JP2008215994A - Anion exchange resin, moisture sensitive film made of anion exchange resin, and humidity sensor using moisture sensitive film - Google Patents

Anion exchange resin, moisture sensitive film made of anion exchange resin, and humidity sensor using moisture sensitive film Download PDF

Info

Publication number
JP2008215994A
JP2008215994A JP2007052721A JP2007052721A JP2008215994A JP 2008215994 A JP2008215994 A JP 2008215994A JP 2007052721 A JP2007052721 A JP 2007052721A JP 2007052721 A JP2007052721 A JP 2007052721A JP 2008215994 A JP2008215994 A JP 2008215994A
Authority
JP
Japan
Prior art keywords
humidity sensor
anion exchange
sensitive film
exchange resin
humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007052721A
Other languages
Japanese (ja)
Inventor
Kenichi Okamoto
健一 岡本
Hiroshi Cho
昊 張
Masahiro Ueda
上田政弘
Kazumasa Nakamura
中村和雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinei KK
Yamaguchi University NUC
Original Assignee
Shinei KK
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinei KK, Yamaguchi University NUC filed Critical Shinei KK
Priority to JP2007052721A priority Critical patent/JP2008215994A/en
Publication of JP2008215994A publication Critical patent/JP2008215994A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a humidity sensor having stable and high sensitivity to humidity, durability in a large humidity/temperature range, high response speed, and small hysteresis, by using a new anion exchange resin having heat resistance and water resistance as the moisture sensitive film appropriate, particularly, for an electric resistance type humidity sensor. <P>SOLUTION: Anion exchange resin having main chain made of polyamide and quaternary ammonium base as the ion exchange group, the moisture sensitive film made of the anion exchange resin, and the humidity sensor employing the moisture sensitive film are provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は新規な陰イオン交換樹脂及び該陰イオン交換樹脂よりなる感湿膜及び該感湿膜を用いた湿度センサーに関する。   The present invention relates to a novel anion exchange resin, a moisture sensitive film comprising the anion exchange resin, and a humidity sensor using the moisture sensitive film.

従来、主鎖がポリイミドで構成されたイオン交換樹脂は、高温耐久性がよいことから、スルホン酸基等の陽イオン交換基を有するものが燃料電池用隔膜等として開発されてきた。   Conventionally, since ion exchange resins having a main chain made of polyimide have good high-temperature durability, those having cation exchange groups such as sulfonic acid groups have been developed as fuel cell membranes and the like.

本発明者らは、かかるポリイミド系陽イオン交換膜を湿度センサーとして用いることも提案している。   The present inventors have also proposed using such a polyimide-based cation exchange membrane as a humidity sensor.

すなわち、従来感湿膜を用いる電気抵抗型湿度センサーは、感湿膜として一般にポリアクリル系やポリビニル系の骨格(主鎖)を持つイオン導電性高分子、すなわちイオン交換膜を感湿膜として用い、これを支持基板上に形成された複数の電極間に接触させ(一般に電極を感湿膜で被覆する)、雰囲気中の水分を該感湿膜が吸湿することによって、電極間に生ずる抵抗値の変化を計測し、気体中の湿度を測定していた(特許文献1、特許文献2参照)。   In other words, the conventional electric resistance type humidity sensor using a moisture sensitive film generally uses an ion conductive polymer having a polyacrylic or polyvinyl skeleton (main chain) as the moisture sensitive film, that is, an ion exchange membrane as the moisture sensitive film. The resistance value generated between the electrodes by bringing this into contact with a plurality of electrodes formed on the support substrate (generally covering the electrodes with a moisture sensitive film) and absorbing moisture in the atmosphere by the moisture sensitive film. The humidity in the gas was measured (see Patent Document 1 and Patent Document 2).

しかしながら、ポリアクリル系やポリビニル系イオン交換膜の場合は、耐熱性や耐水性に劣る問題があった。   However, polyacrylic and polyvinyl ion exchange membranes have problems of poor heat resistance and water resistance.

そこで、本発明者らはポリイミド系陽イオン交換膜を感湿膜として用いることを提案したのである(特許文献3、特許文献4、特許文献5参照)。   Therefore, the present inventors have proposed to use a polyimide-based cation exchange membrane as a moisture sensitive membrane (see Patent Document 3, Patent Document 4, and Patent Document 5).

これらのポリイミド系スルホン酸型陽イオン交換膜を用いた湿度センサーは、耐水性および高温高湿耐久性に優れ、従来の感湿膜では使用し得なかった露点雰囲気や高温高湿の過酷な環境下で使用し得たのである。   Humidity sensors using these polyimide-based sulfonic acid cation exchange membranes have excellent water resistance and high temperature and high humidity durability, and have a dew point atmosphere and high temperature and high humidity that could not be used with conventional moisture sensitive membranes. It could be used below.

しかしながら、湿度に対する安定した高い感受性、広い湿度温度範囲での耐久性、速い応答速度、小さいヒステリシスという点で、特に応答速度とヒステリシスの観点から今一つ改善すべき余地があった。
特開昭59−171844号公報 特開平2−253148号公報 特許第3690415号公報 特許第3690416号公報 特開2004−170409号公報
However, there is still room for improvement, particularly in terms of response speed and hysteresis, in terms of stable high sensitivity to humidity, durability in a wide humidity temperature range, fast response speed, and small hysteresis.
JP 59-171844 A JP-A-2-253148 Japanese Patent No. 3690415 Japanese Patent No. 3690416 JP 2004-170409 A

本発明において、解決しようとする問題点は、特に電気抵抗型湿度センサーにおける応答速度とヒステリシスの改善であり、そのための感湿膜の開発である。   In the present invention, the problem to be solved is improvement of response speed and hysteresis particularly in an electric resistance type humidity sensor, and development of a moisture sensitive film for that purpose.

本発明にあっては、かかる問題の解決のため、まず好適な感湿膜となり得るものとして、新規陰イオン交換膜を提案する。また該陰イオン交換膜よりなる感湿膜並びに該感湿膜を用いた湿度センサーを提供する。   In the present invention, in order to solve this problem, a novel anion exchange membrane is first proposed as a suitable moisture sensitive membrane. Also provided are a moisture sensitive film comprising the anion exchange membrane and a humidity sensor using the moisture sensitive film.

すなわち、本発明は次の態様よりなる。
(1)本発明の第1の態様は、主鎖がポリイミドよりなり、イオン交換基として第4級アンモニウム塩基を有する陰イオン交換樹脂である。
(2)本発明の第2の態様は、主鎖に下記一般式(1)で示されるイミド結合の繰り返し単位を有する第1の態様に記載のポリイミドよりなる陰イオン交換樹脂である。
That is, this invention consists of the following aspect.
(1) A first aspect of the present invention is an anion exchange resin having a main chain made of polyimide and having a quaternary ammonium base as an ion exchange group.
(2) A second aspect of the present invention is an anion exchange resin comprising the polyimide according to the first aspect having a repeating unit of an imide bond represented by the following general formula (1) in the main chain.

Figure 2008215994
但し、Arは4価の芳香族基、Aは次の一般式(a)〜(c)の中から選ばれる2価の基である。
Figure 2008215994
However, Ar 1 is a tetravalent aromatic group, and A is a divalent group selected from the following general formulas (a) to (c).

Figure 2008215994
(3)本発明の第3の態様は、主鎖が下記一般式(1)及び(2)で示されるイミド結合単位の任意の割合の繰り返しよりなる第1の態様又は第2の態様に記載の陰イオン交換樹脂である。
Figure 2008215994
(3) A third aspect of the present invention is described in the first aspect or the second aspect, wherein the main chain is composed of repetition of an arbitrary ratio of imide bond units represented by the following general formulas (1) and (2). Anion exchange resin.

Figure 2008215994
但し、Ar、Aは前記に同じ、Arは4価の芳香族基、Bは、4級アンモニウム塩基を有しない2価の脂肪族炭化水素基、又は芳香族炭化水素基である。
(4)本発明における第4の態様は、ポリイミドが架橋構造を有していることを特徴とする第1の態様乃至第3の態様のうち、いずれか一つの態様に記載の陰イオン交換樹脂である。
(5)本発明における第5の態様は、前記第1乃至第4の態様に記載の陰イオン交換樹脂のうちいずれか一つの態様の陰イオン交換樹脂よりなる湿度センサー用感湿膜である。
(6)本発明の第6の態様は、支持基板上に形成された複数の電極と該電極に接して形成された感湿膜を有する湿度センサーであって、前記感湿膜が第5の態様記載の感湿膜よりなることを特徴とする湿度センサーである。
Figure 2008215994
However, Ar 1 and A are the same as above, Ar 2 is a tetravalent aromatic group, B is a divalent aliphatic hydrocarbon group having no quaternary ammonium base, or an aromatic hydrocarbon group.
(4) A fourth aspect of the present invention is the anion exchange resin according to any one of the first to third aspects, wherein the polyimide has a crosslinked structure. It is.
(5) A fifth aspect of the present invention is a humidity sensitive film for a humidity sensor made of the anion exchange resin according to any one of the anion exchange resins according to the first to fourth aspects.
(6) A sixth aspect of the present invention is a humidity sensor having a plurality of electrodes formed on a support substrate and a moisture sensitive film formed in contact with the electrodes, wherein the moisture sensitive film is a fifth sensor. A humidity sensor comprising the moisture-sensitive film according to the embodiment.

本発明の陰イオン交換樹脂は、湿度センサー用感湿膜として用いることにより、湿度に対する安定した高い感受性、広い湿度温度範囲での耐久性、速い応答速度、小さいヒステリシスである電気抵抗型湿度センサーを与えるだけでなく、耐薬品性、耐熱性、耐水性を必要とする用途に用いる陰イオン交換樹脂や、陰イオン交換膜として使用することができる。   By using the anion exchange resin of the present invention as a moisture sensitive film for a humidity sensor, an electric resistance type humidity sensor that has stable high sensitivity to humidity, durability in a wide humidity temperature range, fast response speed, and small hysteresis is obtained. It can be used as an anion exchange resin or an anion exchange membrane for applications that require chemical resistance, heat resistance, and water resistance.

本発明の最大の特徴は、主鎖がポリイミドよりなり、且つイオン交換基として第4級アンモニウム塩基を有する陰イオン交換樹脂であることにある。   The greatest feature of the present invention is that it is an anion exchange resin having a main chain made of polyimide and having a quaternary ammonium base as an ion exchange group.

具体的には、例えば下記一般式(1)に示されるイミド結合の繰り返し単位を有することを特徴とする。   Specifically, for example, it has a repeating unit of an imide bond represented by the following general formula (1).

Figure 2008215994
ここで、Arは4価の芳香族基であれば特に制限されないが、好ましい基として次の一般式(d)又は(e)が挙げられる。
Figure 2008215994
Here, Ar 1 is not particularly limited as long as it is a tetravalent aromatic group, but preferred groups include the following general formula (d) or (e).

Figure 2008215994
勿論、これらの芳香族環にアルキルその他の置換基が存在していてもよい。
Figure 2008215994
Of course, alkyl or other substituents may be present on these aromatic rings.

また、Aは下記一般式(a)〜(c)で示される基である。   A is a group represented by the following general formulas (a) to (c).

Figure 2008215994
ここで、R、R、R、R及びRは、同種又は異種の1価の脂肪族炭化水素基、Rは水素原子またはアルキル基であり、一般にメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基等の炭素数1〜8の分枝又は直鎖状のアルキル基である。
Figure 2008215994
Here, R 1 , R 2 , R 4 , R 5 and R 6 are the same or different monovalent aliphatic hydrocarbon groups, R 3 is a hydrogen atom or an alkyl group, and is generally a methyl group, an ethyl group, A branched or straight chain alkyl group having 1 to 8 carbon atoms such as an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a tert-butyl group.

またDは、下記結合形式(基を含む)の中から選ばれる。   D is selected from the following bond types (including groups).

Figure 2008215994
ここで上記のうち「−」は、芳香族環と(CH)mとが直接結合した形態を表す。
Figure 2008215994
Here, among the above, “-” represents a form in which an aromatic ring and (CH 2 ) m are directly bonded.

また、R及びRは、2価の芳香族又は脂肪族炭化水素であり、一般に次の一般式(f)〜(h)に示される基などが用いられる。これらの基に更に置換基が存在していてもよい。 R 7 and R 8 are divalent aromatic or aliphatic hydrocarbons, and groups represented by the following general formulas (f) to (h) are generally used. Substituents may further exist in these groups.

Figure 2008215994
但し、Eは、−、−O−、−CH−、−C(CH−、−C(CF−、−S−、−C(O)−から選ばれる基、
また、式中のn、mは同じ数でも異なった数でもよい整数であり、一般に1〜12の整数である。
Figure 2008215994
However, E is, -, - O -, - CH 2 -, - C (CH 3) 2 -, - C (CF 3) 2 -, - S -, - C (O) - group selected from,
Further, n and m in the formula are integers which may be the same number or different numbers, and are generally integers of 1 to 12.

本発明の陰イオン交換樹脂は、実質的に前記一般式(1)で表される単位の繰り返しのみからなる構造であってもよいし、また他の構造単位とともに主鎖が構成されていてもよい。   The anion exchange resin of the present invention may have a structure substantially consisting only of repeating units represented by the general formula (1), or the main chain may be constituted with other structural units. Good.

例えば、共重合単位としてイオン交換基を有しない、次の一般式(2)で示される単位を0〜50モル%、好ましくは35モル%以下、さらには30モル%以下共重合させたポリイミド系陰イオン交換樹脂が好適な陰イオン交換樹脂となり得る。   For example, a polyimide system having 0 to 50 mol%, preferably 35 mol% or less, more preferably 30 mol% or less of a unit represented by the following general formula (2) having no ion exchange group as a copolymerized unit An anion exchange resin can be a suitable anion exchange resin.

Figure 2008215994
ここで、前記Arは、Arと同一又は異なる4価の芳香族基であり、Bは2価の芳香族炭化水素基、又は2価の脂肪族炭化水素基であり、例えば次に示す基等が好適に用いられる。
Figure 2008215994
Here, Ar 2 is a tetravalent aromatic group that is the same as or different from Ar 1, and B is a divalent aromatic hydrocarbon group or a divalent aliphatic hydrocarbon group. A group or the like is preferably used.

Figure 2008215994
但し、D、m、nは上記と同じ。
Figure 2008215994
However, D, m, and n are the same as above.

本発明において、一般式(1)単位とイオン交換基を有しない一般式(2)単位とを共存させる利点の一つは、陰イオン交換樹脂中の陰イオン交換基密度を調整することであり、延いては耐久性や高温耐性、或いは高湿度耐性の調節を可能にする。   In the present invention, one of the advantages of allowing the general formula (1) unit and the general formula (2) unit having no ion exchange group to coexist is to adjust the anion exchange group density in the anion exchange resin. Furthermore, durability, high temperature resistance, or high humidity resistance can be adjusted.

すなわち、イオン交換基密度を低下させることによって、陰イオン交換樹脂の吸湿能は低下するが、耐水性や耐高温性は強化される傾向となる。   That is, by decreasing the ion exchange group density, the hygroscopicity of the anion exchange resin decreases, but the water resistance and high temperature resistance tend to be enhanced.

逆に、陰イオン交換基密度を大きくすると、吸湿性は増大し、吸湿に伴う電気抵抗性の低下率を大きくすることが可能となる。   On the contrary, when the anion exchange group density is increased, the hygroscopicity is increased, and it is possible to increase the decrease rate of the electrical resistance accompanying the moisture absorption.

従って、使用目的に応じてイオン交換基密度を調整した陰イオン交換膜とすることも重要である。   Therefore, it is also important to make an anion exchange membrane with an ion exchange group density adjusted according to the purpose of use.

本発明は、更に第三の構成単位を有することも可能であり、また架橋構造を持たせることも、膜状にした場合の強度や耐水性を増加させる意味で有効である。   The present invention can further have a third structural unit, and having a crosslinked structure is effective in terms of increasing the strength and water resistance when it is formed into a film.

本発明の陰イオン交換樹脂に架橋構造を持たせる方法は特に限定されないが、例えば、ポリイミド化学反応を行うとき、トリアミン化合物を一部用いることにより架橋構造とすることもできるが、得られたポリイミドの加工性を減ずるという難点があるので、一般にリニアな主鎖を持つポリイミドよりなる陰イオン交換樹脂の3級アミノ基の4級アンモニウム化率を70%〜95%に調節し、5%〜30%の3級アミノ基を未反応で残した状態で加工を行なった後、該アミノ基を次の一般式(4)に示す如く、4級化と同時に架橋させるのが好ましい。   The method for imparting a crosslinked structure to the anion exchange resin of the present invention is not particularly limited. For example, when a polyimide chemical reaction is performed, a crosslinked structure can be obtained by partially using a triamine compound. Therefore, the quaternary ammonium group conversion rate of the tertiary amino group of the anion exchange resin generally made of polyimide having a linear main chain is adjusted to 70% to 95%, and 5% to 30%. % Of the tertiary amino group is left unreacted, and then the amino group is preferably crosslinked simultaneously with the quaternization as shown in the following general formula (4).

Figure 2008215994
ここで、(CHは後述する4級化剤として用いたジハロゲン化アルキルにおけるアルキレン基に由来する基で、一般にlは1〜12であり、好ましくは2〜6である。
Figure 2008215994
Here, (CH 2 ) 1 is a group derived from an alkylene group in a dihalogenated alkyl used as a quaternizing agent described later, and generally 1 is 1 to 12, preferably 2 to 6.

本発明の主鎖がポリイミドよりなり、イオン交換基として、第4級アンモニウム塩基を有する陰イオン交換樹脂の製造方法は、特に限定されず、当業者が通常理解し得る高分子ポリイミドの縮合重合方法が採用される。   The method for producing an anion exchange resin having a quaternary ammonium base as an ion exchange group, the main chain of the present invention is not particularly limited, and a polycondensation polymerization method of a polymer polyimide that can be generally understood by those skilled in the art Is adopted.

例えば、一般式(1)で表される主鎖または側鎖に第4級アンモニウム塩を有するポリイミドは、芳香族テトラカルボン酸成分と、3級アミノ基を有するジアミンと、必要により三級アミノ基を含まないジアミンとから前駆体の三級アミノ基を有するホモまたは共重合ポリイミドを合成し、必要により製膜等の成形を行った後、次いで、3級アミノ基をハロゲン化アルキルと反応させて四級アンモニウム塩化して合成される。架橋構造を導入する場合は、前記4級化工程において、4級化剤として、一部ジハロゲン化アルキルを用いればよい。場合によっては一旦、不足量のハロゲン化アルキルを用い、4級化を行い、その後残余の3級アミノ基に対して、ジハロゲン化アルキルを作用させて、4級化と同時に架橋させることもできる。   For example, a polyimide having a quaternary ammonium salt in the main chain or side chain represented by the general formula (1) includes an aromatic tetracarboxylic acid component, a diamine having a tertiary amino group, and a tertiary amino group as necessary. After synthesizing a homo- or copolymerized polyimide having a tertiary amino group as a precursor from a diamine containing no silane, and forming a film or the like as required, the tertiary amino group is then reacted with an alkyl halide. Synthesized by quaternary ammonium chloride. When a crosslinked structure is introduced, a partially dihalogenated alkyl may be used as a quaternizing agent in the quaternization step. In some cases, a short amount of alkyl halide may be used once to perform quaternization, and then the remaining tertiary amino group may be allowed to act with dihalogenated alkyl to crosslink simultaneously with quaternization.

本発明の4級アンモニウム塩構造を有するポリイミドの合成に用いられる芳香族テトラカルボン酸成分としては、特に限定されるものではないが、例えば、3,3’,4,4’−ビフェニルテトラカルボン酸、2,3’,3,4’−ビフェニルテトラカルボン酸、3,3’,4,4’−ベンゾフェノンテトラカルボン酸、3,3’,4,4’−ジフェニルエーテルテトラカルボン酸、ビス(3,4−ジカルボキシフェニル)メタン、2,2−ビス(3,4−ジカルボキシフェニル)プロパン、ピロメリット酸、1,4,5,8−ナフタレンテトラカルボン酸、3,4,9,10−ペリレンテトラカルボン酸、4,4’−(ヘキサフルオロイソプロピリデン)ジフタル酸、m−(ターフェニル)3,4,3”,4”−テトラカルボン酸、又はそれらの酸二無水物やエステル化物を挙げることができる。   Although it does not specifically limit as an aromatic tetracarboxylic acid component used for the synthesis | combination of the polyimide which has the quaternary ammonium salt structure of this invention, For example, 3,3 ', 4,4'-biphenyltetracarboxylic acid 2,3 ′, 3,4′-biphenyltetracarboxylic acid, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, 3,3 ′, 4,4′-diphenylethertetracarboxylic acid, bis (3 4-dicarboxyphenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propane, pyromellitic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 3,4,9,10-perylene Tetracarboxylic acid, 4,4 ′-(hexafluoroisopropylidene) diphthalic acid, m- (terphenyl) 3,4,3 ″, 4 ″ -tetracarboxylic acid, or It can be exemplified et acid dianhydride or ester.

本発明の4級アンモニウム塩よりなる陰イオン交換基を有するポリイミドの合成に用いる、3級アミノ基を有するジアミンとしては、次の一般式(i)〜(k)で表されるジアミンなどが用いられる。   As the diamine having a tertiary amino group used for the synthesis of a polyimide having an anion exchange group comprising the quaternary ammonium salt of the present invention, diamines represented by the following general formulas (i) to (k) are used. It is done.

Figure 2008215994
但し、R、R、R、R、R、R、R、R、D、X、m及びnは前記と同じ。
Figure 2008215994
However, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , D, X, m and n are the same as described above.

また、イオン交換基を有しない単位をポリイミン中に導入するためのモノマー、すなわち、3級アミノ基を有しないジアミンとしては、例えば、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルスルホン、ビス[4−−(4−アミノフェノキシ)フェニル]スルホン、1,4−ビス−(4−アミノフェノキシ)ベンゼン、1,3−ビス−(4−アミノフェノキシ)ベンゼン、3,4’−ジアミノジフェニルエーテル、9,9−ビス(4−アミノフェニル)フルオレン、2,2−ビス(4−フェニル)ヘキサフルオロプロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、1,8−オクタメチレンジアミン等を挙げることができる。   Moreover, as a monomer for introducing a unit having no ion exchange group into polyimine, that is, a diamine having no tertiary amino group, for example, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylsulfone Bis [4- (4-aminophenoxy) phenyl] sulfone, 1,4-bis- (4-aminophenoxy) benzene, 1,3-bis- (4-aminophenoxy) benzene, 3,4'-diamino Diphenyl ether, 9,9-bis (4-aminophenyl) fluorene, 2,2-bis (4-phenyl) hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 1 , 8-octamethylenediamine and the like.

本発明の4級アンモニウム塩構造を有するポリイミドの合成において、3級アミノ基を有するジアミンと共に、3級アミノ基を有しないジアミンを併用する場合には、3級アミノ基を有するジアミンの割合は、全ジアミン成分100モル%中、50モル%以上、好ましくは65モル%以上、特に、70モル%以上であることが、イオン伝導度を高くすることができるので好適である。   In the synthesis of the polyimide having a quaternary ammonium salt structure of the present invention, when a diamine having a tertiary amino group is used in combination with a diamine having a tertiary amino group, the ratio of the diamine having a tertiary amino group is: In 100 mol% of all diamine components, 50 mol% or more, preferably 65 mol% or more, particularly 70 mol% or more is preferable because the ionic conductivity can be increased.

本発明の4級アンモニウム塩構造を有するポリイミドの合成において、3級アミノ基を4級アンモニウム化する反応に用いるアロゲン化アルキルとしては、例えば、臭化メチル、塩化メチル、ヨウ化メチル、臭化エチル、塩化エチル等をあげることができる。   In the synthesis of the polyimide having the quaternary ammonium salt structure of the present invention, examples of the allogenated alkyl used in the reaction for converting the tertiary amino group to quaternary ammonium include methyl bromide, methyl chloride, methyl iodide, and ethyl bromide. And ethyl chloride.

本発明の4級アンモニウム塩構造を有するポリイミドの架橋膜の作製において、未反応の3級アミノ基と反応させて四級アンモニウム化するのに用いるジハロゲン化アルキルとしては、1,2−ジブロモエタン、1,3−ジブロモプロパン、1,4−ジブロモブタン、1,6−ジブロモヘキサン、1,4−ジクロロブタン、1,6−ジクロロヘキサンなどをあげることができる。架橋のために残す未反応の3級アミノ基の割合は、全3級アミン成分100モル%中50モル%以下、好ましくは30モル%以下、特に、15モル%以下であることが、膜の柔軟性、吸水性、耐水性などから好適である。   In the production of a crosslinked film of polyimide having a quaternary ammonium salt structure of the present invention, the dihalogenated alkyl used for quaternary ammonium reaction by reacting with an unreacted tertiary amino group includes 1,2-dibromoethane, Examples include 1,3-dibromopropane, 1,4-dibromobutane, 1,6-dibromohexane, 1,4-dichlorobutane, 1,6-dichlorohexane, and the like. The proportion of unreacted tertiary amino groups left for crosslinking is 50 mol% or less, preferably 30 mol% or less, particularly 15 mol% or less, out of 100 mol% of all tertiary amine components. It is preferable from the viewpoint of flexibility, water absorption, water resistance and the like.

本発明の4級アンモニウム塩構造を有するポリイミドの合成は、従来ポリイミドを合成する場合に用いられる公知の方法公知の方法を用いることができる。具体的には、例えば、極性の有機溶剤中でジアミン成分とテトラカルボン酸成分とを、必要ならば、重合反応やイミド反応をより促進するために、第3級アミン又は環式アミンや共沸溶剤としてトルエン又はキシレン等を添加し、140〜220℃に加熱し生成した水を除去しながら0.5〜100時間反応させることによって容易に達成できる。更に、安息香酸等を触媒として添加してもよい。ホモ重縮合とランダム共重縮合の他に、3級アミンを有するジアミンと3級アミンを有しないジアミンをテトラカルボン酸二無水物と別々に重縮合させて、それぞれのオリゴーマーを合成し、それを混ぜてブロック共重縮合させてもよい。ポリイミド溶液は、そのまま次の段階に用いてもよく、また、貧溶剤に投入して、一旦酸末端ポリイミドを析出させた後に、再度極性溶剤に溶解させてもよい。この時用いられる極性有機溶剤としては、具体的には、ジメチルスルホキシド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N−ビニル−2−ピロリドン、フェノール、m−クレゾール、p−クロロフェノール、γ−ブチロラクトン等を挙げることができる。これらの有機溶剤は、単独でも、又は2種以上混合して使用してもよい。   For the synthesis of the polyimide having a quaternary ammonium salt structure of the present invention, a known method that is conventionally used when synthesizing a polyimide can be used. Specifically, for example, a diamine component and a tetracarboxylic acid component in a polar organic solvent, and if necessary, a tertiary amine, a cyclic amine, or an azeotrope to further accelerate the polymerization reaction or imide reaction. It can be easily achieved by adding toluene or xylene or the like as a solvent and heating to 140 to 220 ° C. to react for 0.5 to 100 hours while removing the generated water. Further, benzoic acid or the like may be added as a catalyst. In addition to homopolycondensation and random copolycondensation, a diamine having a tertiary amine and a diamine having no tertiary amine are separately polycondensed with a tetracarboxylic dianhydride to synthesize each oligomer. You may mix and block copolycondensation. The polyimide solution may be used as it is in the next step, or may be poured into a poor solvent to once precipitate acid-terminated polyimide and then dissolved again in a polar solvent. Specific examples of the polar organic solvent used at this time include dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, phenol, Examples thereof include m-cresol, p-chlorophenol, and γ-butyrolactone. These organic solvents may be used alone or in combination of two or more.

3級アミンの4級アンモニウム化は、公知の方法を用いて行なうことができる。三級アミノ基を有するポリイミドをN,N−ジメチルアセトアミドまたはm−クレゾール等の溶媒に溶かして、ハロゲン化アルキルを加えて室温〜120℃に加熱して0.5〜30時間反応させることによって容易に達成できる。3級アミノ基に対してハロゲン化アルキルを0.7〜5当量用い、3級アミン基の4級アンモニウム化率を60%〜100%に調整できる。   The quaternary ammoniumation of the tertiary amine can be performed using a known method. Easy by dissolving a polyimide having a tertiary amino group in a solvent such as N, N-dimethylacetamide or m-cresol, adding an alkyl halide and heating to room temperature to 120 ° C. for 0.5 to 30 hours. Can be achieved. By using 0.7 to 5 equivalents of alkyl halide with respect to the tertiary amino group, the quaternary ammonium conversion rate of the tertiary amine group can be adjusted to 60% to 100%.

4級アンモニウム塩構造を有するポリイミドをN,N−ジメチルアセトアミドまたはm−クレゾール等の溶媒に溶かして、キャスト製膜して電解質膜が得られる。キャスト溶媒中にジハロゲン化アルキルを未反応3級アミの基の1〜3当量添加して、キャスト製膜し、60℃で6時間、120℃で10時間加熱することにより、未反応の三級アミノ基とジハロゲン化アルキルをキャスト製膜・乾燥中に反応させて四級アンモニウム化して、四級アンモニウム塩構造を介して架橋した架橋電解質膜が得られる。さらに、未架橋または架橋電解質膜をジハロゲン化アルキル蒸気に50℃〜100℃で0.5〜6時間晒すことにより、未反応の三級アミノ基とジハロゲン化アルキルを反応させて四級アンモニウム化しても、架橋電解質膜が得られる。   A polyimide having a quaternary ammonium salt structure is dissolved in a solvent such as N, N-dimethylacetamide or m-cresol, and cast to form an electrolyte membrane. Add 1 to 3 equivalents of unreacted tertiary amino group to the cast solvent, cast film, and heat at 60 ° C. for 6 hours and at 120 ° C. for 10 hours to form unreacted tertiary Amino acid and dihalogenated alkyl are reacted during cast film formation and drying to form a quaternary ammonium to obtain a crosslinked electrolyte membrane crosslinked via a quaternary ammonium salt structure. Further, the unreacted tertiary amino group and the dihalogenated alkyl are reacted to form a quaternary ammonium by exposing the uncrosslinked or crosslinked electrolyte membrane to an alkyl dihalide vapor at 50 to 100 ° C. for 0.5 to 6 hours. Also, a crosslinked electrolyte membrane can be obtained.

また、膜状等に加工する場合は、前記アミノ基の4級化工程の前に、ポリイミド溶液をキャスト製膜するかまたは溶融成形し、成形後の4級化及び架橋は、ハロゲン化アルキル及び(又は)ジハロゲン化アルキルよりなる4級化剤(及び架橋剤)の溶液を成形物に含浸させるか或いは該4級化剤の蒸気に曝し加熱することにより達成することができる。   When processing into a film or the like, before the amino group quaternization step, the polyimide solution is cast into a film or melt-molded. (Or) It can be achieved by impregnating a molded product with a solution of a quaternizing agent (and a crosslinking agent) comprising an alkyl dihalide, or by exposing to a vapor of the quaternizing agent and heating.

かくして、本発明の湿度センサー用感湿膜が得られる。センサーとして使用される本発明の膜状陰イオン交換樹脂の厚さや大きさは特に制限されないが、一般に膜厚は0.5μm〜50μm程度である。   Thus, the moisture sensitive film for a humidity sensor of the present invention is obtained. The thickness and size of the membrane-shaped anion exchange resin of the present invention used as a sensor are not particularly limited, but generally the film thickness is about 0.5 μm to 50 μm.

本発明の湿度センサー、就中感湿部素子は、支持基板上に形成された複数の電極と該電極に接して形成された感湿膜よりなる。   The humidity sensor of the present invention, especially the moisture sensing element, comprises a plurality of electrodes formed on a support substrate and a moisture sensitive film formed in contact with the electrodes.

一般に基板はプラスチック、ガラス又はセラミックなど非電導性板状体であり、その上に電極と感湿膜とが設置されている。基板上に膜が貼り付けられ、その上に電極が設置されていてもよいし、基板上に電極が形成され、感湿膜でこれを被覆する形式でもよい。   In general, the substrate is a non-conductive plate-like body such as plastic, glass, or ceramic, and an electrode and a moisture sensitive film are provided thereon. A film may be affixed on the substrate and an electrode may be placed thereon, or an electrode may be formed on the substrate and covered with a moisture sensitive film.

図1に感湿センサー素子の概念図を示す。図中1は基板であり、2,2‘は電極へ電気を供給する導電部であり、3,3’が電極である。4は感湿膜であって、雰囲気中の湿度に応じて導電性(電気抵抗値)が変化する。すなわち、湿度が高い程電気抵抗値は低下する。その抵抗値の変化から、雰囲気中の湿度を測定するのである。5,5’はリード線であり、該リード線を経由して取り出された電圧又は電流の変化を常法により測定する。   FIG. 1 shows a conceptual diagram of a moisture sensitive sensor element. In the figure, 1 is a substrate, 2 and 2 'are conductive portions for supplying electricity to the electrodes, and 3 and 3' are electrodes. Reference numeral 4 denotes a moisture-sensitive film whose conductivity (electric resistance value) changes according to the humidity in the atmosphere. That is, the electrical resistance value decreases as the humidity increases. The humidity in the atmosphere is measured from the change in resistance value. Reference numerals 5 and 5 'denote lead wires, and a change in voltage or current taken out via the lead wires is measured by a conventional method.

基板と感湿膜との接着性を改良するため、基板をシランカップリング処理した後、感湿膜を塗布してもよい。   In order to improve the adhesion between the substrate and the moisture sensitive film, the moisture sensitive film may be applied after the substrate is subjected to a silane coupling treatment.

以下に実施例を示すが、本発明はそれらの実施例に限定されるものではない。   Examples are shown below, but the present invention is not limited to these examples.

以下の実施例および比較例で用いた化合物の略号は次のとおりである。
6FDA:4,4’(ヘキサフルオロプロピリデン)−ジフタルサン無水物
NTDA:1,4,5,8−ナフタレンテトラカルボン酸二無水物
BAPMA:N,N−ビス(3−アミノプロピル)メチルアミン
DEAPPDA:4―[3−(N,N−ジエチル)アミノプロポキシ]−1,3−フェニレンジアミン
DMAPBDA:3−[3−(N,N−ジメチル)−アミノプロポキシ]−1,5−ブチレンジアミン
ODA:4,4’−ジアミノジフェニルエーテル
PHMPTAC:ポリ(2−ヒドロキシ−3−メタクリルオキシプロピル−トリメチルアンモニウムクロリド
BAPBDS:4,4‘−ビス(4−アミノフェノキシ)ビフェニル−3,3’−ジスルホン酸
DMAc:ジメチルアセトアミド
Abbreviations of the compounds used in the following Examples and Comparative Examples are as follows.
6FDA: 4,4 ′ (hexafluoropropylidene) -diphthalsan anhydride NTDA: 1,4,5,8-naphthalenetetracarboxylic dianhydride BAPMA: N, N-bis (3-aminopropyl) methylamine DAPPPDA: 4- [3- (N, N-diethyl) aminopropoxy] -1,3-phenylenediamine DMAPBDA: 3- [3- (N, N-dimethyl) -aminopropoxy] -1,5-butylenediamine ODA: 4 , 4'-diaminodiphenyl ether PHMPTAC: poly (2-hydroxy-3-methacryloxypropyl-trimethylammonium chloride BAPBDS: 4,4'-bis (4-aminophenoxy) biphenyl-3,3'-disulfonic acid DMAc: dimethylacetamide

4級アンモニウム化6FDA−BAPMAポリイミド膜湿度センサー
(1)6FDA−BAPMAホモポリイミドの合成
4,4’(ヘキサフルオロプロピリデン)−ジフタルサン無水物(6FDA)は、市販品を真空昇華精製して使用した。N,N−ビス(3−アミノプロピル)メチルアミン(BAPMA)は、市販品を減圧蒸留精製して使用した。完全に乾燥させた50mlの3つ口フラスコに、6FDA1.696g(3.82ミリモル)とBAPMA0.578g(3.82ミリモル)とm−クレゾール10gとを窒素気流中で攪拌しながら投入した。混合液を25℃で20時間攪拌した後、160℃で7時間攪拌加熱した。重合液を25℃まで冷却した後、多量のメタノール中に投入し、得られた沈殿をメタノールで洗浄後乾燥して、6FDA−BAPMAポリイミド2.2gを得た。
(2)4級アンモニウム化6FDA−BAPMAポリイミドの合成
6FDA−BAPMAポリイミド1.0g(3級アミン含量1.8ミリモル)を10mLのジメチルアセトアミド(DMAc)に70℃に加熱して溶かし、この溶液に0.54mL(7.0ミリモル)の臭化エチルを加え、70℃で10時間攪拌した。反応液を室温に冷却後、ジエチルエーテルに投入し、沈殿を濾別回収し、エーテルで洗浄後乾燥して、下記化学式(5)に示す6FDA−BAPMAポリイミドの4級アンモニウム化物約1.1gを得た。重水素化ジメチルスルホキシド(DMSO−d6)中での4級アンモニウム化前後のHNMRスペクトルを図2に示す。4級アンモニウム化前の1.67PPMのピークは、BAPMA残基中のHプロトンは、3級アミンの場合は1.67ppmに現れるが、4級化後は2.00PPMにシフトした。1.67PPMのピークが完全に消滅したことから、4級アンモニウム化は100%進行したことが分かる。
Quaternary ammonium-modified 6FDA-BAPMA polyimide film humidity sensor (1) Synthesis of 6FDA-BAPMA homopolyimide 4,4 ′ (hexafluoropropylidene) -diphthalsan anhydride (6FDA) was used after purification by vacuum sublimation. . N, N-bis (3-aminopropyl) methylamine (BAPMA) was used after being purified by distillation under reduced pressure. To a completely dried 50 ml three-necked flask, 1.696 g (3.82 mmol) of 6FDA, 0.578 g (3.82 mmol) of BAPMA and 10 g of m-cresol were charged with stirring in a nitrogen stream. The mixture was stirred at 25 ° C. for 20 hours, and then stirred and heated at 160 ° C. for 7 hours. After the polymerization solution was cooled to 25 ° C., it was poured into a large amount of methanol, and the resulting precipitate was washed with methanol and dried to obtain 2.2 g of 6FDA-BAPMA polyimide.
(2) Synthesis of quaternary ammonium-modified 6FDA-BAPMA polyimide 1.0 g of 6FDA-BAPMA polyimide (tertiary amine content 1.8 mmol) was dissolved in 10 mL of dimethylacetamide (DMAc) by heating at 70 ° C. 0.54 mL (7.0 mmol) of ethyl bromide was added and stirred at 70 ° C. for 10 hours. The reaction solution is cooled to room temperature and then poured into diethyl ether. The precipitate is collected by filtration, washed with ether and dried to obtain about 1.1 g of a quaternary ammonium compound of 6FDA-BAPMA polyimide represented by the following chemical formula (5). Obtained. FIG. 2 shows 1 HNMR spectra before and after quaternary ammoniumation in deuterated dimethyl sulfoxide (DMSO-d6). The peak at 1.67 PPM before quaternary ammoniumation, the H 5 proton in the BAPMA residue appears at 1.67 ppm for the tertiary amine, but shifted to 2.00 PPM after quaternization. From the fact that the peak of 1.67 PPM disappeared completely, it can be seen that quaternary ammoniumization proceeded 100%.

4級アンモニウム化6FDA−BAPMAポリイミドの還元粘度は、0.6dL/g(35℃、DMAc中、0.5g/dL)であり、高分子量のポリマーであった。熱重量分析の結果、4級アンモニウム塩の分解温度は230℃であり、十分な耐熱性を有した。
(3)4級アンモニウム化6FDA−BAPMAポリイミド膜湿度センサー
4級アンモニウム化6FDA−BAPMAポリイミドの10wt%DMAc溶液を図1に示す湿度センサー感湿素子の櫛状電極3、3‘を有する支持基板1にディップコートし、これを60℃で3時間、次いで真空中120℃で8時間加熱、乾燥処理して湿度センサー素子を得た。この実施例1の4級アンモニウム化6FDA−BAPMAポリイミドを感湿膜とする湿度センサーについて、後述する耐水性試験と耐高温高湿試験を行った。耐水性試験結果を図3に示す。
The reduced viscosity of the quaternary ammonium-modified 6FDA-BAPMA polyimide was 0.6 dL / g (35 ° C., in DMAc, 0.5 g / dL), which was a high molecular weight polymer. As a result of thermogravimetric analysis, the decomposition temperature of the quaternary ammonium salt was 230 ° C., and it had sufficient heat resistance.
(3) Quaternary Ammonium 6FDA-BAPMA Polyimide Film Humidity Sensor Support substrate 1 having comb-shaped electrodes 3 and 3 ′ of the humidity sensor humidity sensitive element shown in FIG. This was dip coated at 60 ° C. for 3 hours, then heated in vacuum at 120 ° C. for 8 hours and dried to obtain a humidity sensor element. The humidity sensor using the quaternary ammonium 6FDA-BAPMA polyimide of Example 1 as a moisture sensitive film was subjected to a water resistance test and a high temperature and high humidity test described later. The water resistance test results are shown in FIG.

Figure 2008215994
Figure 2008215994

4級アンモニウム化6FDA−BAPMAポリイミド架橋膜湿度センサー
6FDA−BAPMAポリイミドの4級アンモニウム化で、臭化エチルを0.21mL(2.7ミリモル)加える以外は、実施例1と同様にして、4級アンモニウム化6FDA−BAPMAポリイミドを合成した。HNMRスペクトルで1.67PPMと2.00PPMのピーク強度比から、4級アンモニウム化率は約80%であった。この4級アンモニウム化(80%)6FDA−BAPMAポリイミド1.16g(未反応3級アミン0.36ミリモル)の10wt%DMAc溶液に1,3−ジブロモプロパン0.055g(0.27ミリモル)を加えて、50℃で30分放置した。この溶液を櫛状電極を有する支持基板にディップコートし、これを80℃で5時間、次いで真空中120℃で8時間加熱、乾燥処理して湿度センサー素子を得た。さらに架橋を進めるため、この湿度センサー素子を80℃で5時間1,3−ジブロモプロパン蒸気に晒した。湿度センサーの感湿膜は溶媒DMAcに不溶になったので、架橋していることが確認された。下記化学式(6)に示す4級アンモニウム化6FDA−BAPMAポリイミド架橋膜を感湿膜とする湿度センサーが作製できた。実施例2の湿度センサーについて、後述する耐水性試験、耐高温高湿試験、応答速度試験そしてヒステリシス試験を行い、結果をそれぞれ図4〜7に示す。
Quaternary Ammonium 6FDA-BAPMA Polyimide Crosslinked Membrane Humidity Sensor 6FDA-BAPMA Polyquaternary Ammonium was converted to quaternary in the same manner as in Example 1 except that 0.21 mL (2.7 mmol) of ethyl bromide was added. Ammonium 6FDA-BAPMA polyimide was synthesized. From the peak intensity ratio of 1.67 PPM and 2.00 PPM in the 1 HNMR spectrum, the quaternary ammonium conversion was about 80%. 0.055 g (0.27 mmol) of 1,3-dibromopropane was added to a 10 wt% DMAc solution of 1.16 g (unreacted tertiary amine 0.36 mmol) of this quaternary ammonium (80%) 6FDA-BAPMA polyimide. And left at 50 ° C. for 30 minutes. This solution was dip-coated on a support substrate having a comb-like electrode, and this was heated and dried at 80 ° C. for 5 hours and then at 120 ° C. for 8 hours to obtain a humidity sensor element. This humidity sensor element was exposed to 1,3-dibromopropane vapor at 80 ° C. for 5 hours for further crosslinking. Since the moisture sensitive film of the humidity sensor became insoluble in the solvent DMAc, it was confirmed that it was crosslinked. A humidity sensor using a quaternary ammonium 6FDA-BAPMA polyimide cross-linked film represented by the following chemical formula (6) as a moisture sensitive film was produced. The humidity sensor of Example 2 was subjected to a water resistance test, a high temperature and humidity test, a response speed test, and a hysteresis test described later, and the results are shown in FIGS.

Figure 2008215994
Figure 2008215994

4級アンモニウム化6FDA−BAPMA/ODA(2/1)共重合ポリイミド架橋膜湿度センサー
6FDA2.662g(6.0ミリモル)とBAPMA0.586g(4.0ミリモル)と4,4’―ジアミノジフェニルエーテル(ODA)0.401g(2.0ミリモル)を用い、実施例1と同様に重縮合して、ランダム共重合ポリイミドを合成した。これを実施例2と同様にして、4級アンモニウム化し、さらに1,3−ジブロモプロパンを添加してキャスト製膜、膜を1,3−ジブロモプロパン蒸気に晒した。膜はDMAcに不溶になり、架橋していることが確認された。実施例3の4級アンモニウム化6FDA−BAPMA/ODA(2/1)共重合ポリイミド架橋膜湿度センサーについて、後述する耐水性試験、耐高温高湿試験、応答速度試験そしてヒステリシス試験を行い、実施例2と同様の結果を得た。
Quaternary ammonium-modified 6FDA-BAPMA / ODA (2/1) copolymerized polyimide crosslinked membrane humidity sensor 6FDA 2.662 g (6.0 mmol), BAPMA 0.586 g (4.0 mmol) and 4,4′-diaminodiphenyl ether (ODA) ) 0.401 g (2.0 mmol) was used and polycondensed in the same manner as in Example 1 to synthesize a random copolymer polyimide. This was converted to quaternary ammonium in the same manner as in Example 2, and 1,3-dibromopropane was further added to form a cast film and the film was exposed to 1,3-dibromopropane vapor. It was confirmed that the film was insoluble in DMAc and crosslinked. The quaternary ammonium 6FDA-BAPMA / ODA (2/1) copolymerized polyimide cross-linked film humidity sensor of Example 3 was subjected to a water resistance test, a high temperature and humidity test, a response speed test and a hysteresis test which will be described later. Similar results to 2 were obtained.

4級アンモニウム化NTDA−DEAPPDAポリイミド架橋膜湿度センサー
(1)DEAPPDAの合成
4−[3−(N,N−ジエチル)アミノプロポキシ]−1,3−フェニレンジアミン(DEAPPDA)は、スキム1に示すルートで合成した。
Quaternary ammoniumated NTDA-DAPPPDA polyimide cross-linked membrane humidity sensor (1) Synthesis of DEAPPDA 4- [3- (N, N-diethyl) aminopropoxy] -1,3-phenylenediamine (DEAPPDA) is the route shown in Scheme 1 Was synthesized.

Figure 2008215994
乾燥した100mLの三口フラスコに3.68g(20ミリモル)の2,4−ジニトロフェノールと30mLのN−メチルピロリドン(NMP)そして、2.07g(7.5ミリモル)のKCOを窒素気流下加え、混合物を室温で1時間攪拌し、30mLのトルエンを加え、混合物を3時間還流する。生成した水をトルエンと共沸で除去する。混合物を室温まで冷却後、10mL(96ミリモル)の1,3−ジブロモプロパンを加える。反応液を120℃で20時間攪拌したのち、溶液を減圧下で留去する。固体をクロロホルムに溶かし、アルカリ、次いで水で洗浄する。有機相を留去して得られた固体をカラムクロマトで精製する。2.5g(収率40%)の3−ブロモプロポキシー2,4−ジニトロベンゼンを得た。
Figure 2008215994
A dry 100 mL three-necked flask was charged with 3.68 g (20 mmol) 2,4-dinitrophenol and 30 mL N-methylpyrrolidone (NMP) and 2.07 g (7.5 mmol) K 2 CO 3 in a nitrogen stream. Add under, stir the mixture at room temperature for 1 hour, add 30 mL of toluene, and reflux the mixture for 3 hours. The water formed is removed azeotropically with toluene. After the mixture is cooled to room temperature, 10 mL (96 mmol) of 1,3-dibromopropane is added. After stirring the reaction solution at 120 ° C. for 20 hours, the solution is distilled off under reduced pressure. The solid is dissolved in chloroform and washed with alkali and then water. The solid obtained by distilling off the organic phase is purified by column chromatography. 2.5 g (yield 40%) of 3-bromopropoxy-2,4-dinitrobenzene was obtained.

4.58g(15ミリモル)の3−ブロモプロポキシー2,4−ジニトロベンゼン、1.41g(19.3ミリモル)のジエチルアミンと5.2gのKCOをフラスコに加え、100mLのジメチルフォルムアミドに溶かす。50℃で12時間攪拌した後、溶媒を減圧留去し、残査をジクロロメタンに溶かし、飽和炭酸水素ナトリウム水で洗い、有機相を無水硫酸ナトリウムで乾燥後、溶媒を留挙し、得られた固体をカラムクロマトで精製する。2.3g(収率51%)の4−[3−(N,N−ジエチル)アミノプロポキシ]−1,3−ジニトロベンゼンを得た。 4.58 g (15 mmol) of 3-bromopropoxy-2,4-dinitrobenzene, 1.41 g (19.3 mmol) of diethylamine and 5.2 g of K 2 CO 3 were added to the flask and 100 mL of dimethylformamide was added. Dissolve in. After stirring at 50 ° C. for 12 hours, the solvent was distilled off under reduced pressure, the residue was dissolved in dichloromethane, washed with saturated aqueous sodium hydrogen carbonate, and the organic phase was dried over anhydrous sodium sulfate. The solid is purified by column chromatography. 2.3 g (51% yield) of 4- [3- (N, N-diethyl) aminopropoxy] -1,3-dinitrobenzene was obtained.

このジニトロ化合物を窒素気流下で、塩化第一スズと塩酸で定法により還元して、DEAPPDAを得た。HNMRで構造を確認した。 This dinitro compound was reduced with stannous chloride and hydrochloric acid by a conventional method under a nitrogen stream to obtain DEAPPDA. The structure was confirmed by 1 HNMR.

(2)NTDA−DEAPPDAポリイミド
1,4,5,8−ナフタレンテトラカルボン酸二無水物(NTDA)とDEAPPDAを当量、メタクレゾールに溶かし、安息香酸とイソキノリンを触媒として加えて、窒素気流下で80℃で4時間次いで、180℃で20時間反応させて、粘度の高い重合液を得た。これをメタノール中に投入して、得られた固体をアセトンで洗浄し乾燥してNTDA−DEAPPDAポリイミドを得た。
(2) NTDA-DAPPPDA polyimide 1,4,5,8-Naphthalenetetracarboxylic dianhydride (NTDA) and DAPPPDA are dissolved in metresole and added with benzoic acid and isoquinoline as a catalyst. The mixture was reacted at 180 ° C. for 4 hours and then at 180 ° C. for 20 hours to obtain a polymer solution having a high viscosity. This was put into methanol, and the obtained solid was washed with acetone and dried to obtain NTDA-DAPPPDA polyimide.

(3)4級アンモニウム化NTDA−DEAPPDAポリイミド架橋膜湿度センサー
NTDA−DEAPPDAポリイミドのm−クレゾール溶液に、実施例2と同様に、臭化エチルを加え反応させて、4級アンモニウム化NTDA−DEAPPDAポリイミドを得た。
実施例2と同様に、ジブロモブタンを含むポリイミドのメタクレゾール溶液を櫛状電極を有する支持基板にディップコートし、これを80℃で5時間、次いで真空中120℃で8時間加熱、乾燥処理して湿度センサー素子を得た。さらに、この湿度センサー素子を80℃で5時間1,3−ジブロモプロパン蒸気に晒した。湿度センサーの感湿膜は溶媒m−クレゾールに不溶になったので、架橋していることが確認された。下記化学式(7)に示す4級アンモニウム化NTDA−DEAPPDAポリイミド架橋膜を感湿膜とする湿度センサーが作製できた。実施例4の湿度センサーについて、後述する耐水性試験、耐高温高湿試験、応答速度試験そしてヒステリシス試験を行い、実施例2と同様の結果を得た。
(3) Quaternary Ammonium NTDA-DAPPPDA Polyimide Crosslinked Humidity Sensor NTDA-DAPPPDA Polyimide m-Cresol Solution In the same manner as in Example 2, ethyl bromide was added and reacted to react with it. Got.
In the same manner as in Example 2, a methacrylol solution of polyimide containing dibromobutane was dip-coated on a support substrate having a comb-like electrode, and this was heated and dried at 80 ° C. for 5 hours and then in vacuum at 120 ° C. for 8 hours. A humidity sensor element was obtained. Further, this humidity sensor element was exposed to 1,3-dibromopropane vapor at 80 ° C. for 5 hours. Since the moisture sensitive film of the humidity sensor became insoluble in the solvent m-cresol, it was confirmed to be crosslinked. A humidity sensor using a quaternary ammonium-modified NTDA-DEAPPDA polyimide crosslinked film represented by the following chemical formula (7) as a moisture-sensitive film could be produced. The humidity sensor of Example 4 was subjected to a water resistance test, a high temperature and humidity test, a response speed test, and a hysteresis test described later, and the same results as in Example 2 were obtained.

Figure 2008215994
Figure 2008215994

4級アンモニウム化NTDA−DMAPBDA/ODA(2/1)ポリイミド架橋膜湿度センサー
(1)DMAPBDAの合成
3−[3−(N,N−ジメチル)−アミノプロポキシ]−1,5−ブチレンジアミン(DMAPBDA)は、スキム2のルートで合成した。2.1g(12.1ミリモル)の3−ブロモグルタルニトリルと1.25g(12.1ミリモル)の3−ジメチルアミノー1−プロパノールと2.2gのKCOを80mLのジメチルフォルムアルデヒド中で110℃で4時間次いで150℃で6時間反応させて、3−[3−(N,N−ジメチル)−アミノプロポキシ]グルタルニトリルを合成した。これをTHF中で5%Pd/C触媒下で1気圧水素で50℃24時間反応させて、ニトリルをアミンに還元して、DMAPBDAを合成した。構造は、HNMRで構造を確認した。
Quaternary ammonium-modified NTDA-DMAPBDA / ODA (2/1) polyimide cross-linked membrane humidity sensor (1) Synthesis of DMAPBDA 3- [3- (N, N-dimethyl) -aminopropoxy] -1,5-butylenediamine (DMAPBDA) ) Was synthesized by the route of skim 2. 2.1 g (12.1 mmol) 3-bromoglutaronitrile, 1.25 g (12.1 mmol) 3-dimethylamino-1-propanol and 2.2 g K 2 CO 3 in 80 mL dimethylformaldehyde The mixture was reacted at 110 ° C. for 4 hours and then at 150 ° C. for 6 hours to synthesize 3- [3- (N, N-dimethyl) -aminopropoxy] glutaronitrile. This was reacted with 1 atm hydrogen at 50 ° C. for 24 hours under a 5% Pd / C catalyst in THF to reduce the nitrile to an amine to synthesize DMAPBDA. The structure was confirmed by 1 HNMR.

Figure 2008215994
(2)NTDA−DMAPBDA/ODA(2/1)共重合ポリイミドの合成
NTDA3ミリモル、DMAPBDA2ミリモル、ODA1ミリモルをメタクレゾールに溶かし、安息香酸とイソキノリンを触媒として加えて、窒素気流下で80℃で4時間次いで、180℃で20時間反応させて、粘度の高い重合液を得た。これをメタノール中に投入して、えられた固体をアセトンで洗浄し乾燥してNTDA−DMAPBDA/ODA(2/1)共重合ポリイミドを得た。
Figure 2008215994
(2) Synthesis of NTDA-DMAPBDA / ODA (2/1) Copolymer Polyimide 3 mmol of NTDA, 2 mmol of DMAPBDA, and 1 mmol of ODA were dissolved in metacresol, benzoic acid and isoquinoline were added as catalysts, and the mixture was added at 80 ° C. under nitrogen flow. Then, the mixture was reacted at 180 ° C. for 20 hours to obtain a polymer solution having a high viscosity. This was put into methanol, and the obtained solid was washed with acetone and dried to obtain NTDA-DMAPBDA / ODA (2/1) copolymerized polyimide.

(3)4級アンモニウム化NTDA−DMAPBDA/ODA(2/1)共重合ポリイミド膜湿度センサー
実施例1と同様にして、臭化エチルを用いて、下記化学式(8)に示す4級アンモニウム化NTDA−DMAPBDA/ODA(2/1)共重合ポリイミドを合成し、湿度センサーを作製した。実施例5の湿度センサーについて、後述する耐水性試験、耐高温高湿試験、応答速度試験そしてヒステリシス試験を行い、実施例2とほぼ同様の結果を得た。
(3) Quaternary Ammonium NTDA-DMAPBDA / ODA (2/1) Copolymerized Polyimide Film Humidity Sensor In the same manner as in Example 1, quaternary ammonium ammonium NTDA represented by the following chemical formula (8) using ethyl bromide -A DMAPBDA / ODA (2/1) copolymerized polyimide was synthesized to produce a humidity sensor. The humidity sensor of Example 5 was subjected to a water resistance test, a high temperature and humidity test, a response speed test, and a hysteresis test, which will be described later, and almost the same results as in Example 2 were obtained.

Figure 2008215994
Figure 2008215994

比較例1Comparative Example 1

ポリ(2−ヒドロキシ−3−メタクリルオキシプロピル−トリメチルアンモニウムクロリド(PHMPTAC)をヘキサメトキシメチロールメラミンで架橋した膜を感湿膜とする湿度センサーを特許文献)JP−59−171844に従い作製した。この比較例1の湿度センサーの感湿膜について、後述する耐水性試験、耐高温高湿試験、応答速度試験そしてヒステリシス試験を行った。耐水性試験とヒステリシス試験の結果をそれぞれ図8、9に示した。   A humidity sensor using a film obtained by crosslinking poly (2-hydroxy-3-methacryloxypropyl-trimethylammonium chloride (PHMPTAC) with hexamethoxymethylol melamine as a moisture sensitive film was prepared according to Patent Document JP-59-171844. The moisture sensitive film of the humidity sensor of Comparative Example 1 was subjected to a water resistance test, a high temperature and humidity test, a response speed test and a hysteresis test which will be described later. The results of the water resistance test and the hysteresis test are shown in FIGS.

比較例2Comparative Example 2

NTDA−BAPBDSポリイミド湿度センサー
文献(ジャーナル・メンブレン・サイエンス、230巻111−120頁、2004年)に従い、NTDAと4,4‘−ビス(4−アミノフェノキシ)ビフェニル−3,3’−ジスルホン酸(BAPBDS)を縮重合して、NTDA−BAPBDSポリイミドを合成した。
NTDA-BAPBDS polyimide humidity sensor NTDA and 4,4'-bis (4-aminophenoxy) biphenyl-3,3'-disulfonic acid (in accordance with the literature (Journal Membrane Science, 230, 111-120, 2004) ( BAPBDS) was subjected to condensation polymerization to synthesize NTDA-BAPBDS polyimide.

得られたNTDA−BAPBDSポリイミド(トリエチルアミン塩)をメタクレゾールで溶解し、櫛状電極を有する支持基板に塗布し、80℃で3時間、次いで160℃で2時間真空乾燥させて、NTDA−BAPBDSポリイミド(トリエチルアミン塩)を感湿膜とする湿度センサーを得た。この比較例2の湿度センサーについて、後述する耐水性試験、耐高温高湿試験、応答速度試験そしてヒステリシス試験を行った。耐高温高湿試験、応答速度試験そしてヒステリシス試験結果をそれぞれ図10〜12に示す。   The obtained NTDA-BAPBDS polyimide (triethylamine salt) was dissolved in metacresol, applied to a support substrate having a comb-like electrode, and vacuum-dried at 80 ° C. for 3 hours and then at 160 ° C. for 2 hours to obtain NTDA-BAPBDS polyimide. A humidity sensor using (triethylamine salt) as a moisture sensitive film was obtained. The humidity sensor of Comparative Example 2 was subjected to a water resistance test, a high temperature and high humidity test, a response speed test and a hysteresis test which will be described later. The results of the high temperature and high humidity resistance test, the response speed test, and the hysteresis test are shown in FIGS.

(耐水性試験)
湿度センサーを25℃の水に100時間浸漬する前と後で、センサーの抵抗値の相対湿度依存性を測定した。抵抗値の測定は、Agilent製LCRメーター4263Bを使用し、室温25℃で行った。標準湿度発生器は、神栄株式会社製SRH−01を用いた。実施例1〜5及び比較例1、2の湿度センサーについて、耐水性試験を行い、その結果を図3,図4、図8に示した。
(Water resistance test)
Before and after immersing the humidity sensor in water at 25 ° C. for 100 hours, the relative humidity dependence of the resistance value of the sensor was measured. The resistance value was measured at 25 ° C. using an Agilent LCR meter 4263B. As the standard humidity generator, SRH-01 manufactured by Shinei Co., Ltd. was used. The humidity sensors of Examples 1 to 5 and Comparative Examples 1 and 2 were subjected to a water resistance test, and the results are shown in FIG. 3, FIG. 4, and FIG.

比較例1の湿度センサーでは、図8に示すように、水中に浸漬後の抵抗値が大きく増大し、また、水浸漬後感湿膜がはく離する場合もあり、耐水性は低いことが分かる。これに対して、実施例1の湿度センサーでは、水中に浸漬後の抵抗値は少ししか増加せず、耐水性が大きく改善されていることが分かる。実施例2の湿度センサーでは、水中浸漬後も特性は殆ど変化せず、高い耐水性を有していることが分かる。実施例1と実施例2のセンサーの比較から、は4級アンモニウム塩を介しての架橋構造の導入は、湿度センサーの耐水性を高めるのに有効であることが分かる。実施例3,4と比較例2の湿度センサーは、実施例2と同様の高い耐水性を示した。   In the humidity sensor of Comparative Example 1, as shown in FIG. 8, the resistance value after immersion in water greatly increases, and the moisture sensitive film may peel off after immersion in water, indicating that the water resistance is low. On the other hand, in the humidity sensor of Example 1, the resistance value after being immersed in water increases only slightly, and it can be seen that the water resistance is greatly improved. It can be seen that the humidity sensor of Example 2 has a high water resistance with little change in characteristics even after immersion in water. From the comparison of the sensor of Example 1 and Example 2, it can be seen that the introduction of a crosslinked structure via a quaternary ammonium salt is effective in increasing the water resistance of the humidity sensor. The humidity sensors of Examples 3 and 4 and Comparative Example 2 exhibited the same high water resistance as Example 2.

(耐高温高湿試験)
湿度センサーを温度85℃、湿度100%の高温高湿槽の中に置き、100、200、300、500、1000時間後のそれぞれの支持基板からの感湿膜の剥離状況を観察した。比較例1の湿度センサーでは、比較的早い時間で支持基板からはく離することが確認された。実施例1の湿度センサーでは、1000時間で感湿膜の剥離が生じる場合があった。これに対して、実施例2〜4と比較例2の湿度センサーでは、1000時間の長期間の高温高湿の環境中にあっても、支持基板からのはく離等の異常は確認されなかった。1000時間処理後に、前記の耐水性試験の場合と同様に、室温で抵抗値と相対湿度の関係を測定した。実施例2と比較例2での結果を図5と図10に示す。実施例3,4の場合は、これらとほぼ同じ結果が得られた。実施例2−4と比較例2の湿度センサーは、1000時間後でも初特性とほぼ同じ特性を示し、高温高湿に対する非常に優れた耐久性を有していることが分かる。
(High temperature and humidity resistance test)
The humidity sensor was placed in a high-temperature and high-humidity tank having a temperature of 85 ° C. and a humidity of 100%, and the peeling state of the moisture-sensitive film from each support substrate after 100, 200, 300, 500, and 1000 hours was observed. In the humidity sensor of Comparative Example 1, it was confirmed that it peeled off from the support substrate in a relatively early time. In the humidity sensor of Example 1, the moisture sensitive film sometimes peeled off in 1000 hours. On the other hand, in the humidity sensors of Examples 2 to 4 and Comparative Example 2, no abnormality such as peeling from the support substrate was confirmed even in a high-temperature and high-humidity environment for a long period of 1000 hours. After the treatment for 1000 hours, the relationship between the resistance value and the relative humidity was measured at room temperature as in the case of the water resistance test. The results in Example 2 and Comparative Example 2 are shown in FIGS. In the case of Examples 3 and 4, almost the same results were obtained. It can be seen that the humidity sensors of Example 2-4 and Comparative Example 2 show almost the same characteristics as the initial characteristics even after 1000 hours, and have extremely excellent durability against high temperature and high humidity.

(応答速度試験)
25℃で湿度センサーの雰囲気の相対湿度を30%から90%へまたは90%から30%へステップ的に変化させたときの湿度センサーの表示湿度と経過時間の関係、応答曲線を測定した。実施例2と比較例2での結果を図6と11に示す。比較例2の湿度センサーの場合、30%RHから90%RHへの増湿過程では、90%応答時間は70秒と速いが、90%RHから30%RHの減湿過程では230秒と遅く、15分後でも平衡値に達しておらず、減湿過程での応答性が良くない。これに対して、実施例2の湿度センサーの場合、90%応答時間は増湿過程で80秒、減湿過程で100秒と速く、15分後にはほぼ平衡値に達しており、応答性に優れることが分かる。実施例3〜5および比較例1の湿度センサーは実施例2と同様の比較的速い応答性を示した。
(Response speed test)
The relationship between the humidity sensor display humidity and the elapsed time and the response curve when the relative humidity of the humidity sensor atmosphere was changed stepwise from 30% to 90% or from 90% to 30% at 25 ° C. were measured. The results in Example 2 and Comparative Example 2 are shown in FIGS. In the case of the humidity sensor of Comparative Example 2, the 90% response time is as fast as 70 seconds in the process of increasing the humidity from 30% RH to 90% RH, but as slow as 230 seconds in the process of dehumidifying from 90% RH to 30% RH. The equilibrium value is not reached even after 15 minutes, and the responsiveness in the dehumidification process is not good. On the other hand, in the case of the humidity sensor of Example 2, the 90% response time is as fast as 80 seconds in the humidifying process and 100 seconds in the dehumidifying process, and almost reaches the equilibrium value after 15 minutes. It turns out that it is excellent. The humidity sensors of Examples 3 to 5 and Comparative Example 1 exhibited a relatively fast response similar to that of Example 2.

(ヒステリシス試験)
センサー特性のヒステリシスを、25℃で雰囲気相対湿度を30%RH,60%RHそして90%RHと15分間隔で増加させ(増湿過程)、ついで、60%RH,そして30%RHと減湿していき、増湿過程と減湿過程での抵抗値の差を湿度差に換算してヒステリシスとして評価した。実施例2と比較例1,2での結果を図7,9,12に示す。比較例1の湿度センサーでは、ヒステリシスが1.5%RH以下と非常に小さいが、比較例2の湿度センサーでは、6−8%RHとかなり大きいヒステリシスがある。一方、実施例2の湿度センサーでは、2−3%RHと比較的小さなヒステリシスを示した。実施例3〜5の湿度センサーは、実施例2と同様の比較的小さなヒステリシスを示した。
(Hysteresis test)
Hysteresis of sensor characteristics is increased at 25 ° C. and relative humidity of 30% RH, 60% RH and 90% RH every 15 minutes (humidification process), and then dehumidified to 60% RH and 30% RH. Then, the difference in resistance value between the humidity increasing process and the dehumidifying process was converted into a humidity difference and evaluated as hysteresis. The results of Example 2 and Comparative Examples 1 and 2 are shown in FIGS. The humidity sensor of Comparative Example 1 has a very small hysteresis of 1.5% RH or less, whereas the humidity sensor of Comparative Example 2 has a considerably large hysteresis of 6-8% RH. On the other hand, the humidity sensor of Example 2 showed a relatively small hysteresis of 2-3% RH. The humidity sensors of Examples 3 to 5 showed relatively small hysteresis similar to that of Example 2.

(総合評価)
以上の評価試験の結果、比較例1の4級アンモニウム塩基を有するビニルポリマーPHMPTACの架橋膜を感湿膜とする湿度センサーは、応答特性とヒステリシス特性に優れるが、耐水性と高温高湿耐久性に劣る。反対に、比較例2のスルホン化ポリイミドNTDA−BAPBDS(トリメチルアミン塩)膜を感湿膜とする湿度センサーは、耐水性と高温高湿耐久性に優れるが、減湿過程での応答速度が遅く、ヒステリシス特性に劣る。本発明の4級アンモニウム塩基を有するポリイミド膜並びに同架橋膜を感湿膜とする湿度センサーは、比較例2に比べて、同程度の優れた耐水性と高温高湿耐久性を有し、しかも減湿過程での応答速度が大幅に改善されており、速い応答速度と比較的小さなヒステリシスを示し、優れた湿度センサー特性を有することが分かった。
(Comprehensive evaluation)
As a result of the above evaluation test, the humidity sensor using the crosslinked film of the vinyl polymer PHMPTAC having a quaternary ammonium base of Comparative Example 1 as a moisture sensitive film is excellent in response characteristics and hysteresis characteristics, but is resistant to water and high temperature and high humidity. Inferior to On the contrary, the humidity sensor using the sulfonated polyimide NTDA-BAPBDS (trimethylamine salt) film of Comparative Example 2 as a moisture sensitive film is excellent in water resistance and high temperature and high humidity durability, but the response speed in the dehumidification process is slow. Inferior to hysteresis characteristics. The humidity sensor using the polyimide film having the quaternary ammonium base of the present invention and the crosslinked film as a moisture sensitive film has comparable water resistance and high temperature and high humidity durability as compared with Comparative Example 2, and It was found that the response speed in the dehumidification process was greatly improved, showed a fast response speed and relatively small hysteresis, and had excellent humidity sensor characteristics.

本発明の湿度センサーは、露点雰囲気や高温、高湿下の過酷な環境にあっても、感湿膜が支持基板からはく離の発生を起こさず、安定したセンサー特性を示し、高い耐久性を有し、また、優れた応答性とヒステリシス特性を有するので、過酷な環境条件下で再現性に優れた電気抵抗式湿度センサーとして用いることができる。   The humidity sensor of the present invention exhibits stable sensor characteristics and high durability without causing the moisture sensitive film to peel off from the support substrate even in harsh environments such as dew point atmosphere, high temperature and high humidity. In addition, since it has excellent responsiveness and hysteresis characteristics, it can be used as an electrical resistance humidity sensor with excellent reproducibility under severe environmental conditions.

本発明の一実施の形態に係る湿度センサーの説明図Explanatory drawing of the humidity sensor which concerns on one embodiment of this invention 実施例1で6FDA−BAPMAポリイミドの4級アンモニウム化前(a)後(b)でのHNMRスペクトル(DMSO−d6) 1 HNMR spectrum (DMSO-d6) before (a) and after (b) quaternary ammoniumization of 6FDA-BAPMA polyimide in Example 1 実施例1の湿度センサーの耐水性試験結果Results of water resistance test of humidity sensor of Example 1 実施例2の湿度センサーの耐水性試験結果Results of water resistance test of humidity sensor of Example 2 実施例2の湿度センサーの耐高温高湿試験結果High temperature and high humidity test result of humidity sensor of Example 2 実施例2の湿度センサーの応答速度試験結果Response speed test result of humidity sensor of Example 2 実施例2の湿度センサーの増湿過程と減湿過程でのヒステリシスHysteresis in humidity increasing process and dehumidifying process of the humidity sensor of Example 2 比較例1の湿度センサーの耐水性試験結果Results of water resistance test of humidity sensor of Comparative Example 1 比較例1の湿度センサーの増湿過程と減湿過程でのヒステリシスHysteresis in humidity increasing process and dehumidifying process of the humidity sensor of Comparative Example 1 比較例2の湿度センサーの耐高温高湿試験結果High temperature and high humidity test results of the humidity sensor of Comparative Example 2 比較例2の湿度センサーの応答速度試験結果Response speed test result of humidity sensor of Comparative Example 2 比較例2の湿度センサーの増湿過程と減湿過程でのヒステリシスHysteresis in the humidity increasing and dehumidifying processes of the humidity sensor of Comparative Example 2

符号の説明Explanation of symbols

10:湿度センサー、11:支持基板、12:第1の櫛状電極、13:第2の櫛状電極、14:第1の電極部、15:第2の電極部、16:ピン電極、17:絶縁体、18:分岐架橋型スルホン化ポリイミド膜   10: humidity sensor, 11: support substrate, 12: first comb electrode, 13: second comb electrode, 14: first electrode portion, 15: second electrode portion, 16: pin electrode, 17 : Insulator, 18: Branched cross-linked sulfonated polyimide membrane

Claims (6)

主鎖がポリイミドよりなり、イオン交換基として第4級アンモニウム塩基を有する陰イオン交換樹脂。   An anion exchange resin having a main chain made of polyimide and having a quaternary ammonium base as an ion exchange group. 主鎖に下記一般式(1)で示されるイミド結合の繰り返し単位を有する請求項1記載のポリイミドよりなる陰イオン交換樹脂。
Figure 2008215994
但し、Arは4価の芳香族基、Aは次の一般式(a)〜(c)から選ばれる2価の基である。
Figure 2008215994
The anion exchange resin comprising a polyimide according to claim 1, wherein the main chain has a repeating unit of an imide bond represented by the following general formula (1).
Figure 2008215994
However, Ar 1 is a tetravalent aromatic group, and A is a divalent group selected from the following general formulas (a) to (c).
Figure 2008215994
主鎖が下記一般式(1)及び(2)で示されるイミド結合単位の任意の割合の繰り返しよりなる請求項1又は2に記載の陰イオン交換樹脂。
Figure 2008215994
但し、Ar、Aは前記に同じ、Arは4価の芳香族基、Bは、4級アンモニウム塩基を有しない2価の芳香族炭化水素基又は2価の脂肪族炭化水素基。
The anion exchange resin according to claim 1 or 2, wherein the main chain is composed of repetition of an arbitrary ratio of imide bond units represented by the following general formulas (1) and (2).
Figure 2008215994
However, Ar 1 and A are the same as above, Ar 2 is a tetravalent aromatic group, and B is a divalent aromatic hydrocarbon group or a divalent aliphatic hydrocarbon group having no quaternary ammonium base.
ポリイミドが架橋構造を有する請求項1乃至3のうちいずれか1項に記載の陰イオン交換樹脂。   The anion exchange resin according to any one of claims 1 to 3, wherein the polyimide has a crosslinked structure. 請求項1乃至4のうちいずれか1項に記載の陰イオン交換樹脂よりなる湿度センサー用感湿膜。   A humidity sensitive film for a humidity sensor, comprising the anion exchange resin according to any one of claims 1 to 4. 支持基板上に形成された複数の電極と該電極に接して形成された感湿膜を有する湿度センサーであって、前記感湿膜が請求項5記載の感湿膜よりなることを特徴とする湿度センサー。   A humidity sensor having a plurality of electrodes formed on a support substrate and a moisture sensitive film formed in contact with the electrodes, wherein the moisture sensitive film comprises the moisture sensitive film according to claim 5. Humidity sensor.
JP2007052721A 2007-03-02 2007-03-02 Anion exchange resin, moisture sensitive film made of anion exchange resin, and humidity sensor using moisture sensitive film Pending JP2008215994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007052721A JP2008215994A (en) 2007-03-02 2007-03-02 Anion exchange resin, moisture sensitive film made of anion exchange resin, and humidity sensor using moisture sensitive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007052721A JP2008215994A (en) 2007-03-02 2007-03-02 Anion exchange resin, moisture sensitive film made of anion exchange resin, and humidity sensor using moisture sensitive film

Publications (1)

Publication Number Publication Date
JP2008215994A true JP2008215994A (en) 2008-09-18

Family

ID=39836211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007052721A Pending JP2008215994A (en) 2007-03-02 2007-03-02 Anion exchange resin, moisture sensitive film made of anion exchange resin, and humidity sensor using moisture sensitive film

Country Status (1)

Country Link
JP (1) JP2008215994A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188770A1 (en) * 2018-03-29 2019-10-03 住友化学株式会社 Moisture-sensitive film and sensor using same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188770A1 (en) * 2018-03-29 2019-10-03 住友化学株式会社 Moisture-sensitive film and sensor using same
JP2019174464A (en) * 2018-03-29 2019-10-10 住友化学株式会社 Moisture-sensitive film and sensor using the same
CN111902715A (en) * 2018-03-29 2020-11-06 住友化学株式会社 Humidity-sensitive film and sensor using same
JP7212565B2 (en) 2018-03-29 2023-01-25 住友化学株式会社 Moisture sensitive film and sensor using it
US11674920B2 (en) 2018-03-29 2023-06-13 Sumitomo Chemical Company, Limited Moisture-sensitive film and sensor using same

Similar Documents

Publication Publication Date Title
US7868102B2 (en) Method for producing a film of an aromatic amide oxadiazole polymer containing an oxadiazole structure and the film so produced
Lee et al. Structure–property correlations of sulfonated polyimides. I. Effect of bridging groups on membrane properties
JP5499276B2 (en) Polyimide resin and electrolyte membrane
Chen et al. Synthesis and properties of sulfonated polyimides from homologous sulfonated diamines bearing bis (aminophenoxyphenyl) sulfone
Taeger et al. Ion exchange membranes derived from sulfonated polyaramides
US7465780B2 (en) Polyimide comprising sulfonic acid group at the terminal of side chain, and polymer electrolyte and fuel cell using the same
Yasuda et al. Synthesis and properties of polyimides bearing acid groups on long pendant aliphatic chains
JP4177625B2 (en) Sulfonic acid group-containing polyimide resin and sulfonic acid group-containing polyimide film comprising the same
JP4554179B2 (en) Production method and use of crosslinked sulfonated polyimide
Chhabra et al. Synthesis and characterization of sulfonated naphthalenic polyimides based on 4, 4′-diaminodiphenylether-2, 2′-disulfonic acid and bis [4-(4-aminophenoxy) phenylhexafluoropropane] for fuel cell applications
JP2007302741A (en) Polyimide film and polymer electrolyte membrane
JP2008215994A (en) Anion exchange resin, moisture sensitive film made of anion exchange resin, and humidity sensor using moisture sensitive film
JP2004155998A (en) Alkoxy-sulfonated aromatic polyimide and electrolyte membrane containing the same
JP2006152009A (en) Sulfonated aromatic polyimide and electrolyte film composed of the same
Zhang et al. Synthesis and characterization of a new type of sulfonated poly (ether ether ketone ketone) s for proton exchange membranes
JP4545708B2 (en) Sulfonated aromatic polyimide
JP4608363B2 (en) Phenoxysulfonated aromatic polyimide and polymer electrolyte membrane
JP3690415B1 (en) Humidity sensor
JP2006265497A (en) Sulfonated aromatic carbonylpolyimide and electrolyte film composed of the same
JP3690416B1 (en) Polymer electrolyte membrane humidity sensor
JP2007165071A (en) Electrolyte film and fuel cell
Kannan et al. 4-(4-Aminophenoxy) benzene-1, 3-diamine-based covalent cross-linked sulfonated polyimide as proton exchange membranes in fuel cell
JP2006265496A (en) Sulfonated aromatic polyimide and electrolyte film composed of the same
JP2003338298A (en) Polyamide precursor varnish containing protonic acid group and cross-linked polyamide containing protonic acid group
JP2006070116A (en) Sulfonated aromatic polyimide and electrolyte membrane made from the polyimide