polishing processing. Peelability is also required. In order to balance the conflicting properties such as hydrophilicity and hydrophobicity and softness and hardness, the selection of the above three main composition components is most important for quality design. The binder polymer is a copolymer of (meth) acrylate, which is mainly composed of methyl methacrylate, styrene or acrylonitrile, and (meth) acrylic acid. The photopolymerizable polyfunctional monomer is trimethylolpropane triacrylate (TMP). -TA), polyethylene glycol di (meth) acrylate (PEG-D (M) A), polyalkylene glycol di (meth) acrylate, or (di) pentaerythritol (tri-hexa) acrylate Examples of the photopolymerization initiator include intermolecular hydrogen abstraction type benzophenone series, thioxanthone series, anthraquinone series, intramolecular bond cleavage type acetophenone series, and benzoin ether series. Also, when the binder polymer is 50 wt% or more and the photopolymerizable polyfunctional monomer is 30 wt% or more, the fluidity and flexibility of the mixed solution increase, and the mixing with the abrasive grains is facilitated more reliably. The strength of is increased.

砥粒としては、加工物にもよるが、金属酸化物が従来から用いられている。例えば、Al,CeO,ZrO,SiO,Fe,TiO,MnOなどがある。ガラスや石英やSiの酸化膜などのガラス質の被加工物(ワーク)に対する砥粒としては、酸化ジルコニウム、酸化セリウムが広く知られている。同様に、Siに対する砥粒としては、メカニカルケミカル作用の強いSiOが知られている。 As the abrasive grains, metal oxides have been conventionally used, although depending on the workpiece. For example, there is such Al 2 O 3, CeO 2, ZrO 2, SiO 2, Fe 2 O 2, TiO 2, MnO. Zirconium oxide and cerium oxide are widely known as abrasive grains for glassy workpieces (workpieces) such as glass, quartz and Si oxide films. Similarly, SiO 2 having a strong mechanical chemical action is known as an abrasive grain for Si.

平均粒径5μm以下の1次粒子の微細粉末が凝集した、平均粒径10〜300μm程度のもの、さらに好ましくは平均粒径20〜200μm程度の2次粒子を備えたものが適している。材料は、上記と同様に一般には硬質無機材料であり、例えば、シリカ、ダイヤモンド、CBN、アルミナ、炭化珪素、酸化ジルコニウム等がある。凝集体はゾルゲル法、スプレードライヤー等の手段でつくることができる。
次に実施例を説明する。
Suitable are those having secondary particles having an average particle diameter of about 20 to 200 μm, more preferably those having an average particle diameter of about 10 to 300 μm, in which fine powders of primary particles having an average particle diameter of 5 μm or less are aggregated. The material is generally a hard inorganic material as described above, and examples thereof include silica, diamond, CBN, alumina, silicon carbide, and zirconium oxide. Aggregates can be produced by means such as a sol-gel method or a spray dryer.
Next, examples will be described.

まずは、研磨具の作製について述べる。
(1)凝集砥粒の準備
まずは、50〜60nmの超微細ZrO粉末(超微細粒子)を水で泥しょう化し、スプレードライヤーで噴霧させて、所望のサイズを有する(例えば平均粒径D50で60μm)2次粒子(顆粒)20を作成する(一般的に、1μm〜300μmまでのサイズが得られる。粒度分布がシャープでないときに、分級プロセスを加える)。平均粒径は堀場製作所製レーザ回折/散乱式粒度分布測定装置『LA−920』を用いて、乾式で測定を行った。平均粒径の値は頻度積算50%のところの粒径を用いた(通常、メジアン径とも言う)。
上記作製された平均粒径D50で60μmのZrO2次粒子(顆粒)20を高温電気炉にて焼成を行った。この焼成工程においては、加熱温度および保持時間を制御することで、1次粒子同士の結合点にネック部分30が形成させ、その多数の1次粒子10が部分的に、かつ、その間に空隙が形成されている状態で結合している粒状の多孔質体に形成した。これを具体的に説明すると次の通りである。
First, preparation of the polishing tool will be described.
(1) Preparation of agglomerated abrasive grains First, ultrafine ZrO 2 powder (ultrafine particles) of 50 to 60 nm is slurried with water and sprayed with a spray dryer to have a desired size (for example, with an average particle diameter D50) 60 [mu] m) secondary particles (granules) 20 are made (generally sizes from 1 [mu] m to 300 [mu] m are obtained. A classification process is added when the particle size distribution is not sharp). The average particle diameter was measured by a dry method using a laser diffraction / scattering particle size distribution measuring apparatus “LA-920” manufactured by Horiba. For the average particle size, the particle size at a frequency integration of 50% was used (usually also referred to as median diameter).
The produced ZrO secondary particles (granules) 20 having an average particle diameter D50 of 60 μm were fired in a high temperature electric furnace. In this firing step, by controlling the heating temperature and holding time, the neck portion 30 is formed at the bonding point between the primary particles, and the primary particles 10 are partially formed with voids therebetween. It formed into the granular porous body couple | bonded in the formed state. This will be specifically described as follows.

