JP2008189818A - Heat-conductive resin composition, heat-conductive sheet and method for producing the same - Google Patents

Heat-conductive resin composition, heat-conductive sheet and method for producing the same Download PDF

Info

Publication number
JP2008189818A
JP2008189818A JP2007025927A JP2007025927A JP2008189818A JP 2008189818 A JP2008189818 A JP 2008189818A JP 2007025927 A JP2007025927 A JP 2007025927A JP 2007025927 A JP2007025927 A JP 2007025927A JP 2008189818 A JP2008189818 A JP 2008189818A
Authority
JP
Japan
Prior art keywords
boron nitride
nitride particles
resin composition
particle size
conductive resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007025927A
Other languages
Japanese (ja)
Other versions
JP4889110B2 (en
Inventor
Keisuke Hirano
敬祐 平野
Tomoo Yamaguchi
智雄 山口
Yoshio Ota
義夫 太田
Shoji Mitsuya
昭治 三屋
Naoki Utsunomiya
直樹 宇都宮
Maki Yutani
真希 湯谷
Maki Nakao
真樹 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2007025927A priority Critical patent/JP4889110B2/en
Publication of JP2008189818A publication Critical patent/JP2008189818A/en
Application granted granted Critical
Publication of JP4889110B2 publication Critical patent/JP4889110B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-conductive resin composition for forming a molded article having an excellent coefficient of thermal conductivity in a heat-conductive resin composition containing boron nitride particles and a polymer component and a heat-conductive sheet using the heat-conductive resin composition and having an excellent coefficient of thermal conductivity. <P>SOLUTION: The heat-conductive resin composition contains boron nitride particles having particle diameters of ≥3 μm and ≤100 μm. The boron nitride particles comprise 50-90 mass% of boron nitride particles having particle diameters of ≥3 μm and ≤20 μm, 5-40 mass% of boron nitride particles having particle diameters of >20 μm and ≤60 μm and 1-20 mass% of boron nitride particles having particle diameters of >60 μm and ≤100 μm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、窒化ホウ素粒子とポリマー成分とを含有する熱伝導性樹脂組成物と該熱伝導性樹脂組成物が用いられた熱伝導性シート、さらには、熱伝導性樹脂組成物ならびに熱伝導性シートの製造方法に関する。   The present invention relates to a thermally conductive resin composition containing boron nitride particles and a polymer component, a thermally conductive sheet using the thermally conductive resin composition, a thermally conductive resin composition, and a thermally conductive material. The present invention relates to a sheet manufacturing method.

従来、樹脂組成物にフィラーを含有させることにより、ベースとなる樹脂単体に比べて強度を向上させたり、熱伝導性を向上させたりすることが行われている。
特に、エポキシ樹脂が用いられたベース樹脂に、熱伝導性を向上させるための無機フィラーを分散させた熱伝導性樹脂組成物は、チップ部品の封止や、発熱部品の搭載された回路と放熱板との間の絶縁層の形成などといった電子部品用途において広く用いられている。
例えば、特許文献1には、熱可塑性樹脂や熱硬化性樹脂などのポリマー成分とフィラーとを含む熱伝導性樹脂組成物によりシート状に形成された高熱伝導性樹脂層が、金属箔が用いられて形成された金属箔層上に積層された金属箔付の熱伝導性シート(以下「金属箔付高熱伝導接着シート」ともいう)が記載されており、この金属箔付高熱伝導接着シートが半導体チップの接着に用いられることが記載されている。
Conventionally, by adding a filler to a resin composition, it has been performed to improve the strength or to improve thermal conductivity as compared with a single resin as a base.
In particular, a thermally conductive resin composition in which an inorganic filler for improving thermal conductivity is dispersed in a base resin using an epoxy resin is used for sealing chip parts and for heat dissipation from circuits mounted with heat-generating parts. It is widely used in electronic component applications such as the formation of an insulating layer between plates.
For example, in Patent Document 1, a metal foil is used for a highly thermally conductive resin layer formed into a sheet shape from a thermally conductive resin composition containing a polymer component such as a thermoplastic resin or a thermosetting resin and a filler. The heat conductive sheet with metal foil laminated on the metal foil layer formed in this way (hereinafter also referred to as “high heat conductive adhesive sheet with metal foil”) is described. It is described that it is used for chip bonding.

この熱伝導性樹脂組成物には、通常、優れた熱伝導性が求められることから、含有されるフィラーには、窒化ホウ素や窒化アルミニウムなどといった高い熱伝導率を有する無機窒化物が用いられており、熱伝導性樹脂組成物中にこれらフィラーを高充填させることが検討されている。
例えば、特許文献2には、エポキシ樹脂などのポリマー成分中に所定の粒度分布のフィラーを80〜95質量%もの高充填させることにより、熱伝導性樹脂組成物の熱伝導率が3〜10W/mKとなることが記載されている。
Since this thermal conductive resin composition is usually required to have excellent thermal conductivity, an inorganic nitride having high thermal conductivity such as boron nitride or aluminum nitride is used as a filler to be contained. Thus, it has been studied to highly fill these fillers in the thermally conductive resin composition.
For example, Patent Document 2 discloses that a thermal conductivity of a heat conductive resin composition is 3 to 10 W / w by filling a polymer component such as an epoxy resin with a filler having a predetermined particle size distribution as high as 80 to 95% by mass. It is described that it becomes mK.

しかし、特許文献2は、その実施例には、窒化ホウ素粒子や、酸化マグネシウム粒子などのフィラーを用いた例も示されてはいるものの、いずれも、酸化アルミニウム粒子や窒化アルミニウム粒子との併用であり、しかも、酸化アルミニウム粒子や窒化アルミニウム粒子よりも少ない量でしか用いられておらず、主としては、酸化アルミニウム粒子や窒化アルミニウム粒子が用いられている例しか記載されてはいない。   However, although Patent Document 2 also shows examples using fillers such as boron nitride particles and magnesium oxide particles in the examples, both are used in combination with aluminum oxide particles and aluminum nitride particles. In addition, it is used only in an amount smaller than that of aluminum oxide particles or aluminum nitride particles, and only examples in which aluminum oxide particles or aluminum nitride particles are used are mainly described.

ところで窒化ホウ素が、その優れた熱伝導性から、近年、フィラーに用いられる機会を増大させている。
このフィラーとして用いられる窒化ホウ素の粒子は、一次粒子の形状が鱗片状であり、通常、数μm〜十数μm程度の細かな粒径のものしか市販されてはいない。
一部にはこの鱗片状の一次粒子が凝集されて形成された凝集状態の粒子が市販されており、一次粒子の鱗片状構造が明確でない全体顆粒状を呈する凝集体(以下「顆粒状粒子」ともいう)や個々の一次粒子が区別できる程度に凝集状態を形成している凝集体(以下「集合状粒子」ともいう)がフィラーとして市販されてはいるもののこの凝集状態の粒子も、数十μm〜数百μmの粒径のものしか市販されておらず、特許文献2において検討されている酸化アルミニウム粒子のように類似形状で粒径が異なるもの数多く市販されているわけではない。
By the way, boron nitride has recently increased the chance of being used as a filler due to its excellent thermal conductivity.
The boron nitride particles used as the filler have a scaly shape of primary particles, and usually only fine particles having a particle size of about several μm to several tens of μm are commercially available.
In some cases, aggregated particles formed by agglomeration of these flaky primary particles are commercially available, and aggregates exhibiting an overall granular shape in which the flaky structure of the primary particles is not clear (hereinafter referred to as “granular particles”). Agglomerated in such a degree that individual primary particles can be distinguished (hereinafter also referred to as “aggregated particles”) are commercially available as fillers. Only particles having a particle size of μm to several hundreds of μm are commercially available, and a large number of particles having similar shapes and different particle sizes such as aluminum oxide particles examined in Patent Document 2 are not commercially available.

したがって、この窒化ホウ素粒子のように粒径によって異なる形状のものが使用されることとなる場合には、特許文献2に記載されている方法を適用することが困難であり、成形品の熱伝導率向上に有効な熱伝導性樹脂組成物を形成させるためのフィラーの条件を改めて検討する必要がある。
しかし、従来、窒化ホウ素粒子を用いての検討は十分行われておらず適した条件も見出されていない。
すなわち、窒化ホウ素粒子が用いられたフィラー(窒化ホウ素フィラー)とポリマー成分とを含有する従来の熱伝導性樹脂組成物においては、熱伝導性シートなどの成形品の熱伝導率を十分向上させることが困難であるという問題を有している。
Therefore, when the boron nitride particles having different shapes depending on the particle diameter are used, it is difficult to apply the method described in Patent Document 2, and the heat conduction of the molded product is difficult. It is necessary to reexamine the filler conditions for forming a thermally conductive resin composition effective for improving the rate.
However, conventionally, studies using boron nitride particles have not been sufficiently performed, and no suitable conditions have been found.
That is, in a conventional thermal conductive resin composition containing a filler using boron nitride particles (boron nitride filler) and a polymer component, the thermal conductivity of a molded product such as a thermal conductive sheet is sufficiently improved. Has the problem of being difficult.

特開平11−186473号公報JP-A-11-186473 特開2001−348488号公報JP 2001-348488 A

本発明は、上記問題に鑑みてなされたものであり、窒化ホウ素粒子と、ポリマー成分とが含有されている熱伝導性樹脂組成物において、優れた熱伝導率を有する成形品を形成し得る熱伝導性樹脂組成物を得ることならびに該熱伝導性樹脂組成物が用いられた熱伝導率に優れた熱伝導性シートなどの提供を課題としている。   The present invention has been made in view of the above problems, and in a thermally conductive resin composition containing boron nitride particles and a polymer component, heat that can form a molded product having excellent thermal conductivity. It is an object to obtain a conductive resin composition and to provide a heat conductive sheet excellent in heat conductivity using the heat conductive resin composition.

本発明者らは、熱伝導性樹脂組成物中の窒化ホウ素粒子の粒度と、この熱伝導性樹脂組成物を用いた成形品の熱伝導率との関係に着目し、鋭意検討した結果、所定の粒度の分布で窒化ホウ素粒子を熱伝導性樹脂組成物中に含有させることにより成形品の熱伝導率向上に有効な熱伝導性樹脂組成物とさせ得ることを見出し本発明の完成に至ったのである。   The inventors of the present invention focused on the relationship between the particle size of the boron nitride particles in the thermally conductive resin composition and the thermal conductivity of the molded article using the thermally conductive resin composition, and as a result of intensive investigation, It was found that by containing boron nitride particles in the thermally conductive resin composition with a particle size distribution of, it was possible to obtain a thermally conductive resin composition effective for improving the thermal conductivity of the molded article, and the present invention was completed. It is.

