JP2008218915A - 量子カスケードレーザ素子 - Google Patents

量子カスケードレーザ素子 Download PDF

Info

Publication number
JP2008218915A
JP2008218915A JP2007057666A JP2007057666A JP2008218915A JP 2008218915 A JP2008218915 A JP 2008218915A JP 2007057666 A JP2007057666 A JP 2007057666A JP 2007057666 A JP2007057666 A JP 2007057666A JP 2008218915 A JP2008218915 A JP 2008218915A
Authority
JP
Japan
Prior art keywords
layer
substrate
cascade laser
laminate
quantum cascade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007057666A
Other languages
English (en)
Inventor
Atsushi Sugiyama
厚志 杉山
Takahide Ochiai
隆英 落合
Kazumasa Fujita
和上 藤田
Naohiro Akikusa
直大 秋草
Tadataka Edamura
忠孝 枝村
Shinichi Furuta
慎一 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2007057666A priority Critical patent/JP2008218915A/ja
Priority to US12/043,331 priority patent/US20080219312A1/en
Publication of JP2008218915A publication Critical patent/JP2008218915A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3401Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers
    • H01S5/3402Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers intersubband lasers, e.g. transitions within the conduction or valence bands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/18Semiconductor lasers with special structural design for influencing the near- or far-field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2214Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on oxides or nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2222Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties
    • H01S5/2226Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties semiconductors with a specific doping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

【課題】スロープ効率が優れ安定して横モード単一化が可能な量子カスケードレーザ素子を提供する。
【解決手段】量子カスケードレーザ素子1は、基板10の一方の主面上に、積層体11が所定方向に沿ってストライプ状に形成され、この積層体11の両側部に絶縁層15が形成され、これら積層体11および絶縁層15の上に絶縁層16および金属層17が順に形成されている。積層体11は、基板10の側から順にクラッド層12,活性層13およびクラッド層14が形成されたものである。活性層13は、発光層と注入層とが交互に積層されていて、量子井戸構造におけるサブバンド間の電子遷移によって光を生成する。積層体11が延在する方向に垂直な積層体11の断面の形状は矩形または逆メサ形とされている。
【選択図】図1

