JP2008184681A - Method of monitoring electrolytic copper plating solution of wiring board or semiconductor circuit - Google Patents

Method of monitoring electrolytic copper plating solution of wiring board or semiconductor circuit Download PDF

Info

Publication number
JP2008184681A
JP2008184681A JP2007021537A JP2007021537A JP2008184681A JP 2008184681 A JP2008184681 A JP 2008184681A JP 2007021537 A JP2007021537 A JP 2007021537A JP 2007021537 A JP2007021537 A JP 2007021537A JP 2008184681 A JP2008184681 A JP 2008184681A
Authority
JP
Japan
Prior art keywords
electrode
monitoring
wiring board
plating
copper plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007021537A
Other languages
Japanese (ja)
Inventor
Kazuo Kondo
和夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Osaka Prefecture University
Original Assignee
Osaka University NUC
Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Osaka Prefecture University filed Critical Osaka University NUC
Priority to JP2007021537A priority Critical patent/JP2008184681A/en
Publication of JP2008184681A publication Critical patent/JP2008184681A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of electroplating while efficiently monitoring the filling condition of a blind via or trench in a wiring board or a semiconductor circuit. <P>SOLUTION: The method of monitoring the electrolytic copper plating for the wiring board or the semiconductor circuit is carried out by providing a rotary ring disk electrode 6 comprising a disk electrode 8 and a rotary ring 7 rotating around the disk electrode 8 as a monitoring tool. applying a P-R pulse current 11 between both electrodes while fixing the ring electrode potential to a potential region where SPS (accelerator) is not oxidized and measuring current signal passing through the ring electrode to monitor an accelerating complex formed by the additive and the univalent copper. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ビア穴(ビアホール)の銅めっき法、すなわち銅ダマシンめっき法に関し、特に添加剤と一価銅とが作る促進錯体を回転リングデイスク電極でモニターしながら多層基板の配線層(導体層)間を接続するビアホールの銅めっきを行うことを特徴とする配線基板又は半導体回路の電気銅めっき液のモニター方法に関するものである。   The present invention relates to a copper plating method for via holes (via holes), that is, a copper damascene plating method, and in particular, a wiring layer (conductor layer) of a multilayer substrate while monitoring an acceleration complex formed by an additive and monovalent copper with a rotating ring disk electrode. The present invention relates to a method for monitoring an electrolytic copper plating solution of a wiring board or a semiconductor circuit, characterized by performing copper plating of via holes that connect between them.

多層配線板(多層基板)の高密度化を図るため、ビルドアップ配線板が使用されている。このビルドアップ配線板では配線層間の接続にビアホールが使用されている。3層以上にわたって接続が必要な場合、配線の自由度を高めるために、銅ダマシンめっき法を利用してビアホール内を充填めっき層で満たしておく必要がある。この場合、樹脂製の絶縁層にビアホールを形成し、その底面及び内周面に化学銅めっき層を形成した後、電解銅めっきによりビアホール内に充填めっき層を形成してゆく。 In order to increase the density of a multilayer wiring board (multilayer substrate), a build-up wiring board is used. In this build-up wiring board, via holes are used for connection between wiring layers. When connection is required over three or more layers, it is necessary to fill the via hole with a filled plating layer using a copper damascene plating method in order to increase the degree of freedom of wiring. In this case, a via hole is formed in the resin insulating layer, a chemical copper plating layer is formed on the bottom surface and the inner peripheral surface, and then a filling plating layer is formed in the via hole by electrolytic copper plating.

近時、電気銅めっきによりビアホール内に充填めっき層を形成する配線基板の製造法としては、例えば、銅ダマシンめっき法が利用されている。このめっき法では、例えば硫酸銅めっき液に次のような添加剤が使用されている。促進剤(以下「SPS」とする)として、ビス(3−スルフォプロピル)ジ・スルフォイド、抑制剤(以下「PEG」とする)としては、ポリエチレングリコール、それに塩素イオン(Cl)、さらに平滑剤(以下「JGB」とする)として、ヤーヌス・グリーンBが使用され、その中でも促進剤の存在が穴底の銅めっきを局所的に促進するため、この促進錯体のモニター結果が、このめっき法の成否を左右していた。   Recently, for example, a copper damascene plating method has been used as a method of manufacturing a wiring board in which a filling plating layer is formed in a via hole by electrolytic copper plating. In this plating method, for example, the following additives are used in a copper sulfate plating solution. As an accelerator (hereinafter referred to as “SPS”), bis (3-sulfopropyl) disulfide, as an inhibitor (hereinafter referred to as “PEG”), polyethylene glycol, chlorine ion (Cl), and a smoothing agent. (Hereinafter referred to as “JGB”), Janus Green B is used, and among these, the presence of a promoter locally promotes copper plating at the bottom of the hole. It was a success or failure.