すなわち、本発明は、前記課題を解決すべく、窒化ホウ素粒子とポリマー成分とが含有されている熱伝導性樹脂組成物であって、粒径3μm以上100μm以下の窒化ホウ素粒子が含有されており、しかも、前記窒化ホウ素粒子は、3μm以上20μm以下の粒径の窒化ホウ素粒子が50〜90質量%、20μmを超え60μm以下の粒径の窒化ホウ素粒子が5〜40質量%、60μmを超え100μm以下の粒径の窒化ホウ素粒子が1〜20質量%となる割合で含有されていることを特徴とする熱伝導性樹脂組成物ならび熱伝導性樹脂組成物製造方法を提供する。
また、前記熱伝導性樹脂組成物がシート状に成形されてなることを特徴とする熱伝導性シートならび熱伝導性シート製造方法を提供する。
That is, the present invention is a thermally conductive resin composition containing boron nitride particles and a polymer component in order to solve the above-mentioned problems, and contains boron nitride particles having a particle size of 3 μm or more and 100 μm or less. In addition, the boron nitride particles are 50 to 90% by mass of boron nitride particles having a particle size of 3 μm or more and 20 μm or less, 5 to 40% by mass of boron nitride particles having a particle size of more than 20 μm and less than 60 μm, and more than 60 μm to 100 μm. Provided is a heat conductive resin composition and a method for producing a heat conductive resin composition, characterized in that boron nitride particles having the following particle sizes are contained in a proportion of 1 to 20% by mass.
Further, the present invention provides a heat conductive sheet and a method for producing a heat conductive sheet, wherein the heat conductive resin composition is formed into a sheet shape.

なお、本明細書中における“窒化ホウ素粒子”との用語は、例えば、鱗片状に形成されている窒化ホウ素の一次粒子や、この一次粒子が凝集されて形成されている顆粒状粒子や集合状粒子などの全てを含むことを意図して用いている。   In this specification, the term “boron nitride particles” refers to, for example, primary particles of boron nitride formed in a scale shape, granular particles or aggregates formed by agglomeration of the primary particles. It is intended to include all particles.

本発明によれば、熱伝導性樹脂組成物中に、粒径3μm以上100μm以下の窒化ホウ素粒子が含有されておりしかも、前記窒化ホウ素粒子は、3μm以上20μm以下の粒径の窒化ホウ素粒子が50〜90質量%、20μmを超え60μm以下の粒径の窒化ホウ素粒子が5〜40質量%、60μmを超え100μm以下の粒径の窒化ホウ素粒子が1〜20質量%となる割合で含有されていることから、この熱伝導性樹脂組成物を用いて熱伝導性シートなどの成形品を形成させた際に、この成形品に上記のような窒化ホウ素粒子の粒径の分布状態を反映させることができ、成形品を熱伝導率に優れたものとし得る。   According to the present invention, boron nitride particles having a particle diameter of 3 μm or more and 100 μm or less are contained in the thermally conductive resin composition, and the boron nitride particles are boron nitride particles having a particle diameter of 3 μm or more and 20 μm or less. 50 to 90% by mass, boron nitride particles having a particle size of more than 20 μm and not more than 60 μm are contained in a ratio of 5 to 40% by mass, and boron nitride particles having a particle size of more than 60 μm and not more than 100 μm are 1 to 20% by mass. Therefore, when forming a molded product such as a thermally conductive sheet using this thermally conductive resin composition, the distribution of the particle size of boron nitride particles as described above is reflected in this molded product. And the molded product can have excellent thermal conductivity.

また、このような熱伝導性樹脂組成物を作製するに際して、特に、ポリマー成分としてエポキシ樹脂が含まれている液状熱伝導性樹脂組成物を作製するに際して、分子内に複数のエポキシ基を有するエポキシ樹脂と、前記エポキシ樹脂を熱硬化させるための硬化剤と硬化促進剤とを含み、前記エポキシ樹脂、前記硬化剤ならびに前記硬化促進剤が溶剤中に分散されており、しかも、前記硬化剤が分子内に複数の1級芳香族アミン残基を有するジアミン誘導体であり、前記硬化促進剤が、アミン系硬化促進剤であるエポキシ樹脂溶液と、平均粒径が60μmを超え200μm以下の窒化ホウ素粒子とを用いて、多段階に分けて混合攪拌することにより、成形品の熱伝導率向上に有効な熱伝導性樹脂組成物を比較的簡便な方法で製造し得るという効果を奏する。   In preparing such a heat conductive resin composition, particularly in preparing a liquid heat conductive resin composition containing an epoxy resin as a polymer component, an epoxy having a plurality of epoxy groups in the molecule. Resin, a curing agent for thermally curing the epoxy resin, and a curing accelerator, wherein the epoxy resin, the curing agent, and the curing accelerator are dispersed in a solvent, and the curing agent is a molecule. A diamine derivative having a plurality of primary aromatic amine residues in the epoxy resin solution, wherein the curing accelerator is an amine-based curing accelerator, and boron nitride particles having an average particle size of more than 60 μm and 200 μm or less By using and mixing and stirring in multiple stages, it is possible to produce a heat conductive resin composition effective for improving the heat conductivity of a molded product by a relatively simple method. Play the fruit.

より具体的には、前記エポキシ樹脂溶液を前記窒化ホウ素粒子とともに減圧下で攪拌して前記エポキシ樹脂溶液と前記窒化ホウ素粒子との混合物を作製するとともに前記攪拌により前記窒化ホウ素粒子を微細化させる粒度調整工程を実施し、該粒度調整工程後に、前記エポキシ樹脂溶液をさらに加えた状態で再び減圧下で攪拌して前記混合物を前記エポキシ樹脂溶液で希釈するとともに前記攪拌により前記混合物中の窒化ホウ素粒子をさらに微細化させる粒度再調整工程を少なくとも1回以上実施して、3μm以上20μm以下の粒径の窒化ホウ素粒子が50〜90質量%、20μmを超え60μm以下の粒径の窒化ホウ素粒子が5〜40質量%、60μmを超え100μm以下の粒径の窒化ホウ素粒子が1〜20質量%となる割合で粒径3μm以上100μm以下の窒化ホウ素粒子が含有されている液状の熱伝導性樹脂組成物を作製する方法を採用することで、成形品の熱伝導率向上に有効な熱伝導性樹脂組成物を比較的簡便な方法で製造し得るという効果を奏する。   More specifically, the epoxy resin solution is stirred with the boron nitride particles under reduced pressure to produce a mixture of the epoxy resin solution and the boron nitride particles, and the boron nitride particles are refined by the stirring. An adjustment step is performed, and after the particle size adjustment step, the mixture is further diluted with the epoxy resin solution by stirring again under reduced pressure with the epoxy resin solution further added, and boron nitride particles in the mixture by the stirring The particle size readjustment step is further performed at least once, and boron nitride particles having a particle size of 3 μm or more and 20 μm or less are 50 to 90% by mass, and boron nitride particles having a particle size of more than 20 μm and 60 μm or less are 5 ~ 40% by mass, boron nitride particles having a particle size exceeding 60 μm and not more than 100 μm are 1 to 20% by mass, and the particle size is 3 μm. By adopting a method for producing a liquid thermal conductive resin composition containing boron nitride particles of 100 μm or less above, a thermal conductive resin composition effective for improving the thermal conductivity of a molded product is relatively simple. There is an effect that it can be manufactured by a simple method.

以下に、本発明の好ましい実施の形態について、熱伝導性樹脂組成物が金属箔付熱伝導性シートに用いられる場合を例に説明する。
まず、図1を参照しつつ金属箔付高熱伝導接着シートについて説明する。
Below, the case where a heat conductive resin composition is used for a heat conductive sheet with metal foil is described as an example about a preferred embodiment of the present invention.
First, a highly heat-conductive adhesive sheet with metal foil will be described with reference to FIG.

金属箔付高熱伝導接着シートは、熱伝導性樹脂組成物によりシート状に形成された高熱伝導性樹脂層が、金属箔が用いられて形成された金属箔層上に積層されて形成されており、この図1においては、半導体モジュールのヒートシンクに前記高熱伝導性樹脂層が接着されて使用される場合が図示されている。   The high heat conductive adhesive sheet with metal foil is formed by laminating a high heat conductive resin layer formed in a sheet shape with a heat conductive resin composition on a metal foil layer formed using a metal foil. FIG. 1 shows a case where the high thermal conductive resin layer is bonded to a heat sink of a semiconductor module.

この高熱伝導性樹脂層の形成に用いられる熱伝導性樹脂組成物には、窒化ホウ素フィラーと、ポリマー成分とが含有されている。   The thermally conductive resin composition used for forming this highly thermally conductive resin layer contains a boron nitride filler and a polymer component.

このポリマー成分としては、特に限定されるものではなく、一般に用いられている樹脂成分やゴム成分を含有させることができる。
この内、樹脂成分としては、熱可塑性樹脂や熱硬化性樹脂を例示でき、この内、熱可塑性樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、エチレン−酢酸ビニル共重合体樹脂などのポリオレフィン樹脂、ポリ塩化ビニル樹脂、フェノキシ樹脂、アクリル樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエーテルアミドイミド樹脂、ポリエーテルアミド樹脂、ポリエーテルイミド樹脂などが挙げられる。
前記熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂などが挙げられる。
また、前記ゴム成分としては、天然ゴム、ポリイソプレンゴム、スチレン−ブタジエン共重合体ゴム、ポリブタジエンゴム、エチレン−プロピレン共重合体ゴム、エチレン−プロピレン−ジエン共重合体ゴム、ブタジエン−アクリロニトリル共重合体ゴム、イソブチレン−イソプレン共重合体ゴム、クロロプレンゴム、シリコンゴム、フッソゴム、クロロ・スルホン化ポリエチレン、ポリウレタンゴムなどが挙げられる。
これらは、単独で用いてもよく、複数混合して用いてもよい。
なかでも、金属箔付高熱伝導接着シートに用いるポリマー成分には、優れた接着性を示すと共に耐熱性にも優れていることからエポキシ樹脂を用いることが好適である。
The polymer component is not particularly limited, and a commonly used resin component or rubber component can be contained.
Among these, examples of the resin component include thermoplastic resins and thermosetting resins. Among these, examples of the thermoplastic resin include polyolefin resins such as polyethylene resins, polypropylene resins, and ethylene-vinyl acetate copolymer resins, and polychlorinated resins. Examples thereof include vinyl resin, phenoxy resin, acrylic resin, polyamide resin, polyamideimide resin, polyimide resin, polyetheramideimide resin, polyetheramide resin, and polyetherimide resin.
Examples of the thermosetting resin include an epoxy resin and a phenol resin.
The rubber component includes natural rubber, polyisoprene rubber, styrene-butadiene copolymer rubber, polybutadiene rubber, ethylene-propylene copolymer rubber, ethylene-propylene-diene copolymer rubber, butadiene-acrylonitrile copolymer. Examples thereof include rubber, isobutylene-isoprene copolymer rubber, chloroprene rubber, silicon rubber, fluorine rubber, chlorosulfonated polyethylene, and polyurethane rubber.
These may be used alone or in combination.
Especially, it is suitable to use an epoxy resin for the polymer component used for the highly heat-conductive adhesive sheet with metal foil, since it exhibits excellent adhesion and heat resistance.

