JP2008205496A - Method of manufacturing solid electrolytic capacitor - Google Patents

Method of manufacturing solid electrolytic capacitor Download PDF

Info

Publication number
JP2008205496A
JP2008205496A JP2008099058A JP2008099058A JP2008205496A JP 2008205496 A JP2008205496 A JP 2008205496A JP 2008099058 A JP2008099058 A JP 2008099058A JP 2008099058 A JP2008099058 A JP 2008099058A JP 2008205496 A JP2008205496 A JP 2008205496A
Authority
JP
Japan
Prior art keywords
conductive polymer
capacitor element
solid electrolytic
electrolytic capacitor
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008099058A
Other languages
Japanese (ja)
Other versions
JP4831108B2 (en
Inventor
Yoshiyuki Mori
義幸 森
Yukihiro Nitta
幸弘 新田
Hiroki Kusayanagi
弘樹 草柳
Akira Harada
晃 原田
Yoshihiro Watanabe
善博 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2008099058A priority Critical patent/JP4831108B2/en
Publication of JP2008205496A publication Critical patent/JP2008205496A/en
Application granted granted Critical
Publication of JP4831108B2 publication Critical patent/JP4831108B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a solid electrolytic capacitor having a high capacitance achievement rate with excellent high frequency property by forming relatively easily a conductive polymer solid electrolyte layer in a winding type capacitor element. <P>SOLUTION: The method of manufacturing the solid electrolytic capacitor includes a step of forming a capacitor element by winding a positive electrode foil formed with an oxidized dielectric film layer, a negative electrode foil that is etched or chemically treated after etching, and a separator held therebetween, a step of forming a first solid electrolyte material layer by impregnating a conductive polymer fine particle with dispersed solution prepared by dispersing fine particles selected from polypyrrol, polythiophen, polyaniline or a derivative thereof into a solution containing an organic binder and a surfactant to regulate the viscosity between 5 to 100 cp, and a step of impregnating the capacitor element formed a first solid electrolyte layer with an electrolyte solution. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は導電性高分子を固体電解質層に用いた固体電解コンデンサの製造方法に関するものである。   The present invention relates to a method for producing a solid electrolytic capacitor using a conductive polymer in a solid electrolyte layer.

電子機器の高周波化に伴って、電子部品である電解コンデンサにも従来よりも高周波領域でのインピーダンス特性に優れる大容量のコンデンサが求められてきている。最近では、この高周波領域でのインピーダンス低減のために電気伝導度の高い導電性高分子を電解質に用いた固体電解コンデンサが検討されてきており、また大容量化の要求に対しては電極箔を積層させる場合と比較して、構造的に大容量化が容易な巻回形(陽極箔と陰極箔をその間にセパレータを介して巻回した構造のもの)による導電性高分子を用いた固体電解コンデンサが製品化されてきている。   With the increase in frequency of electronic equipment, electrolytic capacitors that are electronic components have been required to have a large capacity capacitor that is superior in impedance characteristics in a high frequency region than before. Recently, in order to reduce impedance in this high-frequency region, solid electrolytic capacitors using a conductive polymer with high electrical conductivity as an electrolyte have been studied. Solid electrolysis using a conductive polymer of a wound type (a structure in which an anode foil and a cathode foil are wound with a separator between them), which makes it easy to increase the capacity compared to the case of stacking Capacitors have been commercialized.

この巻回形の固体電解コンデンサにおいて、導電性高分子の形成方法についてこれまで多くの発明がなされており、一般的には導電性高分子のモノマー溶液と酸化剤溶液で交互に電解重合または化学重合して固体電解質層を形成するか、導電性高分子のモノマー溶液と酸化剤溶液の混合溶液で電解重合または化学重合して固体電解質層を形成させていた。ここで用いられている導電性高分子のモノマーとしてはピロール、チオフェン、エチレンジオキシチオフェン、アニリンまたはその誘導体であり、酸化剤溶液としてはp−トルエンスルホン酸第二鉄塩、ドデシルベンゼンスルホン酸第二鉄塩、ナフタレンスルホン酸第二鉄塩、トリイソプロピルナフタレンスルホン酸第二鉄塩や長鎖脂肪族スルホン酸等の第二鉄塩を含有したアルコール(メタノール、エタノール、イソプロピルアルコール、n−ブタノール、エチレングリコール等)溶液が用いられている。   In this wound-type solid electrolytic capacitor, many inventions have been made so far regarding a method for forming a conductive polymer. Generally, an electropolymerization or chemical reaction is alternately performed between a monomer solution and an oxidant solution of a conductive polymer. The solid electrolyte layer is formed by polymerization, or the solid electrolyte layer is formed by electrolytic polymerization or chemical polymerization using a mixed solution of a conductive polymer monomer solution and an oxidizing agent solution. The conductive polymer monomer used here is pyrrole, thiophene, ethylenedioxythiophene, aniline or a derivative thereof, and the oxidizing agent solution is p-toluenesulfonic acid ferric salt, dodecylbenzenesulfonic acid Alcohol (methanol, ethanol, isopropyl alcohol, n-butanol, ferric salt such as ferric salt, naphthalenesulfonic acid ferric salt, ferric salt of triisopropylnaphthalenesulfonic acid and long chain aliphatic sulfonic acid Ethylene glycol etc.) solution is used.

しかしながら上記巻回形の固体電解コンデンサにおいて、導電性高分子を巻回形のコンデンサ素子の内部に均一かつ十分に含浸させることは困難であり、特にエチレンジオキシチオフェンを重合してなるポリエチレンジオキシチオフェンにおいては、種々の酸化剤や重合条件の微妙な変化、さらには酸化剤溶液を調合してから導電性高分子のモノマーを重合するまでの経過時間等によって、電気特性のバラツキ(特に導電性高分子の誘電体酸化皮膜層上への被覆率により決定される静電容量のバラツキや導電性高分子の充填率により決定される高周波域でのインピーダンスのバラツキ)が大きいという課題を有していた。   However, in the above wound solid electrolytic capacitor, it is difficult to uniformly and sufficiently impregnate the conductive polymer inside the wound capacitor element, and in particular, polyethylene dioxypolymer formed by polymerizing ethylenedioxythiophene. In thiophene, there are variations in electrical properties (particularly conductivity) due to subtle changes in various oxidizing agents and polymerization conditions, and the elapsed time from the preparation of the oxidizing agent solution to the polymerization of the conductive polymer monomer. There is a problem that the capacitance variation determined by the coating rate of the polymer on the dielectric oxide film layer and the impedance variation in the high frequency range determined by the filling rate of the conductive polymer are large. It was.