Description

本発明は、量子カスケードレーザ素子に関するものである。
量子カスケードレーザ(Quantum CascadeLaser)素子は、発光層と注入層とが交互に積層された活性層を含む積層体が基板の主面上に形成されており、その活性層において量子井戸構造におけるサブバンド間の電子遷移によって光を生成することができるモノポーラタイプの素子である。量子カスケードレーザ素子は、発光層と注入層とを交互に多段にカスケード結合したものを活性層とすることで、高効率かつ高出力の動作を実現することが可能で、中赤外域からTHz領域に亘る高性能半導体光源として期待されている。
量子カスケードレーザ素子では、積層体の上下間に電圧が印加されると、発光層の量子準位構造において電子が上準位から下準位へ遷移し、その電子遷移の際に準位間エネルギ差に応じた波長の光が生成される。発光層の下準位へ遷移した電子は、隣の注入層を経て次の発光層の上準位へ移動して、その発光層においても同様に、上準位から下準位へ遷移し、その電子遷移の際に準位間エネルギ差に応じた波長の光が生成される。このようにして、各発光層において光が生成される。
特許文献1に開示された量子カスケードレーザ素子では、基板の主面上に所定方向に沿ってストライプ状に積層体が形成されており、その所定方向の積層体の両端面がレーザ共振器を構成するミラーとなっている。また、この文献に開示された量子カスケードレーザ素子では、その所定方向に垂直な積層体の断面の形状が順メサ形とされている。
特表2003−526214号公報
特許文献1に開示された量子カスケードレーザ素子は、積層体の断面の形状が順メサ形とされていて、積層体の上部の幅より下部(基板側)の幅が広くなっている。このことから、電流の狭窄効率が悪く、スロープ効率(レーザ発振時の電流増分ΔIに対する光出力増分ΔPの比(ΔP/ΔI))が低い。また、発光層の幅が広くなるので、横モードが単一になりにくい。
本発明は、上記問題点を解消する為になされたものであり、スロープ効率が優れ安定して横モード単一化が可能な量子カスケードレーザ素子を提供することを目的とする。
本発明に係る量子カスケードレーザ素子は、発光層と注入層とが交互に積層されていて量子井戸構造におけるサブバンド間の電子遷移によって光を生成する活性層を含む積層体が、基板の主面上に所定方向に沿ってストライプ状に形成されており、上記所定方向に垂直な積層体の断面の形状が矩形または逆メサ形であり、基板の主面上であって積層体の両側部に絶縁層が形成されていることを特徴とする。このように、本発明に係る量子カスケードレーザ素子は、積層体の断面形状が矩形または逆メサ形であることにより、スロープ効率が優れ、安定して横モード単一化が可能である。また、駆動時に活性層で発生する熱が絶縁層を経て放熱されるので、放熱性が向上する。
また、本発明に係る量子カスケードレーザ素子は、基板が (1,0,0)InP基板であり、上記所定方向が基板における [0,1,-1]方向または [0,-1,1]方向であるのが好適であり、この場合には、絶縁層の選択的埋め込み成長時の積層体上への被覆成長が発生し難くなる。
本発明に係る量子カスケードレーザ素子は、スロープ効率が優れ、安定して横モード単一化が可能である。
以下、添付図面を参照して、本発明を実施するための最良の形態を詳細に説明する。なお、図面の説明において同一または同等の要素には同一の符号を付し、重複する説明を省略する。また、図面における寸法比率は、説明のものと必ずしも一致していない。
(第1実施形態)
先ず、本発明に係る量子カスケードレーザ素子の第1実施形態について説明する。図1は、第1実施形態に係る量子カスケードレーザ素子1の斜視図である。この図に示される量子カスケードレーザ素子1は、基板10の一方の主面上に、積層体11が所定方向に沿ってストライプ状に形成され、この積層体11の両側部に絶縁層15が形成され、これら積層体11および絶縁層15の上に絶縁層16および金属層17が順に形成されている。また、基板10の他方の主面には金属層18が形成されている。積層体11の両端面は、レーザ共振器を構成するミラーとなっている。
積層体11は、基板10の側から順にクラッド層12,活性層13およびクラッド層14が形成されたものである。活性層13は、発光層と注入層とが交互に積層されていて、量子井戸構造におけるサブバンド間の電子遷移によって光を生成する。絶縁層16はクラッド層14の上部において開口を有していて、その開口において金属層17はクラッド層14に電気的に接続されている。この開口は、積層体11が延在する所定方向に延びている。金属層17および金属層18それぞれは、電圧が印加される電極として用いられる。