しかも、常温固体のエポキシ樹脂が好ましい。
この常温固体のエポキシが好ましいのは、常温液体状のエポキシ樹脂を用いた場合には、金属箔付高熱伝導接着シートを被着体に接着すべく加熱条件下において高熱伝導性樹脂層側を被着体に当接させた場合に、エポキシ樹脂の粘度が低下しすぎて、金属箔付高熱伝導接着シートの端縁部から外にエポキシ樹脂が大きく滲み出してしまうおそれがあるためである。
このエポキシ樹脂の滲み出しが激しい場合には、例えば、金属箔層の背面側など本来金属部分が露出しているべき個所にエポキシ樹脂被膜を形成させてしまうおそれがある。
Moreover, a room temperature solid epoxy resin is preferred.
This room temperature solid epoxy is preferable when the room temperature liquid epoxy resin is used, so that the high thermal conductive resin layer side is coated under heating conditions so as to adhere the high thermal conductive adhesive sheet with metal foil to the adherend. This is because when the epoxy resin is brought into contact with the adherend, the viscosity of the epoxy resin is too low and the epoxy resin may ooze out from the edge of the high thermal conductive adhesive sheet with metal foil.
When the oozing of the epoxy resin is severe, there is a possibility that the epoxy resin film is formed at a place where the metal part should be exposed, such as the back side of the metal foil layer.

一方で、被着体への接着時にある程度の粘度低下が生じないと被着体と高熱伝導性樹脂層側との間に空隙などが生じやすく被着体側から金属箔層側への熱伝導性を低下させるおそれもある。
高熱伝導性樹脂組成物に適度な流れ性を付与して、これらの問題をより確実に抑制させ得る点において、このエポキシ樹脂としては、エポキシ当量450〜2000g/eqの常温固体のビスフェノールA型エポキシ樹脂と、エポキシ当量160〜220g/eqの多官能の常温固体で87℃から93℃の間に軟化点を有するノボラック型エポキシ樹脂とが(ビスフェノールA型エポキシ樹脂/ノボラック型エポキシ樹脂)=40/60〜60/40となる質量比率で混合されているものを用いることが好ましい。
なお、このエポキシ当量は、JIS K 7236により求めることができる。
On the other hand, if the viscosity does not decrease to some extent when adhering to the adherend, there is a tendency for voids to form between the adherend and the high thermal conductive resin layer side, and the thermal conductivity from the adherend side to the metal foil layer side. May also be reduced.
This epoxy resin is an epoxy resin having an epoxy equivalent of 450 to 2000 g / eq, which is a normal temperature solid bisphenol A type epoxy in that it can impart moderate flowability to the high thermal conductive resin composition and more reliably suppress these problems. Resin and a novolac type epoxy resin having a softening point between 87 ° C. and 93 ° C. in a polyfunctional normal temperature solid having an epoxy equivalent of 160 to 220 g / eq (bisphenol A type epoxy resin / novolak type epoxy resin) = 40 / It is preferable to use what is mixed at a mass ratio of 60 to 60/40.
In addition, this epoxy equivalent can be calculated | required by JISK7236.

このように、熱伝導性樹脂組成物にポリマー成分としてエポキシ樹脂が含まれる場合においては、さらに、エポキシ樹脂の硬化剤、硬化促進剤を熱伝導性樹脂組成物に含有させて熱硬化性を付与することができる。
この硬化剤としては、特に限定されるものではないが、例えば、ジアミノジフェニルスルホン、ジシアンジアミド、ジアミノジフェニルメタン、トリエチレンテトラミンなどのアミン系硬化剤、フェノールノボラック樹脂、アラルキル型フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、ナフタレン型フェノール樹脂、ビスフェノール系フェノール樹脂などのフェノール系硬化剤、酸無水物などを用いることができる。
中でも、ジアミノジフェニルスルホンが好適である。
前記硬化促進剤としては、特に限定されるものではないが、三フッ化ホウ素モノエチルアミンなどのアミン系硬化促進剤が好適である。
Thus, when an epoxy resin is contained as a polymer component in the thermally conductive resin composition, the epoxy resin curing agent and curing accelerator are further included in the thermally conductive resin composition to impart thermosetting properties. can do.
The curing agent is not particularly limited, and examples thereof include amine curing agents such as diaminodiphenyl sulfone, dicyandiamide, diaminodiphenylmethane, and triethylenetetramine, phenol novolac resins, aralkyl type phenol resins, and dicyclopentadiene modified phenols. Resin, phenolic curing agents such as naphthalene type phenolic resin and bisphenolic phenolic resin, acid anhydrides and the like can be used.
Of these, diaminodiphenylsulfone is preferred.
The curing accelerator is not particularly limited, but an amine curing accelerator such as boron trifluoride monoethylamine is suitable.

前記窒化ホウ素フィラーは、特に限定されるものではないが、熱伝導性樹脂組成物における窒化ホウ素フィラーが粒径3μm以上100μm以下の窒化ホウ素粒子を含んだ状態となるようにし、しかも、前記窒化ホウ素粒子が、3μm以上20μm以下の粒径の窒化ホウ素粒子が50〜90質量%、20μmを超え60μm以下の粒径の窒化ホウ素粒子が5〜40質量%、60μmを超え100μm以下の粒径の窒化ホウ素粒子が1〜20質量%の割合となるように熱伝導性樹脂組成物中に分散させる。   The boron nitride filler is not particularly limited, but the boron nitride filler in the thermally conductive resin composition is in a state containing boron nitride particles having a particle size of 3 μm to 100 μm, and the boron nitride Boron nitride particles having a particle size of 3 μm or more and 20 μm or less are 50 to 90% by mass, boron nitride particles having a particle size of more than 20 μm and less than 60 μm are 5 to 40% by mass, and nitrided having a particle size of more than 60 μm and less than 100 μm It disperse | distributes in a heat conductive resin composition so that a boron particle may become a ratio of 1-20 mass%.

また、上記に示すような粒径の範囲の窒化ホウ素粒子が、上記に示すような割合で含有されているかどうかについては、レーザー回折法で熱伝導性樹脂組成物に含まれている窒化ホウ素粒子の粒度分布を測定し、3μm以上20μm以下の粒径を有する窒化ホウ素粒子の総質量(M1)と、20μmを超え60μm以下の粒径の窒化ホウ素粒子の総質量(M2)と、60μmを超え100μm以下の粒径の窒化ホウ素粒子総質量(M3)とを求め、これらの合計量(M1+M2+M3)で各範囲の窒化ホウ素粒子総質量(M1、M2、M3)を除することにより確認することができる。   In addition, as to whether or not boron nitride particles having a particle size in the range shown above are contained in the proportions shown above, boron nitride particles contained in the thermally conductive resin composition by laser diffraction method. And the total mass (M1) of boron nitride particles having a particle size of 3 μm or more and 20 μm or less, the total mass (M2) of boron nitride particles having a particle size of more than 20 μm and less than 60 μm, and more than 60 μm It can be confirmed by obtaining the total mass (M3) of boron nitride particles having a particle size of 100 μm or less and dividing the total mass (M1, M2, M3) of boron nitride particles in each range by the total amount (M1 + M2 + M3) of these. it can.

本実施形態の熱伝導性樹脂組成物において、窒化ホウ素フィラーの粒径に対するその含有量が上記のような範囲とされるのは、これらの範囲とは異なる状態で窒化ホウ素フィラーを含有する熱伝導性樹脂組成物では、熱伝導率に優れた成形品を得ることが困難となるためである。
すなわち、熱伝導性樹脂組成物に上記範囲で窒化ホウ素粒子が含有されることにより、その成形品の熱伝導率を、従来の熱伝導性樹脂組成物が用いられた場合に比べて、より優れたものとさせ得るためである。
In the thermally conductive resin composition of the present embodiment, the content of the boron nitride filler with respect to the particle diameter is in the above range because the thermal conductivity containing the boron nitride filler is different from these ranges. This is because it is difficult to obtain a molded article having excellent thermal conductivity with the conductive resin composition.
That is, by containing boron nitride particles in the above-mentioned range in the thermally conductive resin composition, the thermal conductivity of the molded product is more excellent than when a conventional thermally conductive resin composition is used. This is because it can be assumed to be.

なお、熱伝導性樹脂組成物中に上記のような状態で窒化ホウ素粒子を含有させるためには、例えば、平均粒径60〜200μmの顆粒状粒子あるいは集合状粒子などの凝集状態の窒化ホウ素粒子を用いて、後段において説明する方法により、前記窒化ホウ素粒子を微細化しつつ熱伝導性樹脂組成物中に分散させることで可能である。
なお、この“平均粒径”については、レーザー回折法での粒度分布測定によりD50値を測定して求めることができる。
In order to contain boron nitride particles in the above-described state in the heat conductive resin composition, for example, boron nitride particles in an aggregated state such as granular particles or aggregated particles having an average particle diameter of 60 to 200 μm By using the method described above, it is possible to disperse the boron nitride particles in the thermally conductive resin composition while miniaturizing the boron nitride particles.
The “average particle diameter” can be obtained by measuring the D50 value by measuring the particle size distribution by the laser diffraction method.

この平均粒径60〜200μmの凝集状態の窒化ホウ素粒子を用いて、窒化ホウ素粒子を微細化しつつ熱伝導性樹脂組成物中に分散させる方法を採用する場合においては、得られる熱伝導性樹脂組成物における60μmを超え100μm以下の粒径の窒化ホウ素粒子は、通常、元の凝集状態をそのまま呈する状態となり、3μm以上20μm以下の粒径の窒化ホウ素粒子は、通常、窒化ホウの一次粒子形状である鱗片状を呈する状態となり、20μmを超え60μm以下の粒径の窒化ホウ素粒子は、通常、元の状態(凝集状態)と一次粒子形状(鱗片状)とが混在する状態となって分散される。   In the case of adopting a method in which the boron nitride particles in an aggregated state having an average particle size of 60 to 200 μm are dispersed in the heat conductive resin composition while miniaturizing the boron nitride particles, the obtained heat conductive resin composition Boron nitride particles having a particle size of more than 60 μm and not more than 100 μm in the product usually have the original aggregation state as they are, and boron nitride particles having a particle size of 3 μm or more and 20 μm or less are usually in a primary particle shape of boron nitride. Boron nitride particles having a particle size of more than 20 μm and not more than 60 μm are usually dispersed in a state in which the original state (aggregated state) and primary particle shape (scale-like shape) coexist. .