また、導電性高分子のモノマー溶液は粘性が高いため、コンデンサ素子の陽極箔および陰極箔のピット内に充填させるには低温雰囲気や真空含浸などの工夫が必要であった。   Further, since the monomer solution of the conductive polymer has a high viscosity, a device such as a low temperature atmosphere or vacuum impregnation is required to fill the pits of the anode foil and the cathode foil of the capacitor element.

本発明はこのような従来の課題を解決し、巻回形のコンデンサ素子に導電性高分子の固体電解質層を比較的容易に形成させて、容量達成率の高い高周波特性に優れた固体電解コンデンサの製造方法を提供することを目的とするものである。   The present invention solves such a conventional problem, and a solid electrolytic layer of a conductive polymer is formed on a wound capacitor element relatively easily, so that a solid electrolytic capacitor excellent in high frequency characteristics with a high capacity achievement rate is obtained. An object of the present invention is to provide a manufacturing method.

上記課題を解決するために本発明の請求項1に記載の発明は、誘電体酸化皮膜層を形成した陽極箔とエッチング処理あるいはエッチング後化成処理された陰極箔とをその間にセパレータを介在させて巻回することによりコンデンサ素子を形成する工程と、有機バインダーおよび界面活性剤を含む溶液にポリピロール、ポリチオフェン、ポリアニリンおよびそれらの誘導体のいずれかの微粒子を分散させ、粘度を5〜100cpに調整した導電性高分子微粒子分散水溶液をコンデンサ素子に含浸させて微粒子の導電性高分子を有した第1の固体電解質層を形成する工程と、この第1の固体電解質層を形成したコンデンサ素子に電解液を含浸する工程とを具備した製造方法とするもので、この方法により、誘電体酸化皮膜層上に微粒子の導電性高分子を有した第1の固体電解質層を比較的容易に形成することができ、導電性高分子微粒子分散体の導電層と電解液を含浸することにより、比較的容易に高周波領域のインピーダンス特性を低くすることができ、固体電解コンデンサの内部抵抗の低い、容量達成率の高い高周波特性に優れた固体電解コンデンサを得ることができるという作用を有する。   In order to solve the above-mentioned problems, according to the first aspect of the present invention, an anode foil on which a dielectric oxide film layer is formed and a cathode foil that has been subjected to etching treatment or post-etching chemical conversion treatment are interposed between them. A step of forming a capacitor element by winding, and a conductive material in which fine particles of polypyrrole, polythiophene, polyaniline and their derivatives are dispersed in a solution containing an organic binder and a surfactant, and the viscosity is adjusted to 5 to 100 cp. Forming a first solid electrolyte layer having a conductive polymer fine particle by impregnating a capacitor element with an aqueous solution of a conductive polymer fine particle, and an electrolytic solution for the capacitor element on which the first solid electrolyte layer is formed. And impregnating the conductive oxide particles on the dielectric oxide film layer by this method. The first solid electrolyte layer having a child can be formed relatively easily, and by impregnating the conductive polymer fine particle dispersion with the conductive layer and the electrolytic solution, impedance characteristics in the high frequency region can be relatively easily achieved. The solid electrolytic capacitor can be reduced, and a solid electrolytic capacitor having a low internal resistance and a high capacity achievement rate and excellent high frequency characteristics can be obtained.

なお、上記有機バインダーとしては、ポリビニルアルコール、ポリ酢酸ビニル、ポリカーボネート、ポリアクリレート、ポリメタアクリレート、ポリスチレン、ポリウレタン、ポリアクリロニトリル、ポリブタジエン、ポリイソプレン、ポリエーテル、ポリエステル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアミド、ポリイミド、ブチラール樹脂、シリコーン樹脂、メラミン樹脂、アルキッド樹脂、セルロース、ニトロセルロース、ビスフェノールA型エポキシ、ビスフェノールF型エポキシ、脂環式エポキシおよびこれらの誘導体よりなる群より選ばれる1つ以上を含有する高分子または共重合体の1つ以上からなるものが挙げられ、これらの高分子または共重合体は導電性の乏しい高分子であり、かつこれらの抵抗率を1.0×1010Ω/□を超える値に設定することが容易であるため、電子なだれ現象を局所的な範囲に止めるに十分な絶縁性能を有する誘電体酸化皮膜上の層を構成できるので、漏れ電流が非常に小さく、かつエージング中にショートの発生しにくい固体電解質層を得ることができる。 Examples of the organic binder include polyvinyl alcohol, polyvinyl acetate, polycarbonate, polyacrylate, polymethacrylate, polystyrene, polyurethane, polyacrylonitrile, polybutadiene, polyisoprene, polyether, polyester, polyethylene terephthalate, polybutylene terephthalate, polyamide, High containing at least one selected from the group consisting of polyimide, butyral resin, silicone resin, melamine resin, alkyd resin, cellulose, nitrocellulose, bisphenol A type epoxy, bisphenol F type epoxy, alicyclic epoxy and derivatives thereof And those composed of one or more molecules or copolymers, these polymers or copolymers are polymers with poor conductivity, and these Since it is easy to set the anti-factor to a value greater than 1.0 × 10 10 Ω / □, a layer on the dielectric oxide film having a sufficient insulation performance in stopping the local range of the electron avalanche Since it can be configured, it is possible to obtain a solid electrolyte layer that has a very small leakage current and is less likely to cause a short circuit during aging.

請求項2に記載の発明は、導電性高分子微粒子分散水溶液の微粒子が200〜10000nmとした製造方法としたもので、上記請求項1に記載の発明により得られる作用と同様の作用を有する。   The invention according to claim 2 is a production method in which the fine particles of the aqueous dispersion of fine conductive polymer particles are 200 to 10,000 nm, and has the same action as that obtained by the invention according to claim 1.