すなわち、ここでの焼成工程において、1次粒子10が加熱処理により成長するが、当該1次粒子10がその構成物質の物質移動により成長するのみならず、粒子同士の結合箇所は、粒子の構成物質の物質移動により太くなり、不連続点のないなだらかな曲面となり、1葉双曲面状(鼓状)にくびれた、いわゆる「ネック」状となる。この加熱処理時の物質移動による1次粒子10の成長及び「ネック」形成については、株式会社産業技術センター発行「セラミック材料技術集成」(昭和54年4月10日初版第1刷発行)の「2.3 物質移動の機構と焼結のモデル」に詳細に記載されている。この焼成工程において、加熱温度および保持時間を制御することで、1次粒子同士の結合点にネック部分30を形成させ、その多数の1次粒子10が、部分的に、かつ、その間に空隙が形成されている状態で、結合している粒状の多孔質体が形成される。   That is, in the firing step here, the primary particles 10 are grown by heat treatment, but the primary particles 10 are not only grown by the mass transfer of the constituent substances, but the bonding points between the particles are the structure of the particles. It becomes thicker due to the mass transfer of the substance, becomes a gentle curved surface without discontinuities, and becomes a so-called “neck” shape constricted into a one-leaf hyperboloid (drum). Regarding the growth of the primary particles 10 and the formation of “neck” by mass transfer during the heat treatment, “Ceramic Material Technology Collection” (published first edition on April 10, 1979) issued by Industrial Technology Center Co., Ltd. It is described in detail in “2.3 Mechanism of Mass Transfer and Model of Sintering”. In this firing step, by controlling the heating temperature and holding time, the neck portion 30 is formed at the bonding point between the primary particles, and the numerous primary particles 10 are partially and voids between them. In the formed state, a bonded porous body is formed.

この実施例において、焼成温度と焼成時間を決めるために、以下のような方法で行った。
すなわち、上記スプレードライヤー工程で得た酸化ジルコニウムZrOを電気炉に入れて焼成を行い、焼成で得た2次粒子20の中の1次粒子同士の結合力を評価するために、1個1個の2次粒子20をピックアップし、圧縮破壊試験を行った。この圧縮破壊強度試験では、平松、岡、木山による報告(日本鉱業会誌、81,1024(1965))に基づく島津製作所(株)製微小圧縮試験機MCTM500PCを用いて行った。試験条件として、試験荷重を10〜1000mN、負荷速度は0.446mN/secとし、平面圧子を用いて、上記酸化ジルコニウム砥粒に対して圧縮を行い、砥粒が圧縮破壊されたときの強度を測定する。このようにして、上記酸化ジルコニウム砥粒の圧縮破壊強度が67MPaに達する条件を焼成条件として採用した。
In this example, the following method was used to determine the firing temperature and firing time.
That is, the zirconium oxide ZrO 2 obtained in the above spray dryer process is put into an electric furnace and fired, and in order to evaluate the bonding strength between the primary particles in the secondary particles 20 obtained by firing, one by one Individual secondary particles 20 were picked up and subjected to a compression fracture test. This compressive fracture strength test was performed using a micro compression tester MCTM500PC manufactured by Shimadzu Corporation based on a report by Hiramatsu, Oka and Kiyama (Journal of the Japan Mining Association, 81,1024 (1965)). As test conditions, the test load was 10 to 1000 mN, the load speed was 0.446 mN / sec, and the above-mentioned zirconium oxide abrasive grains were compressed using a flat indenter, and the strength when the abrasive grains were subjected to compression failure was determined. taking measurement. Thus, the conditions under which the compression fracture strength of the zirconium oxide abrasive grains reached 67 MPa were adopted as the firing conditions.

この焼成条件において、上記結合材である酸化セリウム粒子同士、そして酸化セリウム粒子と酸化ジルコニウム粒子の結合点にネックが形成されていることもSEMにより確認した(図1参照)。   It was also confirmed by SEM that necks were formed at the bonding points between the cerium oxide particles as the binder and between the cerium oxide particles and the zirconium oxide particles under the firing conditions (see FIG. 1).

(2)結合材の準備
バインダーポリマー:(メタ)アクリレートとアクリル酸の共重合体55wt%、光重合性多官能モノマー:トリメチロールプロパントリアクリレート(TMP−TA)、ポリエチレングリコールジ(メタ)アクリート(PEG−D(M)A)の混合物は40wt%と、残りの光重合開始剤:ベンゾフェノン5wt%とを、イエローランプ(紫外線カット)20〜25℃の環境で混合攪拌する。
また、流動性を高めるために、トリエチレングリコールジアセテートを添加することもある。
なお、組み合わせについては、上記の組み合せに限らず、上記実施態様1のように種々に組み合わせることもできる。
(2) Preparation of binder material Binder polymer: 55 wt% copolymer of (meth) acrylate and acrylic acid, photopolymerizable polyfunctional monomer: trimethylolpropane triacrylate (TMP-TA), polyethylene glycol di (meth) acrylate ( 40 wt% of the mixture of PEG-D (M) A) and the remaining photopolymerization initiator: benzophenone 5 wt% are mixed and stirred in an environment of 20 to 25 ° C of a yellow lamp (ultraviolet ray cut).
In order to improve fluidity, triethylene glycol diacetate may be added.
In addition, about a combination, it is not restricted to said combination, It can also be variously combined like the said Embodiment 1. FIG.