また、熱伝導性樹脂組成物における上記窒化ホウ素フィラーの含有量としては、熱伝導性樹脂組成物を熱伝導性シートの形成に用いる場合には、熱伝導性シートに占める窒化ホウ素粒子の割合(金属箔付高熱伝導接着シートにおいては、高熱伝導性樹脂層に占める窒化ホウ素粒子の割合)が、50%体積以上であることが好ましく、55体積%以上であることがより好ましい。   Moreover, as content of the said boron nitride filler in a heat conductive resin composition, when using a heat conductive resin composition for formation of a heat conductive sheet, the ratio of the boron nitride particle to a heat conductive sheet ( In the high thermal conductive adhesive sheet with metal foil, the ratio of boron nitride particles in the high thermal conductive resin layer is preferably 50% by volume or more, and more preferably 55% by volume or more.

なお、高熱伝導性樹脂層の形成に用いられる熱伝導性樹脂組成物には、この窒化ホウ素フィラーに加えて、窒化アルミニウム、窒化ケイ素、窒化ガリウム、酸化アルミニウム、炭化ケイ素、二酸化ケイ素、ダイヤモンドなどが用いられたフィラーを本発明の効果を損ねない範囲において併用することができる。   In addition to the boron nitride filler, the heat conductive resin composition used for forming the high heat conductive resin layer includes aluminum nitride, silicon nitride, gallium nitride, aluminum oxide, silicon carbide, silicon dioxide, diamond and the like. The filler used can be used in combination as long as the effects of the present invention are not impaired.

また、ここでは詳述しないが、本実施形態の熱伝動性樹脂組成物には、上記のようなポリマー成分、窒化物フィラーなど以外に、分散剤、粘着性付与剤、老化防止剤、酸化防止剤、加工助剤、安定剤、消泡剤、難燃剤、増粘剤、顔料などといったゴム、プラスチック配合薬品として一般に用いられるものを本発明の効果を損なわない範囲において適宜加えることができる。   Although not described in detail here, in addition to the polymer component and nitride filler as described above, the heat-transfer resin composition of the present embodiment includes a dispersant, a tackifier, an anti-aging agent, and an antioxidant. What is generally used as a rubber or plastic compounding chemical such as an agent, a processing aid, a stabilizer, an antifoaming agent, a flame retardant, a thickener, and a pigment can be appropriately added within a range not impairing the effects of the present invention.

このような、熱伝導性樹脂組成物は、金属箔層上においてシート状に形成し、金属箔付高熱伝導接着シートとして用いることができ、この金属箔層については、通常、50〜300μmの厚さの金属箔を用いることができる。
この金属箔としては、銅、アルミニウム、ニッケル、鉄などの純金属や合金が用いられたものを例示でき、さらに、各種メッキが施されたものや、あるいは、複数種類の金属が積層されているクラッド箔なども用いることができる。
Such a heat conductive resin composition is formed into a sheet shape on a metal foil layer, and can be used as a high heat conductive adhesive sheet with metal foil. The thickness of the metal foil layer is usually 50 to 300 μm. The metal foil can be used.
Examples of the metal foil include those using pure metals and alloys such as copper, aluminum, nickel, and iron. Further, various types of plated or a plurality of types of metals are laminated. A clad foil or the like can also be used.

また、この金属箔層の金属箔は、熱伝導性樹脂組成物との接着力を向上させるべく、熱伝導性樹脂組成物との界面側が表面粗化されていることが好ましい。
この表面粗化については、金属箔の表面をサンドブラスト処理や酸化処理するなどして施すことができる。
なお、電解金属箔を用いる場合においては、そのマット面(粗化面)を高熱伝導性樹脂層との積層界面として利用することができ、サンドブラスト処理や酸化処理などの特段の処理を必要としない点において好適である。
Moreover, it is preferable that the metal foil of this metal foil layer is surface-roughened on the interface side with the heat conductive resin composition in order to improve the adhesive force with the heat conductive resin composition.
This surface roughening can be performed by sandblasting or oxidizing the surface of the metal foil.
In the case of using an electrolytic metal foil, the mat surface (roughened surface) can be used as a laminated interface with the high thermal conductive resin layer, and no special treatment such as sandblasting or oxidation treatment is required. This is preferable in terms of points.

なお、この金属箔層の形成に用いる電解金属箔としては、比較的安価であり、耐腐蝕性にも優れ、高い熱伝導性を有する点において、電解銅箔を用いることが好ましい。
さらに、この電解銅箔には、マット面にジンケート処理が施されているものを用いることが好ましい。
In addition, as electrolytic metal foil used for formation of this metal foil layer, it is preferable to use electrolytic copper foil in the point which is comparatively cheap, is excellent also in corrosion resistance, and has high thermal conductivity.
Furthermore, it is preferable to use the electrolytic copper foil whose zinc surface has been subjected to a zincate treatment.

次いで、このような熱伝導性樹脂組成物と金属箔とを用いて金属箔付の熱伝導性シート(金属箔付高熱伝導接着シート)を作製する方法について液状の熱伝導性樹脂組成物を用いてコーティングする方法を例に説明する。
まず、ポリマー成分としてエポキシ樹脂を用い、窒化ホウ素フィラーとして平均粒径60〜200μmの凝集状態の窒化ホウ素粒子を用いて、前記コーティングに用いるコーティング液(液状の熱伝導性樹脂組成物)を作製する方法について説明する。
Next, a liquid heat conductive resin composition is used for a method for producing a heat conductive sheet with metal foil (high heat conductive adhesive sheet with metal foil) using such a heat conductive resin composition and metal foil. An example of the coating method will be described.
First, an epoxy resin is used as a polymer component, and an agglomerated boron nitride particle having an average particle size of 60 to 200 μm is used as a boron nitride filler to prepare a coating liquid (liquid thermal conductive resin composition) used for the coating. A method will be described.

前記窒化ホウ素フィラーを減圧下での攪拌が可能なミキサーに投入すると共に、別途、エポキシ樹脂を、例えば、2−ブタノンなどの溶剤に溶解させたエポキシ樹脂溶液を作製する。このとき、ジアミノジフェニルスルホンなどの硬化剤や、三フッ化ホウ素モノエチルアミンなどの硬化促進剤を併せて樹脂溶液に含有させておくことも可能である。
また、要すれば、エポキシ樹脂に対する窒化ホウ素フィラーの分散性を改善させる分散剤を樹脂溶液に含有させることも可能である。
なお、この分散剤としては、エポキシ樹脂に対する窒化ホウ素フィラーの分散性向上効果に優れる点から、前記分散剤には0mgKOH/gを超え35mgKOH/g以下のアミン価を有する化合物が含有されているものを用いることが好ましい。
The boron nitride filler is put into a mixer capable of stirring under reduced pressure, and an epoxy resin solution in which an epoxy resin is separately dissolved in a solvent such as 2-butanone is prepared. At this time, a curing agent such as diaminodiphenyl sulfone and a curing accelerator such as boron trifluoride monoethylamine may be contained in the resin solution.
Further, if necessary, the resin solution may contain a dispersant that improves the dispersibility of the boron nitride filler in the epoxy resin.
The dispersant contains a compound having an amine value of more than 0 mgKOH / g and not more than 35 mgKOH / g because it is excellent in improving the dispersibility of the boron nitride filler with respect to the epoxy resin. Is preferably used.

次いで、窒化ホウ素フィラーが投入されているミキサー内にコーティング液の一部を投入して、例えば、1〜20kPaの減圧下、(常温)で攪拌することにより凝集状態の窒化ホウ素粒子を微細化させる粒度調整工程を実施する。   Next, a part of the coating liquid is put into a mixer in which boron nitride filler is put, and the agglomerated boron nitride particles are refined by, for example, stirring at (normal temperature) under a reduced pressure of 1 to 20 kPa. A particle size adjustment step is performed.

この粒度調整工程においては、樹脂溶液を、熱伝導性樹脂組成物の作製に必要な全量を投入せずに攪拌を実施することにより窒化ホウ素フィラーと樹脂溶液との混合物を高粘度な状態とすることができ、高いシェアストレスを与えつつ攪拌することができる。
したがって、高いシェアストレスを受けた凝集状態の窒化ホウ素粒子は、凝集状態が解かれて、一次粒子に近い状態に微細化され、例えば、3μm以上20μm以下の粒径にまで微細化されることとなる。
In this particle size adjustment step, the resin solution is stirred without introducing the entire amount necessary for the production of the thermally conductive resin composition, thereby bringing the mixture of the boron nitride filler and the resin solution into a highly viscous state. Can be stirred while applying high share stress.
Therefore, the aggregated boron nitride particles subjected to high shear stress are released from the aggregated state and refined to a state close to primary particles, for example, to a particle size of 3 μm to 20 μm. Become.

より具体的には、例えば、ミキサーの回転数を30rpm以下、好ましくは、10〜20rpmの低速回転とし、全ての窒化ホウ素フィラーが樹脂溶液中に分散して、全体が、ミキサーの攪拌羽根への付着が観察されなくなる程度の粘度になるまで、この低速での攪拌操作を継続させる方法などによる粒度調整工程を採用することができる。   More specifically, for example, the rotation speed of the mixer is 30 rpm or less, preferably 10 to 20 rpm, and all the boron nitride filler is dispersed in the resin solution, so that the whole is mixed into the stirring blades of the mixer. A particle size adjusting step such as a method of continuing the stirring operation at a low speed until the viscosity becomes such that adhesion is not observed can be adopted.

次いで、樹脂溶液の残量をミキサーに加えて、例えば、1〜20kPaの減圧下、(常温)で攪拌することにより粒度調整工程で作製された窒化ホウ素フィラーと樹脂溶液との混合物を粒度調整工程よりも低粘度となる状態で攪拌し、窒化ホウ素粒子を微細化させる粒度再調整工程を実施する。
なお、要すれば、樹脂溶液の残量を数度に分けてこの粒度再調整工程を段階的に複数回に分けて実施することもできる。
Next, the remaining amount of the resin solution is added to the mixer, and the mixture of the boron nitride filler and the resin solution prepared in the particle size adjusting step by stirring at (normal temperature) under a reduced pressure of 1 to 20 kPa, for example, is used. The mixture is stirred in a state where the viscosity is lower than that, and a particle size readjustment step is performed to refine the boron nitride particles.
In addition, if necessary, the remaining amount of the resin solution can be divided into several degrees, and the particle size readjustment step can be performed in a plurality of steps in a stepwise manner.

より具体的には、例えば、ミキサーの回転数を粒度調整工程以上となる20〜50rpm以下、好ましくは、20〜30rpmの回転速度とし、大きな凝集物が目視により観察されなくなる程度までこの攪拌操作を継続させる方法などによる粒度再調整工程を採用することができる。   More specifically, for example, the rotational speed of the mixer is 20 to 50 rpm or less, preferably 20 to 30 rpm, which is equal to or higher than the particle size adjustment step, and this stirring operation is performed to such an extent that large aggregates are not visually observed. A particle size readjustment step such as a continuous method can be employed.