上記導電性高分子微粒子分散水溶液を超音波、ホモジナイザー、ハイブリッドミキサー、ハイシェアミキサーの少なくとも1種で分散処理して粘度を調整することにより、流体せん断作用および機械的せん断作用により導電性高分子微粒子分散水溶液中の微粒子および有機バインダーの分散性を高めることができ、上記水溶液を低粘度にして誘電体酸化皮膜層上に第1の固体電解質層を緻密に形成することができるという作用を有する。   Conductive polymer fine particles are dispersed by a fluid shearing action and a mechanical shearing action by dispersing the conductive polymer fine particle-dispersed aqueous solution with at least one of an ultrasonic wave, a homogenizer, a hybrid mixer, and a high shear mixer to adjust the viscosity. The dispersibility of the fine particles and the organic binder in the dispersed aqueous solution can be enhanced, and the aqueous solution has a low viscosity so that the first solid electrolyte layer can be densely formed on the dielectric oxide film layer.

なお、上記超音波は周波数40〜60kHz、出力50〜100Wを有する一般的な超音波処理装置で処理するもの、ホモジナイザーはポンプで液体をオリフィス機構を通過させることにより、高いせん断作用を液体に与えることができる装置で処理するもの、ハイブリッドミキサーは液体を公転および自転させながら攪拌することができる装置で処理するもの、ハイシェアミキサーはロータとスクリーンを高速で回転させ、ロータとスクリーンの間に液体を通過させることにより、高いせん断作用を液体に与えながら攪拌することができる装置で処理するもので、これらの各分散処理のいずれか、あるいはそれらの組み合わせで導電性高分子微粒子分散水溶液を分散処理することができる。   The ultrasonic wave is processed by a general ultrasonic processing apparatus having a frequency of 40-60 kHz and an output of 50-100 W. The homogenizer gives a high shearing action to the liquid by passing the liquid through the orifice mechanism with a pump. That can be processed with a device that can handle, a hybrid mixer that processes with a device that can stir while revolving and rotating the liquid, a high shear mixer that rotates the rotor and the screen at high speed, and the liquid between the rotor and the screen Is processed with an apparatus that can stir while giving a high shearing action to the liquid, and the conductive polymer fine particle dispersion aqueous solution is dispersed by any of these dispersion treatments or a combination thereof. can do.

上記複素環式モノマーがポリピロール、ポリチオフェン、ポリアニリンおよびそれらの誘導体のいずれかを用いるもので、これらの電子導電性高分子は導電率が非常に高いため、陽極誘電体酸化皮膜上に設けた層の電子導電性高分子の抵抗率を1.0×1010Ω/□以下に設定しやすい上、前記した第1の固体電解質層の有機バインダーであるグリシジル変性ポリエステル、スルホン酸変性ポリエステル、カルボン酸変性ポリエステル等との相溶性が極めて高いので、これらの非電子伝導性高分子との併用により誘電体酸化皮膜上へこれらの電子導電性高分子の被覆率が高められるという効果を有するので、漏れ電流が非常に小さく、かつエージング中にショートが発生しにくい上、容量引き出し率の高い大容量の固体電解コンデンサを構成することができるという作用を有する。 The heterocyclic monomer uses any one of polypyrrole, polythiophene, polyaniline, and derivatives thereof, and these electronic conductive polymers have very high conductivity, so that the layer provided on the anode dielectric oxide film It is easy to set the resistivity of the electron conductive polymer to 1.0 × 10 10 Ω / □ or less, and the glycidyl-modified polyester, sulfonic acid-modified polyester, and carboxylic acid-modified organic binder for the first solid electrolyte layer described above. Since the compatibility with polyester, etc. is extremely high, the combined use of these non-electron conductive polymers has the effect of increasing the coverage of these electronic conductive polymers on the dielectric oxide film, so that leakage current This is a very small capacitor that does not easily cause a short circuit during aging. It has the effect that it is Rukoto.

上記ポリチオフェンとしてポリエチレンジオキシチオフェンを用いることができる。   Polyethylenedioxythiophene can be used as the polythiophene.

以上のように本発明によれば、誘電体酸化皮膜層を形成した陽極箔とエッチング処理あるいはエッチング後化成処理された陰極箔とをその間にセパレータを介在して巻回することによりコンデンサ素子を形成する工程と、有機バインダーおよび界面活性剤を含む溶液にポリピロール、ポリチオフェン、ポリアニリンおよびそれらの誘導体のいずれかの微粒子を分散させ、粘度を5〜100cpに調整した導電性高分子微粒子分散水溶液をコンデンサ素子に含浸させて微粒子の導電性高分子を有した第1の固体電解質層を形成する工程と、この第1の固体電解質層を形成したコンデンサ素子に電解液を含浸する工程とを具備した製造方法としたもので、この方法により、誘電体酸化皮膜層上に微粒子の導電性高分子を有した第1の固体電解質層を比較的容易に形成することができ、導電性高分子微粒子分散体の導電層と電解液を含浸することにより、比較的容易に高周波領域のインピーダンス特性を低くすることができ、固体電解コンデンサの内部抵抗の低い、容量達成率の高い高周波特性に優れた固体電解コンデンサを得ることができるものであり、その工業的な価値は大なるものである。   As described above, according to the present invention, the capacitor element is formed by winding the anode foil formed with the dielectric oxide film layer and the cathode foil subjected to etching treatment or post-etching chemical conversion treatment with a separator interposed therebetween. And a conductive polymer fine particle dispersed aqueous solution in which fine particles of any of polypyrrole, polythiophene, polyaniline and derivatives thereof are dispersed in a solution containing an organic binder and a surfactant and the viscosity is adjusted to 5 to 100 cp. A method of forming a first solid electrolyte layer having a conductive polymer of fine particles by impregnating with a capacitor, and a step of impregnating a capacitor element formed with the first solid electrolyte layer with an electrolytic solution By this method, the first solid electrolyte layer having a fine conductive polymer on the dielectric oxide film layer It can be formed relatively easily, and by impregnating the conductive layer of the conductive polymer fine particle dispersion with the electrolytic solution, the impedance characteristics in the high frequency region can be lowered relatively easily. A solid electrolytic capacitor having a low resistance and a high capacity achievement rate and excellent high frequency characteristics can be obtained, and its industrial value is great.