一方従来、このモニター法としては、絶縁材料に径が2mm以下、深さが2mm以下で、かつアスペクト比が5以下である複数の穴をあけ、穴底部と穴上面近傍に電極を配置して、穴底部の電極同士及び穴上面近傍の電極同士は電気的に導通し、かつ、穴底部の電極と穴上面近傍の電極は電気的に絶縁された状態で、穴底部の電極の前記絶縁材料に接しない面に絶縁層が形成されている試験片を用いて電気化学的にモニターを実施しており、少なくとも銅(II)塩、酸または電気伝導塩、促進剤及び抑制剤を含む電気銅めっき液の制
御を行いながら銅めっきを行う方法が知られている(特許文献1)。
On the other hand, conventionally, as this monitoring method, a plurality of holes having a diameter of 2 mm or less, a depth of 2 mm or less and an aspect ratio of 5 or less are formed in an insulating material, and electrodes are arranged near the hole bottom and the hole top surface. The insulating material of the hole bottom electrode is electrically connected between the electrodes at the bottom of the hole and the electrodes near the top of the hole, and the electrode at the bottom of the hole and the electrode near the top of the hole are electrically insulated. Electrochemical monitoring using a test piece in which an insulating layer is formed on a surface not in contact with copper and containing at least a copper (II) salt, an acid or a conductive salt, an accelerator and an inhibitor A method of performing copper plating while controlling the plating solution is known (Patent Document 1).

特開2002―368384号公報JP 2002-368384 A

以上のような従来のモニター法を用いての製造方法においては、2mm以下の間隔をあけての絶縁材料を隔てて隣接する電極を備える構成のモニター用器具等の正確な作成の困難さ、更には微細な穴あけ作業の困難さ、また電気化学的モニターとして、2mm以下の穴に電気化学生成物が析出するため、これらのモニター用器具が再使用できず、ゆえにこのユニークな方法の利用も、使用が躊躇されるという問題があった。   In the manufacturing method using the conventional monitoring method as described above, it is difficult to accurately produce a monitoring instrument or the like having an electrode having an insulating material separated by an interval of 2 mm or less. Is difficult to drill fine holes, and as an electrochemical monitor, electrochemical products deposit in holes of 2 mm or less, so these monitoring instruments cannot be reused. There was a problem that the use was deceived.

また、銅めっき法によるビア穴埋めは近年注目を集めているが、銅めっき液には促進剤を含め複数の添加剤が含まれており、その促進剤と一価銅とが作る促進錯体をモニターする方法、つまり銅ダマシンめっき法におけるモニター方法がこの種めっき法では重要であるが、有効なモニター方法が技術上存在しなかった。   In addition, via hole filling by the copper plating method has attracted attention in recent years, but the copper plating solution contains several additives including accelerators, and monitors the accelerator complex formed by the accelerator and monovalent copper. The monitoring method in the copper damascene plating method is important in this type of plating method, but there is no effective monitoring method in the art.

本発明は、上記する問題に対処するために、添加剤と一価銅とが作る促進錯体のモニター法を提案するもので、簡単な構成で、且つ繰り返し利用できる回転リングデイスク電極でリング電流を測定しようとするもので、デイスク電極とそれを中心として回転する回転リングとから構成される回転リングデイスク電極を有し、デイスク電極で銅めっき反応を起こし、その時発生する添加剤と一価銅とが作る促進錯体をリング電極の電流信号によりモニターする方法である。   The present invention proposes a method for monitoring an accelerating complex formed by an additive and monovalent copper in order to cope with the above-mentioned problems. The ring current is generated by a rotating ring disk electrode that can be used repeatedly with a simple configuration. It has a rotating ring disk electrode composed of a disk electrode and a rotating ring that rotates about the disk electrode, causes a copper plating reaction at the disk electrode, and the additive and monovalent copper generated at that time This is a method of monitoring the promotion complex formed by the current signal of the ring electrode.

すなわち、リング電極の電位を促進剤が酸化しない電位領域0.9V(標準電極 Hg/H2CL2−0.5mol/L K2SO4)以下に固定し、デイスク電極上でのメッキ反応に伴い銅めっき液の添加剤と一価銅とで形成される中間錯体をリング電流信号としてモニターし、銅めっきの析出を検知する配線基板または半導体回路の電気銅めっき液のモニター方法に関するものである。 That is, the potential of the ring electrode is fixed to a potential region 0.9 V (standard electrode Hg / H 2 CL 2 -0.5 mol / L K 2 SO 4 ) or less where the promoter is not oxidized, and the plating reaction on the disk electrode is performed. In addition, the present invention relates to a method for monitoring an electrolytic copper plating solution of a wiring board or a semiconductor circuit that monitors an intermediate complex formed by an additive of a copper plating solution and monovalent copper as a ring current signal and detects the deposition of copper plating. .

以上のように、本発明の配線基板または半導体回路の電気銅めっき液のモニター方法によれば、リング電極の電位を促進剤が酸化しない電位領域0.9V(標準電極 Hg/H2CL2−0.5mol/L K2SO4)以下に固定し、例えば、回転リングデイスク電極のデイスク電極とリング電極間に、その各々の継続時間が200ms/10ms/200ms、その間の電流値が−20mA/40mA/0mA/cm2に変化するP−Rパルス電流を繰り返し流し、その出力波形をモニター検出することでめっきの進捗状況が判明するという簡単な方法で、繰り返し利用でき、モニター方式の向上が図られ、銅めっき法によるビア穴埋めの生産性、歩留まりの向上が望める。 As described above, according to the method for monitoring an electrolytic copper plating solution of a wiring board or a semiconductor circuit of the present invention, a potential region of 0.9 V (standard electrode Hg / H 2 CL 2 − 0.5 mol / L K 2 SO 4 ) or less, for example, between each disk electrode of a rotating ring disk electrode, the duration of each is 200 ms / 10 ms / 200 ms, and the current value between them is −20 mA / It is possible to repeatedly use the P-R pulse current that changes to 40 mA / 0 mA / cm 2 and to detect the progress of the plating by monitoring the output waveform. Therefore, it is possible to improve the via hole filling productivity and yield by copper plating.

以下、この発明を実施するための形態について説明する。
この発明の構成は、めっき液を収納しためっき槽中に、いずれもポテンショガルバノスタットに接続されたアノード(銅電極)、参照電極(銀塩化銀電極)を浸漬する。このポテンショガルバノスタットは、電流または電位の設定及び測定を行うとともに、モニター装置として回転する中空の回転リング電極とその中に配置された固定デイスク電極とから成る回転リングデイスク電極のリング・デイスク電極間に、例えば、後述のP−Rパルス電流を流し、デイスク電極上で銅めっき反応を起こし、そのときに発生する添加剤と一価銅とが作る促進錯体をリング電極の電流信号によりモニター検出することを特徴とする配線基板または半導体回路の電気銅めっき液のモニター方法である。リング電極を所定の電位値に設定することにより電流信号のモニターが可能になる。
Hereinafter, embodiments for carrying out the present invention will be described.
In the configuration of the present invention, an anode (copper electrode) and a reference electrode (silver / silver chloride electrode) both connected to a potentiogalvanostat are immersed in a plating tank containing a plating solution. This potentiogalvanostat is used for setting and measuring current or potential, and between a ring and a disk electrode of a rotating ring disk electrode comprising a hollow rotating ring electrode rotating as a monitoring device and a fixed disk electrode disposed therein. In addition, for example, a P-R pulse current described later is applied to cause a copper plating reaction on the disk electrode, and an acceleration complex formed by the additive and monovalent copper generated at that time is detected by monitoring the current signal of the ring electrode. A method for monitoring an electrolytic copper plating solution of a wiring board or a semiconductor circuit. The current signal can be monitored by setting the ring electrode to a predetermined potential value.

以下、図面に従いこの発明を説明する。
図1は、この発明の構成を模式的に示した説明図で、1はめっき槽で、2はその中に収納されているめっき液、3はアノード(銅電極)、4は参照電極(銀塩化銀電極)でこれらの両電極3、4はいずれもポテンショガルバノスタット5に接続されたうえ、めっき槽1のめっき液2内に浸漬されている。なお、ポテンショガルバノスタット5は、電流または電位の設定及び測定を行うものである。6は、この発明のモニター装置の回転リングデイスク電極で、回転リング電極7とその中に配置された固定のデイスク電極8と、回転リング電極7を矢印10のように回転させる駆動機構(モータ)9とで構成され、これらのリング電極7とデイスク電極8は、ポテンショガルバノスタット5に接続されている。
The present invention will be described below with reference to the drawings.
FIG. 1 is an explanatory view schematically showing the configuration of the present invention, wherein 1 is a plating tank, 2 is a plating solution accommodated therein, 3 is an anode (copper electrode), and 4 is a reference electrode (silver). Both these electrodes 3 and 4 are connected to a potentiogalvanostat 5 and are immersed in the plating solution 2 of the plating tank 1. The potentiogalvanostat 5 is for setting and measuring current or potential. Reference numeral 6 denotes a rotating ring disk electrode of the monitor device of the present invention. The rotating ring electrode 7, a fixed disk electrode 8 disposed therein, and a drive mechanism (motor) for rotating the rotating ring electrode 7 as indicated by an arrow 10. The ring electrode 7 and the disk electrode 8 are connected to a potentiogalvanostat 5.

図2は、上記のモニター装置である回転リングデイスク電極6の一部分を取り出し拡大して模式的に説明した図で、回転リング電極7はモータ9で矢印10のように回転する。一方デイスク電極8は、静止しており、このデイスク電極8と回転リンク電極7と間には11で示すP‐Rパルス電流信号が繰り返し印加される。例えば、このパルス信号11は、その各電流値が−20mA、40mA、0mAで、その各継続時間T1,T2,T3,が夫々200ms、10ms、200msの正、負の極性のパルスが、断続的に印加される構成になっている。この時、デイスク電極8の表面には、図の12で示す矢印のようにデイスク電極8の中心から回転リング7の周辺部へめっき液の流れが生じている。   FIG. 2 is a diagram schematically illustrating a part of the rotating ring disk electrode 6 which is the above-described monitoring device by taking it out and expanding. The rotating ring electrode 7 is rotated by a motor 9 as indicated by an arrow 10. On the other hand, the disk electrode 8 is stationary, and a PR pulse current signal indicated by 11 is repeatedly applied between the disk electrode 8 and the rotary link electrode 7. For example, the pulse signal 11 has a current value of −20 mA, 40 mA, and 0 mA, and pulses having positive and negative polarities of 200 ms, 10 ms, and 200 ms in durations T1, T2, and T3, respectively, are intermittent. It is the structure applied to. At this time, the plating solution flows from the center of the disk electrode 8 to the periphery of the rotating ring 7 on the surface of the disk electrode 8 as indicated by an arrow 12 in FIG.

この電気銅めっきにおいては、めっき液および添加剤として、例えば以下の組成のものが使用された。
硫酸銅 0.6 mol/L
硫酸 1.85 mol/L
塩素 100 ppm
ポリエチレングリコール(PEG) 400ppm
ビス(3−スルフォプロヒル)ジスルフイド(SPS) 1ppm
ヤーヌス・グリーンB(JGB) 10ppm
このときのリング電極の電位はSPSが酸化しない以下の電位領域に固定
0.9V(Hg/H2Cl2―0、5mol/L K2SO4・・・標準電極)
In this electrolytic copper plating, for example, the following composition was used as a plating solution and an additive.
Copper sulfate 0.6 mol / L
Sulfuric acid 1.85 mol / L
Chlorine 100 ppm
Polyethylene glycol (PEG) 400ppm
Bis (3-sulfoprohill) disulfide (SPS) 1ppm
Janus Green B (JGB) 10ppm
At this time, the potential of the ring electrode is fixed to the following potential region where SPS is not oxidized 0.9 V (Hg / H 2 Cl 2 -0, 5 mol / L K 2 SO 4 ... Standard electrode)

この結果、デイスク電極8の表面では、以下のように一価銅の錯体が促進錯体として機能し、P−Rパルス電流で、ビア穴埋め効果が発揮されるものと思われる。
Cu(I)種 → Cu+ → Cu
As a result, it is considered that the monovalent copper complex functions as an accelerating complex on the surface of the disk electrode 8 as follows, and the via filling effect is exhibited by the PR pulse current.
Cu (I) species → Cu + → Cu

図3は、デイスク電極に印加するP‐Rパルス電流を含む各種の電流信号に伴う回転リング電極間に流れるリング電流波形を示したものである。   FIG. 3 shows a ring current waveform flowing between the rotating ring electrodes in accordance with various current signals including a PR pulse current applied to the disk electrode.

図4は、上記に言及した各電極間に印加する電流信号(模式的に表示)とその時のピアホール穴埋めの状況を示す顕微鏡写真を対応させたものである。以下に図3と図4を参照しながら説明をする。   FIG. 4 shows a correspondence between a current signal (schematically displayed) applied between the electrodes referred to above and a micrograph showing the state of filling the hole in the peer hole. This will be described below with reference to FIGS. 3 and 4.

図3のDCは、図4(A)に示す−20mA/cm2の直流電流を15分間流した時のモニター出力信号、図3のPulseは、図4(B)に示す−20mA/0mA/cm2の負電流信号パルスを200ms/200msのタイミングで繰り返し30分間断続的に流した時のモニター出力信号、P−Rは、図4(C)および図2に示す−20mA/40mA/0mA/cm2の電流信号パルスを夫々の継続時間(T1)200ms/(T2)10ms/(T3)200msのタイミングで断続的に31分40秒間流した時のモニター出力信号である。 3 is a monitor output signal when a direct current of −20 mA / cm 2 shown in FIG. 4A is applied for 15 minutes, and the pulse of FIG. 3 is −20 mA / 0 mA / shown in FIG. 4B. The monitor output signal when the negative current signal pulse of cm 2 is intermittently supplied for 30 minutes at the timing of 200 ms / 200 ms, PR is −20 mA / 40 mA / 0 mA / shown in FIG. This is a monitor output signal when a current signal pulse of cm 2 is intermittently supplied for 31 minutes and 40 seconds at timings of respective duration times (T1) 200 ms / (T2) 10 ms / (T3) 200 ms.

また図4の各電流波形に対応して矢印で関連付けている写真(a),(b),(c)は、上記に説明した(A),(B),(C)の各電流波形に伴ったピアホール穴埋めの状況を撮影した顕微鏡写真である。この写真からも明らかなように、略同じレベルの電流信号を流した時でもこのP−Rパルス電流を流した時の方が(c)の写真のようにピアホールの穴埋めが他の(a),(b)よりはるかに埋まった状況にあることが明らかである。このことは図3においてP−Rパルス電流を流したときの出力波形が高く出現していることでも明らかである。すなわちこの図4(C)で示すP−Rパルス電流を流すことで促進効果がより進行して、デイスク電極での銅めっき反応が添加剤と一価銅とが作る促進錯体をリング電極の電流信号としてモニターが可能となり、モニター精度の向上が図られ、これにより銅メッキ法によるピアホール穴埋めの生産性、歩留まりが向上する。   Also, the photographs (a), (b), and (c) associated with the respective current waveforms in FIG. 4 by the arrows are the current waveforms of (A), (B), and (C) described above. It is the microscope picture which image | photographed the condition of the accompanying peer hole filling. As is clear from this photograph, even when a current signal of substantially the same level is passed, when the PR pulse current is passed, the filling of the peer hole is different from that of (a) as shown in the photograph (c). It is clear that the situation is much more buried than (b). This is also clear from the fact that the output waveform appears high when a PR pulse current is passed in FIG. That is, when the PR pulse current shown in FIG. 4 (C) is applied, the promotion effect is further advanced, and the copper plating reaction at the disk electrode forms the promotion complex formed by the additive and monovalent copper into the current of the ring electrode. Monitoring is possible as a signal, and the accuracy of monitoring is improved, thereby improving the productivity and yield of filling a hole in a peer hole by a copper plating method.

次に図5は、リング電極電位とSPSが酸化しない領域を確認するための実験データである。回転リングデイスク電極では、デイスク電極で電気化学反応(めっき反応)が生起し、電極底部で生成した中間錯体が電極の回転により、外側のリング電極に流れ出ていく。この結果、デイスク電極の外側のリング電極にこの流れ出た中間錯体に伴う電気信号が測定される。硫酸にSPSのみが入った単純な溶液を用いて、正の方向に電位を操作して電流―電位曲線を測定した結果を図5に示す。その結果デイスク電位0.9V以下では、デイスク電流が流れず(酸化反応が生起していない)、この電位が0.9V以上では酸化反応が生起し、デイスク電位が1.3Vでは電流値は略飽和状態になっている。なおこのときの標準電極は、Hg/Hg2Cl2−0.5mol/L K2SO4であった。 Next, FIG. 5 shows experimental data for confirming a region where the ring electrode potential and SPS are not oxidized. In the rotating ring disk electrode, an electrochemical reaction (plating reaction) occurs at the disk electrode, and the intermediate complex generated at the bottom of the electrode flows out to the outer ring electrode by the rotation of the electrode. As a result, the electrical signal accompanying the intermediate complex that has flowed out to the ring electrode outside the disk electrode is measured. FIG. 5 shows the results of measuring a current-potential curve by using a simple solution containing only SPS in sulfuric acid and operating the potential in the positive direction. As a result, when the disc potential is 0.9 V or less, no disc current flows (oxidation reaction does not occur). When this potential is 0.9 V or more, an oxidation reaction occurs. Saturated. At this time, the standard electrode was Hg / Hg 2 Cl 2 -0.5 mol / L K 2 SO 4 .

この発明のようなモニター方法を採用することにより、銅めっき反応の進行状況が客観的に把握でき、配線基板または半導体回路の製造方法の効率化が図られる。   By adopting the monitoring method as in the present invention, the progress of the copper plating reaction can be objectively grasped, and the efficiency of the manufacturing method of the wiring board or semiconductor circuit can be improved.

この発明の銅めっき法を模式的に示した図。The figure which showed typically the copper plating method of this invention. この発明の回転デイスクリング電極を、この発明の説明に便利なため模式的に表示した図。FIG. 3 is a diagram schematically showing the rotating disk ring electrode of the present invention for convenience of explanation of the present invention. この発明の回転デイスク電極に印加した直流、負パルス、及びこの発明の矩形パルス正負を印加した時のリング電極波形を示した図。The figure which showed the ring electrode waveform when the direct current | flow applied to the rotating disk electrode of this invention, the negative pulse, and the rectangular pulse positive / negative of this invention are applied. 回転リングデイスク電極間に流す電流信号と、それに伴うビアホール穴埋めの状況を示す顕微鏡写真。Photomicrograph showing current signals flowing between rotating ring disk electrodes and the associated via hole filling. リング電極電位とSPSが酸化しない領域を確認するための実験データを示す図。The figure which shows the experimental data for confirming the area | region which a ring electrode electric potential and SPS do not oxidize.

符号の説明Explanation of symbols

1 めっき槽
2 電気銅めっき液
3 アノード
4 参照電極
5 ポテンショガルバノスタット
6 回転リングデイスク電極
7 回転リング電極
8 デイスク電極
9 回転駆動部(モータ)
11 P−R矩形波パルス
10,12 矢印
DESCRIPTION OF SYMBOLS 1 Plating tank 2 Electrolytic copper plating solution 3 Anode 4 Reference electrode 5 Potentiogalvanostat 6 Rotating ring disk electrode 7 Rotating ring electrode 8 Disk electrode 9 Rotation drive part (motor)
11 PR square wave pulse 10, 12 arrow

Claims (1)

促進剤、抑制剤、塩素イオン、平滑剤などの添加剤の存在のもとに銅ダマシンめっきを行い配線層となる銅層を、電気銅めっきにより形成する配線基板のめっき液モニター方法において、デイスク電極とそれを中心として回転する回転リング電極とから成る回転リングデイスク電極を用い、デイスク電極上でのめっき反応に伴い生成した中間錯体の電気信号をリング電流信号としてモニターするとともにこのリング電極電位を0.9V(標準電極 Hg/H2CL2−0.5mol/L K2SO4)以下の促進剤が酸化しない電位領域以下に設定することを特徴とする配線基板または半導体回路の電気銅めっき液のモニター方法。 In a method for monitoring a plating solution of a wiring board, in which copper damascene plating is performed in the presence of additives such as accelerators, inhibitors, chloride ions, and smoothing agents, and a copper layer to be a wiring layer is formed by electrolytic copper plating. Using a rotating ring disk electrode consisting of an electrode and a rotating ring electrode that rotates around the electrode, the electrical signal of the intermediate complex produced by the plating reaction on the disk electrode is monitored as a ring current signal, and the ring electrode potential is Electroless copper plating of a wiring board or semiconductor circuit, characterized in that it is set below a potential region where 0.9 V (standard electrode Hg / H 2 CL 2 -0.5 mol / L K 2 SO 4 ) or less promoter is not oxidized. How to monitor liquid.
JP2007021537A 2007-01-31 2007-01-31 Method of monitoring electrolytic copper plating solution of wiring board or semiconductor circuit Pending JP2008184681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007021537A JP2008184681A (en) 2007-01-31 2007-01-31 Method of monitoring electrolytic copper plating solution of wiring board or semiconductor circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007021537A JP2008184681A (en) 2007-01-31 2007-01-31 Method of monitoring electrolytic copper plating solution of wiring board or semiconductor circuit

Publications (1)

Publication Number Publication Date
JP2008184681A true JP2008184681A (en) 2008-08-14

Family

ID=39727919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007021537A Pending JP2008184681A (en) 2007-01-31 2007-01-31 Method of monitoring electrolytic copper plating solution of wiring board or semiconductor circuit

Country Status (1)

Country Link
JP (1) JP2008184681A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150167195A1 (en) * 2013-12-12 2015-06-18 Hong Kong Applied Science and Technology Research Institute Company Limited Apparatus and Method for Fast Evaluation of Electroplating Formulation Performance in Microvia Filling
CN106248755A (en) * 2016-08-22 2016-12-21 中国科学院长春应用化学研究所 A kind of rotating disk disc electrode and electrode inspector
CN111982991A (en) * 2020-08-26 2020-11-24 广东工业大学 Rotary electrode device with hole and electrochemical test system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150167195A1 (en) * 2013-12-12 2015-06-18 Hong Kong Applied Science and Technology Research Institute Company Limited Apparatus and Method for Fast Evaluation of Electroplating Formulation Performance in Microvia Filling
US9617653B2 (en) * 2013-12-12 2017-04-11 Hong Kong Applied Science and Technology Research Institute Company Limited Apparatus and method for fast evaluation of electroplating formulation performance in microvia filling
CN106248755A (en) * 2016-08-22 2016-12-21 中国科学院长春应用化学研究所 A kind of rotating disk disc electrode and electrode inspector
CN111982991A (en) * 2020-08-26 2020-11-24 广东工业大学 Rotary electrode device with hole and electrochemical test system
CN111982991B (en) * 2020-08-26 2022-04-29 广东工业大学 Rotary electrode device with hole and electrochemical test system

Similar Documents

Publication Publication Date Title
US6309528B1 (en) Sequential electrodeposition of metals using modulated electric fields for manufacture of circuit boards having features of different sizes
EP1122989B1 (en) Method of plating for filling via holes
US6210555B1 (en) Electrodeposition of metals in small recesses for manufacture of high density interconnects using reverse pulse plating
JP5568250B2 (en) How to fill copper
JP2009124098A (en) Electric member and method for manufacturing printed circuit board using it
JPH1012677A (en) Manufacture of double-side wiring tape carrier for semiconductor device
JP4857317B2 (en) Through-hole filling method
WO2007095439A3 (en) Electrochemical etching of circuitry for high density interconnect electronic modules
CN105027265A (en) Electrochemical deposition processes for semiconductor wafers
JP2005093934A (en) Filling method into through-hole
JP4148895B2 (en) Hole copper plating method
KR20180110102A (en) Soluble copper anode, electrolytic copper plating apparatus, electrolytic copper plating method, and preservation method of acid electrolytic copper plating solution
JP2008184681A (en) Method of monitoring electrolytic copper plating solution of wiring board or semiconductor circuit
JPH1197391A (en) Method of electroplating semiconductor wafer wiring
JP3964263B2 (en) Blind via hole filling method and through electrode forming method
JP2002004083A (en) Via filling method
JP2009295957A (en) Method for manufacturing of printed wiring board
JP2009272571A (en) Printed circuit board and method of manufacturing the same
WO2005015966A1 (en) Printed wiring board and method of producing the same
JP2006339483A (en) Wiring board and manufacturing method thereof
JP2005126803A (en) Plating method
TWI280827B (en) Circuit board manufacturing method
JP2006265735A (en) Electroplating method of substrate having fine via hole
JP2005290413A (en) Analysis method for electrolytic copper-plating solution, and analysis device therefor
JP2003142828A (en) Manufacturing method for wiring board