この粒度再調整工程では、粒度調整工程よりも低いシェアストレスとなることから凝集状態の窒化ホウ素粒子は、あまり細かな粒径には微細化されず、例えば、20μmを超え60μm以下の粒径の窒化ホウ素粒子が粒度調整工程よりも多く形成される。   In this particle size readjustment step, since the shear stress is lower than that in the particle size adjustment step, the aggregated boron nitride particles are not refined to a very fine particle size, for example, a particle size of more than 20 μm and 60 μm or less. More boron nitride particles are formed than in the particle size adjustment step.

このように粒度調整工程と、1回以上の粒度再調整工程とを実施することによりコーティング液中の窒化ホウ素フィラーの状態を、粒径3μm以上100μm以下の窒化ホウ素粒子を含み、しかも、前記窒化ホウ素粒子が、3μm以上20μm以下の粒径の窒化ホウ素粒子が50〜90質量%、20μmを超え60μm以下の粒径の窒化ホウ素粒子が5〜40質量%、60μmを超え100μm以下の粒径の窒化ホウ素粒子が1〜20質量%の割合とさせることができる。   The state of the boron nitride filler in the coating liquid by carrying out the particle size adjustment step and the one or more particle size readjustment steps as described above includes boron nitride particles having a particle size of 3 μm to 100 μm, and the nitriding Boron nitride particles having a particle size of 3 μm or more and 20 μm or less are 50 to 90% by mass, boron nitride particles having a particle size of more than 20 μm and 60 μm or less are 5 to 40% by mass, and particle sizes of 60 μm or more and 100 μm or less The boron nitride particles can be in a proportion of 1 to 20% by mass.

上記のように作製されたコーティング液を用いて金属箔付高熱伝導接着シートを作製する方法としては、従来広く用いられているコーティング方法を採用することができる。
例えば、コーティング液を金属箔上にコーティングした後に乾燥して金属箔層上に高熱伝導性樹脂層を形成するなどして金属箔付高熱伝導接着シートを作製することができる。
また、セパレータフィルム上にコーティング液をコーティングし、乾燥した後にセパレータフィルムを剥離して高熱伝導性樹脂層のみ熱伝導性シートを一旦作製した後に、金属箔とラミネートして金属箔付高熱伝導接着シートを作製することができる。
As a method for producing a highly heat conductive adhesive sheet with a metal foil using the coating solution produced as described above, a coating method that has been widely used can be employed.
For example, a highly heat conductive adhesive sheet with a metal foil can be produced by coating a metal foil on a metal foil and then drying to form a high heat conductive resin layer on the metal foil layer.
Also, after coating the separator film with the coating liquid and drying it, the separator film is peeled off to produce a heat conductive sheet only for the high heat conductive resin layer, and then laminated with a metal foil to provide a high heat conductive adhesive sheet with a metal foil. Can be produced.

なお、本実施形態においては、熱伝導性樹脂組成物を用いた成形物に高い熱伝導率(例えば、10W/mK以上)を付与させ得るという本発明の効果をより顕著に発揮させ得る点において半導体モジュールのヒートシンクなどに接着されて用いられる金属箔付高熱伝導接着シートを例に説明したが、本発明の熱伝導性樹脂組成物をこのような用途に限定するものではない。
例えば、金属箔付高熱伝導接着シートのように金属箔層を有する熱伝導性シートの作製に用いられる場合に限定するものではなく、高熱伝導性樹脂層(熱伝導性樹脂組成物)のみにより形成された熱伝導性シートの作製に用いることも可能である。
あるいは、熱伝導性シート以外の他用途に熱伝導性樹脂組成物を用いることも可能である。
In addition, in this embodiment, in the point which can exhibit the effect of this invention of being able to provide high heat conductivity (for example, 10 W / mK or more) to the molded article using a heat conductive resin composition more notably. Although the high heat conductive adhesive sheet with metal foil used by being bonded to a heat sink or the like of a semiconductor module has been described as an example, the heat conductive resin composition of the present invention is not limited to such an application.
For example, it is not limited to the case where it is used for the production of a heat conductive sheet having a metal foil layer, such as a high heat conductive adhesive sheet with a metal foil, but only formed by a high heat conductive resin layer (heat conductive resin composition). It is also possible to use for the production of a heat conductive sheet.
Or it is also possible to use a heat conductive resin composition for uses other than a heat conductive sheet.

次に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated in more detail, this invention is not limited to these.

(実施例1)
(ベース樹脂溶液の調整)
ビスフェノール型エポキシ樹脂(東都化成社製、商品名「YD−011」)66gと、クレゾールノボラック樹脂(東都化成社製、商品名「YDCN704」)66gと、硬化剤である4,4’−ジアミノジフェニルスルホン(和歌山精化社製、商品名「セイカキュアーS」)26g、硬化促進剤である三酸化ホウ素モノエチルアミン1.3gと、2−ブタノン106gとを混合溶解させてベース樹脂溶液を作製した。
(Example 1)
(Preparation of base resin solution)
66 g of bisphenol type epoxy resin (product name “YD-011” manufactured by Toto Kasei Co., Ltd.), 66 g of cresol novolac resin (product name “YDCN704” manufactured by Toto Kasei Co., Ltd.), and 4,4′-diaminodiphenyl which is a curing agent A base resin solution was prepared by mixing and dissolving 26 g of sulfone (trade name “Seika Cure S” manufactured by Wakayama Seika Co., Ltd.), 1.3 g of boron trioxide monoethylamine as a curing accelerator, and 106 g of 2-butanone.

(エポキシ樹脂溶液の作製)
前記ベース樹脂溶液をさらに2−ブタノン82gとトルエン163gを加えて希釈したものをエポキシ樹脂溶液として作製した。
(Preparation of epoxy resin solution)
An epoxy resin solution was prepared by further diluting the base resin solution by adding 82 g of 2-butanone and 163 g of toluene.

(コーティング液の作製)
(粒度調整工程)
窒化ホウ素フィラー(昭和電工社製、商品名「UHP−1」)300gをプリミックス社製「ハイビスミキサー」に入れ、前記エポキシ樹脂溶液261gと分散剤(ビックケミー社製、商品名「ディスパービック−2001」)3gとをいれて減圧下で20分間攪拌し、粒度調整工程を実施した。
(Preparation of coating solution)
(Granularity adjustment process)
300 g of boron nitride filler (trade name “UHP-1” manufactured by Showa Denko KK) is placed in “Hibis mixer” manufactured by Premix, and 261 g of the epoxy resin solution and a dispersant (manufactured by BYK Chemie, trade name “Disperbic-2001” “) 3 g was added and stirred under reduced pressure for 20 minutes to carry out the particle size adjustment step.

(粒度再調整工程)
さらに、前記エポキシ樹脂溶液151gを「ハイビスミキサー」内にいれて、減圧下で20分間攪拌し、粒度再調整工程を実施しコーティング液を作製した。
(Grain size readjustment process)
Furthermore, 151 g of the epoxy resin solution was put in a “Hibis mixer”, stirred for 20 minutes under reduced pressure, and subjected to a particle size readjustment step to prepare a coating solution.

(熱伝導性シートの作製)
得られたコーティング液を銅箔上に塗布、乾燥し、熱伝動性樹脂組成物によりシート状に形成された高熱伝導性樹脂層が銅箔上に積層された金属箔付高熱伝導接着シートを作製した。
さらに、ホットプレスを用いて5.9MPaの圧力で加圧しながら120℃×20分間の熱プレスを実施した後に、続けて180℃×2時間の熱プレスを実施して金属箔付高熱伝導接着シートの硬化を実施し、評価試料を作製した。
硬化後の高熱伝導性樹脂層の膜厚は、0.2mmであった。
なお、高熱伝導性樹脂層に占める窒化ホウ素フィラーの割合は55体積%であった。
(Preparation of thermal conductive sheet)
The obtained coating liquid is applied onto copper foil and dried to produce a high heat conductive adhesive sheet with metal foil in which a high heat conductive resin layer formed into a sheet shape with a heat conductive resin composition is laminated on the copper foil. did.
Furthermore, after performing hot pressing at 120 ° C. for 20 minutes while applying pressure at a pressure of 5.9 MPa using a hot press, the hot pressing at 180 ° C. for 2 hours is subsequently performed to provide a highly heat conductive adhesive sheet with metal foil. Curing was performed to prepare an evaluation sample.
The film thickness of the highly thermally conductive resin layer after curing was 0.2 mm.
In addition, the ratio of the boron nitride filler which occupies for a high heat conductive resin layer was 55 volume%.

(実施例2)
(エポキシ樹脂溶液の作製)
実施例1におけるベース樹脂溶液を希釈することなくエポキシ樹脂溶液とした。
すなわち、ビスフェノール型エポキシ樹脂(東都化成社製、商品名「YD−011」)66gと、クレゾールノボラック樹脂(東都化成社製、商品名「YDCN704」)66gと、硬化剤である4,4’−ジアミノジフェニルスルホン(和歌山精化社製、商品名「セイカキュアーS」)26g、硬化促進剤である三酸化ホウ素モノエチルアミン1.3gと、2−ブタノン106gとを混合溶解させてエポキシ樹脂溶液を作製した。
(Example 2)
(Preparation of epoxy resin solution)
The base resin solution in Example 1 was used as an epoxy resin solution without dilution.
That is, 66 g of bisphenol type epoxy resin (product name “YD-011” manufactured by Toto Kasei Co., Ltd.), 66 g of cresol novolak resin (product name “YDCN 704” manufactured by Toto Kasei Co., Ltd.), and 4,4′- which is a curing agent. 26 g of diaminodiphenylsulfone (trade name “Seika Cure S”, manufactured by Wakayama Seika Co., Ltd.), 1.3 g of boron trioxide monoethylamine, which is a curing accelerator, and 106 g of 2-butanone are mixed and dissolved to prepare an epoxy resin solution. did.

(コーティング液の作製)
窒化ホウ素フィラー(昭和電工社製、商品名「UHP−1」)300gをプリミックス社製「ハイビスミキサー」に入れ、前記エポキシ樹脂溶液212.6gと分散剤(ビックケミー社製、商品名「ディスパービック−2001」)3gとをいれて減圧下で20分間攪拌した。
次いで、一旦常圧に戻して、2−ブタノン50gとトルエン110gをさらに加えた後に、再び減圧下で攪拌しコーティング液を作製した。
(Preparation of coating solution)
300 g of boron nitride filler (trade name “UHP-1” manufactured by Showa Denko KK) is placed in “Hibis mixer” manufactured by Premix Co., Ltd., and 122.6 g of the epoxy resin solution and a dispersant (manufactured by BYK Chemie, product name “Dispervic” -2001 ") and 3 g, and stirred for 20 minutes under reduced pressure.
Next, the pressure was returned to normal pressure, 50 g of 2-butanone and 110 g of toluene were further added, and the mixture was stirred again under reduced pressure to prepare a coating solution.