(3)凝集砥粒の準備
上記の「(2)結合材の準備」で準備した混合液に、上記「(1)凝集砥粒の準備」の砥粒を添加する。このときの砥粒の含有量は40%wtである(これは、上記結合材の固形物に対する混合比である)。そして、攪拌機で混合物を30分程度で攪拌混合する。
(3) Preparation of Aggregated Abrasive Grains Add the abrasive grains of “(1) Preparation of Aggregated Abrasives” to the mixed solution prepared in “(2) Preparation of binder”. The content of the abrasive grains at this time is 40% wt (this is the mixing ratio of the binder to the solid). Then, the mixture is stirred and mixed in about 30 minutes with a stirrer.

(4)研磨具の作製
上記の「(3)凝集砥粒の準備」で用意した混合液32を厚み75μmのPETフィルム31の上に、ワイヤバーで塗布する。このときの第1の塗布層(第1層)36の厚みは約85μmであった。その後、2〜5kWの超高圧水銀灯で全面UV露光を実施する。この露光時間は60sである。露光後15分程度放置し、次に、硬化した塗布層の上に上記混合液を再び塗布し、再度露光を実施する。このように混合液の塗布と露光を第1層36,第2層37,第3層38・・・と繰り返す。そして、10回ほど繰り返して第10層を重ねたとき、全体の厚みが1mmの積層になった。重ね塗りをすることにより、各回の塗布層が薄くすることができ、したがって、UV露光による結合材の架橋硬化反応を速やかにかつ確実にすることができる。以上のこの作製方法の手順は図2に模式的に示すとおりである。
(4) Production of Polishing Tool The mixed liquid 32 prepared in the above “(3) Preparation of agglomerated abrasive grains” is applied onto a PET film 31 having a thickness of 75 μm with a wire bar. The thickness of the 1st coating layer (1st layer) 36 at this time was about 85 micrometers. Thereafter, UV exposure is performed on the entire surface with an ultrahigh pressure mercury lamp of 2 to 5 kW. This exposure time is 60 s. After the exposure, the mixture is allowed to stand for about 15 minutes, and then the above mixed solution is applied again on the cured coating layer, and the exposure is performed again. In this way, the application and exposure of the mixed solution are repeated for the first layer 36, the second layer 37, the third layer 38,. When the tenth layer was repeated 10 times, the entire thickness was 1 mm. By overcoating, the coating layer can be thinned each time, and therefore, the crosslinking and curing reaction of the binder by UV exposure can be ensured quickly and reliably. The procedure of this manufacturing method is as schematically shown in FIG.

また、最後の塗布による最表層では砥粒がそのまま突き出ているので、研磨具の使用当初はドレッシングを行う必要はない。図3には、この重ね塗布による作製した研磨具の断面模式図を示し、図3(c)に断面写真を示している。また、作製した研磨具の硬度を、高分子計器社製『アスカーD型硬度計』を用いて測定したところ、硬度38〜42であった。   In addition, since the abrasive grains protrude as they are on the outermost layer by the last application, it is not necessary to perform dressing at the beginning of use of the polishing tool. In FIG. 3, the cross-sectional schematic diagram of the grinding | polishing tool produced by this overlap coating is shown, and the cross-sectional photograph is shown in FIG.3 (c). Moreover, when the hardness of the produced polishing tool was measured using “Asker D-type hardness meter” manufactured by Kobunshi Keiki Co., Ltd., the hardness was 38 to 42.

〔研磨加工試験〕
以上のようにして製作した本発明の研磨具を用いて研磨加工を行った。
研磨具2を図4で示した加工装置の定盤3に取り付けて研磨加工を行った。水(純水)41を研磨液として20ml/minで供給し、面粗さ30nmRy前後の鏡面に調整したφ150mmのBK7光学ガラスディスク1を加工した結果(加工条件:定盤回転数60rpm、加工圧力25kPa)、30分間で加工マーク(スクラッチ、加工傷など)が生じることはなく、かつ30nmRy以下の鏡面を維持することができ、0.5μm/minという高い加工能率も維持することができた(面粗さの評価はテーラホプソン社製フォームタリサーフS4Cで行い、加工能率の測定はガラスディスクの加工前後の重量差により換算したものである)。
[Polishing test]
Polishing was performed using the polishing tool of the present invention manufactured as described above.
Polishing was performed by attaching the polishing tool 2 to the surface plate 3 of the processing apparatus shown in FIG. Result of processing BK7 optical glass disk 1 of φ150 mm adjusted to a mirror surface with a surface roughness of about 30 nm Ry by supplying water (pure water) 41 as a polishing liquid at a rate of 20 ml / min (processing conditions: surface plate rotation speed 60 rpm, processing pressure 25 kPa) for 30 minutes, no processing marks (scratches, processing scratches, etc.) were generated, a mirror surface of 30 nmRy or less could be maintained, and a high processing efficiency of 0.5 μm / min could be maintained ( The evaluation of surface roughness was carried out with Foam Talysurf S4C manufactured by Taylor Hopson, and the processing efficiency was converted by the weight difference before and after processing of the glass disk.