次に、本発明の具体的な実施の形態について説明する。   Next, specific embodiments of the present invention will be described.

(実施の形態1)
誘電体酸化皮膜の耐電圧が30Vの陽極アルミニウム箔と陰極アルミニウム箔との間にポリエチレンテレフタレート製のセパレータ(厚さ50μm、秤量25g/m2)を介在させて巻回することにより巻回形のコンデンサ素子を作製した(このコンデンサ素子にアジピン酸アンモニウム10重量%エチレングリコール溶液を含浸させた際の周波数120Hzにおける静電容量は250μFであった)。
(Embodiment 1)
A dielectric oxide film is wound by interposing a polyethylene terephthalate separator (thickness 50 μm, weighing 25 g / m 2 ) between an anode aluminum foil and a cathode aluminum foil having a withstand voltage of 30 V. A capacitor element was produced (the capacitance at a frequency of 120 Hz when this capacitor element was impregnated with an ammonium adipate 10 wt% ethylene glycol solution was 250 μF).

次に、ポリエチレンジオキシチオフェンポリスチレンスルホン酸の微粒子(平均粒径200nm)の濃度が1.0重量%と、グリシジル変性ポリエステルの濃度が3.0重量%と界面活性剤を添加した導電性高分子微粒子分散水溶液に上記コンデンサ素子を浸漬して引き上げた後、150℃で5分間乾燥処理を行い、少なくとも誘電体酸化皮膜上に電子導電性高分子であるポリエチレンジオキシチオフェンポリスチレンスルホン酸とグリシジル変性ポリエステルを含有する第1の固体電解質層を形成した。   Next, a conductive polymer in which the concentration of fine particles of polyethylenedioxythiophene polystyrene sulfonic acid (average particle size 200 nm) is 1.0% by weight, the concentration of glycidyl-modified polyester is 3.0% by weight, and a surfactant is added. After the capacitor element is immersed in the fine particle dispersed aqueous solution and pulled up, it is dried at 150 ° C. for 5 minutes, and at least a dielectric oxide film is formed of polyethylenedioxythiophene polystyrenesulfonic acid and glycidyl-modified polyester, which are electronically conductive polymers. A first solid electrolyte layer containing was formed.

続いて、このコンデンサ素子を複素環式モノマーであるエチレンジオキシチオフェン1部と酸化剤であるp−トルエンスルホン酸第二鉄2部と重合溶剤であるn−ブタノール4部を含む混合溶液に浸漬して引き上げた後、85℃で60分間放置することにより導電性高分子であるポリエチレンジオキシチオフェンの第2の固体電解質層を電極箔間に形成した。   Subsequently, the capacitor element is immersed in a mixed solution containing 1 part of ethylenedioxythiophene as a heterocyclic monomer, 2 parts of ferric p-toluenesulfonate as an oxidizing agent and 4 parts of n-butanol as a polymerization solvent. After being pulled up, it was left at 85 ° C. for 60 minutes to form a second solid electrolyte layer of polyethylenedioxythiophene, which is a conductive polymer, between the electrode foils.

このコンデンサ素子を樹脂加硫ブチルゴム封口材(ブチルゴムポリマー30部、カーボン20部、無機充填剤50部から構成、封口体硬度:70IRHD[国際ゴム硬さ単位])と共にアルミニウム製の外装ケースに封入した後、カーリング処理により開口部を封止し固体電解コンデンサを作製した。   This capacitor element was encapsulated in an aluminum outer case together with a resin vulcanized butyl rubber sealant (30 parts butyl rubber polymer, 20 parts carbon, 50 parts inorganic filler, sealant hardness: 70 IRHD [international rubber hardness unit]). Thereafter, the opening was sealed by curling treatment to produce a solid electrolytic capacitor.

(実施の形態2)
上記実施の形態1において、陰極アルミニウム箔を化成処理したアルミニウム箔(化成皮膜耐圧5.0V)を用いた以外は実施の形態1と同様にして固体電解コンデンサを作製した。
(Embodiment 2)
A solid electrolytic capacitor was produced in the same manner as in the first embodiment except that an aluminum foil (chemical conversion film withstand voltage 5.0 V) obtained by chemical conversion of the cathode aluminum foil was used.

(実施の形態3)
上記実施の形態1において、導電性高分子微粒子分散水溶液をポリエチレンジオキシチオフェンポリスチレンスルホン酸の微粒子(平均粒径500nm)の濃度が1.5重量%と、グリシジル変性ポリエステルの濃度が3.0重量%と界面活性剤を添加したものを用いた以外は実施の形態1と同様にして固体電解コンデンサを作製した。
(Embodiment 3)
In the first embodiment, in the conductive polymer fine particle dispersion aqueous solution, the concentration of polyethylenedioxythiophene polystyrenesulfonic acid fine particles (average particle size 500 nm) is 1.5% by weight, and the concentration of glycidyl-modified polyester is 3.0% by weight. A solid electrolytic capacitor was produced in the same manner as in the first embodiment except that a material with a% and a surfactant added was used.

(実施の形態4)
上記実施の形態1において、導電性高分子微粒子分散水溶液を超音波装置(出力100W)により2時間処理を行った後に用いた以外は実施の形態1と同様にして固体電解コンデンサを作製した。
(Embodiment 4)
A solid electrolytic capacitor was produced in the same manner as in the first embodiment except that the aqueous conductive polymer fine particle dispersion was used after being treated for 2 hours by an ultrasonic device (output 100 W).

(実施の形態5)
上記実施の形態1において、導電性高分子微粒子分散水溶液を超音波装置(出力100W)により4時間処理を行った後に用いた以外は実施の形態1と同様にして固体電解コンデンサを作製した。
(Embodiment 5)
A solid electrolytic capacitor was produced in the same manner as in the first embodiment except that the aqueous conductive polymer fine particle dispersion was used after being treated for 4 hours by an ultrasonic device (output 100 W).

(実施の形態6)
上記実施の形態1において、導電性高分子微粒子分散水溶液をホモジナイザー(ヒスコトロン製NS−56)により1時間処理した後に用いた以外は実施の形態1と同様にして固体電解コンデンサを作製した。
(Embodiment 6)
A solid electrolytic capacitor was produced in the same manner as in Embodiment 1 except that the aqueous conductive polymer fine particle dispersion was used after being treated for 1 hour with a homogenizer (NS-56 manufactured by Hiscotron).

(実施の形態7)
上記実施の形態1において、導電性高分子微粒子分散水溶液をハイブリッドミキサー(キーエンス製HM−500)で3時間処理した後に用いた以外は実施の形態1と同様にして固体電解コンデンサを作製した。
(Embodiment 7)
A solid electrolytic capacitor was produced in the same manner as in Embodiment 1 except that the aqueous conductive polymer fine particle dispersion was used after being treated with a hybrid mixer (Keyence HM-500) for 3 hours.

(実施の形態8)
上記実施の形態1において、導電性高分子微粒子分散水溶液をハイシェアミキサー(エム・テクニック製CLM−0.8S)で10分間処理した後に用いた以外は実施の形態1と同様にして固体電解コンデンサを作製した。
(Embodiment 8)
A solid electrolytic capacitor in the same manner as in the first embodiment except that the aqueous conductive polymer fine particle dispersion was used after being treated with a high shear mixer (CLM-0.8S manufactured by M Technique) for 10 minutes. Was made.

(実施の形態9)
上記実施の形態1において、導電性高分子微粒子分散水溶液をポリアニリンの微粒子(平均粒径1000nm)の濃度が5.0重量%と、ポリエチレンテレフタレートの濃度が3.0重量%と界面活性剤を添加したものを、超音波装置により2時間処理を行った後に用いた以外は実施の形態1と同様にして固体電解コンデンサを作製した。
(Embodiment 9)
In the first embodiment, a conductive polymer fine particle-dispersed aqueous solution is added with a surfactant having a polyaniline fine particle concentration (average particle size of 1000 nm) of 5.0% by weight and a polyethylene terephthalate concentration of 3.0% by weight. A solid electrolytic capacitor was produced in the same manner as in Embodiment 1 except that the obtained product was used after being treated for 2 hours with an ultrasonic device.

(実施の形態10)
上記実施の形態1において、導電性高分子微粒子分散水溶液をポリピロールの微粒子(平均粒径800nm)の濃度が3.0重量%と、ポリエチレンテレフタレートの濃度が3.0重量%と界面活性剤を添加したものを、超音波装置により1時間処理を行った後に用いた以外は実施の形態1と同様にして固体電解コンデンサを作製した。
(Embodiment 10)
In the first embodiment, a conductive polymer fine particle dispersed aqueous solution is added with a surfactant having a polypyrrole fine particle (average particle size of 800 nm) concentration of 3.0% by weight and a polyethylene terephthalate concentration of 3.0% by weight. A solid electrolytic capacitor was produced in the same manner as in Embodiment 1 except that the obtained product was used after being treated with an ultrasonic device for 1 hour.

(実施の形態11)
上記実施の形態1において、第1の固体電解質層を形成したコンデンサ素子を、複素環式モノマーであるピロール1部と酸化剤であるナフタレンスルホン酸第二鉄2部と重合溶剤であるn−ブタノール3部を含む混合溶液に浸漬して引き上げた後、85℃で60分間放置することにより導電性高分子であるポリピロールの第2の固体電解質層を電極箔間に形成した以外は実施の形態1と同様にして固体電解コンデンサを作製した。
(Embodiment 11)
In the first embodiment, the capacitor element formed with the first solid electrolyte layer is composed of 1 part of pyrrole as a heterocyclic monomer, 2 parts of ferric naphthalene sulfonate as an oxidizing agent, and n-butanol as a polymerization solvent. Embodiment 1 Except that a second solid electrolyte layer of polypyrrole, which is a conductive polymer, was formed between electrode foils by dipping in a mixed solution containing 3 parts and pulling it up and then standing at 85 ° C. for 60 minutes. A solid electrolytic capacitor was produced in the same manner as described above.

(実施の形態12)
上記実施の形態11において、酸化剤であるナフタレンスルホン酸第二鉄の代わりにメタンスルホン酸第二鉄塩を用いた以外は実施の形態11と同様にして固体電解コンデンサを作製した。
(Embodiment 12)
In the eleventh embodiment, a solid electrolytic capacitor was fabricated in the same manner as in the eleventh embodiment except that ferric methanesulfonate was used instead of ferric naphthalene sulfonate, which is an oxidizing agent.

(実施の形態13)
誘電体酸化皮膜の耐電圧が30Vの陽極アルミニウム箔と化成処理された陰極アルミニウム箔(化成皮膜耐圧5.0V)との間にポリエチレンテレフタレート製のセパレータ(厚さ50μm、秤量25g/m2)を介在させて巻回することにより巻回形のコンデンサ素子を作製した(このコンデンサ素子にアジピン酸アンモニウム10重量%エチレングリコール溶液を含浸させた際の周波数120Hzにおける静電容量は250μFであった)。
(Embodiment 13)
A separator made of polyethylene terephthalate (thickness 50 μm, weighing 25 g / m 2 ) between an anode aluminum foil with a dielectric oxide film with a withstand voltage of 30 V and a chemically treated cathode aluminum foil (chemical conversion film withstand voltage 5.0 V). A wound capacitor element was produced by interposing and winding (capacitance at a frequency of 120 Hz when this capacitor element was impregnated with a 10 wt% ethylene adipate ethylene glycol solution was 250 μF).

次に、ポリエチレンジオキシチオフェンポリスチレンスルホン酸の微粒子(平均粒径500nm)の濃度が1.0重量%と、グリシジル変性ポリエステルの濃度が3.0重量%と界面活性剤を添加した導電性高分子微粒子分散水溶液に上記コンデンサ素子を浸漬して引き上げた後、150℃で5分間乾燥処理を行い、少なくとも誘電体酸化皮膜上に電子導電性高分子であるポリエチレンジオキシチオフェンポリスチレンスルホン酸とグリシジル変性ポリエステルを含有する第1の固体電解質層を形成した。   Next, a conductive polymer in which the concentration of fine particles of polyethylenedioxythiophene polystyrene sulfonic acid (average particle size 500 nm) is 1.0% by weight, the concentration of glycidyl-modified polyester is 3.0% by weight, and a surfactant is added. After the capacitor element is immersed in the fine particle dispersed aqueous solution and pulled up, it is dried at 150 ° C. for 5 minutes, and at least a dielectric oxide film is formed of polyethylenedioxythiophene polystyrenesulfonic acid and glycidyl-modified polyester, which are electronically conductive polymers. A first solid electrolyte layer containing was formed.

続いて、第1の固体電解質層を形成したコンデンサ素子にアジピン酸アンモニウム10%を溶かしたエチレングリコール電解液を含浸した。   Subsequently, the capacitor element on which the first solid electrolyte layer was formed was impregnated with an ethylene glycol electrolytic solution in which 10% ammonium adipate was dissolved.

このコンデンサ素子を樹脂加硫ブチルゴム封口材(ブチルゴムポリマー30部、カーボン20部、無機充填剤50部から構成、封口体硬度:70IRHD[国際ゴム硬さ単位])と共にアルミニウム製の外装ケースに封入した後、カーリング処理により開口部を封止して固体電解コンデンサを作製した。   This capacitor element was encapsulated in an aluminum outer case together with a resin vulcanized butyl rubber sealant (30 parts butyl rubber polymer, 20 parts carbon, 50 parts inorganic filler, sealant hardness: 70 IRHD [international rubber hardness unit]). Thereafter, the opening was sealed by curling treatment to produce a solid electrolytic capacitor.

(比較例)
誘電体酸化皮膜の耐電圧が30Vの陽極アルミニウム箔と陰極アルミニウム箔との間にポリエチレンテレフタレート製のセパレータ(厚さ50μm、秤量25g/m2)を介在させて巻回することにより巻回形のコンデンサ素子を作製した(このコンデンサ素子にアジピン酸アンモニウム10重量%のエチレングリコール溶液を含浸させた際の周波数120Hzにおける静電容量は250μFであった)。
(Comparative example)
A dielectric oxide film is wound by interposing a polyethylene terephthalate separator (thickness 50 μm, weighing 25 g / m 2 ) between an anode aluminum foil and a cathode aluminum foil having a withstand voltage of 30 V. A capacitor element was produced (the capacitance at a frequency of 120 Hz when this capacitor element was impregnated with an ethylene glycol solution containing 10% by weight of ammonium adipate was 250 μF).

このコンデンサ素子を複素環式モノマーであるエチレンジオキシチオフェン1部と酸化剤であるp−トルエンスルホン酸第二鉄2部と重合溶剤であるn−ブタノール4部を含む混合溶液に浸漬して引き上げた後、85℃で60分間放置することにより導電性高分子であるポリエチレンジオキシチオフェンを電極箔間に形成した。   Immerse this capacitor element in a mixed solution containing 1 part of ethylenedioxythiophene as a heterocyclic monomer, 2 parts of ferric p-toluenesulfonate as an oxidizing agent and 4 parts of n-butanol as a polymerization solvent, and pull it up. Then, the conductive polymer, polyethylenedioxythiophene, was formed between the electrode foils by leaving it at 85 ° C. for 60 minutes.

このコンデンサ素子を樹脂加硫ブチルゴム封口材(ブチルゴムポリマー30部、カーボン20部、無機充填剤50部から構成、封口体硬度:70IRHD[国際ゴム硬さ単位])と共にアルミニウム製の外装ケースに封入した後、カーリング処理により開口部を封止し固体電解コンデンサを作製した。   This capacitor element was encapsulated in an aluminum outer case together with a resin vulcanized butyl rubber sealant (30 parts butyl rubber polymer, 20 parts carbon, 50 parts inorganic filler, sealant hardness: 70 IRHD [international rubber hardness unit]). Thereafter, the opening was sealed by curling treatment to produce a solid electrolytic capacitor.

上記実施の形態1〜13と比較例の固体電解コンデンサについて、その静電容量(測定周波数120Hz)、tanδ(測定周波数120Hz)、インピーダンス(測定周波数100kHz)を比較した結果を(表1)に示す。なお、試験個数はいずれも50個であり、静電容量、インピーダンスはショート品を除いたサンプルについての平均値で示した。   About the solid electrolytic capacitor of the said Embodiments 1-13 and a comparative example, the result of having compared the electrostatic capacitance (measuring frequency 120Hz), tan-delta (measuring frequency 120Hz), and impedance (measuring frequency 100kHz) is shown in (Table 1). . The number of tests was 50, and the capacitance and impedance were shown as average values for samples excluding short-circuited products.

Figure 2008205496
Figure 2008205496

(表1)より明らかなように、本発明の実施の形態1〜12の固体電解コンデンサは、誘電体酸化皮膜層上に導電性高分子の微粒子を有した第1の固体電解質層を比較的容易に形成することができ、この第1の固体電解質層の表面に形成される第2の固体電解質層との密着性も向上することができるので、固体電解コンデンサの内部抵抗を低くし、容量達成率の高い高周波特性に優れた固体電解コンデンサを得ることができる。   As is clear from Table 1, the solid electrolytic capacitors according to the first to twelfth embodiments of the present invention are obtained by relatively disposing the first solid electrolyte layer having conductive polymer fine particles on the dielectric oxide film layer. Since it can be easily formed and the adhesion to the second solid electrolyte layer formed on the surface of the first solid electrolyte layer can also be improved, the internal resistance of the solid electrolytic capacitor is reduced, and the capacitance A solid electrolytic capacitor having a high achievement rate and excellent high frequency characteristics can be obtained.

また、導電性高分子微粒子分散水溶液を超音波処理(実施の形態4および5)、ホモジナイザー処理(実施の形態6)、ハイブリッドミキサー処理(実施の形態7)、ハイシェアミキサー処理(実施の形態8)することにより、第1の固体電解質層を緻密で均一に形成することができることから、容量およびインピーダンス特性に優れた固体電解コンデンサを得ることができる。   In addition, the conductive polymer fine particle-dispersed aqueous solution is subjected to ultrasonic treatment (Embodiments 4 and 5), homogenizer treatment (Embodiment 6), hybrid mixer treatment (Embodiment 7), and high shear mixer treatment (Embodiment 8). ), The first solid electrolyte layer can be formed densely and uniformly, so that a solid electrolytic capacitor having excellent capacitance and impedance characteristics can be obtained.

