JP2008210584A - Flexible flat cable terminal - Google Patents

Flexible flat cable terminal Download PDF

Info

Publication number
JP2008210584A
JP2008210584A JP2007044508A JP2007044508A JP2008210584A JP 2008210584 A JP2008210584 A JP 2008210584A JP 2007044508 A JP2007044508 A JP 2007044508A JP 2007044508 A JP2007044508 A JP 2007044508A JP 2008210584 A JP2008210584 A JP 2008210584A
Authority
JP
Japan
Prior art keywords
plating layer
thickness
plating
connector
plated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007044508A
Other languages
Japanese (ja)
Inventor
Masateru Ichikawa
雅照 市川
Kazuhiro Yamamoto
和寛 山本
Kunihiro Naoe
邦浩 直江
Shoji Mimura
彰治 味村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2007044508A priority Critical patent/JP2008210584A/en
Publication of JP2008210584A publication Critical patent/JP2008210584A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an FFC terminal part in which there is no generation of migration due to Cu, which is excellent in repeated insertion and removal characteristics (less in increase of contact resistance) while being hard to generate cracks, and which is excellent in corrosion resistance (no remarkable increase in contact resistance) in a corrosive environment when, on a plurality of Sn plated rectangular Cu conductors, the FFC terminal part applied with an Ni plating layer, and an Au plating layer is connector-fitted and used. <P>SOLUTION: In the FFC terminal part, the plurality of the rectangular Cu conductors plated with tin of which the thickness is 0.2 μm or more and less than 1.5 μm are laminated with an insulating tape with adhesive at a required spacing and arranged in parallel with each other, conductor exposing parts are formed at their end parts, and the tin plated rectangular Cu conductor of the conductor exposing part is applied with a nickel plating layer having a thickness of 0.3-5.0 μm and next with a gold metal layer having a thickness of 0.03-1.00 μm and used while being fitted to a connector. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、錫めっき処理された平角銅導体を用いたフレキシブルフラットケーブル端子部(以下、FFC端子部)に関し、特に銅によるマイグレーションを完全に防止でき、コネクタと嵌合して使用されるFFC端子部に関する。   The present invention relates to a flexible flat cable terminal portion (hereinafter referred to as an FFC terminal portion) using a tin-plated flat copper conductor, and in particular, it can completely prevent migration due to copper and can be used by fitting with a connector. Related to the department.

電子機器等に用いられる部品や配線基板等は、銅や銅合金を配線部に使用されている。そして、これ等を他の配線基板等と電気的に接続する場合には、半田付や超音波接合などの金属結合によって接合する他に、コネクタ接続も多く行われている。特にコネクタ接続する場合には、配線とコネクタの接触抵抗を低くして導通不良をなくすために、銅配線端子部を表面処理することが行われている。一般に、錫−鉛合金(以下、Sn−Pb合金)による電解めっき処理である。しかしながら、またPbを含む合金によるめっき処理では、Pbが酸性雨等により溶出して環境を汚染する問題が指摘されており、Pbフリー化が望まれている。このために、純SnめっきやPbを含まない錫合金系のめっきが検討されている。しかし純錫めっき(以下、Snめっき)やPbを含まないSn合金めっき(以下、Sn合金めっき)の場合、銅配線端子部をコネクタと嵌合して使用すると、コネクタのピンによって押付けられた箇所の周辺のめっき皮膜から、ウイスカーと称する髭状の結晶が急速に発生してくることが、純SnめっきやPbを含まないSn系合金めっきに於いて顕著であることも判ってきた。このようなウイスカーの発生は、配線どうしの短絡につながる問題がある。このため、発生するウイスカーの長さを抑制する種々の表面処理が提案されている。しかしながら、純Sn系めっきを使用する限り、ウイスカーの発生をゼロにすることはできなかった。そこで、FFC端子部は、Pbを含有せず、配線端子部をコネクタ嵌合しても銅によるマイグレーションを完全に防止しウイスカーが発生せず、また挿抜特性にも優れたものであることが望まれている。   Components and wiring boards used in electronic devices and the like use copper or copper alloy for the wiring portion. When these are electrically connected to other wiring boards or the like, many connectors are connected in addition to joining by metal bonding such as soldering or ultrasonic bonding. In particular, when a connector is connected, the copper wiring terminal portion is subjected to a surface treatment in order to reduce the contact resistance between the wiring and the connector to eliminate the conduction failure. Generally, it is an electroplating process with a tin-lead alloy (hereinafter, Sn—Pb alloy). However, in the plating treatment with an alloy containing Pb, there is a problem that Pb is eluted by acid rain or the like and pollutes the environment, and Pb-free is desired. For this reason, pure Sn plating and tin alloy plating not containing Pb have been studied. However, in the case of pure tin plating (hereinafter referred to as Sn plating) or Sn alloy plating that does not contain Pb (hereinafter referred to as Sn alloy plating), when the copper wiring terminal portion is fitted to the connector and used, the portion pressed by the connector pin It has also been found that the fact that whisker-like crystals called whiskers are rapidly generated from the plating film in the vicinity of is remarkable in pure Sn plating and Sn-based alloy plating not containing Pb. The generation of such whiskers has a problem that leads to a short circuit between the wirings. For this reason, various surface treatments that suppress the length of the generated whiskers have been proposed. However, as long as pure Sn-based plating was used, the generation of whiskers could not be made zero. Therefore, it is hoped that the FFC terminal part does not contain Pb, and even if the wiring terminal part is fitted to the connector, migration due to copper is completely prevented, whiskers are not generated, and the insertion / extraction characteristics are excellent. It is rare.

このため、コネクタ嵌合する配線端子部の表面処理として、端末部の錫めっきを除去した後、ニッケルめっき(以下、Niめっき)を介して金めっき(以下、Auめっき)を施すことが考えられている。例えば、特許文献1に見られるような方法である。すなわち、錫めっきが施された複数本の平角銅導体を平行に並べて絶縁フィルムで被覆し、少なくとも一方の端部に電気コネクタと接続する接続端末部を形成したFFCで、接続端末部の接続導体は錫めっきが除去され、このSnめっきが除去された部分にNiメッキを介してAuめっきが施されたものである。これによって、ケーブルの導体部分は柔軟性を有しマイグレーション発生がなく、接続部分はAuめっきが施されているので高信頼性のあるフラットケーブルが製造できるとしている。しかしがら、Snめっきを除去する工程が必要となるため製造コストが増加する。また、このようなSnメッキの除去作業によって接続端末部のSnも若干溶解するという問題が生じる。
特開2006−49185号公報
For this reason, as a surface treatment of the wiring terminal portion to be fitted with the connector, it is considered that after the tin plating of the terminal portion is removed, gold plating (hereinafter referred to as Au plating) is performed via nickel plating (hereinafter referred to as Ni plating). ing. For example, it is a method as seen in Patent Document 1. That is, an FFC in which a plurality of flat copper conductors plated with tin are arranged in parallel and covered with an insulating film, and a connection terminal portion connected to an electrical connector is formed on at least one end portion of the connection conductor of the connection terminal portion Is obtained by removing the tin plating and applying the Au plating to the portion from which the Sn plating has been removed via the Ni plating. Thus, the conductor portion of the cable is flexible and does not cause migration, and the connection portion is plated with Au, so that a highly reliable flat cable can be manufactured. However, the manufacturing cost increases because a step of removing Sn plating is required. Moreover, the problem that the Sn of the connection terminal part is slightly dissolved by such an operation of removing the Sn plating is caused.
JP 2006-49185 A

よって本発明が解決しようとする課題は、Snめっきが施された複数本の平角銅導体(以下、平角Cu導体)上に、Niめっき層、Auめっき層を施したFFC端子部をコネクタ嵌合して使用した場合に、Cuによるマイグレーションの発生がなく、また繰返しの挿抜特性(接触抵抗の増加が少ない)に優れると共にクラックが生じ難く、腐食環境下での耐食性(接触抵抗の著しい増加がない)に優れたFFC端子部を提供することにある。   Therefore, the problem to be solved by the present invention is that the FFC terminal portion provided with the Ni plating layer and the Au plating layer on the plurality of flat copper conductors (hereinafter referred to as flat Cu conductors) subjected to Sn plating is connector-fitted. When used, the occurrence of migration due to Cu does not occur, it is excellent in repeated insertion / extraction characteristics (increase in contact resistance is small) and cracks are difficult to occur, and corrosion resistance in a corrosive environment (no significant increase in contact resistance) ) To provide an excellent FFC terminal portion.

前記解決しようとする課題は、請求項1に記載されるように、厚さ0.2μm以上1.5μm未満の錫めっきが施された複数本の平角Cu導体が、必要な間隔で接着剤付絶縁テープによってラミネートされて平行に配置され、かつその端部には導体露出部が形成され、前記導体露出部の錫めっき平角Cu導体には、厚さ0.3〜5.0μmのニッケルめっき層、ついで厚さ0.03〜1.00μmの金めっき層が施されコネクタと嵌合して使用されるFFC端子部とすることによって、解決される。   The problem to be solved is that, as described in claim 1, a plurality of flat rectangular Cu conductors having a thickness of 0.2 μm or more and less than 1.5 μm are coated with an adhesive at a necessary interval. Laminated by an insulating tape and arranged in parallel, and a conductor exposed portion is formed at an end thereof, and a nickel plating layer having a thickness of 0.3 to 5.0 μm is formed on the tin-plated rectangular Cu conductor of the conductor exposed portion. Then, a gold plating layer having a thickness of 0.03 to 1.00 μm is applied, and the FFC terminal portion is used by being fitted to the connector.

以上のような本発明によれば、厚さ0.2μm以上1.5μm未満のSnめっきが施された複数本の平角Cu導体上に、厚さ0.3〜5.0μmのNiめっき層、ついで厚さ0.03〜1.00μmのAuめっき層を施したFFC端子部としたので、Cuによるマイグレーションの発生がなく、またウイスカー問題がない。さらに、接触抵抗の増加が少なく、クラックが生じにくい繰返しの挿抜特性に優れると共に、耐食性に優れているので腐食環境下での接触抵抗の著しい増加のないFFC端子部が得られる。このため、コネクタと嵌合して使用してもウイスカーの発生による問題がなく、導体間の距離が狭いFFC端子部であっても問題なく使用できる。さらに、本発明のFFC端子部では、Pbによる環境汚染の問題もない。   According to the present invention as described above, a Ni plating layer having a thickness of 0.3 to 5.0 μm on a plurality of flat Cu conductors to which Sn plating having a thickness of 0.2 μm or more and less than 1.5 μm is applied, Next, since the FFC terminal portion is provided with an Au plating layer having a thickness of 0.03 to 1.00 μm, there is no migration due to Cu and there is no whisker problem. Furthermore, the contact resistance does not increase so much, and it is excellent in repeated insertion / extraction characteristics in which cracks do not easily occur, and it has excellent corrosion resistance. For this reason, even if it fits and uses with a connector, there is no problem by generation of a whisker, and even if it is an FFC terminal part with a short distance between conductors, it can be used without a problem. Furthermore, in the FFC terminal portion of the present invention, there is no problem of environmental contamination due to Pb.

以下に本発明を詳細に説明する。請求項1に記載する発明は、厚さ0.2μm以上1.5μm未満の錫めっきが施された複数本の平角Cu導体が、必要な間隔で接着剤付絶縁テープによってラミネートされて平行に配置され、かつその端部には導体露出部が形成され、前記導体露出部の錫めっき平角Cu導体には、厚さ0.3〜5.0μmのニッケルめっき層、ついで厚さ0.03〜1.00μmの金めっき層が施されコネクタと嵌合して使用されるFFC端子部である。   The present invention is described in detail below. In the first aspect of the present invention, a plurality of flat Cu conductors plated with tin with a thickness of 0.2 μm or more and less than 1.5 μm are laminated in parallel by an insulating tape with an adhesive at a necessary interval and arranged in parallel. In addition, a conductor exposed portion is formed at the end, and a tin plated rectangular Cu conductor of the conductor exposed portion has a nickel plated layer having a thickness of 0.3 to 5.0 μm, and then a thickness of 0.03 to 1 This is an FFC terminal portion that is used by being mated with a connector to which a gold plating layer of .00 μm is applied.

このような発明に至ったのは、従来のようにSnめっきが施された複数本の平角Cu導体を平行に並べて絶縁フィルムで被覆し、少なくとも一方の端部に電気コネクタと接続する端子部を形成したFFCに於いて、前記端子部の接続導体はSnめっきを除去しSnめっきが除去された部分にNiメッキを介してAuめっきを施したFFC端子部である。このようなFFC端子部は、Snめっきを除去するための工程が必要なため製造コストが高くなり問題であった。また、Niめっき層やAuめっき層の厚さを特定しないと、耐食性の問題や材料コストの上昇問題等があり好ましくないものであった。   Such an invention has been achieved by arranging a plurality of flat-angle Cu conductors plated with Sn as in the prior art in parallel and covering with an insulating film, and at least one end portion having a terminal portion connected to the electrical connector. In the formed FFC, the connection conductor of the terminal portion is an FFC terminal portion in which Sn plating is removed and the portion where the Sn plating is removed is subjected to Au plating via Ni plating. Such an FFC terminal is problematic because it requires a process for removing Sn plating, which increases the manufacturing cost. Further, unless the thickness of the Ni plating layer or the Au plating layer is specified, there is a problem of corrosion resistance, an increase in material cost, and the like, which is not preferable.

これに対して本発明のFFC端子部は、Snめっきが施された所定の径の銅線が、Snめっき層の厚さが0.2μm以上1.5μm未満となるように所望の平角Cu導体に加工され、通常、焼鈍処理が行われSnめっき平角Cu導体とされる。そして、例えば予め導体露出部が形成された接着剤付絶縁テープによって、前記Snめっき平角Cu導体が必要な間隔で平行に配置、ラミネートされて導体露出部を有するFFCとし、前記導体露出部のSnめっき平角Cu導体上に厚さ0.3〜5.0μmのNiめっき層、その上には厚さ0.03〜1.00μmのAuめっき層を形成することによって、前述した問題がないFFC端子部とすることができる。   On the other hand, the FFC terminal portion of the present invention has a desired rectangular Cu conductor so that the Sn-plated copper wire with a predetermined diameter has a Sn plating layer thickness of 0.2 μm or more and less than 1.5 μm. Usually, annealing treatment is performed to obtain a Sn-plated flat Cu conductor. For example, the Sn plated flat Cu conductors are arranged in parallel at a necessary interval and laminated to form an FFC having a conductor exposed portion by using an insulating tape with an adhesive in which a conductor exposed portion is previously formed, and Sn of the conductor exposed portion is formed. By forming a Ni plating layer with a thickness of 0.3 to 5.0 μm on a plated rectangular Cu conductor and forming an Au plating layer with a thickness of 0.03 to 1.00 μm thereon, an FFC terminal that does not have the above-mentioned problems Part.

以上のようなFFC端子部は、厚さ0.2μm以上1.5μm未満のSnめっきが施された平角Cu導体を使用するので、ウイスカーの発生がない耐マイグレーション性に優れたものとなる。また、Snめっき層の厚さを1.5μm未満のSnめっき層とすることによって、コネクタ嵌合した場合にもその押圧によってNiめっき層が陥没して亀裂を発生させて、Snめっき層が露出して耐食性が低下することもない。具体的には、腐食環境下で通電した後にマイグレーション試験を行った時に、マイグレーション発生閾値を<5.0×10Ωとした場合、試験中にこの値を下回ることがない特性を有することになる。さらに、Niめっき層の厚さを0.3〜5.0μmとしたので、下層のSnがNiめっき層中に拡散して耐食性を損なうことがなく、上限厚さを5.0μmまでとすることにより、コネクタ嵌合時の挿抜作業を繰り返し受けてもクラックが生じないことになる。さらに、Auめっき層厚を0.03〜1.00μmとしたので、耐食性や挿抜作業を繰り返しうけても十分にその作業性を有するものである。より具体的に説明すると、コネクタに嵌合し後腐食ガス試験を行った場合に、腐食ガス試験前の接触抵抗値に対して20%未満の増加率を維持できるものである。また上限を1.00μmとしたので材料コスト的にも実用範囲のFFC端子部である。 Since the FFC terminal portion as described above uses a flat Cu conductor on which Sn plating having a thickness of 0.2 μm or more and less than 1.5 μm is applied, it has excellent migration resistance without generation of whiskers. In addition, when the Sn plating layer has a thickness of less than 1.5 μm, even when the connector is fitted, the Ni plating layer sinks and cracks are generated by the pressing, and the Sn plating layer is exposed. Thus, the corrosion resistance is not lowered. Specifically, when conducting a migration test after energization in a corrosive environment, if the migration occurrence threshold is set to <5.0 × 10 5 Ω, it has a characteristic that does not fall below this value during the test. Become. Furthermore, since the thickness of the Ni plating layer is set to 0.3 to 5.0 μm, the lower layer Sn does not diffuse into the Ni plating layer and the corrosion resistance is not impaired, and the upper limit thickness is set to 5.0 μm. Thus, cracks do not occur even when the insertion / extraction work at the time of connector fitting is repeated. Furthermore, since the Au plating layer thickness is set to 0.03 to 1.00 μm, the workability is sufficiently obtained even if the corrosion resistance and insertion / extraction operations are repeated. More specifically, when the post-corrosion gas test is performed after fitting to the connector, an increase rate of less than 20% can be maintained with respect to the contact resistance value before the corrosive gas test. Further, since the upper limit is set to 1.00 μm, the FFC terminal portion is in a practical range in terms of material cost.

表1に記載した実施例並びに比較例によって、本発明の効果を確認した。すなわち、Snめっきを施したCu線を幅0.3mm、厚さ0.05mmの平角状に加工してSnめっき平角Cu導体とした。これを40本並列に配置し、ポリエステル系の熱可塑性接着剤がコーティングされたポリエステル製絶縁テープで、コネクタに接続される端子部を除いてラミネート加工を行いFFCを作製した。その後、前記Snめっき平角Cu導体上に、Niめっき層、Auめっき層を順次施して試料とした。   The effects of the present invention were confirmed by the examples and comparative examples described in Table 1. In other words, the Sn-plated Cu wire was processed into a rectangular shape having a width of 0.3 mm and a thickness of 0.05 mm to obtain a Sn-plated rectangular Cu conductor. Forty pieces of these were arranged in parallel and laminated with a polyester insulating tape coated with a polyester-based thermoplastic adhesive, except for the terminal portion connected to the connector, to produce an FFC. Thereafter, a Ni plating layer and an Au plating layer were sequentially applied on the Sn plated flat Cu conductor to prepare a sample.

ついでこの試料を、Au/Niめっき(Auめっき厚さが0.3μm、Niめっき厚さが3μm)したノンZIFタイプのコネクタに嵌合し、硫化水素10ppm、湿度85%の雰囲気中に48時間放置して、腐食ガス試験を行った。ついで、接触抵抗を測定した。腐食ガス試験前の接触抵抗値に対して、20%未満の増加率のものを合格として〇印で、20%以上の増加率のものを不合格として×印で記載した。一方、前記FFC端末部と前記コネクタの挿抜を30回繰り返した後の接触抵抗を測定した。またクラックの有無について確認した。挿抜前の接触抵抗値に対する増加率を計算した。挿抜前の接触抵抗値に対して20%未満の増加率のものを合格として〇印で、20%以上の増加率のものを不合格として×印で記載した。めっき層のクラックの発生状態を顕微鏡によって観察しクラックの発生が全く見られない場合を合格として〇印で、クラックの発生が見られる場合を不合格として、×印で記載した。さらに、80℃、85%RH、印加電圧60Vで240時間曝した後のマイグレーション試験を行った。試験は、絶縁抵抗劣化システム(楠本化成社のSIR12)を用い、80msで抵抗値をモニタし、マイグレーション発生閾値を<5.0×10Ωとし、試験中にこの値を下回った場合を不合格として×印で、下回らなかった場合を合格として〇印で記載した。結果を表1に示した。 Next, this sample was fitted into a non-ZIF type connector plated with Au / Ni (Au plating thickness: 0.3 μm, Ni plating thickness: 3 μm), and in an atmosphere of 10 ppm hydrogen sulfide and 85% humidity for 48 hours. The corrosive gas test was conducted by leaving it alone. Subsequently, the contact resistance was measured. With respect to the contact resistance value before the corrosive gas test, those with an increase rate of less than 20% are indicated as ◯, and those with an increase rate of 20% or more are indicated as x with a failure. On the other hand, the contact resistance after repeating insertion and removal of the FFC terminal part and the connector 30 times was measured. The presence or absence of cracks was also confirmed. The increase rate with respect to the contact resistance value before insertion / extraction was calculated. Those with an increase rate of less than 20% with respect to the contact resistance value before insertion / removal are indicated as ◯, and those with an increase rate of 20% or more are indicated as x with a failure. The state of occurrence of cracks in the plating layer was observed with a microscope, and a case where no cracks were observed was marked as “good”, and a case where cracks were observed was marked as “bad”. Further, a migration test was conducted after exposure for 240 hours at 80 ° C., 85% RH, and an applied voltage of 60V. The test uses an insulation resistance degradation system (Enomoto Kasei Co., Ltd. SIR12), monitors the resistance value at 80 ms, sets the migration occurrence threshold to <5.0 × 10 5 Ω, and fails if the value falls below this value during the test. The case where it was not lower than “x” as a pass was indicated as “◯” as a pass. The results are shown in Table 1.

Figure 2008210584
Figure 2008210584

表1の実施例1〜9に示されるように、少なくともコネクタと嵌合されるFFC端子部のCu或いはCu合金配線上に、厚さ0.2μm以上1.5μm未満のSnめっきが施された複数本の平角Cu導体上に、厚さ0.3〜5.0μmのNiめっき層、ついで厚さ0.03〜1.00μmのAuめっき層を施したFFC端子部としたものは、コネクタに嵌合後、硫化水素10ppm、湿度85%の雰囲気中に48時間放置した接触抵抗が、腐食ガス試験前の接触抵抗値に対して、20%未満の増加率である。また、前記コネクタとの挿抜を30回繰り返した後の接触抵抗が、挿抜前の接触抵抗値に対する増加率として20%未満であった。またクラックの有無について顕微鏡によって観察したが、全くクラックは見られなかった。さらに、80℃、85%RH、印加電圧60Vで240時間曝した後のマイグレーション試験を行った結果、マイグレーション発生閾値を<5.0×10Ωとした場合、試験中にこの値を下回ったものは見られなかった。 As shown in Examples 1 to 9 in Table 1, Sn plating having a thickness of 0.2 μm or more and less than 1.5 μm was applied on at least the Cu or Cu alloy wiring of the FFC terminal portion fitted to the connector. An FFC terminal portion in which a Ni plating layer having a thickness of 0.3 to 5.0 μm and then an Au plating layer having a thickness of 0.03 to 1.00 μm is formed on a plurality of flat Cu conductors is used as a connector. After fitting, the contact resistance left for 48 hours in an atmosphere of 10 ppm hydrogen sulfide and 85% humidity is an increase rate of less than 20% with respect to the contact resistance value before the corrosive gas test. Moreover, the contact resistance after repeating insertion / extraction with the said connector 30 times was less than 20% as an increase rate with respect to the contact resistance value before insertion / extraction. The presence or absence of cracks was observed with a microscope, but no cracks were observed. Furthermore, as a result of performing a migration test after exposure for 240 hours at 80 ° C., 85% RH, and an applied voltage of 60 V, when the migration occurrence threshold was set to <5.0 × 10 5 Ω, this value was lower during the test. Nothing was seen.

すなわち、実施例1に見られるように、Snめっき層の厚さが0.22μmで、Niめっき層の厚さが0.35μm、Auめっき層の厚さが0.040μmのものは、腐食ガス試験前の接触抵抗値に対して20%未満の増加率であり、コネクタ嵌合に於ける挿抜前の接触抵抗値に対する増加率も20%未満であった。またクラックも全く見られなかった。さらに、マイグレーション発生閾値を<5.0×10Ωとした場合に、試験中にこの値を下回るものは見られず、全ての項目に合格した。また、実施例2に見られるように、Snめっき層の厚さが0.22μmで、Niめっき層の厚さが0.35μm、Auめっき層の厚さが0.940μmのものも、同様であった。さらに、実施例3のように、Snめっき層の厚さが0.22μmで、Niめっき層の厚さが4.70μm、Auめっき層の厚さが0.035μmのものも、全ての項目に合格であった。また、実施例4のように、Snめっき層の厚さが0.22μmで、Niめっき層の厚さが4.70μm、Auめっき層の厚さが0.920μmのものも、全ての項目に合格であった。さらに、実施例5に見られるように、Snめっき層の厚さが1.40μmで、Niめっき層の厚さが0.35μm、Auめっき層の厚さが0.035μmのものも、全ての項目に合格であった。また、実施例6のように、Snめっき層の厚さが1.40μmで、Niめっき層の厚さが4.50μm、Auめっき層の厚さが0.050μmのものも、全ての項目に合格であった。さらに、実施例7および8のように、Snめっき層の厚さが0.80μmであって、Niめっき層の厚さが2.05μmおよび0.31μm、Auめっき層の厚さが0.150μmのものも、全ての項目に合格であった。また、実施例9のように、Snめっき層の厚さが0.80μmで、Niめっき層の厚さが2.05μm、Auめっき層の厚さが0.980μmのものも、全ての項目に合格であった。 That is, as seen in Example 1, the Sn plating layer thickness is 0.22 μm, the Ni plating layer thickness is 0.35 μm, and the Au plating layer thickness is 0.040 μm. It was an increase rate of less than 20% with respect to the contact resistance value before the test, and the increase rate with respect to the contact resistance value before insertion / extraction in connector fitting was also less than 20%. Also, no cracks were seen. Furthermore, when the migration occurrence threshold was set to <5.0 × 10 5 Ω, nothing lower than this value was found during the test, and all items passed. Further, as seen in Example 2, the same applies to the Sn plating layer thickness of 0.22 μm, the Ni plating layer thickness of 0.35 μm, and the Au plating layer thickness of 0.940 μm. there were. Further, as in Example 3, the Sn plating layer thickness is 0.22 μm, the Ni plating layer thickness is 4.70 μm, and the Au plating layer thickness is 0.035 μm. It was a pass. Further, as in Example 4, the Sn plating layer thickness is 0.22 μm, the Ni plating layer thickness is 4.70 μm, and the Au plating layer thickness is 0.920 μm. It was a pass. Further, as seen in Example 5, the Sn plating layer thickness is 1.40 μm, the Ni plating layer thickness is 0.35 μm, and the Au plating layer thickness is 0.035 μm. The item passed. Further, as in Example 6, the Sn plating layer thickness is 1.40 μm, the Ni plating layer thickness is 4.50 μm, and the Au plating layer thickness is 0.050 μm. It was a pass. Further, as in Examples 7 and 8, the thickness of the Sn plating layer was 0.80 μm, the thickness of the Ni plating layer was 2.05 μm and 0.31 μm, and the thickness of the Au plating layer was 0.150 μm. Also passed all items. Also, as in Example 9, the Sn plating layer thickness was 0.80 μm, the Ni plating layer thickness was 2.05 μm, and the Au plating layer thickness was 0.980 μm. It was a pass.

これに対して、比較例1〜9に示す本発明の範囲を外れたFFC端子部は、腐食ガス試験前の接触抵抗値に対する増加率、コネクタ嵌合に於ける挿抜前の接触抵抗値に対する増加率、またクラックの発生、マイグレーション発生閾値のいずれかが不合格であった。すなわち、比較例1〜3のようにSnめっき層の厚さが0.17μmと薄い場合は、いずれもマイグレーション発生閾値を<5.0×10Ωとした場合に、試験中にこの値を下回った。また、比較例4〜6のように、Snめっき層が1.60μmと厚すぎる場合は、腐食ガス試験前の接触抵抗値に対して20%以上増加した。さらに、実施例7のように、Niめっき層の厚さが0.25μmと薄い場合にも、腐食ガス試験前の接触抵抗値に対して20%以上増加した。また、比較例8のように、Niめっき層の厚さが5.30μmと厚い場合は、めっき層にクラックが見られた。さらに、比較例9のように、Auめっき層が0.020μmのように薄いと、腐食ガス試験前の接触抵抗値に対する増加率、コネクタ嵌合に於ける挿抜前の接触抵抗値に対する増加率のいずれも20%以上増加して不合格であった。 On the other hand, the FFC terminal portion outside the scope of the present invention shown in Comparative Examples 1 to 9 has an increase rate with respect to the contact resistance value before the corrosive gas test, and an increase with respect to the contact resistance value before insertion / extraction in connector fitting. Any of the rate, the occurrence of cracks, and the threshold for occurrence of migration failed. That is, when the thickness of the Sn plating layer is as thin as 0.17 μm as in Comparative Examples 1 to 3, this value was set during the test when the migration occurrence threshold was set to <5.0 × 10 5 Ω. Below. Moreover, when Sn plating layer was too thick with 1.60 micrometers like Comparative Examples 4-6, it increased by 20% or more with respect to the contact resistance value before a corrosive gas test. Furthermore, as in Example 7, even when the thickness of the Ni plating layer was as thin as 0.25 μm, the contact resistance value before the corrosive gas test increased by 20% or more. Moreover, when the thickness of the Ni plating layer was as thick as 5.30 μm as in Comparative Example 8, cracks were found in the plating layer. Further, as in Comparative Example 9, when the Au plating layer is as thin as 0.020 μm, the increase rate with respect to the contact resistance value before the corrosive gas test and the increase rate with respect to the contact resistance value before insertion / extraction in connector fitting All increased by 20% or more and failed.

本発明のように、厚さ0.2μm以上1.5μm未満のSnめっきが施された複数本の平角Cu導体上に、厚さ0.3〜5.0μmのニッケルめっき層、ついで厚さ0.03〜1.00μmのAuめっき層を施した導体露出部を有するFFC端子部は、FFC端子部をコネクタ嵌合して使用した場合にCuによるマイグレーションの発生がなく、また繰返しの挿抜特性に優れると共にクラックが生じ難く、腐食環境下での耐食性に優れたFFC端子部を提供でき、種々の電子機器類に使用することが可能である。   As in the present invention, a nickel plating layer having a thickness of 0.3 to 5.0 μm is formed on a plurality of flat Cu conductors to which Sn plating having a thickness of 0.2 μm or more and less than 1.5 μm is applied. The FFC terminal part with the exposed conductor part with the Au plating layer of 0.03 to 1.00 μm has no occurrence of migration due to Cu when the FFC terminal part is used with the connector fitted, and repeatable insertion / extraction characteristics An FFC terminal portion that is excellent in resistance to cracking and excellent in corrosion resistance in a corrosive environment can be provided, and can be used in various electronic devices.

Claims (1)

厚さ0.2μm以上1.5μm未満の錫めっきが施された複数本の平角銅導体が、必要な間隔で接着剤付絶縁テープによってラミネートされて平行に配置され、かつその端部には導体露出部が形成され、前記導体露出部の錫めっき平角銅導体には、厚さ0.3〜5.0μmのニッケルめっき層、ついで厚さ0.03〜1.00μmの金めっき層が施されコネクタと嵌合して使用されることを特徴とするフレキシブルフラットケーブル端子部。   A plurality of rectangular copper conductors plated with tin with a thickness of 0.2 μm or more and less than 1.5 μm are laminated in parallel by an insulating tape with an adhesive at a necessary interval, and conductors are provided at the ends thereof. An exposed portion is formed, and the tin-plated rectangular copper conductor of the exposed conductor portion is provided with a nickel plating layer having a thickness of 0.3 to 5.0 μm, and then a gold plating layer having a thickness of 0.03 to 1.00 μm. A flexible flat cable terminal portion that is used by fitting with a connector.
JP2007044508A 2007-02-23 2007-02-23 Flexible flat cable terminal Pending JP2008210584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007044508A JP2008210584A (en) 2007-02-23 2007-02-23 Flexible flat cable terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007044508A JP2008210584A (en) 2007-02-23 2007-02-23 Flexible flat cable terminal

Publications (1)

Publication Number Publication Date
JP2008210584A true JP2008210584A (en) 2008-09-11

Family

ID=39786729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007044508A Pending JP2008210584A (en) 2007-02-23 2007-02-23 Flexible flat cable terminal

Country Status (1)

Country Link
JP (1) JP2008210584A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076322A (en) * 2007-09-20 2009-04-09 Sumitomo Electric Ind Ltd Flexible flat cable, and manufacturing method thereof
EP2874239A1 (en) * 2013-10-30 2015-05-20 Mitsubishi Materials Corporation Tin-plated copper-alloy terminal material
US10224128B2 (en) 2016-12-20 2019-03-05 Hyundai Motor Company Flexible flat cable, vehicle including the same, and method of manufacturing the flexible flat cable
JP2020092279A (en) * 2017-02-13 2020-06-11 タツタ電線株式会社 Shield film, shield printed wiring board, and manufacturing method of shield printed wiring board
JP2021012835A (en) * 2019-07-09 2021-02-04 マクセルホールディングス株式会社 All-solid battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711477A (en) * 1993-06-28 1995-01-13 Electroplating Eng Of Japan Co Noble metal plated article
JPH0799012A (en) * 1993-04-16 1995-04-11 Sumitomo Electric Ind Ltd Conductor for flat cable, its manufacture and its manufacturing equipment
JPH0855521A (en) * 1994-08-10 1996-02-27 Mitsubishi Shindoh Co Ltd Conductive member and its manufacture
JP2004225070A (en) * 2003-01-20 2004-08-12 Furukawa Electric Co Ltd:The Sn ALLOY SOLDER PLATING MATERIAL AND FITTING TYPE CONNECTION TERMINAL USING THE SAME
JP2006083410A (en) * 2004-09-14 2006-03-30 Shinei Hitec:Kk Method for manufacturing electronic part
JP2007035286A (en) * 2005-07-22 2007-02-08 Hitachi Cable Ltd HALF-FINISHED FLAT CABLE AND MANUFACTURING METHOD OF Au-PLATED FLAT CABLE USING THE SAME

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799012A (en) * 1993-04-16 1995-04-11 Sumitomo Electric Ind Ltd Conductor for flat cable, its manufacture and its manufacturing equipment
JPH0711477A (en) * 1993-06-28 1995-01-13 Electroplating Eng Of Japan Co Noble metal plated article
JPH0855521A (en) * 1994-08-10 1996-02-27 Mitsubishi Shindoh Co Ltd Conductive member and its manufacture
JP2004225070A (en) * 2003-01-20 2004-08-12 Furukawa Electric Co Ltd:The Sn ALLOY SOLDER PLATING MATERIAL AND FITTING TYPE CONNECTION TERMINAL USING THE SAME
JP2006083410A (en) * 2004-09-14 2006-03-30 Shinei Hitec:Kk Method for manufacturing electronic part
JP2007035286A (en) * 2005-07-22 2007-02-08 Hitachi Cable Ltd HALF-FINISHED FLAT CABLE AND MANUFACTURING METHOD OF Au-PLATED FLAT CABLE USING THE SAME

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076322A (en) * 2007-09-20 2009-04-09 Sumitomo Electric Ind Ltd Flexible flat cable, and manufacturing method thereof
EP2874239A1 (en) * 2013-10-30 2015-05-20 Mitsubishi Materials Corporation Tin-plated copper-alloy terminal material
US10224128B2 (en) 2016-12-20 2019-03-05 Hyundai Motor Company Flexible flat cable, vehicle including the same, and method of manufacturing the flexible flat cable
JP2020092279A (en) * 2017-02-13 2020-06-11 タツタ電線株式会社 Shield film, shield printed wiring board, and manufacturing method of shield printed wiring board
JP2021012835A (en) * 2019-07-09 2021-02-04 マクセルホールディングス株式会社 All-solid battery

Similar Documents

Publication Publication Date Title
JP4956997B2 (en) Flat cable
JP4904953B2 (en) WIRING CONDUCTOR, MANUFACTURING METHOD THEREOF, TERMINAL CONNECTION UNIT AND Pb FREE SOLDER ALLOY
JP2008021501A (en) Electrical part for wiring, manufacturing method thereof, and terminal connecting part
WO2006006534A1 (en) Flexible printed wiring board terminal part or flexible flat cable terminal part
JP2002317295A (en) REFLOW TREATED Sn ALLOY PLATING MATERIAL AND FIT TYPE CONNECTING TERMINAL USING THE SAME
JP2008210584A (en) Flexible flat cable terminal
JP4847898B2 (en) Wiring conductor and method for manufacturing the same
JP2006319269A (en) Flexible printed wiring board terminal or flexible flat cable terminal
JP4904810B2 (en) Plating film, method for forming the same, and electronic component
JP2006127939A (en) Electric conductor and its manufacturing method
JP2010037603A (en) Connection terminal part and method for producing the same
JP2007053039A (en) Electric connector connection structure and flexible wiring board used for it
JP4878735B2 (en) Flat cable
JP4427044B2 (en) Conductor for flexible substrate, method for producing the same, and flexible substrate
JP4324032B2 (en) Flexible printed circuit board having component mounting portion and electrolytic plating method
JP5154011B2 (en) Flexible flat cable
JPH0681189A (en) Production of plated copper sheet or plated copper alloy sheet for producing electric connector
JP2010116603A (en) Sn OR Sn ALLOY PLATING FILM AND METHOD FOR PRODUCING THE SAME
JP4796522B2 (en) Wiring conductor and method for manufacturing the same
JP2008208400A (en) Method for manufacturing terminal portion of flexible flat cable
JP2003086024A (en) Sn PLATING FLAT CONDUCTOR AND FLAT CABLE USING THE SAME
JP2010007111A (en) Copper or copper alloy rectangular conductive body and flexible flat cable
JP4856745B2 (en) Conductor for flexible substrate, method for producing the same, and flexible substrate
JP2001043745A (en) Flat cable
JP6025259B2 (en) Plating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110722

A131 Notification of reasons for refusal

Effective date: 20110728

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120326