そして、そのまま引き続き他のガラスディスクの加工を行うが、砥粒が平坦化磨耗し(図5参照)、砥粒の結合材からの突き出し量がほぼゼロになったら、結合材の除去を選択的に行う。砥粒磨耗の進行度合いは加工条件とワークのサイズに大きく左右されるので、摩耗度合は一概には推定されない。したがって、通常はある一定の間隔で研磨具の表面粗さを測定(粗さ計で測定)するか、直接観察などの手法により判断する。図5は結合材の最表層に突き出している凝集砥粒平坦磨耗後の写真を示している。この実施例では、ハンディタイプの表面粗さ計で5ヶ所を測定し、Rmaxが平均で10μm〜20μmになった段階で、結合材の除去を行った。結合材の除去は加工中でも実施可能であるが、この実施例で実施した具体的な方法は次のとおりである。   Then, other glass disks are processed as they are, but when the abrasive grains are flattened and worn (see FIG. 5) and the amount of protrusion of the abrasive grains from the binder becomes almost zero, the removal of the binder is selectively performed. To do. Since the degree of progress of abrasive wear greatly depends on the processing conditions and the size of the workpiece, the degree of wear cannot be estimated unconditionally. Therefore, the surface roughness of the polishing tool is usually measured at a certain interval (measured with a roughness meter), or determined by a technique such as direct observation. FIG. 5 shows a photograph after flat wear of the aggregated abrasive grains protruding on the outermost layer of the binder. In this example, five locations were measured with a handy type surface roughness meter, and the binder was removed when the average Rmax reached 10 μm to 20 μm. The removal of the binder can be performed even during processing, but the specific method implemented in this example is as follows.

すなわち、図4に示しているように、スプレーノズルから圧力が1kg/cm、研磨具の表面に濃度5wt%のNaOH溶液(アルカリ液)42を3分程度噴射させた。スプレーノズルはワーク軸の揺動運動に合わせて、直線的に往復運動することで(10〜20往復/分)、ワークと干渉することなく、研磨具表面の全面にNaOH溶液42を噴射した。この場合、NaOH濃度と噴射圧力と噴射時間の調整が非常に重要である。噴射しすぎると、結合材がどんどん剥離され、研磨具の寿命が著しく短くなる。従って、結合材のみを狙ったドレッシングは砥粒の磨耗進行に合わせるのがもっとも望ましい。このように、NaOH液の噴射で、結合材の表層が剥離され、結合材に埋もれていた砥粒が新たに研磨具の表層に突き出された。再び、ハンディタイプの表面粗さ計で5ヶ所を測定したところ、粗さRmaxは80〜100μmであった。なお、アルカリ溶液に関しては、NaOHだけではなく、KOHやアミン系もよい。
引き続き、新たなガラスディスクを加工したところ、上記と同じ加工結果が得られた。
That is, as shown in FIG. 4, a NaOH solution (alkaline solution) 42 having a pressure of 1 kg / cm 2 and a concentration of 5 wt% was sprayed from the spray nozzle for about 3 minutes. The spray nozzle reciprocated linearly (10 to 20 reciprocations / minute) in accordance with the swinging motion of the work shaft, and the NaOH solution 42 was sprayed over the entire surface of the polishing tool without interfering with the work. In this case, adjustment of NaOH concentration, injection pressure, and injection time is very important. When sprayed too much, the binder is peeled off and the life of the polishing tool is remarkably shortened. Therefore, it is most desirable that the dressing aimed only at the binding material is adapted to the progress of the abrasive wear. Thus, the surface layer of the bonding material was peeled off by the injection of the NaOH solution, and the abrasive grains buried in the bonding material were newly projected on the surface layer of the polishing tool. Again, when measuring five places with the handy type surface roughness meter, the roughness Rmax was 80 to 100 μm. In addition, regarding an alkaline solution, not only NaOH but KOH and amine system may be sufficient.
When a new glass disk was subsequently processed, the same processing results as described above were obtained.

このように、従来のドレッシングと大きく異なって、研磨加工中に砥粒を固定する結合材のみを表層から剥離させて砥粒を絶えず表層に突き出させ、これにより研磨加工物(ワーク)の加工面に対して砥粒を安定して供給することで、高加工面品位と高加工能率とを得ることができ、さらに、このような優れた加工特性を長時間に亘って、安定して維持することができた。
また、この研磨具の構成と加工方法により、従来の凝集砥粒工具におけるドレッシングが困難であるとの問題も解決できた。
In this way, unlike the conventional dressing, only the bonding material that fixes the abrasive grains during polishing is peeled off from the surface layer, and the abrasive grains are continuously projected to the surface layer, thereby processing the surface of the polished workpiece (work) By supplying the abrasive grains stably, it is possible to obtain high processing surface quality and high processing efficiency, and to maintain such excellent processing characteristics stably over a long period of time. I was able to.
In addition, the configuration and processing method of this polishing tool can also solve the problem that dressing in conventional agglomerated abrasive tools is difficult.

また、1次粒子同士の結合力(圧縮破壊強度)による加工能率及び加工面品位(粗さ)への寄与は図6に示している。なお、図6において丸は、加工能率を示し、菱形印は、粗さを示している。この図6から分かるように、圧縮破壊強度が小さすぎる(<20MPaで、1次粒子同士の結合力が弱すぎる)と、加工能率が低くて、加工圧力による砥粒自身の破壊が進み、したがって、加工にまともに寄与できず、逆に結合材が加工面とこすりあって加工面粗さが若干悪くなる傾向を示す。一方、圧縮破壊強度があまり高すぎると(>150MPa)、加工能率の方は高められたが、その反面加工面の粗さは1μmRy以上に大きく劣化してしまった。このように、適切な1次粒子同士の結合力(圧縮破壊強度)を有する砥粒の選択は、高加工面品位(鏡面程度の面品位)を高能率で達成するために、非常に重要である。   Moreover, the contribution to the processing efficiency and the processing surface quality (roughness) by the bonding force (compression fracture strength) between primary particles is shown in FIG. In FIG. 6, circles indicate processing efficiency, and rhombuses indicate roughness. As can be seen from FIG. 6, if the compressive fracture strength is too small (<20 MPa, the binding force between the primary particles is too weak), the processing efficiency is low, and the fracture of the abrasive grains itself due to the processing pressure proceeds. However, it does not contribute to machining properly, and conversely, the binding material rubs against the machining surface and the machining surface roughness tends to be slightly worse. On the other hand, when the compressive fracture strength was too high (> 150 MPa), the processing efficiency was improved, but the roughness of the processed surface was greatly deteriorated to 1 μm Ry or more. As described above, selection of abrasive grains having an appropriate bond strength (compression fracture strength) between primary particles is very important in order to achieve high machining surface quality (mirror surface quality) with high efficiency. is there.

UV露光により、結合材にラジカル重合が生じ、架橋硬化により砥粒を固定するため、上記実施例1で述べたように、塗布層が80μmと厚いため、露光量不足箇所が生じる。特に、大粒径の凝集砥粒の影にある結合材は光が届かない可能性もある。UV光を塗布層全体に照射させるためには、いくつかの方法がある。例えば、光量を増やしたり、照射角度を変えること等が考えられるが、塗布層の中で、微粒子によってUV光を散乱させるのが最も効果的である。紫外線の波長は200nm〜380nmであるため、塗布層内の微粒子の平均粒径がその1/10(40nm)以下になると、乱反射の機能が失われてしまい、一方、微粒子の粒径が大きくなりすぎると、今度逆に加工物の加工面に悪影響を与える恐れが生じてしまう。したがって、平均粒径は40nm〜1μmの間が望ましい。   As a result of UV exposure, radical polymerization occurs in the binder and the abrasive grains are fixed by cross-linking and curing. As described in Example 1, the coating layer is as thick as 80 μm, resulting in an insufficient amount of exposure. In particular, there is a possibility that light does not reach the binder in the shadow of the aggregated abrasive grains having a large particle size. There are several methods for irradiating the entire coating layer with UV light. For example, it is conceivable to increase the amount of light or change the irradiation angle, but it is most effective to scatter the UV light by the fine particles in the coating layer. Since the wavelength of ultraviolet rays is 200 nm to 380 nm, if the average particle size of the fine particles in the coating layer is 1/10 (40 nm) or less, the function of irregular reflection is lost, while the particle size of the fine particles increases. If it is too large, the process surface of the workpiece may be adversely affected. Therefore, the average particle diameter is desirably between 40 nm and 1 μm.