(熱伝導性シートの作製)
得られたコーティング液を銅箔上に塗布、乾燥し、熱伝動性樹脂組成物によりシート状に形成された高熱伝導性樹脂層が銅箔上に積層された金属箔付高熱伝導接着シートを作製した。
さらに、ホットプレスを用いて5.9MPaの圧力で加圧しながら120℃×20分間の熱プレスを実施した後に、続けて180℃×2時間の熱プレスを実施して金属箔付高熱伝導接着シートの硬化を実施し、評価試料を作製した。
硬化後の高熱伝導性樹脂層の膜厚は、0.2mmであった。
なお、高熱伝導性樹脂層に占める窒化ホウ素フィラーの割合は55体積%であった。
(Preparation of thermal conductive sheet)
The obtained coating liquid is applied onto copper foil and dried to produce a high heat conductive adhesive sheet with metal foil in which a high heat conductive resin layer formed into a sheet shape with a heat conductive resin composition is laminated on the copper foil. did.
Furthermore, after performing hot pressing at 120 ° C. for 20 minutes while applying pressure at a pressure of 5.9 MPa using a hot press, the hot pressing at 180 ° C. for 2 hours is subsequently performed to provide a highly heat conductive adhesive sheet with metal foil. Curing was performed to prepare an evaluation sample.
The film thickness of the highly thermally conductive resin layer after curing was 0.2 mm.
In addition, the ratio of the boron nitride filler which occupies for a high heat conductive resin layer was 55 volume%.

(実施例3)
(エポキシ樹脂溶液の作製)
実施例1におけるベース樹脂溶液を希釈することなくエポキシ樹脂溶液とした。
すなわち、ビスフェノール型エポキシ樹脂(東都化成社製、商品名「YD−011」)66gと、クレゾールノボラック樹脂(東都化成社製、商品名「YDCN704」)66gと、硬化剤である4,4’−ジアミノジフェニルスルホン(和歌山精化社製、商品名「セイカキュアーS」)26g、硬化促進剤である三酸化ホウ素モノエチルアミン1.3gと、2−ブタノン106gとを混合溶解させてエポキシ樹脂溶液を作製した。
(Example 3)
(Preparation of epoxy resin solution)
The base resin solution in Example 1 was used as an epoxy resin solution without dilution.
That is, 66 g of bisphenol type epoxy resin (product name “YD-011” manufactured by Toto Kasei Co., Ltd.), 66 g of cresol novolak resin (product name “YDCN 704” manufactured by Toto Kasei Co., Ltd.), and 4,4′- which is a curing agent. 26 g of diaminodiphenylsulfone (trade name “Seika Cure S”, manufactured by Wakayama Seika Co., Ltd.), 1.3 g of boron trioxide monoethylamine, which is a curing accelerator, and 106 g of 2-butanone are mixed and dissolved to prepare an epoxy resin solution. did.

(コーティング液の作製)
窒化ホウ素フィラー(昭和電工社製、商品名「UHP−1」)300gをプリミックス社製「ハイビスミキサー」に入れ、分散剤(ビックケミー社製、商品名「ディスパービック−2001」)3gをトルエン110gに溶解させた溶液を加えて減圧下で20分間攪拌した。
次いで、前記エポキシ樹脂溶液212.6gと2−ブタノン50gとをさらに加えて減圧下で20分間攪拌した。
(Preparation of coating solution)
300 g of boron nitride filler (trade name “UHP-1” manufactured by Showa Denko KK) is placed in “Hibis mixer” manufactured by Premix, and 3 g of a dispersant (trade name “Disperbic-2001” manufactured by BYK Chemie) is added to 110 g of toluene. The solution dissolved in was added and stirred for 20 minutes under reduced pressure.
Next, 212.6 g of the epoxy resin solution and 50 g of 2-butanone were further added and stirred for 20 minutes under reduced pressure.

(熱伝導性シートの作製)
得られたコーティング液を銅箔上に塗布、乾燥し、熱伝動性樹脂組成物によりシート状に形成された高熱伝導性樹脂層が銅箔上に積層された金属箔付高熱伝導接着シートを作製した。
さらに、ホットプレスを用いて5.9MPaの圧力で加圧しながら120℃×20分間の熱プレスを実施した後に、続けて180℃×2時間の熱プレスを実施して金属箔付高熱伝導接着シートの硬化を実施し、評価試料を作製した。
硬化後の高熱伝導性樹脂層の膜厚は、0.2mmであった。
なお、高熱伝導性樹脂層に占める窒化ホウ素フィラーの割合は55体積%であった。
(Preparation of thermal conductive sheet)
The obtained coating liquid is applied onto copper foil and dried to produce a high heat conductive adhesive sheet with metal foil in which a high heat conductive resin layer formed into a sheet shape with a heat conductive resin composition is laminated on the copper foil. did.
Furthermore, after performing hot pressing at 120 ° C. for 20 minutes while applying pressure at a pressure of 5.9 MPa using a hot press, the hot pressing at 180 ° C. for 2 hours is subsequently performed to provide a highly heat conductive adhesive sheet with metal foil. Curing was performed to prepare an evaluation sample.
The film thickness of the highly thermally conductive resin layer after curing was 0.2 mm.
In addition, the ratio of the boron nitride filler which occupies for a high heat conductive resin layer was 55 volume%.

(実施例4)
用いる窒化ホウ素フィラーを昭和電工社製、商品名「UHP−1」に代えて、水島合金鉄社製、商品名「HP−40」に代えたこと以外は、実施例1と同様に評価試料を作製した。
Example 4
An evaluation sample was prepared in the same manner as in Example 1 except that the boron nitride filler used was changed to Showa Denko Co., Ltd., trade name “UHP-1”, and Mizushima Alloy Iron Co., Ltd., trade name “HP-40”. Produced.

(実施例5)
用いる窒化ホウ素フィラーを昭和電工社製、商品名「UHP−1」に代えて、水島合金鉄社製、商品名「HP−40」に代えたこと以外は、実施例2と同様に評価試料を作製した。
(Example 5)
An evaluation sample was prepared in the same manner as in Example 2 except that the boron nitride filler used was changed to Showa Denko Co., Ltd., trade name “UHP-1”, and Mizushima Alloy Iron Co., Ltd., trade name “HP-40”. Produced.

(実施例6)
用いる窒化ホウ素フィラーを昭和電工社製、商品名「UHP−1」、300gに代えて、昭和電工社製、商品名「UHP−1」、210gと電気化学工業社製、商品名「SGPS」、90gとの混合品に代えたこと以外は、実施例1と同様に評価試料を作製した。
(Example 6)
Instead of the boron nitride filler used by Showa Denko KK, trade name “UHP-1”, 300 g, Showa Denko KK trade name “UHP-1”, 210 g, manufactured by Denki Kagaku Kogyo KK, trade name “SGPS”, An evaluation sample was prepared in the same manner as in Example 1 except that the mixed product with 90 g was used.

(比較例1)
プリミックス社製「ハイビスミキサー」に代えてスギノマシン社製、商品名「アルティマイザー HJP−25」を用いることにより、窒化ホウ素フィラーをより微細化させたこと以外は、実施例1と同様にコーティング液を作製し、実施例1と同様に評価試料を作製した。
(Comparative Example 1)
Coating was performed in the same manner as in Example 1 except that the boron nitride filler was further refined by using the product name “Ultimizer HJP-25” manufactured by Sugino Machine Co. instead of “Hibis Mixer” manufactured by Premix. A liquid was prepared, and an evaluation sample was prepared in the same manner as in Example 1.

(比較例2)
プリミックス社製「ハイビスミキサー」に代えて寿工業社製、商品名「ウルトラアペックスミル UAM−015」を用いることにより、窒化ホウ素フィラーをより微細化させたこと以外は、実施例1と同様にコーティング液を作製し、実施例1と同様に評価試料を作製した。
(Comparative Example 2)
Example 1 except that the boron nitride filler was further refined by using the product name “Ultra Apex Mill UAM-015” manufactured by Kotobuki Kogyo Co., Ltd. instead of “Hibis Mixer” manufactured by Premix. A coating solution was prepared, and an evaluation sample was prepared in the same manner as in Example 1.

(評価)
(窒化ホウ素粒子の粒径分布の確認)
レーザー回折法により各実施例、比較例のコーティング液中の窒化ホウ素粒子の粒度分布を測定した。
測定結果から、3μm以上20μm以下の粒径を有する窒化ホウ素粒子の総質量(M1)と、20μmを超え60μm以下の粒径の窒化ホウ素粒子の総質量(M2)と、60μmを超え100μm以下の粒径の窒化ホウ素粒子総質量(M3)とを求め、これらの総合計量(T(=M1+M2+M3))を計算により求めた。
さらに、各範囲の窒化ホウ素粒子総質量(M1、M2、M3)をこの総合計量(T)で除して質量%(wt%)を求めた。
結果を、表1に示す。
(Evaluation)
(Confirmation of particle size distribution of boron nitride particles)
The particle size distribution of the boron nitride particles in the coating liquids of Examples and Comparative Examples was measured by a laser diffraction method.
From the measurement results, the total mass (M1) of boron nitride particles having a particle size of 3 μm or more and 20 μm or less, the total mass (M2) of boron nitride particles having a particle size of more than 20 μm and 60 μm or less, and more than 60 μm and 100 μm or less. The total mass (M3) of boron nitride particles having a particle size was obtained, and the total metric (T (= M1 + M2 + M3)) was obtained by calculation.
Further, the total mass (M1, M2, M3) of boron nitride particles in each range was divided by this total metric (T) to obtain mass% (wt%).
The results are shown in Table 1.

(熱伝導率の測定)
各実施例、比較例で作製した熱伝導性シートを用いて熱伝導率の測定を実施した。
なお、熱伝導率は、アイフェイズ社製、商品名「ai−phase mobile」により熱拡散率を求め、さらに、示差走査熱量計(DSC)を用いた測定により熱伝導性シートの単位体積あたりの熱容量を測定し、先の熱拡散率に乗じることにより算出した。
結果を表1に示す。
(Measurement of thermal conductivity)
The thermal conductivity was measured using the thermal conductive sheet produced in each example and comparative example.
In addition, thermal conductivity calculates | requires a thermal diffusivity by the product name "ai-phase mobile" by an eye phase company, Furthermore, per unit volume of a heat conductive sheet by the measurement using a differential scanning calorimeter (DSC). The heat capacity was measured and calculated by multiplying the previous thermal diffusivity.
The results are shown in Table 1.

Figure 2008189818
Figure 2008189818

この表からも熱伝導性樹脂組成物中に、所定の粒度分布で窒化ホウ素粒子が含有されていることで、熱伝導率に優れた成形品を形成させ得ることがわかる。   Also from this table, it can be seen that a molded article having excellent thermal conductivity can be formed by containing boron nitride particles with a predetermined particle size distribution in the thermally conductive resin composition.

金属箔付高熱伝導接着シートの使用方法を示す断面図。Sectional drawing which shows the usage method of the high heat conductive adhesive sheet with metal foil.

Claims (5)

窒化ホウ素粒子とポリマー成分とが含有されている熱伝導性樹脂組成物であって、
粒径3μm以上100μm以下の窒化ホウ素粒子が含有されており、しかも、前記窒化ホウ素粒子は、3μm以上20μm以下の粒径の窒化ホウ素粒子が50〜90質量%、20μmを超え60μm以下の粒径の窒化ホウ素粒子が5〜40質量%、60μmを超え100μm以下の粒径の窒化ホウ素粒子が1〜20質量%となる割合で含有されていることを特徴とする熱伝導性樹脂組成物。
A thermally conductive resin composition containing boron nitride particles and a polymer component,
Boron nitride particles having a particle size of 3 μm or more and 100 μm or less are contained, and the boron nitride particles are 50 to 90% by mass of boron nitride particles having a particle size of 3 μm or more and 20 μm or less, and a particle size of more than 20 μm and less than 60 μm The thermal conductive resin composition is characterized in that the boron nitride particles of 5 to 40% by mass and boron nitride particles having a particle diameter of more than 60 μm and not more than 100 μm are contained in an amount of 1 to 20% by mass.
分子内に複数のエポキシ基を有するエポキシ樹脂が前記ポリマー成分に用いられ、前記エポキシ樹脂を熱硬化させるための硬化剤と硬化促進剤とが含有されており、前記硬化剤が、分子内に複数の1級芳香族アミン残基を有するジアミン誘導体であり、前記硬化促進剤が、アミン系硬化促進剤である請求項1記載の熱伝導性樹脂組成物。   An epoxy resin having a plurality of epoxy groups in the molecule is used for the polymer component, a curing agent for thermally curing the epoxy resin and a curing accelerator are contained, and a plurality of the curing agents are contained in the molecule. The thermally conductive resin composition according to claim 1, wherein the curing accelerator is an amine-based curing accelerator. 請求項1または2に記載の熱伝導性樹脂組成物がシート状に成形されてなることを特徴とする熱伝導性シート。   A thermally conductive sheet, wherein the thermally conductive resin composition according to claim 1 or 2 is formed into a sheet shape. 分子内に複数のエポキシ基を有するエポキシ樹脂と、前記エポキシ樹脂を熱硬化させるための硬化剤と硬化促進剤とを含み、前記エポキシ樹脂、前記硬化剤ならびに前記硬化促進剤が溶剤中に分散されており、しかも、前記硬化剤が分子内に複数の1級芳香族アミン残基を有するジアミン誘導体であり、前記硬化促進剤がアミン系硬化促進剤であるエポキシ樹脂溶液を、平均粒径が60μmを超え200μm以下の窒化ホウ素粒子とともに減圧下で攪拌して前記エポキシ樹脂溶液と前記窒化ホウ素粒子との混合物を作製するとともに前記攪拌により前記窒化ホウ素粒子を微細化させる粒度調整工程を実施し、該粒度調整工程後に、前記エポキシ樹脂溶液をさらに加えた状態で再び減圧下で攪拌して前記混合物を前記エポキシ樹脂溶液で希釈するとともに前記攪拌により前記混合物中の窒化ホウ素粒子をさらに微細化させる粒度再調整工程を少なくとも1回以上実施して、3μm以上20μm以下の粒径の窒化ホウ素粒子が50〜90質量%、20μmを超え60μm以下の粒径の窒化ホウ素粒子が5〜40質量%、60μmを超え100μm以下の粒径の窒化ホウ素粒子が1〜20質量%となる割合で粒径3μm以上100μm以下の窒化ホウ素粒子が含有されている液状の熱伝導性樹脂組成物を作製することを特徴とする熱伝導性樹脂組成物製造方法。   An epoxy resin having a plurality of epoxy groups in the molecule, a curing agent for thermosetting the epoxy resin, and a curing accelerator, wherein the epoxy resin, the curing agent, and the curing accelerator are dispersed in a solvent. In addition, an epoxy resin solution in which the curing agent is a diamine derivative having a plurality of primary aromatic amine residues in the molecule and the curing accelerator is an amine-based curing accelerator has an average particle size of 60 μm. And a particle size adjusting step of making the mixture of the epoxy resin solution and the boron nitride particles by stirring under reduced pressure together with boron nitride particles exceeding 200 μm and reducing the boron nitride particles by the stirring, After the particle size adjustment step, the mixture is further diluted with the epoxy resin solution by stirring again under reduced pressure while further adding the epoxy resin solution. At the same time, the particle size readjustment step for further refining the boron nitride particles in the mixture by the stirring is performed at least once. Contains boron nitride particles having a particle size of 3 μm or more and 100 μm or less in a ratio of 5 to 40% by mass of boron nitride particles having a particle size of 60 μm or less and 1 to 20% by mass of boron nitride particles having a particle size of more than 60 μm and 100 μm or less. A method for producing a thermally conductive resin composition, comprising producing a liquid thermally conductive resin composition. 請求項4記載の熱伝導性樹脂組成物製造方法により液状の熱伝導性樹脂組成物を作製し、該液状の熱伝導性樹脂組成物を基材に塗工して乾燥させた後に、該乾燥された熱伝導性樹脂組成物をプレスすることによりシート状に成形することを特徴とする熱伝導性シート作製方法。   A liquid heat conductive resin composition is produced by the method for producing a heat conductive resin composition according to claim 4, the liquid heat conductive resin composition is applied to a substrate and dried, and then the drying is performed. A method for producing a heat conductive sheet, comprising pressing the heat conductive resin composition formed into a sheet shape.
JP2007025927A 2007-02-05 2007-02-05 Thermally conductive resin composition, thermal conductive sheet and method for producing the same Expired - Fee Related JP4889110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007025927A JP4889110B2 (en) 2007-02-05 2007-02-05 Thermally conductive resin composition, thermal conductive sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007025927A JP4889110B2 (en) 2007-02-05 2007-02-05 Thermally conductive resin composition, thermal conductive sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008189818A true JP2008189818A (en) 2008-08-21
JP4889110B2 JP4889110B2 (en) 2012-03-07

Family

ID=39750222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007025927A Expired - Fee Related JP4889110B2 (en) 2007-02-05 2007-02-05 Thermally conductive resin composition, thermal conductive sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP4889110B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153639A (en) * 2008-12-25 2010-07-08 Mitsubishi Electric Corp Power semiconductor device and method for manufacturing the same
JP2010157563A (en) * 2008-12-26 2010-07-15 Mitsubishi Electric Corp Heat conductive sheet and power module
WO2010087230A1 (en) 2009-01-30 2010-08-05 日東電工株式会社 Heat-conductive pressure-sensitive adhesive composition and heat-conductive pressure-sensitive adhesive sheet
JP2010260225A (en) * 2009-05-01 2010-11-18 Denki Kagaku Kogyo Kk Thermoconductive molding and use thereof
JP2011012193A (en) * 2009-07-03 2011-01-20 Denki Kagaku Kogyo Kk Resin composition and use thereof
JP2011178961A (en) * 2010-03-03 2011-09-15 Mitsubishi Electric Corp Resin composition, heat-conductive sheet, method for producing the sheet, and power module
US20110261242A1 (en) * 2010-01-29 2011-10-27 Nitto Denko Corporation Imaging device module
WO2012046814A1 (en) 2010-10-06 2012-04-12 日立化成工業株式会社 Multilayer resin sheet and process for production thereof, resin sheet laminate and process for production thereof, cured multilayer resin sheet, metal-foil-cladded multilayer resin sheet, and semiconductor device
CN102464954A (en) * 2010-11-19 2012-05-23 富葵精密组件(深圳)有限公司 Composite adhesive sheet, film comprising same and manufacturing method of film
WO2012132691A1 (en) 2011-03-28 2012-10-04 日立化成工業株式会社 Multilayer resin sheet, resin sheet laminate, cured multilayer resin sheet and method for producing same, multilayer resin sheet with metal foil, and semiconductor device
WO2012133587A1 (en) 2011-03-28 2012-10-04 日立化成工業株式会社 Resin composition, resin sheet, cured resin sheet, resin sheet laminate, cured resin sheet laminate and method for manufacturing same, semiconductor device, and led device
JP2012255055A (en) * 2011-06-07 2012-12-27 National Institute Of Advanced Industrial Science & Technology Composite material comprising inorganic-organic composite composition, and method of producing the same
WO2013081061A1 (en) 2011-11-29 2013-06-06 三菱化学株式会社 Aggregated boron nitride particles, composition containing said particles, and three-dimensional integrated circuit having layer comprising said composition
JP2013176980A (en) * 2012-02-08 2013-09-09 Nitto Denko Corp Thermal conductive sheet
US8592844B2 (en) 2010-01-29 2013-11-26 Nitto Denko Corporation Light-emitting diode device
US8749978B2 (en) 2010-01-29 2014-06-10 Nitto Denko Corporation Power module
WO2014208694A1 (en) 2013-06-27 2014-12-31 日立化成株式会社 Resin composition, resin sheet, cured resin sheet, resin sheet structure, cured resin sheet structure, method for producing cured resin sheet structure, semiconductor device, and led device
TWI492972B (en) * 2010-01-29 2015-07-21 Nitto Denko Corp Thermal conductive sheet
WO2015166609A1 (en) * 2014-04-30 2015-11-05 日東電工株式会社 Thermally conductive polymer composition and thermally conductive molded object
WO2016092734A1 (en) 2014-12-08 2016-06-16 Showa Denko K.K. Resin composition and preparation process thereof
CN107501610A (en) * 2017-08-30 2017-12-22 桂林电子科技大学 A kind of composite heat interfacial material based on boron nitride and preparation method thereof
KR101876247B1 (en) 2017-02-28 2018-08-09 주식회사 신한세라믹 Method for granular boron nitride filler by using thermosetting resin as binder and filler thereof
KR20180101085A (en) * 2017-03-03 2018-09-12 주식회사 엘지화학 Composition for acrylic heat emission pad and acrylic heat emission pad comporising cured product thereof
WO2019164002A1 (en) 2018-02-26 2019-08-29 デンカ株式会社 Insulating heat dissipation sheet
JP2021091787A (en) * 2019-12-10 2021-06-17 日東シンコー株式会社 Resin composition and heat conductive sheet
WO2022149435A1 (en) * 2021-01-06 2022-07-14 デンカ株式会社 Boron nitride powder, heat dissipation sheet, and method for producing heat dissipation sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI748935B (en) 2014-12-26 2021-12-11 日商昭和電工材料股份有限公司 Epoxy resin, epoxy resin composition, epoxy resin composition containing inorganic filler, resin sheet, cured product and epoxy compound