特に実施の形態8の固体電解コンデンサは、導電性高分子微粒子分散水溶液の分散処理時間を短くしても分散効率を高めることができ、容量およびインピーダンス特性をさらに高めることができる。   In particular, the solid electrolytic capacitor of Embodiment 8 can increase the dispersion efficiency even if the dispersion treatment time of the conductive polymer fine particle-dispersed aqueous solution is shortened, and can further increase the capacitance and impedance characteristics.

上記超音波処理およびハイシェアミキサー処理において、導電性高分子微粒子分散水溶液の分散処理時間と粘性の関係をBRANSON製のBRANSONIC220を用いて測定した結果を図1に示す。同図より超音波処理では1〜4時間処理することにより低粘性(100cp以下)にすることができ、また、ハイシェアミキサー処理では10分で低粘性になり、この低粘性(5〜100cp)の導電性高分子微粒子分散水溶液を用いることにより、緻密で均一な第1の固体電解質層を形成することができるものである。   FIG. 1 shows the results of measuring the relationship between the dispersion treatment time and the viscosity of the aqueous conductive polymer fine particle dispersion using the BRANSONIC 220 manufactured by BRANSON in the ultrasonic treatment and the high shear mixer treatment. From the figure, ultrasonic treatment can reduce the viscosity (100 cp or less) by processing for 1 to 4 hours, and high shear mixer treatment reduces the viscosity in 10 minutes. This low viscosity (5 to 100 cp) By using the aqueous conductive polymer fine particle dispersion aqueous solution, a dense and uniform first solid electrolyte layer can be formed.

さらに、実施の形態13においては、導電性高分子微粒子分散水溶液により第1の固体電解質層を形成したコンデンサ素子に、エチレングリコール電解液を含浸した固体電解コンデンサで、比較的容易に高周波領域のインピーダンス特性の低い固体電解コンデンサを得ることができるものである。   Further, in the thirteenth embodiment, a capacitor element in which the first solid electrolyte layer is formed with the conductive polymer fine particle dispersed aqueous solution is a solid electrolytic capacitor impregnated with an ethylene glycol electrolytic solution. A solid electrolytic capacitor having low characteristics can be obtained.

本発明の実施の形態における超音波およびハイシェアミキサーで導電性高分子微粒子分散水溶液を分散処理したときの処理時間と粘性の関係を示すグラフThe graph which shows the relationship between the processing time and viscosity when carrying out the dispersion process of the electroconductive polymer fine particle dispersion | distribution aqueous solution with the ultrasonic wave and high shear mixer in embodiment of this invention

Claims (2)

誘電体酸化皮膜層を形成した陽極箔とエッチング処理あるいはエッチング後化成処理された陰極箔とをその間にセパレータを介在させて巻回することによりコンデンサ素子を形成する工程と、有機バインダーおよび界面活性剤を含む溶液にポリピロール、ポリチオフェン、ポリアニリンおよびそれらの誘導体のいずれかの微粒子を分散させ、粘度を5〜100cpに調整した導電性高分子微粒子分散水溶液をコンデンサ素子に含浸させて微粒子の導電性高分子を有した第1の固体電解質層を形成する工程と、この第1の固体電解質層を形成したコンデンサ素子に電解液を含浸する工程とを具備した固体電解コンデンサの製造方法。 A step of forming a capacitor element by winding an anode foil formed with a dielectric oxide film layer and a cathode foil subjected to etching treatment or post-etching chemical conversion treatment with a separator interposed therebetween, an organic binder and a surfactant In the solution containing polypyrrole, polythiophene, polyaniline and their derivatives, the capacitor element is impregnated with a conductive polymer fine particle-dispersed aqueous solution whose viscosity is adjusted to 5 to 100 cp, and the fine conductive polymer A method for producing a solid electrolytic capacitor, comprising: a step of forming a first solid electrolyte layer having a liquid crystal; and a step of impregnating a capacitor element having the first solid electrolyte layer with an electrolytic solution. 微粒子が200〜10000nmである請求項1に記載の固体電解コンデンサの製造方法。 The method for producing a solid electrolytic capacitor according to claim 1, wherein the fine particles are 200 to 10,000 nm.
JP2008099058A 2001-07-16 2008-04-07 Manufacturing method of solid electrolytic capacitor Expired - Fee Related JP4831108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008099058A JP4831108B2 (en) 2001-07-16 2008-04-07 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001214985 2001-07-16
JP2001214985 2001-07-16
JP2008099058A JP4831108B2 (en) 2001-07-16 2008-04-07 Manufacturing method of solid electrolytic capacitor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002073627A Division JP4329299B2 (en) 2001-07-16 2002-03-18 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2008205496A true JP2008205496A (en) 2008-09-04
JP4831108B2 JP4831108B2 (en) 2011-12-07

Family

ID=39782584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008099058A Expired - Fee Related JP4831108B2 (en) 2001-07-16 2008-04-07 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4831108B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094462A1 (en) * 2011-12-19 2013-06-27 テイカ株式会社 Electrolyte capacitor, and method for producing same
JP2014022748A (en) * 2012-07-19 2014-02-03 Avx Corp Nonionic surfactant for solid electrolyte of electrolytic capacitor
JP2014195116A (en) * 2010-02-15 2014-10-09 Panasonic Corp Method for manufacturing electrolytic capacitor
US10121600B2 (en) 2012-07-19 2018-11-06 Avx Corporation Solid electrolytic capacitor with improved performance at high voltages
US10297392B2 (en) 2012-07-19 2019-05-21 Avx Corporation Temperature stable solid electrolytic capacitor
CN112805798A (en) * 2018-08-10 2021-05-14 阿维科斯公司 Solid electrolytic capacitor containing polyaniline

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0494110A (en) * 1990-08-09 1992-03-26 Kao Corp Manufacture of solid electrolytic capacitor
JPH1145824A (en) * 1997-07-24 1999-02-16 Matsushita Electric Ind Co Ltd Capacitor and its manufacture
JPH1167602A (en) * 1997-08-26 1999-03-09 Matsushita Electric Ind Co Ltd Capacitor and its manufacture
JPH11186110A (en) * 1997-10-17 1999-07-09 Sanyo Electric Co Ltd Electrolytic capacitor and manufacture thereof
JP2000068152A (en) * 1998-08-19 2000-03-03 Nichicon Corp Solid electrolytic capacitor and manufacture therefor
JP2001155966A (en) * 1999-09-14 2001-06-08 Matsushita Electric Ind Co Ltd Method of manufacturing capacitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0494110A (en) * 1990-08-09 1992-03-26 Kao Corp Manufacture of solid electrolytic capacitor
JPH1145824A (en) * 1997-07-24 1999-02-16 Matsushita Electric Ind Co Ltd Capacitor and its manufacture
JPH1167602A (en) * 1997-08-26 1999-03-09 Matsushita Electric Ind Co Ltd Capacitor and its manufacture
JPH11186110A (en) * 1997-10-17 1999-07-09 Sanyo Electric Co Ltd Electrolytic capacitor and manufacture thereof
JP2000068152A (en) * 1998-08-19 2000-03-03 Nichicon Corp Solid electrolytic capacitor and manufacture therefor
JP2001155966A (en) * 1999-09-14 2001-06-08 Matsushita Electric Ind Co Ltd Method of manufacturing capacitor

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016026402A (en) * 2010-02-15 2016-02-12 パナソニックIpマネジメント株式会社 Electrolytic capacitor manufacturing method and electrolytic capacitor
US11398358B2 (en) 2010-02-15 2022-07-26 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor and manufacturing method therefor
US10679800B2 (en) 2010-02-15 2020-06-09 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor and manufacturing method therefor
US10559432B2 (en) 2010-02-15 2020-02-11 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor and manufacturing method therefor
US9966200B2 (en) 2010-02-15 2018-05-08 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor and manufacturing method therefor
US9595396B2 (en) 2010-02-15 2017-03-14 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor and manufacturing method therefor
JP2014195116A (en) * 2010-02-15 2014-10-09 Panasonic Corp Method for manufacturing electrolytic capacitor
US9208954B2 (en) 2010-02-15 2015-12-08 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor
CN104040658B (en) * 2011-12-19 2016-06-22 帝化株式会社 Electrolysis condenser and manufacture method thereof
CN105551801A (en) * 2011-12-19 2016-05-04 帝化株式会社 Solid electrolyte capacitor and a method for manufacturing the same
WO2013094462A1 (en) * 2011-12-19 2013-06-27 テイカ株式会社 Electrolyte capacitor, and method for producing same
KR101660604B1 (en) 2011-12-19 2016-09-27 데이카 가부시키가이샤 Electrolyte capacitor, and method for producing same
US9589738B2 (en) 2011-12-19 2017-03-07 Tayca Corporation Solid electrolyte capacitor and a method for manufacturing the same
CN104040658A (en) * 2011-12-19 2014-09-10 帝化株式会社 Electrolyte capacitor, and method for producing same
KR20140107201A (en) * 2011-12-19 2014-09-04 데이카 가부시키가이샤 Electrolyte capacitor, and method for producing same
JP5259895B1 (en) * 2011-12-19 2013-08-07 テイカ株式会社 Electrolytic capacitor and manufacturing method thereof
US10121600B2 (en) 2012-07-19 2018-11-06 Avx Corporation Solid electrolytic capacitor with improved performance at high voltages
US10297392B2 (en) 2012-07-19 2019-05-21 Avx Corporation Temperature stable solid electrolytic capacitor
CN103578768A (en) * 2012-07-19 2014-02-12 Avx公司 Nonionic surfactant in electrolytic capacitor solid electrolyte
JP2014022748A (en) * 2012-07-19 2014-02-03 Avx Corp Nonionic surfactant for solid electrolyte of electrolytic capacitor
CN112805798A (en) * 2018-08-10 2021-05-14 阿维科斯公司 Solid electrolytic capacitor containing polyaniline

Also Published As

Publication number Publication date
JP4831108B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
JP4329299B2 (en) Manufacturing method of solid electrolytic capacitor
JP4911509B2 (en) Electrolytic capacitor and manufacturing method thereof
CN101106021B (en) Method of manufacturing electrolytic capacitor and electrolytic capacitor
US9287053B2 (en) Method of manufacturing solid electrolytic capacitor
JP4983744B2 (en) Manufacturing method of solid electrolytic capacitor
WO1997041577A1 (en) Solid electrolyte capacitor and its manufacture
JP4831108B2 (en) Manufacturing method of solid electrolytic capacitor
TWI567130B (en) Conductive polymer composite and preparation and use thereof
JP2005109252A (en) Method of manufacturing solid electrolytic capacitor
JP6803519B2 (en) Manufacturing method of electrolytic capacitors
JP2008300637A (en) Conductive paste for solid electrolytic capacitor electrode, and manufacturing method of electrode of solid electrolytic capacitor using the conductive paste
TW201938659A (en) Method for forming polymer composite material on capacitor element
JPH1145824A (en) Capacitor and its manufacture
JP2001102255A (en) Tantalum solid electrolytic capacitor and manufacturing method therefor
US20080233275A1 (en) Manufacturing method of tantalum condenser
JP2001110683A (en) Method of manufacturing capacitor
JP2003037024A (en) Method of manufacturing solid electrolytic capacitor
JP2000269070A (en) Manufacturing of capacitor
TWI532783B (en) Conductive material formulation and use thereof
JP3671828B2 (en) Manufacturing method of solid electrolytic capacitor
JP2003173932A (en) Solid-state capacitor and its manufacturing method
CN110189920B (en) Conductive polymer electrode material, preparation method thereof and aluminum electrolytic capacitor
CN102723201B (en) Electrolyte material formulation, electrolyte material composition formed therefrom, and use thereof
JP4258619B2 (en) Manufacturing method of solid electrolytic capacitor
JP2765440B2 (en) Method for manufacturing solid electrolytic capacitor

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

R151 Written notification of patent or utility model registration

Ref document number: 4831108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees