JP2008192826A - Nonaqueous electrolytic solution for electrochemical capacitor - Google Patents

Nonaqueous electrolytic solution for electrochemical capacitor Download PDF

Info

Publication number
JP2008192826A
JP2008192826A JP2007025677A JP2007025677A JP2008192826A JP 2008192826 A JP2008192826 A JP 2008192826A JP 2007025677 A JP2007025677 A JP 2007025677A JP 2007025677 A JP2007025677 A JP 2007025677A JP 2008192826 A JP2008192826 A JP 2008192826A
Authority
JP
Japan
Prior art keywords
electrolytic solution
electrolyte
alkyl
nonaqueous
electrochemical capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007025677A
Other languages
Japanese (ja)
Inventor
Takeshi Baba
健 馬場
Yusuke Watanuki
祐介 綿貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomiyama Pure Chemical Industries Ltd
Original Assignee
Tomiyama Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomiyama Pure Chemical Industries Ltd filed Critical Tomiyama Pure Chemical Industries Ltd
Priority to JP2007025677A priority Critical patent/JP2008192826A/en
Publication of JP2008192826A publication Critical patent/JP2008192826A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolytic solution for an electrochemical capacitor which significantly suppresses a decrease in the capacity and an increase in internal resistance of the electrochemical capacitor for a long period. <P>SOLUTION: The nonaqueous electrolytic solution for the electrochemical capacitor is prepared by adding the compound represented by the formula (1) to an electrolytic solution made by dissolving a quaternary onium salt as a main electrolyte in a nonaqueous solvent. In the formula (1), X<SB>1</SB>denotes C=O or SO<SB>2</SB>; X<SB>2</SB>denotes an alkylene having 1 to 4 carbon atoms or a substituted alkylene, or a phenylene or a substituted phenylene; Y denotes an alkylene having 1 to 4 carbon atoms; and a denotes any one of integers of 0 to 3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、長期に亘って、容量の低下及び内部抵抗の増加を顕著に抑制できる電気化学キャパシタ用非水電解液及び該非水電解液を用いた電気化学キャパシタに関する。   The present invention relates to a nonaqueous electrolytic solution for an electrochemical capacitor capable of remarkably suppressing a decrease in capacity and an increase in internal resistance over a long period of time, and an electrochemical capacitor using the nonaqueous electrolytic solution.

近年、電気二重層キャパシタ、電解キャパシタなどの電気化学キャパシタは、電子機器や電気機器などにおけるバックアップ電源として、また、電話機、携帯電話、AV機器などの通信機器などにおけるメモリーバックアップとして、さらには、太陽電池と組み合わせた電源などとして幅広い用途に用いられている。特に、最近の電子機器の驚異的な発展に伴い、電気化学キャパシタに対しても長時間にわたり、所定の容量を維持し、且つ低い内部抵抗を保持するキャパシタが要求されている。   In recent years, electrochemical capacitors such as electric double layer capacitors and electrolytic capacitors have been used as backup power sources for electronic devices and electric devices, as memory backups for communication devices such as telephones, mobile phones and AV devices, and for solar power. It is used in a wide range of applications as a power source combined with a battery. In particular, with the remarkable development of recent electronic devices, there has been a demand for a capacitor that maintains a predetermined capacity and retains a low internal resistance for a long time even for an electrochemical capacitor.

従来より、電気化学キャパシタの性能を左右する要素として電解液があり、該電解液としては耐電圧を高く、エネルギー密度が高い特徴を有する非水電解液が幅広く使用されている。なかでも、非水電解液の電解質として、アルキル第四級アンモニウム、スピロ構造を有するアンモニウム、アルキルイミダゾリウム、アルキルイミダゾリニウム、アルキル四級ホスホニウムなどの第四級オニウムを陽イオンとし、過塩素酸イオン、四フッ化ホウ酸イオン、六フッ化リン酸イオン、トリフルオロメタンスルホン酸イオンなどを陰イオンとする第四級オニウム塩が使用されている。   2. Description of the Related Art Conventionally, there is an electrolytic solution as an element that influences the performance of an electrochemical capacitor. As the electrolytic solution, nonaqueous electrolytic solutions having a high withstand voltage and a high energy density have been widely used. Among them, as the electrolyte of the non-aqueous electrolyte, a quaternary onium such as an alkyl quaternary ammonium, an ammonium having a spiro structure, an alkyl imidazolium, an alkyl imidazolinium, or an alkyl quaternary phosphonium is used as a cation, and perchloric acid. Quaternary onium salts having anions such as ions, tetrafluoroborate ions, hexafluorophosphate ions and trifluoromethanesulfonate ions are used.

これらの第四級オニウム塩電解質の非水溶媒としては、炭酸プロピレン(PC)、炭酸エチレン(EC)、γ−ブチロラクトン(GBL)、炭酸ジメチル(DMC)、炭酸エチルメチル(MEC)、1,2−ジメトキシエタン(DME)、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン(2−MeTHF)、スルホラン(SL)、3−メチルスルホラン(3−MeSL)、アセトニトリル(AN)などを一種若しくは二種以上が使用されている。   Nonaqueous solvents for these quaternary onium salt electrolytes include propylene carbonate (PC), ethylene carbonate (EC), γ-butyrolactone (GBL), dimethyl carbonate (DMC), ethyl methyl carbonate (MEC), 1, 2 -One or more of dimethoxyethane (DME), tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-MeTHF), sulfolane (SL), 3-methylsulfolane (3-MeSL), acetonitrile (AN), etc. are used. Has been.

従来、上記第四級オニウム塩電解質を主電解質として非水溶媒中に溶解した電気化学キャパシタ用非水電解液は種々のものが提案されているが、かかる非水電解液を使用する電気化学キャパシタを長時間に亘って使用した場合、充放電の繰り返しなどに伴って、電気化学キャパシタの容量の減少や内部抵抗の増加を引き起こす難点がある。しかしながら、かかる難点を十分に解消する手段はなお知られていない。   Conventionally, various nonaqueous electrolytic solutions for electrochemical capacitors in which the quaternary onium salt electrolyte is used as a main electrolyte and dissolved in a nonaqueous solvent have been proposed. Electrochemical capacitors using such a nonaqueous electrolytic solution have been proposed. Is used for a long time, there is a difficulty in causing a decrease in the capacity of the electrochemical capacitor and an increase in internal resistance due to repeated charging and discharging. However, there is still no known means for sufficiently solving such difficulties.