特に第1実施形態では、積層体11が延在する方向に垂直な積層体11の断面の形状は矩形(長方形)とされている。なお、積層体11の断面形状は、上部または下部の角が丸くなって、必ずしも理想的な矩形とならない場合がある。しかし、このような場合であっても、積層体11に含まれる活性層13の断面形状は、より理想的な矩形に近い形とされ得る。
各層の組成の一例は以下のとおりである。基板10はInPからなる。クラッド層12,14はInPまたはInAlAsからなる。活性層13はInGaAs/InAlAs多重量子井戸構造からなる。絶縁層15はFeドープInPからなる。絶縁層15は、熱抵抗が低い絶縁性材料であれば、何れの材料からなるものであってもよい。絶縁層16はSiNまたはSiOからなる。金属層17はTi/Auからなる。また、金属層18はAuGe/Auからなる。好適には、基板10は (1,0,0)n型InP基板であり、積層体11が延在する方向は基板10における [0,1,-1]方向または [0,-1,1]方向である。
図2は、第1実施形態に係る量子カスケードレーザ素子1における活性層13の構成、および、活性層13における量子井戸構造でのサブバンド間の電子遷移を説明する模式図である。この図において、横方向は活性層13の厚み方向に相当し、縦方向はエネルギレベルに相当する。また、この図では、説明の便宜のため、活性層13を構成している発光層及び注入層による多段の繰返し構造のうち、隣合う1層ずつの発光層131及び注入層136の積層構造を示している。
図2に示すように、発光層131は、量子井戸層132と量子障壁層133とから構成されている。この発光層131は、活性層13の半導体積層構造において光hνを生成する活性領域として機能する部分である。図2中においては、発光層131の量子井戸層132として、それぞれ厚さが異なる3つの量子井戸層を示している。また、この発光層131では、これらの量子井戸層132及び量子障壁層133により、下から順に準位1、準位2、及び準位3の3つの量子準位が形成されている。また、発光層131と、次の発光層との間には、電子注入層136が設けられている。この注入層136は、量子井戸層137と量子障壁層138とから構成されている。
量子カスケードレーザ素子1では、このような量子準位構造の活性層13を有する積層体11に対してバイアス電圧を印加した状態において、注入層136からの電子130は発光層131の準位3へと注入される。この準位3に注入された電子130は準位2へ発光遷移し、このとき、準位3及び準位2の量子準位間のエネルギ準位差に相当する波長の光hνが生成される。
また、準位2へと遷移した電子130は準位1へと高速で緩和し、注入層136を経て次の発光層の準位3へとカスケード的に注入される。このような電子の注入及び発光遷移を活性層13の積層構造中で繰り返すことにより、活性層13において、カスケード的な光の生成が起こる。すなわち、図2に示したような発光層131及び注入層136を多数交互に積層することにより、電子130は発光層131をカスケード的に次々に移動するとともに、各発光層131でのサブバンド間遷移の際に光hνが生成される。また、このような光が量子カスケードレーザ素子1の光共振器において共振されることにより、所定波長のレーザ光が生成される。
量子カスケードレーザ素子1の積層体11では、図2に示したカスケード的な積層構造を有する活性層13において生成された光が量子カスケードレーザ素子1内で共振器方向に導波されるための導波路構造として、活性層13を間に挟むクラッド層12およびクラッド層14が設けられている。
次に、第1実施形態に係る量子カスケードレーザ素子1を製造する方法の一例について説明する。図3〜図5は、第1実施形態に係る量子カスケードレーザ素子1の製造方法を説明する工程図である。なお、以下では、各層の組成を上記のとおりとして説明する。
初めに、(1,0,0)n型InP基板10の一方の主面上に、分子線エピタキシ(MBE)法または有機金属気相成長(MOVPE)法により、InPまたはInAlAsからなるクラッド層12、InGaAs/InAlAs多重量子井戸構造からなる活性層13、および、InPまたはInAlAsからなるクラッド層14が順に形成される(図3(a))。さらに、クラッド層14の上に、絶縁層31が形成され、更にレジスト32が塗布される(図3(b))。絶縁層31は例えばSiNまたはSiOからなる。そして、フォトリソグラフィおよびエッチングにより、絶縁層31およびレジスト32は、基板10における [0,1,-1]方向または [0,-1,1]方向に延在する一定幅のストライプ形状の領域部分が残され、他の領域が除去される(図3(c))。
これら一定幅のストライプ形状の絶縁層31およびレジスト32がマスクとして用いられてドライエッチングが行われ、その後、レジスト32が除去される(図4(a))。このドライエッチングにより、マスク下のクラッド層12,活性層13およびクラッド層14が残り、これにより、断面が矩形である積層体11が形成される。このとき用いられるドライエッチング法としては、例えば、温度200℃以上に加熱した状態でのCl系ガスによる反応性イオンエッチング(RIE)法、室温でのメタン系ガスによるRIE法、室温でのCl系ガスによるイオンビームエッチング法などが挙げられる。
続いて、一定幅のストライプ形状の絶縁層31がクラッド14上に残っている状態で、絶縁層31が選択的埋め込み成長のマスクとして用いられ、積層体11の両側部において基板10の主面上に絶縁層15が形成される(図4(b))。絶縁層15は、FeドープInPからなり、MOVPE法により形成される。絶縁層15は、熱抵抗が低い絶縁性材料であれば、何れの材料からなるものであってもよい。絶縁層15は、活性層13が埋め込まれる厚さ以上であることが必要であり、また、マスクとしての絶縁層31の上面を超えない厚さであることが好ましい。絶縁層15が形成された後、マスクとしての絶縁層31がエッチングにより除去される(図4(c))。
更に続いて、クラッド層14および絶縁層15の上に、SiNまたはSiOからなる絶縁膜16が形成され、フォトリソグラフィおよびエッチングにより絶縁膜16に開口が形成される(図5(a))。更に、その上に、Ti/Auからなる金属層17が形成される(図5(b))。金属層17の開口は、クラッド層14の上部において積層体11が延在する方向に延びており、その開口において金属層17はクラッド層14に電気的に接続される。また、基板10の下面が研磨されて基板10が薄肉化され、その基板10の下面に、AuGe/Auからなる金属層18が形成される(図5(c))。そして、へき開により両端面が形成されて、レーザ共振器構造とされる。このとき、共振器の一方の端面は、Auなどの高反射膜でコーティングされてもよい。
以上のようにして製造される第1実施形態に係る量子カスケードレーザ素子1は、積層体11が延在する方向に垂直な積層体11の断面の形状が矩形とされていることにより、順メサ形の場合と比較して、電流の狭窄効率が優れ、スロープ効率が高いものとなる。また、積層体11の断面の形状が矩形とされていることにより、発光層の幅が狭くなり、発光点が広がり難くなるので、横単一モードのビームプロファイルが安定して得られる。このことは、分光分析分野での応用が期待されている光源としては非常に重要である。
また、第1実施形態に係る量子カスケードレーザ素子1は、活性層13を含む積層体11の両側部に熱伝導率が優れた絶縁層15が設けられていることにより、駆動時に活性層13で発生する熱が絶縁層15を経て放熱されるので、放熱性が向上する。これにより、高効率な屈折率閉じ込めが可能となり、高温領域での高デューティおよび連続(CW)高出力の動作が実現できる。
さらに、第1実施形態に係る量子カスケードレーザ素子1は、積層体11が延在する方向が基板10における[0,1,-1]方向または[0,-1,1]方向であることにより、絶縁層15の選択的埋め込み成長時の積層体11上への被覆成長が発生し難くなる。
(第2実施形態)
次に、本発明に係る量子カスケードレーザ素子の第2実施形態について説明する。図6は、第2実施形態に係る量子カスケードレーザ素子2の斜視図である。この図に示される量子カスケードレーザ素子2は、基板10の一方の主面上に、積層体11が所定方向に沿ってストライプ状に形成され、この積層体11の両側部に絶縁層15が形成され、これら積層体11および絶縁層15の上に絶縁層16および金属層17が順に形成されている。また、基板10の他方の主面には金属層18が形成されている。積層体11の両端面は、レーザ共振器を構成するミラーとなっている。
積層体11は、基板10の側から順にクラッド層12,活性層13およびクラッド層14が形成されたものである。活性層13は、発光層と注入層とが交互に積層されていて、量子井戸構造におけるサブバンド間の電子遷移によって光を生成する。絶縁層16はクラッド層14の上部において開口を有していて、その開口において金属層17はクラッド層14に電気的に接続されている。この開口は、積層体11が延在する所定方向に延びている。金属層17および金属層18それぞれは、電圧が印加される電極として用いられる。
特に第2実施形態では、積層体11が延在する方向に垂直な積層体11の断面の形状は逆メサ形とされている。なお、積層体11の断面形状は、上部または下部の角が丸くなって、必ずしも理想的な逆メサ形とならない場合がある。しかし、このような場合であっても、積層体11に含まれる活性層13の断面形状は、より理想的な逆メサ形に近い形とされ得る。
各層の組成の一例は、第1実施形態の場合と同様である。また、第2実施形態に係る量子カスケードレーザ素子2における活性層13の構成、および、活性層13における量子井戸構造でのサブバンド間の電子遷移についても、図2を用いて説明した第1実施形態の場合と同様である。
次に、第2実施形態に係る量子カスケードレーザ素子2を製造する方法の一例について説明する。図7および図8は、第2実施形態に係る量子カスケードレーザ素子2の製造方法を説明する工程図である。
初めに、(1,0,0)n型InP基板10の一方の主面上に、クラッド層12,活性層13およびクラッド層14が順に形成され、さらに、クラッド層14の上に絶縁層31が形成され、レジスト32が塗布される。そして、絶縁層31およびレジスト32は、基板10における [0,1,-1]方向または [0,-1,1]方向に延在する一定幅のストライプ形状の領域部分が残され、他の領域が除去される。ここまでの工程は、図3(a)〜(c)を用いて説明した第1実施形態の場合と同様である。
これら一定幅のストライプ形状の絶縁層31およびレジスト32がマスクとして用いられてドライエッチングが行われ、その後、レジスト32が除去される(図7(a))。このドライエッチングにより、マスク下のクラッド層12,活性層13およびクラッド層14が残り、これにより、断面が逆メサ形である積層体11が形成される。このとき用いられるドライエッチング法としては、例えば、チルト機構付きイオンビームエッチングが好適に用いられて、逆メサ形の積層体11が再現性良く実現され得る。積層体11が延在する方向を軸として、イオンビーム加速方向に対して基板10が例えば約±10°傾けられて、エッチングが行われる。エッチング中に角度が変更されることにより、積層体11の断面形状は左右対称に形成され得る。
続いて、一定幅のストライプ形状の絶縁層31がクラッド14上に残っている状態で、絶縁層31が選択的埋め込み成長のマスクとして用いられ、積層体11の両側部において基板10の主面上に絶縁層15が形成される(図7(b))。絶縁層15が形成された後、マスクとしての絶縁層31がエッチングにより除去される(図7(c))。更に続いて、クラッド層14および絶縁層15の上に絶縁膜16が形成され、フォトリソグラフィおよびエッチングにより絶縁膜16に開口が形成される(図8(a))。更に、その上に金属層17が形成される(図8(b))。また、基板10の下面が研磨されて基板10が薄肉化され、その基板10の下面に金属層18が形成される(図8(c))。そして、へき開により両端面が形成されて、レーザ共振器構造とされる。これら図7(a)より後の工程は、第1実施形態の場合と同様である。
以上のようにして製造される第2実施形態に係る量子カスケードレーザ素子2は、第1実施形態の場合と同様の効果を奏することができる他、積層体11が延在する方向に垂直な積層体11の断面の形状が逆メサ形とされていることにより、以下のような効果をも奏することができる。すなわち、マスクとしての絶縁層31の幅が一定であれば、積層体11の断面の形状が逆メサ形とされていることにより、矩形の場合と比較しても更に、電流の狭窄効率が優れ、スロープ効率が高いものとなる。また、発光層の幅が狭くなり、発光点が広がり難くなるので、横単一モードのビームプロファイルが安定して得られる。
第1実施形態に係る量子カスケードレーザ素子1の斜視図である。 第1実施形態に係る量子カスケードレーザ素子1における活性層13の構成、および、活性層13における量子井戸構造でのサブバンド間の電子遷移を説明する模式図である。 第1実施形態に係る量子カスケードレーザ素子1の製造方法を説明する工程図である。 第1実施形態に係る量子カスケードレーザ素子1の製造方法を説明する工程図である。 第1実施形態に係る量子カスケードレーザ素子1の製造方法を説明する工程図である。 第2実施形態に係る量子カスケードレーザ素子2の斜視図である。 第2実施形態に係る量子カスケードレーザ素子2の製造方法を説明する工程図である。 第2実施形態に係る量子カスケードレーザ素子2の製造方法を説明する工程図である。
符号の説明
1,2…量子カスケードレーザ素子、10…基板、11…積層体、12…クラッド層、13…活性層、14…クラッド層、15…絶縁層、16…絶縁層、17…金属層、18…金属層。

Claims (2)

  1. 発光層と注入層とが交互に積層されていて量子井戸構造におけるサブバンド間の電子遷移によって光を生成する活性層を含む積層体が、基板の主面上に所定方向に沿ってストライプ状に形成されており、
    前記所定方向に垂直な前記積層体の断面の形状が矩形または逆メサ形であり、
    前記基板の前記主面上であって前記積層体の両側部に絶縁層が形成されている、
    ことを特徴とする量子カスケードレーザ素子。
  2. 前記基板が (1,0,0)InP基板であり、前記所定方向が前記基板における [0,1,-1]方向または [0,-1,1]方向である、ことを特徴とする請求項1記載の量子カスケードレーザ素子。
JP2007057666A 2007-03-07 2007-03-07 量子カスケードレーザ素子 Pending JP2008218915A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007057666A JP2008218915A (ja) 2007-03-07 2007-03-07 量子カスケードレーザ素子
US12/043,331 US20080219312A1 (en) 2007-03-07 2008-03-06 Quantum cascade laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007057666A JP2008218915A (ja) 2007-03-07 2007-03-07 量子カスケードレーザ素子

Publications (1)

Publication Number Publication Date
JP2008218915A true JP2008218915A (ja) 2008-09-18

Family

ID=39741553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007057666A Pending JP2008218915A (ja) 2007-03-07 2007-03-07 量子カスケードレーザ素子

Country Status (2)

Country Link
US (1) US20080219312A1 (ja)
JP (1) JP2008218915A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012151291A (ja) * 2011-01-19 2012-08-09 Toshiba Corp 半導体発光装置およびその製造方法
JP2013038092A (ja) * 2011-08-03 2013-02-21 Toshiba Corp 半導体レーザ装置
JP2013149665A (ja) * 2012-01-17 2013-08-01 Sumitomo Electric Ind Ltd 量子カスケード半導体レーザ
JP2014170825A (ja) * 2013-03-04 2014-09-18 Sumitomo Electric Ind Ltd 量子カスケード半導体レーザ
JP2014220538A (ja) * 2014-08-27 2014-11-20 株式会社東芝 半導体レーザ装置
JP2014236075A (ja) * 2013-05-31 2014-12-15 住友電気工業株式会社 量子カスケードレーザ
JP2015109482A (ja) * 2015-03-09 2015-06-11 株式会社東芝 半導体発光装置およびその製造方法
JP2015135897A (ja) * 2014-01-17 2015-07-27 住友電気工業株式会社 半導体光素子の製造方法
JP2016197657A (ja) * 2015-04-03 2016-11-24 住友電気工業株式会社 量子カスケード半導体レーザ
JP2016197658A (ja) * 2015-04-03 2016-11-24 住友電気工業株式会社 量子カスケード半導体レーザ
JP2017157865A (ja) * 2017-06-07 2017-09-07 株式会社東芝 半導体発光装置およびその製造方法
JP2018088456A (ja) * 2016-11-28 2018-06-07 住友電気工業株式会社 量子カスケード半導体レーザ

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5803366B2 (ja) * 2011-07-14 2015-11-04 住友電気工業株式会社 埋め込みヘテロ構造半導体レーザの製造方法及び埋め込みヘテロ構造半導体レーザ
WO2014018776A1 (en) * 2012-07-26 2014-01-30 Massachusetts Institute Of Technology Photonic integrated circuits based on quantum cascade structures
CA2968925C (en) * 2014-12-03 2020-11-17 Alpes Lasers Sa Quantum cascade laser with current blocking layers
JP2017050318A (ja) * 2015-08-31 2017-03-09 ルネサスエレクトロニクス株式会社 半導体装置
JP7475924B2 (ja) * 2020-03-30 2024-04-30 浜松ホトニクス株式会社 量子カスケードレーザ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1130724A1 (fr) * 2000-03-03 2001-09-05 Alpes Lasers Laser à cascade quantique et procédé pour la fabrication d'un tel laser
JP3801597B2 (ja) * 2004-02-09 2006-07-26 ユーディナデバイス株式会社 半導体素子の製造方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8759812B2 (en) 2011-01-19 2014-06-24 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing same
US8993999B2 (en) 2011-01-19 2015-03-31 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing same
JP2012151291A (ja) * 2011-01-19 2012-08-09 Toshiba Corp 半導体発光装置およびその製造方法
US9077154B2 (en) 2011-01-19 2015-07-07 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing same
US9407065B2 (en) 2011-08-03 2016-08-02 Kabushiki Kaisha Toshiba Semiconductor laser
JP2013038092A (ja) * 2011-08-03 2013-02-21 Toshiba Corp 半導体レーザ装置
JP2013149665A (ja) * 2012-01-17 2013-08-01 Sumitomo Electric Ind Ltd 量子カスケード半導体レーザ
JP2014170825A (ja) * 2013-03-04 2014-09-18 Sumitomo Electric Ind Ltd 量子カスケード半導体レーザ
JP2014236075A (ja) * 2013-05-31 2014-12-15 住友電気工業株式会社 量子カスケードレーザ
JP2015135897A (ja) * 2014-01-17 2015-07-27 住友電気工業株式会社 半導体光素子の製造方法
JP2014220538A (ja) * 2014-08-27 2014-11-20 株式会社東芝 半導体レーザ装置
JP2015109482A (ja) * 2015-03-09 2015-06-11 株式会社東芝 半導体発光装置およびその製造方法
JP2016197657A (ja) * 2015-04-03 2016-11-24 住友電気工業株式会社 量子カスケード半導体レーザ
JP2016197658A (ja) * 2015-04-03 2016-11-24 住友電気工業株式会社 量子カスケード半導体レーザ
JP2018088456A (ja) * 2016-11-28 2018-06-07 住友電気工業株式会社 量子カスケード半導体レーザ
JP2017157865A (ja) * 2017-06-07 2017-09-07 株式会社東芝 半導体発光装置およびその製造方法

Also Published As

Publication number Publication date
US20080219312A1 (en) 2008-09-11

Similar Documents

Publication Publication Date Title
JP2008218915A (ja) 量子カスケードレーザ素子
JP5372349B2 (ja) 量子カスケードレーザ素子
US8179941B2 (en) Laser diode and method of manufacturing the same
JP6024365B2 (ja) 半導体レーザ装置
JPWO2006075759A1 (ja) 広い光スペクトル発光特性を有する半導体光素子及びその製造方法並びにそれを用いる外部共振器型半導体レーザ
WO2020080160A1 (ja) 垂直共振器型発光素子
JP2007227560A (ja) 利得結合型分布帰還型半導体レーザ
Rauter et al. Single-mode tapered quantum cascade lasers
JP2007049144A (ja) 高出力垂直外部共振器型の面発光レーザ
TW200917603A (en) Manufacturing process for a radiation emitting device and radiation emitting device
JP2004253811A (ja) 半導体発光素子およびその製造方法
US8824518B2 (en) Two-cavity surface-emitting laser
US7477670B2 (en) High power diode laser based source
US10283937B2 (en) Optoelectronic device with enhanced lateral leakage of high order transverse optical modes into alloy-intermixed regions and method of making same
JP2011029493A (ja) 面発光レーザ
CA2617912C (en) Injection laser
CN105552714A (zh) 一种带有DBR光栅结构的852nm窄线宽边发射激光器及其制备方法
JP2007087994A (ja) 面発光半導体レーザ素子
JP3876886B2 (ja) 面発光型半導体レーザ装置の製造方法
WO2003034559A1 (en) Vertically integrated high power surface emitting semiconductor laser device and method of producing the same
Zmudzinski et al. 1 W diffraction-limited-beam operation of resonant-optical-waveguide diode laser arrays at 0.98 μm
Illek et al. Vertical-external-cavity surface-emitting laser with monolithically integrated pump lasers
JP2613975B2 (ja) 周期利得型半導体レーザ素子
JP2875929B2 (ja) 半導体レーザ素子およびその製造方法
US20220311215A1 (en) Quantum cascade laser