JP2008218275A - Solid oxide fuel cell - Google Patents

Solid oxide fuel cell Download PDF

Info

Publication number
JP2008218275A
JP2008218275A JP2007055847A JP2007055847A JP2008218275A JP 2008218275 A JP2008218275 A JP 2008218275A JP 2007055847 A JP2007055847 A JP 2007055847A JP 2007055847 A JP2007055847 A JP 2007055847A JP 2008218275 A JP2008218275 A JP 2008218275A
Authority
JP
Japan
Prior art keywords
electrode layer
power generation
solid electrolyte
solid oxide
electrolyte layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007055847A
Other languages
Japanese (ja)
Inventor
Takashi Yamada
喬 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Materials Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2007055847A priority Critical patent/JP2008218275A/en
Publication of JP2008218275A publication Critical patent/JP2008218275A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase the breaking resistance or the peeling-off resistance of a power generation cell and increase the durability and power generation performance. <P>SOLUTION: In a solid oxide fuel cell 1 having the power generation cell 5 comprising arranged with a fuel electrode layer 4 and an air electrode layer 3 on each side of a solid electrolyte layer 2, a plurality of mutually crossing linear projecting parts 10 are formed on at least one surface of the solid oxide electrolyte layer 2, and the entire surface is partitioned in plural number by these projecting parts 10. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、固体電解質層の両面に燃料極層と空気極層を配して構成した発電セルを備える固体酸化物形燃料電池に関し、特に、発電セルの耐久性向上に関するものである。   The present invention relates to a solid oxide fuel cell including a power generation cell configured by disposing a fuel electrode layer and an air electrode layer on both surfaces of a solid electrolyte layer, and particularly relates to improving the durability of the power generation cell.

固体酸化物形燃料電池は、第3世代の発電用燃料電池として開発が進んでいる。現在、この固体酸化物形燃料電池は、円筒型、モノリス型、および平板積層型の3種類が提案されており、何れも酸化物イオン導電体から成る固体電解質層を空気極層と燃料極層との間に挟んだ積層構造を有し、発電時には、反応用ガスとして空気極層側に酸化剤ガス(酸素) が、また燃料極層側に燃料ガス (H2、CO等) が供給される。 Solid oxide fuel cells are being developed as third-generation fuel cells for power generation. At present, three types of solid oxide fuel cells have been proposed: a cylindrical type, a monolith type, and a flat plate type, all of which include a solid electrolyte layer made of an oxide ion conductor as an air electrode layer and a fuel electrode layer. In the power generation, oxidant gas (oxygen) is supplied to the air electrode layer side and fuel gas (H 2 , CO, etc.) is supplied to the fuel electrode layer side during the power generation. The

空気極層側に供給された酸素(例えば空気)は、空気極層内を通って固体電解質層との界面近傍に到達し、この部分で空気極層から電子を受け取って酸化物イオン(O2-)にイオン化される。この酸化物イオンは、燃料極層に向かって固体電解質層内を拡散移動する。燃料極層との界面近傍に到達した酸化物イオンは、この部分で、燃料ガスと反応して反応生成物(H2O、CO2等)を生じ、燃料極層に電子を放出する。電極反応で生じた電子は、別ルートの外部負荷にて起電力として取り出すことができる。 Oxygen (for example, air) supplied to the air electrode layer side passes through the air electrode layer and reaches the vicinity of the interface with the solid electrolyte layer, and receives electrons from the air electrode layer at this portion to receive oxide ions (O 2 - ) Is ionized. The oxide ions diffuse and move in the solid electrolyte layer toward the fuel electrode layer. Oxide ions that have reached the vicinity of the interface with the fuel electrode layer react with the fuel gas at this portion to generate reaction products (H 2 O, CO 2, etc.), and discharge electrons to the fuel electrode layer. Electrons generated by the electrode reaction can be taken out as an electromotive force at an external load on another route.

ところで、上記構造の燃料電池では、長時間運転時の熱サイクルで、発電セル(詳しくは、固体電解質層)にヒビ割れ(クラック)が生じたり、電極層(特に、燃料極層側)に剥離が生じたりするという耐久性に係わる問題があった。   By the way, in the fuel cell having the above structure, the power generation cell (specifically, the solid electrolyte layer) is cracked or peeled off from the electrode layer (especially the fuel electrode layer side) in the thermal cycle during long-time operation. There was a problem related to durability, such as

固体電解質層の割れについては、発電時(昇温時)のセル内の温度分布で生じる熱応力に因るところが大きく、固体電解質層として厚さが数百〜数十μmの薄いセラミックス材を使用することに起因していると考えられる。薄型の固体電解質を用いるのは、固定電解質層を薄くするこで内部抵抗を低減し、発電性能を向上するためである。
他方、電極層の剥離については、固体電解質層と電極層の各材料の熱膨張係数の差により生じる応力によるもので、例えば、燃料極層に含まれるNi等の金属材料が酸化物の状態で固体電解質層に焼き付けられ、発電時の還元で燃料極層が収縮するためであると考えられている。
The cracks in the solid electrolyte layer are largely due to the thermal stress generated by the temperature distribution in the cell during power generation (temperature rise), and a thin ceramic material with a thickness of several hundreds to several tens of μm is used as the solid electrolyte layer. It is thought that it is caused by doing. The thin solid electrolyte is used in order to reduce the internal resistance and improve the power generation performance by thinning the fixed electrolyte layer.
On the other hand, the electrode layer is peeled off due to the stress generated by the difference in thermal expansion coefficient between the solid electrolyte layer and the electrode layer material. For example, a metal material such as Ni contained in the fuel electrode layer is in an oxide state. It is believed that this is because the fuel electrode layer contracts due to reduction during power generation after being baked on the solid electrolyte layer.

尚、このような三層構造の発電セルの割れや剥離を防止する技術として、例えば、特許文献1が開示されている。
特開2003−263996号公報
For example, Patent Document 1 discloses a technique for preventing such a three-layered power generation cell from cracking or peeling.
JP 2003-263996 A

本発明は、上記問題に鑑みなされたもので、発電セルの耐割れ性や耐剥離性を向上した耐久性の高い固体酸化物形燃料電池を提供することを目的としている。   The present invention has been made in view of the above problems, and an object thereof is to provide a solid oxide fuel cell having high durability with improved cracking resistance and peeling resistance of a power generation cell.

すなわち、請求項1に記載の発明は、固体電解質層の両面に燃料極層および空気極層の各電極層を配した発電セルを備える固体酸化物形燃料電池において、前記固体電解質層の少なくとも一方の面に、相互に交差する線状の凸部が複数形成されており、これら凸部により全面が複数に区画されていることを特徴としている。   That is, the invention described in claim 1 is a solid oxide fuel cell comprising a power generation cell in which the electrode layers of the fuel electrode layer and the air electrode layer are arranged on both surfaces of the solid electrolyte layer, and at least one of the solid electrolyte layers. A plurality of linear protrusions intersecting each other are formed on this surface, and the entire surface is partitioned into a plurality by these protrusions.

また、請求項2に記載の発明は、請求項1に記載の固体酸化物形燃料電池において、前記凸部による区画の形状は、格子状または六角形状であることを特徴としている。   The invention described in claim 2 is characterized in that, in the solid oxide fuel cell according to claim 1, the shape of the section by the convex portion is a lattice shape or a hexagonal shape.

また、請求項3に記載の発明は、請求項1または請求項2の何れかに記載の固体酸化物形燃料電池において、前記電極層が、前記凸部によって複数に区画されていることを特徴としている。   The invention according to claim 3 is the solid oxide fuel cell according to claim 1 or 2, wherein the electrode layer is divided into a plurality of portions by the convex portion. It is said.

請求項1〜3に記載の発明によれば、固体電解質層の全面に線状の凸部を形成して複数に区画することにより、固体電解質層の機械的強度が向上し、発電セルの耐割れ性が向上すると共に、この凸部により電極層の熱収縮に伴う応力が緩和されることになり、電極層の耐剥離性が向上する。   According to the first to third aspects of the invention, the linear strength is formed on the entire surface of the solid electrolyte layer so as to be divided into a plurality of sections, thereby improving the mechanical strength of the solid electrolyte layer and improving the resistance of the power generation cell. While the cracking property is improved, the stress accompanying the thermal contraction of the electrode layer is relieved by this convex portion, and the peeling resistance of the electrode layer is improved.

特に、請求項2に記載のように、区画形状を格子状または六角形状にすることにより、固体電解質層の全面が均等に補強されるため、固体電解質層の機械的強度はさらに向上し、優れた耐割れ性が得られるようになる。   In particular, as described in claim 2, since the entire surface of the solid electrolyte layer is uniformly reinforced by making the partition shape into a lattice shape or a hexagonal shape, the mechanical strength of the solid electrolyte layer is further improved, and is excellent. High crack resistance can be obtained.

また、請求項3に記載のように、凸部によって電極層が複数の小エリアに区画されることにより、電極層の熱収縮に伴う応力が各区画に分散されるため、電極層の耐剥離性は更に向上する。   In addition, as described in claim 3, since the electrode layer is partitioned into a plurality of small areas by the convex portion, stress due to thermal contraction of the electrode layer is dispersed in each partition, so that the electrode layer is resistant to peeling. The property is further improved.

以下、図1〜図4に基づいて本発明の実施形態を説明する。
図1は本実施形態による平板積層型の固体酸化物形燃料電池の構成を示し、図2は本実施形態による発電セルの内部構造を示し、図3は発電セルの要部拡大を示し、図4は固体電解質層の区画形状を示している。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
1 shows a configuration of a flat plate type solid oxide fuel cell according to the present embodiment, FIG. 2 shows an internal structure of the power generation cell according to the present embodiment, FIG. 3 shows an enlarged main part of the power generation cell, 4 shows the partition shape of the solid electrolyte layer.

先ず、図1に基づいて本発明が適用された固体酸化物形燃料電池1の構成を説明する。
図1に示すように、固体酸化物形燃料電池1は、固体電解質層2の両面に燃料極層4と空気極層3を配した発電セル5と、燃料極層4の外側に配した燃料極集電体7と、空気極層3の外側に配した空気極集電体6と各集電体6、7の外側のセパレータ8を順番に繰り返し積層することにより構成されている。
First, the configuration of a solid oxide fuel cell 1 to which the present invention is applied will be described with reference to FIG.
As shown in FIG. 1, a solid oxide fuel cell 1 includes a power generation cell 5 in which a fuel electrode layer 4 and an air electrode layer 3 are disposed on both surfaces of a solid electrolyte layer 2, and a fuel disposed on the outside of the fuel electrode layer 4. The electrode current collector 7, the air electrode current collector 6 disposed outside the air electrode layer 3, and the separator 8 outside the current collectors 6 and 7 are sequentially stacked in order.

固体電解質層2は、Co添加ランタンガレート(LSGMC)等で構成され、空気極層3は、Sm0.5Sr0.5CoO3(SSC)等で構成され、燃料極層4は、NiとCe0.8Sm0.22(SDC:サマリウム添加セリア)の混合物等で構成され、空気極集電体6は、Ag等のスポンジ状の多孔質焼結金属板で構成され、燃料極集電体7は、Ni等のスポンジ状の多孔質焼結金属板で構成され、セパレータ8は、ステンレス等で構成されている。
また、セパレータ8は、発電セル5間を電気的に接続すると共に、発電セル5に対して反応用ガスを供給する機能を有し、内部に燃料ガスを燃料極集電体7に誘導する燃料ガス通路(図示せず)と、酸化剤ガスを空気極集電体6に誘導する酸化剤ガス通路(図示せず)を有する。
The solid electrolyte layer 2 is made of Co-added lanthanum gallate (LSGMC) or the like, the air electrode layer 3 is made of Sm 0.5 Sr 0.5 CoO 3 (SSC) or the like, and the fuel electrode layer 4 is made of Ni and Ce 0.8 Sm 0.2. O 2: consists of a mixture of (SDC samarium doped ceria), an air electrode current collector 6 is formed of a sponge-like porous sintered metal plate such as Ag, anode current collector 7, Ni, etc. The separator 8 is made of stainless steel or the like.
Further, the separator 8 has a function of electrically connecting the power generation cells 5 and supplying a reaction gas to the power generation cells 5, and a fuel that guides the fuel gas to the anode current collector 7 inside. It has a gas passage (not shown) and an oxidant gas passage (not shown) for guiding the oxidant gas to the air electrode current collector 6.

ところで、上述の固体電解質層2は、図2に示すように、燃料極層4と接する面に線状の凸部10が複数形成されており、これら線状の凸部10により固体電解質層2の一方の面の全面が複数に小区画化された状態となっている。
本実施形態では、これら凸部10による区画形状を、図4(a)に示すような格子状、或いは、図4(b)に示すような多数の六角形状としている。
Incidentally, as shown in FIG. 2, the solid electrolyte layer 2 has a plurality of linear protrusions 10 formed on the surface in contact with the fuel electrode layer 4, and the solid electrolyte layer 2 is formed by the linear protrusions 10. The entire surface of one of the surfaces is divided into a plurality of sections.
In this embodiment, the partition shape by these convex parts 10 is made into the grid | lattice form as shown to Fig.4 (a), or many hexagonal shapes as shown to FIG.4 (b).

これらは、何れも、固体電解質層2を形成する際に、ドクターブレード法等により薄板状に成形された厚さ約200μm程のグリーンシートの片面上に、例えば、スクリーン印刷等により電解質材料と同じ材料を塗布することにより簡単に形成することができる。
また、区画形状は、印刷に使用するスクリーンパターンの穴形を変えることで自由に設定することが可能であり、形成される凸部10の幅は0.1mm程、高さは20μm程である。
These are the same as the electrolyte material by, for example, screen printing on one side of a green sheet having a thickness of about 200 μm formed into a thin plate by the doctor blade method or the like when forming the solid electrolyte layer 2. It can be easily formed by applying a material.
The partition shape can be freely set by changing the hole shape of the screen pattern used for printing. The width of the formed convex portion 10 is about 0.1 mm, and the height is about 20 μm. .

また、この固体電解質層2の凸部10形成面に燃料極層4を形成する場合、図3(a)に示すように、凸部10の頂部10aにも燃料極層4を形成するようにしても良く、或いは、図3(b)に示すように、凸部10の頂部10aが露出するように燃料極層4を形成しても良い。後者の場合には、凸部10によって燃料極層4が複数に小区画化されることになる。   Further, when the fuel electrode layer 4 is formed on the surface of the solid electrolyte layer 2 where the convex portion 10 is formed, the fuel electrode layer 4 is also formed on the top portion 10a of the convex portion 10 as shown in FIG. Alternatively, as shown in FIG. 3B, the fuel electrode layer 4 may be formed so that the top portion 10a of the convex portion 10 is exposed. In the latter case, the fuel electrode layer 4 is subdivided into a plurality of sections by the convex portion 10.

以上のように、本実施形態では、固体電解質層2の全面に線状の凸部10を形成することにより、固体電解質層2の機械的強度が向上し、熱応力に対する発電セル5の耐割れ性が向上する。この場合、凸部10による区画形状を、図4に示すように、格子状または六角形状にすると、固体電解質層2の全面が均等に補強されるようになるため、固体電解質層2の機械的強度は更に向上し、優れた耐割れ性が得られるようになる。   As described above, in the present embodiment, by forming the linear protrusions 10 on the entire surface of the solid electrolyte layer 2, the mechanical strength of the solid electrolyte layer 2 is improved and the cracking resistance of the power generation cell 5 against thermal stress is increased. Improves. In this case, as shown in FIG. 4, when the partition shape by the convex portion 10 is a lattice shape or a hexagonal shape, the entire surface of the solid electrolyte layer 2 is uniformly reinforced, so that the mechanical properties of the solid electrolyte layer 2 are increased. The strength is further improved, and excellent crack resistance can be obtained.

また、上記に加え、発電時の燃料極層4の熱収縮に伴う応力が凸部10を形成することにより緩和されるため、燃料極層4の耐剥離性が向上する。
特に、図3(b)のように、凸部10の形成によって燃料極層4が複数の小エリアに区画されている場合は、燃料極層4に加わる応力は各区画に分散され、各区画に加わる応力は小さいものとなるため、燃料極層4の耐剥離性は更に向上する。
Further, in addition to the above, the stress accompanying thermal contraction of the fuel electrode layer 4 during power generation is alleviated by forming the projections 10, so that the peel resistance of the fuel electrode layer 4 is improved.
In particular, as shown in FIG. 3B, when the fuel electrode layer 4 is partitioned into a plurality of small areas by the formation of the convex portion 10, the stress applied to the fuel electrode layer 4 is distributed to each partition. Since the stress applied to is small, the peel resistance of the fuel electrode layer 4 is further improved.

また、固体電解質層2の材料であるLSGMCと燃料極層4の材料であるSDCとは、密着性において相性が良いため、これらの組み合わせが電極剥離の防止に対して有利に作用する。   In addition, since LSGMC, which is a material of the solid electrolyte layer 2, and SDC, which is a material of the fuel electrode layer 4, are compatible with each other, their combination has an advantageous effect on prevention of electrode peeling.

このように、本実施形態によれば、長時間運転時の熱サイクルにおいて発電セル5の割れや燃料極層4の剥離を防止し、安定した発電性能を維持できる固体酸化物形燃料電池を実現することができる。   Thus, according to the present embodiment, a solid oxide fuel cell capable of preventing cracking of the power generation cell 5 and peeling of the fuel electrode layer 4 in a thermal cycle during long-time operation and maintaining stable power generation performance is realized. can do.

また、本実施形態では、固体電解質層2の燃料極層4側の面にのみ凸部10を形成したが、空気極層3側の面、或いは固体電解質層2の両面に設けることも勿論可能である。   Further, in the present embodiment, the convex portion 10 is formed only on the surface of the solid electrolyte layer 2 on the fuel electrode layer 4 side, but it is of course possible to provide it on the surface of the air electrode layer 3 side or both surfaces of the solid electrolyte layer 2. It is.

本発明に係る平板積層型の固体酸化物形燃料電池の構成を示す分解斜視図。1 is an exploded perspective view showing a configuration of a flat plate type solid oxide fuel cell according to the present invention. 本発明に係る発電セルの内部構造を示す断面図。Sectional drawing which shows the internal structure of the electric power generation cell which concerns on this invention. 図2の発電セルの要部拡大を示す断面図。Sectional drawing which shows the principal part expansion of the power generation cell of FIG. 固体電解質層の区画形状を示す平面図。The top view which shows the division shape of a solid electrolyte layer.

符号の説明Explanation of symbols

1 固体酸化物形燃料電池
2 固体電解質層
3 空気極層
4 燃料極層
5 発電セル
10 凸部
DESCRIPTION OF SYMBOLS 1 Solid oxide fuel cell 2 Solid electrolyte layer 3 Air electrode layer 4 Fuel electrode layer 5 Power generation cell 10 Convex part

Claims (3)

固体電解質層の両面に燃料極層および空気極層の各電極層を配して成る発電セルを備える固体酸化物形燃料電池において、
前記固体電解質層の少なくとも一方の面に、相互に交差する線状の凸部が複数形成されており、これら凸部により全面が複数に区画されていることを特徴とする固体酸化物形燃料電池。
In a solid oxide fuel cell including a power generation cell in which each electrode layer of a fuel electrode layer and an air electrode layer is disposed on both surfaces of a solid electrolyte layer,
A solid oxide fuel cell, wherein a plurality of linear protrusions intersecting each other are formed on at least one surface of the solid electrolyte layer, and the entire surface is partitioned into a plurality by these protrusions. .
前記凸部による区画形状は、格子状または六角形状であることを特徴とする請求項1に記載の固体酸化物形燃料電池。 2. The solid oxide fuel cell according to claim 1, wherein a partition shape by the convex portion is a lattice shape or a hexagonal shape. 前記電極層が、前記凸部によって複数に区画されていることを特徴とする請求項1または請求項2の何れかに記載の固体酸化物形燃料電池。 3. The solid oxide fuel cell according to claim 1, wherein the electrode layer is partitioned into a plurality of portions by the convex portion. 4.
JP2007055847A 2007-03-06 2007-03-06 Solid oxide fuel cell Pending JP2008218275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007055847A JP2008218275A (en) 2007-03-06 2007-03-06 Solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007055847A JP2008218275A (en) 2007-03-06 2007-03-06 Solid oxide fuel cell

Publications (1)

Publication Number Publication Date
JP2008218275A true JP2008218275A (en) 2008-09-18

Family

ID=39838065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007055847A Pending JP2008218275A (en) 2007-03-06 2007-03-06 Solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP2008218275A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010146891A (en) * 2008-12-19 2010-07-01 Honda Motor Co Ltd Fuel battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229935A (en) * 1999-12-27 2001-08-24 Corning Inc Solid oxide electrolyte fuel cell module and its production method
JP2004186056A (en) * 2002-12-05 2004-07-02 Nissan Motor Co Ltd Solid electrolyte fuel cell and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229935A (en) * 1999-12-27 2001-08-24 Corning Inc Solid oxide electrolyte fuel cell module and its production method
JP2004186056A (en) * 2002-12-05 2004-07-02 Nissan Motor Co Ltd Solid electrolyte fuel cell and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010146891A (en) * 2008-12-19 2010-07-01 Honda Motor Co Ltd Fuel battery

Similar Documents

Publication Publication Date Title
JP5172207B2 (en) Thin plate for single cell of solid oxide fuel cell
KR20070049198A (en) Resistive-varying electrode structure
JP6169930B2 (en) Solid oxide fuel cell
JP2006173091A (en) High-performance fuel cell electrode and its manufacturing method
JP2007026975A (en) Electrolyte membrane/electrode laminate for solid oxide film fuel cell
JP6158659B2 (en) Solid oxide fuel cell
JP2004273213A (en) Unit cell for fuel cells, its manufacturing method, and solid oxide fuel cell
JP2008218275A (en) Solid oxide fuel cell
JP2013093179A (en) Fuel cell structure
JP2003263996A (en) Solid oxide fuel cell
JP6097873B1 (en) Electrochemical cell
JP2009245633A (en) Fuel cell stack, and flat-plate solid oxide fuel cell using the same
JP4984374B2 (en) Fuel cell
JP4437764B2 (en) Round plate type solid oxide fuel cell
JP2005235549A (en) Solid oxide fuel cell
JP6169932B2 (en) Solid oxide fuel cell
JP2007317644A (en) Power generation cell and solid oxide fuel cell
JP5326330B2 (en) Solid electrolyte fuel cell and manufacturing method thereof
JP5981001B1 (en) Fuel cell
JP5895112B1 (en) Fuel cell
JP5752297B1 (en) Fuel cell
WO2009119107A1 (en) Flat-plate solid oxide fuel cell
JP2009245625A (en) Solid electrolyte, power generation cell and flat-type solid-oxide fuel cell
JP2008218279A (en) Solid oxide fuel cell, and supplying method of fuel gas
JP2002280052A (en) Structure to uniformly apply load on each power generating cell of fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130226