特許第3276127号公報Japanese Patent No. 3276127 公表公報2002−543178号公報Publication 2002-543178 特開2004−111921号公報JP 2004-111921 A

本発明は、上記従来技術の有する欠点を解消することを目的とするものであり、より詳しくは、第四級オニウム塩の電解質を非水溶媒中に溶解した電解液を使用する電気化学キャパシタを長時間に亘って使用した場合、充放電の繰り返しなどに伴って、電気化学キャパシタの容量の減少及び内部抵抗の増加を引き起こすことない電気化学キャパシタ用非水電解液を提供することを目的とする。   An object of the present invention is to eliminate the disadvantages of the prior art, and more specifically, an electrochemical capacitor using an electrolytic solution in which an electrolyte of a quaternary onium salt is dissolved in a non-aqueous solvent. An object of the present invention is to provide a non-aqueous electrolyte for an electrochemical capacitor that does not cause a decrease in the capacity of the electrochemical capacitor and an increase in internal resistance due to repeated charge and discharge when used for a long time. .

本発明者らは、上記の課題を達成するため鋭意研究を進めたところ、第四級オニウム塩電解質を主溶質とする非水電解液中に、下記の特定の構造を有する式(1)の化合物を好ましくは10ppm以上という微量添加含有せしめることにより、電気化学キャパシタの容量の減少や内部抵抗の増加を顕著に抑制しうることを見出した。   As a result of diligent research to achieve the above-mentioned problems, the inventors of the present invention have a formula (1) having the following specific structure in a non-aqueous electrolyte containing a quaternary onium salt electrolyte as a main solute. It has been found that a decrease in the capacity of an electrochemical capacitor and an increase in internal resistance can be remarkably suppressed by adding a compound, preferably in a trace amount of 10 ppm or more.

本発明で電解液中に添加する下式(1)の化合物を構成するのと同じ陰イオンを有するリチウム塩電解質は、リチウム電池やリチウムイオン電池用の非水溶媒の電解質として知られている(特許文献1及び特許文献2を参照)。しかし、これらは、リチウム塩電解質を主溶質とするリチウム電池用であり、リチウム塩電解質を有さない本発明の電気化学キャパシタとは異なる。   The lithium salt electrolyte having the same anion as that constituting the compound of the following formula (1) added to the electrolytic solution in the present invention is known as an electrolyte of a nonaqueous solvent for a lithium battery or a lithium ion battery ( (See Patent Document 1 and Patent Document 2). However, these are for lithium batteries having a lithium salt electrolyte as a main solute, and are different from the electrochemical capacitor of the present invention which does not have a lithium salt electrolyte.

また、特許文献3には、本発明の下式(1)の化合物と同じ陰イオンを含む環状のアミジニウム化合物を電解質とする非水電解液を使用する電気化学キャパシタが提案されている。しかし、この環状のアミジニウム化合物は非水電解液の主電解質として使用されており、本発明のように、第四級オニウム塩を主溶質とする非水電解液に対して式(1)の化合物を、好ましくは10ppm以上という微量添加含有する場合とは異なる。
かくして、第四級オニウム塩電解質を主溶質とする非水電解液中に、下記の特定の構造を有する式(1)の化合物を微量添加含有せしめた場合に、電気化学キャパシタの容量の減少や内部抵抗の増加を顕著に抑制しうることは本発明者による新規な知見である。
Further, Patent Document 3 proposes an electrochemical capacitor using a nonaqueous electrolytic solution in which a cyclic amidinium compound containing the same anion as the compound of the following formula (1) of the present invention is used as an electrolyte. However, this cyclic amidinium compound is used as the main electrolyte of the non-aqueous electrolyte, and as in the present invention, the compound of the formula (1) is compared with the non-aqueous electrolyte having a quaternary onium salt as the main solute. Is preferably different from the case of adding a trace amount of 10 ppm or more.
Thus, when a small amount of the compound of the formula (1) having the following specific structure is added to the non-aqueous electrolyte containing the quaternary onium salt electrolyte as the main solute, the capacity of the electrochemical capacitor is reduced. It is a novel finding by the present inventor that the increase in internal resistance can be remarkably suppressed.

かくして、本発明は下記の要旨を有するものである。
(1)第四級オニウム塩の主電解質として非水溶媒中に溶解した電解液中に、下式(1)で表される化合物を添加含有することを特徴とする電気化学キャパシタ用非水電解液。

Figure 2008192826
(式中、X1はC=O若しくはSOであり、Xは炭素数1〜4のアルキレン若しくは置換アルキレン、又はフェニレン若しくは置換フェニレン表す。また、Yは炭素数1〜4のアルキレンであり、aは0〜3の整数を表す。r、sは0〜2であり、r + s=2である。Mは、ホウ素原子又はP=Oを表し、Aは、アルキル第四級アンモニウム、アルキル第四級ホスホニウム、スピロ構造を有するアンモニウム、アルキルイミダゾリウム又はアルキルイミダゾリニウムである。) Thus, the present invention has the following gist.
(1) Nonaqueous electrolysis for electrochemical capacitors, characterized in that a compound represented by the following formula (1) is added and contained in an electrolytic solution dissolved in a nonaqueous solvent as a main electrolyte of a quaternary onium salt liquid.
Figure 2008192826
(In the formula, X 1 represents C═O or SO 2 , X 2 represents alkylene having 1 to 4 carbon atoms or substituted alkylene, or phenylene or substituted phenylene. Y represents alkylene having 1 to 4 carbon atoms. , A represents an integer of 0 to 3. r and s are 0 to 2 and r + s = 2, M represents a boron atom or P═O, A represents an alkyl quaternary ammonium, Alkyl quaternary phosphonium, ammonium having spiro structure, alkyl imidazolium or alkyl imidazolinium.)

(2)式(1)で表される化合物が、該式中、X1はC=Oであり、Xは炭素数1〜4のアルキレンであり、Yは炭素数1〜4のアルキレンであり、aは0〜3であり、r、sは1である化合物である、上記(1)に記載の電気化学キャパシタ用非水電解液。
(3)Aが、アルキル第四級アンモニウム、スピロ構造を有するアンモニウム、又はアルキルイミダゾリウムである、上記(1)又は(2)に記載の電気化学キャパシタ用非水電解液。
(2) In the compound represented by the formula (1), X 1 is C═O, X 2 is alkylene having 1 to 4 carbon atoms, and Y is alkylene having 1 to 4 carbon atoms. The non-aqueous electrolyte for electrochemical capacitors according to (1) above, wherein a is 0 to 3 and r and s are 1.
(3) The nonaqueous electrolytic solution for electrochemical capacitors according to (1) or (2) above, wherein A is alkyl quaternary ammonium, ammonium having a spiro structure, or alkyl imidazolium.

(4)式(1)で表される化合物の添加量が10ppm〜5重量%である、上記(1)〜(3)のいずれかに記載の電気化学キャパシタ用非水電解液。
(5)主電解質が、アルキル第四級アンモニウム、アルキル第四級ホスホニウム、スピロ構造を有するアンモニウム、アルキルイミダゾリウム及びアルキルイミダゾリニウムからなる群から選ばれる少なくとも1種の陽イオンを含む塩である、上記(1)〜(4)のいずれかに記載の電気化学キャパシタ用非水電解液。
(4) The nonaqueous electrolytic solution for electrochemical capacitors according to any one of (1) to (3) above, wherein the amount of the compound represented by formula (1) is 10 ppm to 5 wt%.
(5) The main electrolyte is a salt containing at least one cation selected from the group consisting of alkyl quaternary ammonium, alkyl quaternary phosphonium, ammonium having a spiro structure, alkyl imidazolium, and alkyl imidazolinium. The nonaqueous electrolytic solution for electrochemical capacitors according to any one of (1) to (4) above.

(6)非水溶媒がカーボネート類、エステル類、エーテル類、ラクトン類、ニトリル類、スルホン類及びアミド類からなる群から選ばれる少なくとも1種である、上記(1)〜(5)のいずれかに記載の電気化学キャパシタ用非水電解液。
(7)電気化学キャパシタが電気二重層キャパシタである、上記(1)〜(6)のいずれかに記載の電気化学キャパシタ用非水電解液。
(8)上記(1)〜(7)のいずれかに記載の電気化学キャパシタ用非水電解液を用いた電気化学キャパシタ。
(6) Any of the above (1) to (5), wherein the non-aqueous solvent is at least one selected from the group consisting of carbonates, esters, ethers, lactones, nitriles, sulfones and amides. A nonaqueous electrolytic solution for an electrochemical capacitor as described in 1.
(7) The nonaqueous electrolytic solution for electrochemical capacitors according to any one of (1) to (6), wherein the electrochemical capacitor is an electric double layer capacitor.
(8) An electrochemical capacitor using the nonaqueous electrolytic solution for electrochemical capacitors according to any one of (1) to (7).

本発明によれば、第四級オニウム塩を主電解質として水溶媒中に溶解した電解液を使用する電気化学キャパシタを長時間に亘って使用した場合も、キャパシタ容量の減少及び内部抵抗の増加を顕著に抑制できる。
本発明において、上記の式(1)の特定の構造を有する化合物を添加含有する、第四級オニウム塩を主電解質とする非水電解液により、何故に上記の効果が達成されるかについては必ずしも明らかではないが、多くの場合、電機化学キャパシタの特性劣化の原因と推測されている活性炭中の水分が、本発明の非水電解液中の上記特定の化合物と反応するためと思われる。活性炭中の水分は200℃以上の高温で真空乾燥しても完全には除去できず、残存水分が容量の減少、内部抵抗の増加の原因となる。本発明の非水電解液中の上記特定の化合物は水との反応性が良いため、活性炭中の残存水分と反応し除去されることにより容量の低下や内部抵抗の減少を抑制すると思われる。
According to the present invention, even when an electrochemical capacitor using an electrolytic solution in which a quaternary onium salt is used as a main electrolyte and dissolved in an aqueous solvent is used for a long time, the capacitance of the capacitor is reduced and the internal resistance is increased. Remarkably suppressed.
In the present invention, why the above effect is achieved by the non-aqueous electrolyte containing a quaternary onium salt as the main electrolyte, which additionally contains the compound having the specific structure of the above formula (1). Although it is not necessarily clear, in many cases, it is considered that the water in the activated carbon, which is presumed to cause the deterioration of the characteristics of the electrochemical capacitor, reacts with the specific compound in the non-aqueous electrolyte of the present invention. The moisture in the activated carbon cannot be completely removed even when vacuum-dried at a high temperature of 200 ° C. or higher, and the residual moisture causes a decrease in capacity and an increase in internal resistance. Since the specific compound in the non-aqueous electrolyte of the present invention has good reactivity with water, it seems to suppress the decrease in capacity and the decrease in internal resistance by reacting with and removing the residual moisture in the activated carbon.

本発明では、第四級オニウム塩を主電解質として非水溶媒中に溶解した電解液中に、下記する式(1)の特定の構造を有する化合物が添加含有される。

Figure 2008192826
式中、X1はC=O若しくはSOであり、好ましくはC=Oである。Xは炭素数1〜4のアルキレン若しくは置換アルキレン、又はフェニレン若しくは置換フェニレンであり、好ましくは炭素数1〜4のアルキレンである。また、Yは炭素数1〜4のアルキレンである。aは0〜3、好ましくは0である。r、sは0〜2であり、r + s=2である。Mは、ホウ素原子又はP=Oを表し、Aは、アルキル第四級アンモニウム、アルキル第四級ホスホニウム、スピロ構造を有するアンモニウム、アルキルイミダゾリウム又はアルキルイミダゾリニウムである。 In the present invention, a compound having a specific structure of the following formula (1) is added and contained in an electrolytic solution obtained by dissolving a quaternary onium salt as a main electrolyte in a nonaqueous solvent.
Figure 2008192826
In the formula, X 1 is C═O or SO 2 , and preferably C═O. X 2 is alkylene having 1 to 4 carbon atoms or substituted alkylene, or phenylene or substituted phenylene, and preferably alkylene having 1 to 4 carbon atoms. Y is alkylene having 1 to 4 carbon atoms. a is 0 to 3, preferably 0. r and s are 0 to 2, and r + s = 2. M represents a boron atom or P = O, and A is an alkyl quaternary ammonium, an alkyl quaternary phosphonium, an ammonium having a spiro structure, an alkyl imidazolium, or an alkyl imidazolinium.

上記式(1)における第四級オニウム(A)の好ましい具体例としては、下記のものが挙げられる。トリエチルメチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラブチルアンモニウムイオン、テトラメチルアンモニウムイオンなどのアルキル四級アンモニウムイオン;1,1’-スピロビピロリジニウムイオン、1,1’-スピロビピぺリジニウムイオン、スピロ[ピペリジン-1,1’-ピロリジニウム]イオンなどのスピロ構造を有するアンモニウムイオン;エチルメチルイミダゾリウムイオンなどのアルキルイミダゾリウムイオン、1,1’-メチルエチルピロリジニウムイオンなどのピロリジニウムイオン;ピリジニウムイオン;アルキル四級ホスホニウムなど。   Preferable specific examples of the quaternary onium (A) in the above formula (1) include the following. Alkyl quaternary ammonium ions such as triethylmethylammonium ion, tetraethylammonium ion, tetrabutylammonium ion, tetramethylammonium ion; 1,1'-spirobipyrrolidinium ion, 1,1'-spirobipiperidinium ion, spiro [piperidine -1,1'-pyrrolidinium] ions and other ammonium ions having a spiro structure; alkylimidazolium ions such as ethylmethylimidazolium ion; pyrrolidinium ions such as 1,1'-methylethylpyrrolidinium ion; pyridinium ion; alkyl Quaternary phosphonium etc.

本発明で使用される上記式(1)で表される化合物の好ましい具体例は以下のとおりである。

Figure 2008192826
Preferred specific examples of the compound represented by the above formula (1) used in the present invention are as follows.
Figure 2008192826

Figure 2008192826
Figure 2008192826

Figure 2008192826
Figure 2008192826

Figure 2008192826
Figure 2008192826

Figure 2008192826
Figure 2008192826

Figure 2008192826
Figure 2008192826

Figure 2008192826
Figure 2008192826

Figure 2008192826
Figure 2008192826

Figure 2008192826
Figure 2008192826

Figure 2008192826
Figure 2008192826

Figure 2008192826
Figure 2008192826

Figure 2008192826
Figure 2008192826

一方、上記式(1)で表わされる化合物が添加される非水電解液としては、本発明では、第四級オニウムを陽イオンとする電解質であり、該電解質を非水溶媒に溶解した電解液である。第四級オニウムの陽イオンとしては、アルキル四級アンモニウムイオン、アルキル四級ホスホニウムイオン、スピロ構造を有するアンモニウムイオン、アルキルイミダゾリウムイオン、アルキルイミダゾリニウムイオンなどが挙げられる。なかでも、アルキル四級アンモニウムイオン、スピロ構造を有するアンモニウムイオンが好ましい。なかでも、1,1’-スピロビピロリジニウムイオン、トリエチルメチルアンモニウムイオン、又はエチルメチルイミダゾリウムイオンが好ましい。   On the other hand, the nonaqueous electrolytic solution to which the compound represented by the above formula (1) is added is an electrolyte having quaternary onium as a cation in the present invention, and the electrolytic solution in which the electrolyte is dissolved in a nonaqueous solvent. It is. Examples of the cation of the quaternary onium include an alkyl quaternary ammonium ion, an alkyl quaternary phosphonium ion, an ammonium ion having a spiro structure, an alkyl imidazolium ion, and an alkyl imidazolinium ion. Of these, alkyl quaternary ammonium ions and ammonium ions having a spiro structure are preferred. Of these, 1,1'-spirobipyrrolidinium ion, triethylmethylammonium ion, or ethylmethylimidazolium ion is preferable.

上記第四級オニウムとともに電解質を構成する陰イオンとしては、各種のものが使用できる。例えば、過塩素酸イオン、四フッ化ホウ酸イオン、六フッ化リン酸イオン、トリフルオロメタンスルホン酸イオン、ビスパーフルオロアルキルスルホンイミドイオン、ビスパーフルオロアルキルスルホンメチドイオンが挙げられる。なかでも、四フッ化ホウ酸イオン、又は六フッ化リン酸イオンが好ましい。   Various anions that constitute the electrolyte together with the quaternary onium can be used. For example, perchlorate ion, tetrafluoroborate ion, hexafluorophosphate ion, trifluoromethanesulfonate ion, bisperfluoroalkylsulfonimide ion, and bisperfluoroalkylsulfonemethide ion may be mentioned. Of these, tetrafluoroborate ions or hexafluorophosphate ions are preferable.

本発明において上記の主電解質を溶解して電解液を形成するのに使用される非水溶媒としては、カーボネート類、エステル類、エーテル類、ラクトン類、ニトリル類、スルホン類及びアミド類からなる群から選ばれる少なくとも1種のものが広く使用できる。好ましい具体例としては、以下のものが挙げられる。炭酸プロピレン(PC)、炭酸エチレン(EC)、炭酸ジメチル(DMC)、炭酸エチルメチル(MEC)、炭酸ジエチル(DEC)、γ−ブチロラクトン(GBL)、酢酸エチル(EA)、プロピオン酸メチル(MPR)、プロピオン酸エチル(EPR)、1,2−ジメトキシエタン(DME)、1,2−ジエトキシエタン(DEE)、2−メチルテトラヒドロフラン(2−MeTHF)、テトラヒドロフラン(THF)、スルホラン(SL)、3−メチルスルホラン(3−MeSL)、アセトニトリル(AN)など。これらは二種以上を混合して用いてもよい。なかでも、炭酸プロピレン(PC)、炭酸エチレン(EC)、又は炭酸ジメチル(DMC)が好ましい。   In the present invention, the non-aqueous solvent used for dissolving the main electrolyte to form an electrolytic solution includes the group consisting of carbonates, esters, ethers, lactones, nitriles, sulfones and amides. At least one selected from can be widely used. Preferable specific examples include the following. Propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (MEC), diethyl carbonate (DEC), γ-butyrolactone (GBL), ethyl acetate (EA), methyl propionate (MPR) , Ethyl propionate (EPR), 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE), 2-methyltetrahydrofuran (2-MeTHF), tetrahydrofuran (THF), sulfolane (SL), 3 -Methylsulfolane (3-MeSL), acetonitrile (AN) and the like. You may use these in mixture of 2 or more types. Among these, propylene carbonate (PC), ethylene carbonate (EC), or dimethyl carbonate (DMC) is preferable.

本発明の非水電解液中における第四級オニウム塩からなる主電解質の濃度は、得られる非水電解液の特性に関係し、本発明では、1mol/L(モル/リットル)以上、より好ましくは1.5mol/L以上、特には1.7mol/L以上が好適である。電解質の濃度が1mol/Lより低い場合には、電気伝導度が不充分になり、優れた特性の非水電解液が得られない。電解質の濃度の上限については必ずしも制約はないが、経済的観点や低温時の析出防止などの観点から好ましくは3mol/L以下、特には、2.5mol/L以下が好ましい。   The concentration of the main electrolyte composed of the quaternary onium salt in the non-aqueous electrolyte of the present invention relates to the characteristics of the obtained non-aqueous electrolyte, and in the present invention, it is preferably 1 mol / L (mol / liter) or more. Is preferably 1.5 mol / L or more, particularly 1.7 mol / L or more. When the concentration of the electrolyte is lower than 1 mol / L, the electric conductivity becomes insufficient, and a non-aqueous electrolyte having excellent characteristics cannot be obtained. The upper limit of the electrolyte concentration is not necessarily limited, but is preferably 3 mol / L or less, particularly preferably 2.5 mol / L or less, from the viewpoints of economics and prevention of precipitation at low temperatures.

かかる電解液に対して、上記式(1)を有する化合物を添加含有させる場合、その手段としては、任意のものが採用でき、例えば、電解液を攪拌しながら、場合により、加温しながら、添加し溶解させる。その添加量は、電解液に対して、好ましくは10ppm以上、より好ましくは100ppm以上、特に好ましくは300ppm以上が好適である。添加量が10ppm未満では、容量の保持や内部抵抗の上昇抑制などの改善が充分でない。一方、添加量を多くした場合、その効果が飽和し、逆にキャパシタ容量が低下し、また、内部抵抗が増加する場合があるので、好ましくは5重量%以下、より好ましくは3重量%以下、特に好ましくは2重量%以下であるのが好適である。
なお、本発明において、上記式(1)を有する化合物の添加量は、非水電解液に含有される主電解質である第4級オニウム塩を基準にすれば、該第4級オニウム塩の好ましくは40重量%以下、より好ましくは30重量%以下、更に好ましくは20重量%以下であるのが好適である。
When the compound having the above formula (1) is added to and contained in the electrolytic solution, any means can be adopted, for example, while stirring the electrolytic solution and optionally heating, Add and dissolve. The addition amount is preferably 10 ppm or more, more preferably 100 ppm or more, and particularly preferably 300 ppm or more with respect to the electrolytic solution. When the addition amount is less than 10 ppm, improvement such as capacity retention and suppression of increase in internal resistance is not sufficient. On the other hand, when the addition amount is increased, the effect is saturated, the capacitor capacity is decreased, and the internal resistance may be increased. Therefore, it is preferably 5% by weight or less, more preferably 3% by weight or less, Particularly preferred is 2% by weight or less.
In the present invention, the addition amount of the compound having the above formula (1) is preferably the amount of the quaternary onium salt based on the quaternary onium salt which is the main electrolyte contained in the nonaqueous electrolytic solution. Is preferably 40% by weight or less, more preferably 30% by weight or less, and still more preferably 20% by weight or less.

上記式(1)を有する化合物を添加含有する本発明の非水電解液は含有水分が小さい方が好ましく、その含水量は電気化学的安定性の観点から100ppm以下が好ましく、更に好ましくは50ppm以下、特に好ましくは20ppm以下である。含水量はカールフィッシャー法で測定することができる。   The nonaqueous electrolytic solution of the present invention containing the compound having the above formula (1) preferably has a smaller water content, and its water content is preferably 100 ppm or less, more preferably 50 ppm or less from the viewpoint of electrochemical stability. Especially preferably, it is 20 ppm or less. The water content can be measured by the Karl Fischer method.

本発明の非水電解液は、電気化学キャパシタに広く使用される。その例としては、電気二重層キャパシタ,ハイブリッドキャパシタ、アルミニウム電解キャパシタなどが挙げられる。なかでも、本発明の上記非水電解液は、長期に亘って、容量の低下及び内部抵抗の増加を顕著に抑制できる理由からして、電気二重層キャパシタに対して好適に使用される。電気化学キャパシタの形状については特に限定されることはなく、円筒型、角型、コイン型、ボタン型、アルミニウム製ラミネートパック型などの種々の形状にすることができる。   The non-aqueous electrolyte of the present invention is widely used for electrochemical capacitors. Examples thereof include an electric double layer capacitor, a hybrid capacitor, and an aluminum electrolytic capacitor. Especially, the said nonaqueous electrolyte of this invention is used suitably with respect to an electrical double layer capacitor from the reason which can suppress a fall of a capacity | capacitance and an increase of internal resistance notably over a long period of time. The shape of the electrochemical capacitor is not particularly limited, and can be various shapes such as a cylindrical shape, a square shape, a coin shape, a button shape, and an aluminum laminate pack shape.

以下に実施例を挙げて、本発明をさらに具体的に説明する。しかし、本発明は実施例に限定されて解釈されるものではなく、本発明の範囲内で種々の変更可能であることはいうまでもない。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not construed as being limited to the examples, and it goes without saying that various modifications can be made within the scope of the present invention.

実施例1〜18
炭酸プロピレンの溶媒に1.5mol/Lのテトラフルオロホウ酸1,1’-スピロビピロリジニウム(以下SBP−BFと略す)を溶解させて基準非水電解液1を調製した。
Examples 1-18
A reference nonaqueous electrolytic solution 1 was prepared by dissolving 1.5 mol / L 1,1′-spirobipyrrolidinium tetrafluoroborate (hereinafter abbreviated as SBP-BF) in a solvent of propylene carbonate.

この基準電解液1に、表1に記載した化合物を所定量添加した種々の非水電解液(電解液中の水分は20ppm以下)を調製した。更に、カチオンにリチウムを用いた化15で表される化合物を含有所定量添加した非水電解液(電解液中の水分は20ppm以下)を調製した。該電解液を使用した電気二重層キャパシタセルを製作し、該キャパシタセルについて電圧印加特性を調べた。
電気二重層キャパシタはコイン型セルであり、正極及び負極として、アルミニウム製集電体(直径20mmの円盤状)に対して活性炭(水蒸気賦活)を塗布したシート状電極を用い、セパレータとしてセルロース製の不織布を用い、上記シート状電極及びセパレータに、上記で調製した非水電解液を真空含侵させ、これをコイン型ステンレス製ケースに収納したものである。
なお、電気二重層キャパシタセルの評価は温度60℃において、充放電は電流値10mA、電圧2.7Vに設定して1000時間後の放電容量及び内部抵抗を調べた。
Various non-aqueous electrolytes (water content in the electrolyte solution of 20 ppm or less) were prepared by adding a predetermined amount of the compounds listed in Table 1 to the reference electrolyte solution 1. Furthermore, a nonaqueous electrolytic solution containing a compound represented by Chemical formula 15 using lithium as a cation and containing a predetermined amount (the water content in the electrolytic solution was 20 ppm or less) was prepared. An electric double layer capacitor cell using the electrolytic solution was manufactured, and voltage application characteristics of the capacitor cell were examined.
The electric double layer capacitor is a coin-type cell. As a positive electrode and a negative electrode, a sheet-like electrode in which activated carbon (water vapor activation) is applied to an aluminum current collector (a disk shape having a diameter of 20 mm) is used, and a separator made of cellulose is used. A non-woven fabric is used, the sheet-like electrode and separator are impregnated with the non-aqueous electrolyte prepared above in a vacuum, and this is stored in a coin-type stainless steel case.
The evaluation of the electric double layer capacitor cell was carried out at a temperature of 60 ° C., the charge / discharge was set to a current value of 10 mA and a voltage of 2.7 V, and the discharge capacity and internal resistance after 1000 hours were examined.

Figure 2008192826
Figure 2008192826

Figure 2008192826
Figure 2008192826

表1に示すように、本発明の上記式(1)で表される化合物を含有した非水電解液を用いた電気ニ重層キャパシタ(実施例1〜19)は、いずれの組み合わせにおいても、基準非水電解液(比較例1)と比較して、60℃、2.7V、1000時間保存後では、容量変化率、及び内部抵抗変化率に改善効果を示すことが判る。   As shown in Table 1, the electric double layer capacitor (Examples 1 to 19) using the non-aqueous electrolyte containing the compound represented by the above formula (1) of the present invention is a standard in any combination. Compared to the nonaqueous electrolyte (Comparative Example 1), it can be seen that after storage at 60 ° C., 2.7 V, 1000 hours, the capacity change rate and the internal resistance change rate are improved.

なかでも、実施例4で示したように、化3で表される化合物を1.0%添加した非水電解液を用いた電気ニ重層キャパシタセルの容量変化率、及び内部抵抗変化率に明らかな改善効果を示すことが判る。なお、実施例13、14で示したように、カチオンを変化させた化8、化9で表される化合物を1.0%添加した非水電解液も先と同様の改善効果を示すことが判る。   In particular, as shown in Example 4, the capacitance change rate and the internal resistance change rate of the electric double layer capacitor cell using the non-aqueous electrolyte to which 1.0% of the compound represented by Chemical Formula 3 was added were apparent. It can be seen that it shows a significant improvement effect. In addition, as shown in Examples 13 and 14, the non-aqueous electrolyte solution added with 1.0% of the compound represented by Chemical Formula 8 or Chemical Formula 9 in which the cation is changed may exhibit the same improvement effect as before. I understand.

なお、化15で表される化合物を含有した非水電解液を用いた比較例2電気二重層キャパシタは、改善効果が見られないことが判る。   In addition, it turns out that the improvement effect is not seen by the comparative example 2 electric double layer capacitor using the non-aqueous electrolyte containing the compound represented by Chemical formula 15.

実施例20〜38
炭酸プロピレンの溶媒に1.5mol/Lのテトラフルオロホウ酸トリエチルメチルアンモニウム(以下TEMA−BFと略す。)を溶解させて基準非水電解液2を調製した。
この基準電解液2に、表2に記載した化合物を所定量添加し、電解液を調製した(電解液中の水分は20ppm以下)。更に、カチオンにリチウムを用いた化15で表される化合物を含有所定量添加した非水電解液(電解液中の水分は20ppm以下)を調製した。実施例1〜19と同様にして電圧印加特性を調べた。なお、評価は温度60℃、充放電は電流値10mA、2.7Vの電圧に設定して1000時間後の放電容量及び内部抵抗を調べた。
Examples 20-38
A reference nonaqueous electrolytic solution 2 was prepared by dissolving 1.5 mol / L of triethylmethylammonium tetrafluoroborate (hereinafter abbreviated as TEMA-BF) in a solvent of propylene carbonate.
A predetermined amount of the compounds described in Table 2 was added to the reference electrolyte solution 2 to prepare an electrolyte solution (the water content in the electrolyte solution was 20 ppm or less). Furthermore, a nonaqueous electrolytic solution containing a compound represented by Chemical formula 15 using lithium as a cation and containing a predetermined amount (the water content in the electrolytic solution was 20 ppm or less) was prepared. The voltage application characteristics were examined in the same manner as in Examples 1-19. The evaluation was performed at a temperature of 60 ° C., and the charge / discharge was set at a current value of 10 mA and 2.7 V, and the discharge capacity and internal resistance after 1000 hours were examined.

Figure 2008192826
Figure 2008192826

表2に示すように、本発明の上記式(1)で表される化合物を含有した非水電解液を用いた電気ニ重層キャパシタ(実施例20〜38)は、いずれの組み合わせにおいても、基準非水電解液(比較例3)と比較して、60℃、2.7V、1000時間保存後では、容量変化率、及び内部抵抗変化率に改善効果を示すことが判る。   As shown in Table 2, the electric double layer capacitor (Examples 20 to 38) using the nonaqueous electrolytic solution containing the compound represented by the above formula (1) of the present invention is a standard in any combination. Compared with the nonaqueous electrolyte solution (Comparative Example 3), it can be seen that after storage at 60 ° C., 2.7 V, 1000 hours, the capacity change rate and the internal resistance change rate are improved.

なかでも、実施例23で示したように、化3で表される化合物を1.0%添加した非水電解液を用いた電気ニ重層キャパシタセルの容量変化率、及び内部抵抗変化率に明らかな改善効果を示すことが判る。なお、実施例32、33で示したように、カチオンを変化させた化8、化9で表される化合物を1.0%添加した非水電解液も先と同様の改善効果を示すことが判る。   In particular, as shown in Example 23, the capacitance change rate and the internal resistance change rate of the electric double layer capacitor cell using the non-aqueous electrolyte added with 1.0% of the compound represented by Chemical formula 3 are clearly shown. It can be seen that it shows a significant improvement effect. In addition, as shown in Examples 32 and 33, the non-aqueous electrolyte solution added with 1.0% of the compound represented by Chemical Formula 8 or Chemical Formula 9 in which the cation was changed may exhibit the same improvement effect as before. I understand.

なお、化15で表される化合物を含有した非水電解液を用いた比較例4の電気二重層キャパシタは改善効果が見られないことが判る。   In addition, it turns out that the improvement effect is not seen by the electric double layer capacitor of the comparative example 4 using the non-aqueous electrolyte containing the compound represented by Chemical formula 15.

実施例39〜57
炭酸プロピレンの溶媒中に1.5mol/Lのテトラフルオロホウ酸エチルメチルイミダゾリウム(以下、EMI−BFと略す)を溶解させて基準非水電解液3を調製した。
この基準電解液3に、表3に記載した化合物を所定量添加し、電解液を調製した(電解液中の水分は20ppm以下)。更に、カチオンにリチウムを用いた化15で表される化合物を含有所定量添加した非水電解液(電解液中の水分は20ppm以下)を調製した。実施例1と同様にして電圧印加特性を調べた。なお、評価は温度60℃、充放電は電流値10mA、2.4Vの電圧に設定して1000時間後の放電容量及び内部抵抗を調べた。
Examples 39-57
A reference nonaqueous electrolytic solution 3 was prepared by dissolving 1.5 mol / L of ethyl methylimidazolium tetrafluoroborate (hereinafter abbreviated as EMI-BF) in a solvent of propylene carbonate.
A predetermined amount of the compounds described in Table 3 was added to the reference electrolyte solution 3 to prepare an electrolyte solution (the water content in the electrolyte solution was 20 ppm or less). Furthermore, a nonaqueous electrolytic solution containing a compound represented by Chemical formula 15 using lithium as a cation and containing a predetermined amount (the water content in the electrolytic solution was 20 ppm or less) was prepared. The voltage application characteristics were examined in the same manner as in Example 1. The evaluation was performed at a temperature of 60 ° C., and the charge / discharge was set at a current value of 10 mA and 2.4 V, and the discharge capacity and internal resistance after 1000 hours were examined.

Figure 2008192826
Figure 2008192826

表3に示すように、本発明の上記式(1)で表される化合物を含有した非水電解液を用いた電気ニ重層キャパシタ(実施例39〜57)は、いずれの組み合わせにおいても、基準非水電解液(比較例5)と比較して、60℃、2.4V、1000時間保存後では、容量変化率、及び内部抵抗変化率に改善効果を示すことが判る。   As shown in Table 3, the electric double layer capacitor (Examples 39 to 57) using the nonaqueous electrolytic solution containing the compound represented by the above formula (1) of the present invention is a standard in any combination. Compared with the nonaqueous electrolyte (Comparative Example 5), it can be seen that after storage at 60 ° C., 2.4 V, 1000 hours, the capacity change rate and the internal resistance change rate are improved.

なかでも、実施例42で示したように、化3で表される化合物を1.0%添加した非水電解液を用いた電気ニ重層キャパシタセルの容量変化率、及び内部抵抗変化率に明らかな改善効果を示すことが判る。なお、実施例51、52で示したように、カチオンを変化させた化8、化9で表される化合物を1.0%添加した非水電解液も先と同様の改善効果を示すことが判る。   In particular, as shown in Example 42, the capacitance change rate and the internal resistance change rate of the electric double layer capacitor cell using the non-aqueous electrolyte added with 1.0% of the compound represented by Chemical Formula 3 are obvious. It can be seen that it shows a significant improvement effect. In addition, as shown in Examples 51 and 52, the non-aqueous electrolyte added with 1.0% of the compound represented by Chemical Formula 8 or Chemical Formula 9 in which the cation was changed may exhibit the same improvement effect as before. I understand.

なお、化15で表される化合物を含有した非水電解液を用いた比較例6電気二重層キャパシタは、改善効果が見られないことが判る。   In addition, it turns out that the improvement effect is not seen by the comparative example 6 electric double layer capacitor using the non-aqueous electrolyte containing the compound represented by Chemical formula 15.

本発明の非水電解液は、電気化学キャパシタ用の電解液として広く使用できるが、特に電気二重層キャパシタの電解液として使用したとき、長期に亘って、容量の低下及び内部抵抗の増加を顕著に抑制できるなどの優れた特性を発揮する。   The nonaqueous electrolytic solution of the present invention can be widely used as an electrolytic solution for an electrochemical capacitor, but particularly when used as an electrolytic solution for an electric double layer capacitor, the decrease in capacity and the increase in internal resistance are remarkable over a long period of time. Excellent characteristics such as being able to be suppressed.

Claims (8)

第四級オニウム塩の主電解質として非水溶媒中に溶解した電解液中に、下式(1)で表される化合物を添加含有することを特徴とする電気化学キャパシタ用非水電解液。
Figure 2008192826
(式中、X1はC=O若しくはSOであり、Xは炭素数1〜4のアルキレン若しくは置換アルキレン、又はフェニレン若しくは置換フェニレンである。また、Yは炭素数1〜4のアルキレンであり、aは0〜3の整数を表す。r、sは0〜2であり、r + s=2である。Mは、ホウ素原子又はP=Oを表し、Aは、アルキル第四級アンモニウム、アルキル第四級ホスホニウム、スピロ構造を有するアンモニウム、アルキルイミダゾリウム又はアルキルイミダゾリニウムである。)
A nonaqueous electrolytic solution for an electrochemical capacitor, wherein a compound represented by the following formula (1) is added and contained in an electrolytic solution dissolved in a nonaqueous solvent as a main electrolyte of a quaternary onium salt.
Figure 2008192826
(Wherein X 1 is C═O or SO 2 , X 2 is alkylene having 1 to 4 carbon atoms or substituted alkylene, or phenylene or substituted phenylene. Y is alkylene having 1 to 4 carbon atoms. And a represents an integer of 0 to 3. r and s are 0 to 2 and r + s = 2. M represents a boron atom or P = O, and A represents an alkyl quaternary ammonium. Alkyl quaternary phosphonium, ammonium having spiro structure, alkyl imidazolium or alkyl imidazolinium.)
式(1)で表される化合物が、該式中、X1はC=Oであり、Xは炭素数1〜4のアルキレンであり、Yは炭素数1〜4のアルキレンであり、aは0〜3であり、r、sは1である化合物である、請求項1に記載の電気化学キャパシタ用非水電解液。 In the compound represented by the formula (1), X 1 is C═O, X 2 is alkylene having 1 to 4 carbon atoms, Y is alkylene having 1 to 4 carbon atoms, a The nonaqueous electrolytic solution for an electrochemical capacitor according to claim 1, wherein n is 0 to 3 and r and s are 1 compounds. Aが、アルキル第四級アンモニウム、スピロ構造を有するアンモニウム、又はアルキルイミダゾリウムである、請求項1又は2に記載の電気化学キャパシタ用非水電解液。   The nonaqueous electrolytic solution for electrochemical capacitors according to claim 1 or 2, wherein A is alkyl quaternary ammonium, ammonium having a spiro structure, or alkyl imidazolium. 式(1)で表される化合物の添加量が10ppm〜5重量%である、請求項1〜3のいずれかに記載の電気化学キャパシタ用非水電解液。   The non-aqueous electrolyte for electrochemical capacitors according to any one of claims 1 to 3, wherein the amount of the compound represented by formula (1) is 10 ppm to 5 wt%. 主電解質が、アルキル第四級アンモニウム、アルキル第四級ホスホニウム、スピロ構造を有するアンモニウム、アルキルイミダゾリウム及びアルキルイミダゾリニウムからなる群から選ばれる少なくとも1種の陽イオンを含む塩である、請求項1〜4のいずれかに記載の電気化学キャパシタ用非水電解液。   The main electrolyte is a salt containing at least one cation selected from the group consisting of alkyl quaternary ammonium, alkyl quaternary phosphonium, ammonium having a spiro structure, alkyl imidazolium, and alkyl imidazolinium. The nonaqueous electrolyte for electrochemical capacitors according to any one of 1 to 4. 非水溶媒が、カーボネート類、エステル類、エーテル類、ラクトン類、ニトリル類、スルホン類及びアミド類からなる群から選ばれる少なくとも1種である、請求項1〜5のいずれかに記載の電気化学キャパシタ用非水電解液。   The electrochemistry according to any one of claims 1 to 5, wherein the non-aqueous solvent is at least one selected from the group consisting of carbonates, esters, ethers, lactones, nitriles, sulfones and amides. Nonaqueous electrolyte for capacitors. 電気化学キャパシタが電気二重層キャパシタである、請求項1〜6のいずれかに記載の電気化学キャパシタ用非水電解液。   The nonaqueous electrolytic solution for an electrochemical capacitor according to claim 1, wherein the electrochemical capacitor is an electric double layer capacitor. 請求項1〜7のいずれかに記載の電気化学キャパシタ用非水電解液を用いた電気化学キャパシタ。   The electrochemical capacitor using the nonaqueous electrolyte for electrochemical capacitors in any one of Claims 1-7.
JP2007025677A 2007-02-05 2007-02-05 Nonaqueous electrolytic solution for electrochemical capacitor Withdrawn JP2008192826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007025677A JP2008192826A (en) 2007-02-05 2007-02-05 Nonaqueous electrolytic solution for electrochemical capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007025677A JP2008192826A (en) 2007-02-05 2007-02-05 Nonaqueous electrolytic solution for electrochemical capacitor

Publications (1)

Publication Number Publication Date
JP2008192826A true JP2008192826A (en) 2008-08-21

Family

ID=39752649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007025677A Withdrawn JP2008192826A (en) 2007-02-05 2007-02-05 Nonaqueous electrolytic solution for electrochemical capacitor

Country Status (1)

Country Link
JP (1) JP2008192826A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014509072A (en) * 2011-01-21 2014-04-10 コーニング インコーポレイテッド Electrolyte synthesis for ultracapacitors
TWI584318B (en) * 2012-11-20 2017-05-21 康寧公司 Electrolyte solution for ultracapacitors and method of forming the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014509072A (en) * 2011-01-21 2014-04-10 コーニング インコーポレイテッド Electrolyte synthesis for ultracapacitors
TWI584318B (en) * 2012-11-20 2017-05-21 康寧公司 Electrolyte solution for ultracapacitors and method of forming the same

Similar Documents

Publication Publication Date Title
EP1837333B1 (en) Quaternary ammonium salt, electrolyte, electrolyte solution and electrochemical device
JP4802243B2 (en) Electrolytic solution additive and electrolytic solution
CN108140888B (en) Additive for electrolyte
US20120225359A1 (en) Electrolytes in Support of 5 V Li ion Chemistry
EP3240094B1 (en) Electrolyte solution for secondary batteries, and secondary battery comprising the same
WO2010029971A1 (en) Electrolyte solution and use thereof
JP6671079B2 (en) Ionic liquid, its production method and its use
JP2016184572A (en) Electrochemical energy storage device
JP2010503198A (en) Electrolyte solution and super high capacity capacitor including the same
JP5165862B2 (en) Non-aqueous electrolyte and electrochemical energy storage device using the same
EP2936607B1 (en) Salts of n-containing heterocyclic anions as components in electrolytes
JP7035579B2 (en) Additives for electrolytes
JP4751629B2 (en) Quaternary ammonium salts, electrolytes, electrolytes and electrochemical devices
JP6252046B2 (en) Batteries, mixed molten liquids, and mixed molten liquid manufacturing methods
JP4239537B2 (en) Room temperature molten salt electrolyte and electrochemical device using the same
JP2008192826A (en) Nonaqueous electrolytic solution for electrochemical capacitor
JP2007123631A (en) Nonaqueous electrolyte for electrochemical capacitor
WO2013110741A1 (en) Fluorinated carbonates in hybrid supercapacitors
JP2017004638A (en) Electrolyte salt, non-aqueous electrolytic solution containing electrolyte salt, and power storage device using non-aqueous electrolytic solution
JP2007088359A (en) Electrolyte for electrochemistry device, and electrochemistry device using the same
JP5473296B2 (en) Quaternary ammonium salt
JP6278758B2 (en) Non-aqueous electrolyte and power storage device including the same
JP5101260B2 (en) Electrolyte and electrochemical device using quaternary ammonium salt electrolyte
JP2002222740A (en) Nonaqueous electrolyte for capacitor
JP2004146610A (en) Nonaqueous electrolyte for electric double layer capacitor or electrochemical capacitor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100406