本実施例2では、基本的に上記実施例1で説明した研磨具と同じ構成であるが、上記実施例1の「(3)砥粒と結合材との混合」におけるものに、さらに平均粒径で100nmぐらいの酸化チタン微粒子を0.5〜1wt%程度に添加し、攪拌した後、「(4)研磨具の作製」と同じ手順で研磨具を作製した。
上記研磨具について高分子計器社製『アスカーD型硬度計』を用いてその硬度を測定したところ、硬度は45〜50であった。そして、この研磨具を上記実施例1の研磨具と同じ加工条件で研磨加工を実施したところ、加工能率とワークと表面粗さは実施例1の研磨具とほぼ同等であるが、ガラスディスクのエッジ部分のダレ(ロールオフ)は大きく改善された。実施例1におけるエッジ部のダレの範囲は(ワークのエッジ部分からワークの円心に向かって)2mmであったのに対し、本実施例2ではその約半分の1.1mmであった。
したがって、微粒子酸化チタンの添加により、露光に対して凝集砥粒の影になる結合材も前記微粒子の乱反射によって露光されるので、架橋硬化を完全に進行させることができ、このことにより、研磨具全体の硬度が増し、ダレが効果的に抑制されている。
In Example 2, the configuration is basically the same as that of the polishing tool described in Example 1, but the average grain is further added to that in “(3) Mixing of abrasive grains and binder” in Example 1 above. After adding titanium oxide fine particles having a diameter of about 100 nm to about 0.5 to 1 wt% and stirring, a polishing tool was prepared in the same procedure as “(4) Preparation of polishing tool”.
When the hardness of the polishing tool was measured using “Asker D-type hardness meter” manufactured by Kobunshi Keiki Co., Ltd., the hardness was 45-50. Then, when this polishing tool was polished under the same processing conditions as the polishing tool of Example 1, the processing efficiency, workpiece and surface roughness were almost the same as those of Example 1, but the glass disk Edge sagging (roll-off) has been greatly improved. The range of sagging of the edge portion in Example 1 was 2 mm (from the edge portion of the workpiece toward the center of the workpiece), whereas in Example 2, it was 1.1 mm, which is about half of that.
Therefore, the addition of the fine particle titanium oxide also exposes the binding material that becomes a shadow of the aggregated abrasive grains to the exposure due to the irregular reflection of the fine particles, so that the cross-linking and curing can be completely advanced. The overall hardness is increased and sagging is effectively suppressed.

はSEM観察写真であり、(a)は2次粒子の写真、(b)は焼成前の写真、(c)は焼成後の写真である。Is an SEM observation photograph, (a) is a photograph of secondary particles, (b) is a photograph before firing, and (c) is a photograph after firing. は本発明の研磨具の作製方法のフロー図である。These are the flowcharts of the manufacturing method of the polishing tool of this invention. (a)は、凝集砥粒の第1層目を基材に塗布した状態を模式的に示す断面図であり、(b)は、凝集砥粒の混合液を10回重ね塗りした状態を模式的に示す断面図であり、(c)は塗布完了状態の断面写真である。(A) is sectional drawing which shows typically the state which apply | coated the 1st layer of the aggregated abrasive grain to the base material, (b) is a schematic diagram of the state which applied the liquid mixture of the aggregated abrasive grain 10 times. It is sectional drawing shown typically, (c) is a cross-sectional photograph of an application completion state. は研磨装置を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a polishing apparatus. は 、結合材から突き出している凝集砥粒の平坦磨耗状態を示す平面写真である。These are the plane photographs which show the flat abrasion state of the aggregated abrasive grain which protrudes from the binder. は、凝集砥粒の圧縮破壊強度と加工能率と加工面粗さとの関係を示す図である。These are figures which show the relationship between the compression fracture strength, processing efficiency, and processing surface roughness of an aggregated abrasive grain.

符号の説明Explanation of symbols

1:光学ガラスディスク
2:研磨具
3:定盤
10:1次粒子
20:2次粒子
30:ネック部分
31:基材(PETフィルム)
32:混合液
36:第1層
37:第2層
38:第3層
41:水
42:アルカリ液
1: Optical glass disk 2: Polishing tool 3: Surface plate 10: Primary particles 20: Secondary particles 30: Neck portion 31: Base material (PET film)
32: Mixed liquid 36: First layer 37: Second layer 38: Third layer 41: Water 42: Alkaline liquid

Claims (8)

砥粒と、該砥粒を固定する結合材から構成され、研磨加工中に、前記結合材が研磨液により表層の部分が溶解あるいは剥離されて砥粒を表層に突き出させる固定砥粒研磨具であって、前記結合材はバインダーポリマー、光重合性の多官能モノマー、光重合開始剤から構成されたものであることを特徴とする研磨具。   A fixed abrasive polishing tool comprising abrasive grains and a binding material for fixing the abrasive grains, and during the polishing process, the binding material has a surface layer portion dissolved or peeled off by a polishing liquid so that the abrasive grains protrude into the surface layer. The abrasive is characterized in that the binder is composed of a binder polymer, a photopolymerizable polyfunctional monomer, and a photopolymerization initiator. 請求項1の研磨具において、前記結合剤におけるバインダーポリマーはメチルメタクリレートを主成分とする(メタ)アクリレート、スチレン、アクリロニトリルのいずれかのものと(メタ)アクリル酸との共重合体で、光重合性多官能モノマーはトリメチロールプロパントリアクリレート(TMP−TA)、ポリエチレングリコールジ(メタ)アクリート(PEG−D(M)A)、ポリアルキレングリコールジ(メタ)アクリレート、(ジ)ペンタエリスリトール(トリ〜ヘキサ)アクリレートのいずれかの2種類以上のもの、光重合開始剤は分子間水素引抜型のベンゾフェノン系、チオキサントン系、アンスラキノン系、あるいは分子内結合開裂型のアセトフェノン系、ベンゾインエーテル系のいずれかから構成されることを特徴とする研磨具。   2. The polishing tool according to claim 1, wherein the binder polymer in the binder is a copolymer of (meth) acrylate, styrene, or acrylonitrile mainly composed of methyl methacrylate and (meth) acrylic acid, and is photopolymerized. Functional polyfunctional monomers include trimethylolpropane triacrylate (TMP-TA), polyethylene glycol di (meth) acrylate (PEG-D (M) A), polyalkylene glycol di (meth) acrylate, (di) pentaerythritol (tri- Two or more types of hexa) acrylate, the photopolymerization initiator is either intermolecular hydrogen abstraction type benzophenone, thioxanthone, anthraquinone, intramolecular bond cleavage type acetophenone, or benzoin ether It is composed of Migakugu. 請求項1の研磨具において、前記砥粒は凝集砥粒から構成され、それは内部にバインダが含まれず、多数の1次粒子が凝集して形成された2次粒子を1次粒子同士の結合点にネックが形成される温度で加熱処理された、多数の1次粒子が部分的に、かつ、その間に空隙が形成されている状態で結合している粒状の多孔質体であることを特徴とする研磨具。   2. The polishing tool according to claim 1, wherein the abrasive grains are composed of agglomerated abrasive grains, which do not include a binder therein, and a secondary particle formed by aggregating a large number of primary particles is a bonding point between the primary particles. It is a granular porous body that is heat-treated at a temperature at which a neck is formed, and in which a large number of primary particles are partially bonded together with voids formed therebetween. A polishing tool to be used. 請求項3の研磨具において、凝集砥粒は、圧縮破壊強度が20MPaから160MPaまでの範囲内であることを特徴とする研磨具。   4. The polishing tool according to claim 3, wherein the aggregated abrasive grains have a compressive fracture strength within a range of 20 MPa to 160 MPa. 請求項1〜請求項4の研磨具において、凝集砥粒は酸化セリウム(CeO)、二酸化ケイ素(SiO)、酸化鉄(FeO・Fe)、酸化ジルコニウム(ZrO)、酸化アルミニウム(Al)、二酸化ケイ素(SiO)いずれかの金属酸化物であることを特徴とする研磨具。 5. The abrasive tool according to claim 1, wherein the aggregated abrasive grains are cerium oxide (CeO 2 ), silicon dioxide (SiO 2 ), iron oxide (FeO · Fe 2 O 3 ), zirconium oxide (ZrO 2 ), aluminum oxide. A polishing tool characterized by being a metal oxide of (Al 2 O 3 ) or silicon dioxide (SiO 2 ). 請求項1〜請求項5の研磨具において、砥粒の外に紫外光線を乱反射する微粒子が添加されていることを特徴とする研磨具。   6. The polishing tool according to claim 1, wherein fine particles that irregularly reflect ultraviolet rays are added to the abrasive grains. 前記凝集砥粒の1次粒子を2次粒子に造粒する工程と、造粒し2次粒子を前記1次粒子同士の結合点にネックが形成される温度で熱処理工程と、前記バインダーポリマー、光重合性の多官能モノマー、光重合開始剤を有するバインダーポリマーを混練する工程と、前記混練液に前記凝集砥粒を混合分散する工程と、前記混合液を基材に塗布する工程と、さらにUV光線より照射される工程で前記研磨具を形成することを特徴とする研磨具の製造方法。   A step of granulating primary particles of the agglomerated abrasive grains into secondary particles, a heat treatment step at a temperature at which a neck is formed at a bonding point between the primary particles by granulating the secondary particles, the binder polymer, A step of kneading a photopolymerizable polyfunctional monomer and a binder polymer having a photopolymerization initiator, a step of mixing and dispersing the agglomerated abrasive grains in the kneaded solution, a step of applying the mixed solution to a substrate, and A method for producing a polishing tool, comprising forming the polishing tool in a step of irradiating with UV light. 前記凝集砥粒の1次粒子を2次粒子に造粒する工程と、造粒し2次粒子を前記1次粒子同士の結合点にネックが形成される温度で熱処理工程と、前記バインダーポリマー、光重合性の多官能モノマー、光重合開始剤を有するバインダーポリマーを混練する工程と、前記混練液に前記凝集砥粒と紫外線を乱反射する微粒子とを混合分散する工程と、前記混合液を基材に塗布する工程と、さらにUV光線より照射される工程で前記研磨具を形成することを特徴とする研磨具の製造方法。   A step of granulating primary particles of the agglomerated abrasive grains into secondary particles, a heat treatment step at a temperature at which a neck is formed at a bonding point between the primary particles by granulating the secondary particles, the binder polymer, A step of kneading a binder polymer having a photopolymerizable polyfunctional monomer and a photopolymerization initiator; a step of mixing and dispersing the agglomerated abrasive grains and fine particles that irregularly reflect ultraviolet rays in the kneaded solution; and A method for producing a polishing tool, comprising: forming the polishing tool in a step of applying to the substrate and a step of irradiating with UV light.
JP2007059551A 2007-03-09 2007-03-09 Polishing device and method of manufacturing same Pending JP2008221353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007059551A JP2008221353A (en) 2007-03-09 2007-03-09 Polishing device and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007059551A JP2008221353A (en) 2007-03-09 2007-03-09 Polishing device and method of manufacturing same

Publications (1)

Publication Number Publication Date
JP2008221353A true JP2008221353A (en) 2008-09-25

Family

ID=39840543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007059551A Pending JP2008221353A (en) 2007-03-09 2007-03-09 Polishing device and method of manufacturing same

Country Status (1)

Country Link
JP (1) JP2008221353A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010194672A (en) * 2009-02-25 2010-09-09 Disco Abrasive Syst Ltd Method of grinding workpiece
WO2011049318A3 (en) * 2009-10-13 2011-09-01 주식회사 엘지화학 Slurry composition for cmp, and polishing method
US9213274B2 (en) 2013-03-29 2015-12-15 Ricoh Company, Ltd. Grinding roller, fixing device, and image forming apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003181768A (en) * 2001-12-19 2003-07-02 Dainippon Printing Co Ltd Polishing sheet having identification
JP2004082323A (en) * 2002-06-26 2004-03-18 Ricoh Co Ltd Grinding tool and manufacturing method therefor
JP2005349542A (en) * 2004-06-11 2005-12-22 Ricoh Co Ltd Grindstone and method of producing the same
WO2007005452A1 (en) * 2005-06-29 2007-01-11 Saint-Gobain Abrasives, Inc. High performance resin for abrasive products

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003181768A (en) * 2001-12-19 2003-07-02 Dainippon Printing Co Ltd Polishing sheet having identification
JP2004082323A (en) * 2002-06-26 2004-03-18 Ricoh Co Ltd Grinding tool and manufacturing method therefor
JP2005349542A (en) * 2004-06-11 2005-12-22 Ricoh Co Ltd Grindstone and method of producing the same
WO2007005452A1 (en) * 2005-06-29 2007-01-11 Saint-Gobain Abrasives, Inc. High performance resin for abrasive products

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010194672A (en) * 2009-02-25 2010-09-09 Disco Abrasive Syst Ltd Method of grinding workpiece
WO2011049318A3 (en) * 2009-10-13 2011-09-01 주식회사 엘지화학 Slurry composition for cmp, and polishing method
US8822339B2 (en) 2009-10-13 2014-09-02 Lg Chem, Ltd. Slurry composition for CMP, and polishing method
US9213274B2 (en) 2013-03-29 2015-12-15 Ricoh Company, Ltd. Grinding roller, fixing device, and image forming apparatus

Similar Documents

Publication Publication Date Title
TWI248969B (en) Methods of manufacturing a composite abrasive agglomerate, coated abrasive article, and three dimensional fixed abrasive article, products obtained therefrom, and method of polishing a workpiece
JP5620639B2 (en) Polishing with abrasive agglomerates
FI118180B (en) Suitable for polishing optical surfaces
US8038751B2 (en) Coated abrasive products containing aggregates
EP1295682B1 (en) Abrasive material
KR101783406B1 (en) An abrasive pad and manufacturing method thereof
CN1882417A (en) Structured abrasive article
JP2006192546A (en) Surface polishing method and device therefor
JP2010264591A (en) Coated abrasive product and method for forming it
JP2003517380A (en) Abrasive article fixed using hybrid binder
JP2017530210A (en) Polishing liquid and method of using the same
JP2972488B2 (en) Sintered composite abrasive grits, their production and use
JP2008221353A (en) Polishing device and method of manufacturing same
JP2006315110A (en) Abrasive material, manufacturing method and polishing method
JP5997235B2 (en) Composite abrasive, manufacturing method thereof, polishing method and polishing apparatus
JP4301434B2 (en) Polishing abrasive grains and polishing tool
JP6054341B2 (en) Abrasive grains, manufacturing method thereof, polishing method, polishing member and slurry
JP2005153106A (en) Polishing tool, polishing tool manufacturing method, polishing method, and polishing device
CN1882423A (en) Structured abrasive article
JP2003105324A (en) Abrasive grain and method for producing the same, polishing tool and method for producing the same, grindstone for polishing and method for producing the same and polishing apparatus
JP4849590B2 (en) Polishing tool and manufacturing method thereof
JP2017013197A (en) Polishing tool and manufacturing method thereof
JP2011110657A (en) Machining abrasive grain, machining tool, machining liquid, and machining method using them
JP2005349542A (en) Grindstone and method of producing the same
JP4621441B2 (en) Polishing tool and method for manufacturing polishing tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120608