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02227451A (en) * 1989-02-28 1990-09-10 Denki Kagaku Kogyo Kk Filler for resins and liquid epoxy resin composition
JPH08198948A (en) * 1995-01-26 1996-08-06 Toshiba Chem Corp Epoxy resin composition and device for sealing semiconductor
JP2001348488A (en) * 2000-06-06 2001-12-18 Matsushita Electric Works Ltd Heat-conductive resin composition, prepreg, radiating circuit board and radiating heating part
JP2002164481A (en) * 2000-11-13 2002-06-07 Three M Innovative Properties Co Heat conductive sheet
JP2004059638A (en) * 2002-07-25 2004-02-26 Kuraray Co Ltd Polyamide composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02227451A (en) * 1989-02-28 1990-09-10 Denki Kagaku Kogyo Kk Filler for resins and liquid epoxy resin composition
JPH08198948A (en) * 1995-01-26 1996-08-06 Toshiba Chem Corp Epoxy resin composition and device for sealing semiconductor
JP2001348488A (en) * 2000-06-06 2001-12-18 Matsushita Electric Works Ltd Heat-conductive resin composition, prepreg, radiating circuit board and radiating heating part
JP2002164481A (en) * 2000-11-13 2002-06-07 Three M Innovative Properties Co Heat conductive sheet
JP2004059638A (en) * 2002-07-25 2004-02-26 Kuraray Co Ltd Polyamide composition

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153639A (en) * 2008-12-25 2010-07-08 Mitsubishi Electric Corp Power semiconductor device and method for manufacturing the same
JP2010157563A (en) * 2008-12-26 2010-07-15 Mitsubishi Electric Corp Heat conductive sheet and power module
WO2010087230A1 (en) 2009-01-30 2010-08-05 日東電工株式会社 Heat-conductive pressure-sensitive adhesive composition and heat-conductive pressure-sensitive adhesive sheet
JP2010174173A (en) * 2009-01-30 2010-08-12 Nitto Denko Corp Thermally conductive self-adhesive composition and thermally conductive self-adhesive sheet
JP2010260225A (en) * 2009-05-01 2010-11-18 Denki Kagaku Kogyo Kk Thermoconductive molding and use thereof
JP2011012193A (en) * 2009-07-03 2011-01-20 Denki Kagaku Kogyo Kk Resin composition and use thereof
US8547465B2 (en) * 2010-01-29 2013-10-01 Nitto Denko Corporation Imaging device module
US20110261242A1 (en) * 2010-01-29 2011-10-27 Nitto Denko Corporation Imaging device module
US8592844B2 (en) 2010-01-29 2013-11-26 Nitto Denko Corporation Light-emitting diode device
US8749978B2 (en) 2010-01-29 2014-06-10 Nitto Denko Corporation Power module
TWI492972B (en) * 2010-01-29 2015-07-21 Nitto Denko Corp Thermal conductive sheet
JP2011178961A (en) * 2010-03-03 2011-09-15 Mitsubishi Electric Corp Resin composition, heat-conductive sheet, method for producing the sheet, and power module
WO2012046814A1 (en) 2010-10-06 2012-04-12 日立化成工業株式会社 Multilayer resin sheet and process for production thereof, resin sheet laminate and process for production thereof, cured multilayer resin sheet, metal-foil-cladded multilayer resin sheet, and semiconductor device
CN102464954A (en) * 2010-11-19 2012-05-23 富葵精密组件(深圳)有限公司 Composite adhesive sheet, film comprising same and manufacturing method of film
EP2692759A4 (en) * 2011-03-28 2015-03-11 Hitachi Chemical Co Ltd Resin composition, resin sheet, cured resin sheet, resin sheet laminate, cured resin sheet laminate and method for manufacturing same, semiconductor device, and led device
US9349931B2 (en) 2011-03-28 2016-05-24 Hitachi Chemical Company, Ltd. Resin composition, resin sheet, cured resin sheet, resin sheet laminate, cured resin sheet laminate and method for producing same, semiconductor device and LED device
WO2012133587A1 (en) 2011-03-28 2012-10-04 日立化成工業株式会社 Resin composition, resin sheet, cured resin sheet, resin sheet laminate, cured resin sheet laminate and method for manufacturing same, semiconductor device, and led device
WO2012132691A1 (en) 2011-03-28 2012-10-04 日立化成工業株式会社 Multilayer resin sheet, resin sheet laminate, cured multilayer resin sheet and method for producing same, multilayer resin sheet with metal foil, and semiconductor device
JP2012255055A (en) * 2011-06-07 2012-12-27 National Institute Of Advanced Industrial Science & Technology Composite material comprising inorganic-organic composite composition, and method of producing the same
KR20190026954A (en) 2011-11-29 2019-03-13 미쯔비시 케미컬 주식회사 Aggregated boron nitride particles, composition containing said particles, and three-dimensional integrated circuit having layer comprising said composition
US9822294B2 (en) 2011-11-29 2017-11-21 Mitsubishi Chemical Corporation Agglomerated boron nitride particles, composition containing said particles, and three-dimensional integrated circuit having layer comprising said composition
WO2013081061A1 (en) 2011-11-29 2013-06-06 三菱化学株式会社 Aggregated boron nitride particles, composition containing said particles, and three-dimensional integrated circuit having layer comprising said composition
KR20140103106A (en) 2011-11-29 2014-08-25 미쓰비시 가가꾸 가부시키가이샤 Aggregated boron nitride particles, composition containing said particles, and three-dimensional integrated circuit having layer comprising said composition
US10400151B2 (en) 2011-11-29 2019-09-03 Mitsubishi Chemical Corporation Agglomerated boron nitride particles, composition containing said particles, and three- dimensional integrated circuit having layer comprising said composition
EP3269682A1 (en) 2011-11-29 2018-01-17 Mitsubishi Chemical Corporation Agglomerated boron nitride particles, composition containing said particles, and three-dimensional integrated circuit having layer comprising said composition
JP2013176979A (en) * 2012-02-08 2013-09-09 Nitto Denko Corp Thermal conductive sheet
JP2013176980A (en) * 2012-02-08 2013-09-09 Nitto Denko Corp Thermal conductive sheet
JP2013177564A (en) * 2012-02-08 2013-09-09 Nitto Denko Corp Heat-conductive sheet, particle aggregate powder for forming heat-conductive sheet and method for producing them
WO2014208694A1 (en) 2013-06-27 2014-12-31 日立化成株式会社 Resin composition, resin sheet, cured resin sheet, resin sheet structure, cured resin sheet structure, method for producing cured resin sheet structure, semiconductor device, and led device
US9745411B2 (en) 2013-06-27 2017-08-29 Hitachi Chemical Company, Ltd. Resin composition, resin sheet, cured resin sheet, resin sheet structure, cured resin sheet structure, method for producing cured resin sheet structure, semiconductor device, and LED device
US10544341B2 (en) 2014-04-30 2020-01-28 Nitto Denko Corporation Thermally conductive polymer composition and thermally conductive molded object
WO2015166609A1 (en) * 2014-04-30 2015-11-05 日東電工株式会社 Thermally conductive polymer composition and thermally conductive molded object
WO2016092734A1 (en) 2014-12-08 2016-06-16 Showa Denko K.K. Resin composition and preparation process thereof
KR101876247B1 (en) 2017-02-28 2018-08-09 주식회사 신한세라믹 Method for granular boron nitride filler by using thermosetting resin as binder and filler thereof
KR20180101085A (en) * 2017-03-03 2018-09-12 주식회사 엘지화학 Composition for acrylic heat emission pad and acrylic heat emission pad comporising cured product thereof
KR102178497B1 (en) * 2017-03-03 2020-11-13 주식회사 엘지화학 Composition for acrylic heat emission pad and acrylic heat emission pad comporising cured product thereof
CN107501610A (en) * 2017-08-30 2017-12-22 桂林电子科技大学 A kind of composite heat interfacial material based on boron nitride and preparation method thereof
KR20200124214A (en) 2018-02-26 2020-11-02 덴카 주식회사 Insulation heat dissipation sheet
WO2019164002A1 (en) 2018-02-26 2019-08-29 デンカ株式会社 Insulating heat dissipation sheet
EP3761355A4 (en) * 2018-02-26 2021-04-21 Denka Company Limited Insulating heat dissipation sheet
JP2021091787A (en) * 2019-12-10 2021-06-17 日東シンコー株式会社 Resin composition and heat conductive sheet
WO2022149435A1 (en) * 2021-01-06 2022-07-14 デンカ株式会社 Boron nitride powder, heat dissipation sheet, and method for producing heat dissipation sheet
JPWO2022149435A1 (en) * 2021-01-06 2022-07-14
JP7291304B2 (en) 2021-01-06 2023-06-14 デンカ株式会社 Boron nitride powder, heat-dissipating sheet, and method for producing heat-dissipating sheet

Also Published As

Publication number Publication date
JP4889110B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
JP4889110B2 (en) Thermally conductive resin composition, thermal conductive sheet and method for producing the same
JP5761639B2 (en) Adhesive resin composition, cured product thereof, and adhesive film
JP5134824B2 (en) Resin molded product manufacturing method
JP5002280B2 (en) Resin molded product manufacturing method
JP4893415B2 (en) Heat dissipation film
JP6945241B2 (en) Resin composition for film, film, film with base material, metal / resin laminate, cured resin, semiconductor device, and film manufacturing method
TWI763868B (en) Heat-dissipating sheet, method for producing heat-dissipating sheet, and laminate
JP7271176B2 (en) RESIN MATERIAL, RESIN MATERIAL MANUFACTURING METHOD AND LAMINATED PRODUCT
JP2009024126A (en) Polymer composition, thermally-conductive sheet, highly thermally-conductive adhesive sheet with metal foil, highly thermally-conductive adhesive sheet with metal plate, metal-based circuit board and power module
JP4507488B2 (en) Bonding material
JP2016192474A (en) Granulated powder, resin composition for heat dissipation, heat dissipation sheet, heat dissipation member, and semiconductor device
TW201905055A (en) Resin material, manufacturing method of resin material, and laminated body
JP2013254921A (en) Circuit board and electronic-component mounting board
JP7406372B2 (en) Laminated bodies and electronic devices
WO2018207821A1 (en) Insulating sheet and laminate
JP7196905B2 (en) Heat-dissipating sheet, heat-dissipating member, and semiconductor device
TWI772418B (en) Insulating sheet and laminate
JP2019150997A (en) Laminate
TWI802571B (en) Insulating sheets and laminates
JP2020181672A (en) Conductive adhesion sheet, method for manufacturing conductive adhesion sheet, and semiconductor device
TWI835762B (en) Laminated bodies and electronic devices
WO2022255450A1 (en) Resin sheet, laminate, and semiconductor device
JP7308426B1 (en) Boron nitride-coated thermally conductive particles, method for producing the same, thermally conductive resin composition, and thermally conductive compact
JP6586340B2 (en) Insulating heat dissipation sheet manufacturing method
JP2013254922A (en) Metal base circuit board

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080626

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees