JP2008182011A - Device and method for evaluating reliability on thermoelectric conversion system - Google Patents

Device and method for evaluating reliability on thermoelectric conversion system Download PDF

Info

Publication number
JP2008182011A
JP2008182011A JP2007013564A JP2007013564A JP2008182011A JP 2008182011 A JP2008182011 A JP 2008182011A JP 2007013564 A JP2007013564 A JP 2007013564A JP 2007013564 A JP2007013564 A JP 2007013564A JP 2008182011 A JP2008182011 A JP 2008182011A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion system
temperature
load
reliability evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007013564A
Other languages
Japanese (ja)
Inventor
Yujiro Nakatani
祐二郎 中谷
Yoshiyasu Ito
義康 伊藤
Takahiko Shindou
尊彦 新藤
Takehisa Hino
武久 日野
Keiichi Sasaki
恵一 佐々木
Kengo Wakamatsu
建吾 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007013564A priority Critical patent/JP2008182011A/en
Publication of JP2008182011A publication Critical patent/JP2008182011A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for evaluating the reliability of a thermoelectric conversion system, which can test the reliability of the thermoelectric conversion system in an actual environment. <P>SOLUTION: The device for evaluating the reliability of the thermoelectric conversion system has: a heating section 21 heating the temperature load surface of the thermoelectric conversion system 11 composed of a plurality of modules; a low-temperature side cooling section 22 cooling a surface on the reverse side of the temperature load surface; a high-temperature side temperature measuring sensor 19 measuring the temperature of the temperature load surface of the thermoelectric conversion system 11; a low-temperature side temperature measuring sensor 20 measuring the temperature of the surface on the reverse side of the temperature load surface; and a uniform pressure-contacting force load mechanism section 23 having a spherical seat and uniformly pressure-contacting the whole of the thermoelectric conversion system 11. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、複数のモジュールより成る熱電変換システムの信頼性を評価する熱電変換システム信頼性評価装置及び方法に関する。   The present invention relates to a thermoelectric conversion system reliability evaluation apparatus and method for evaluating the reliability of a thermoelectric conversion system including a plurality of modules.

一般に、電熱変換システムは複数の電熱変換モジュールから構成され、熱電変換モジュールは高温面と低温面との温度差で発電を行うものである。すなわち、高温面に熱を与えて低温面を冷却して、その温度差で発電する。   Generally, an electrothermal conversion system is composed of a plurality of electrothermal conversion modules, and the thermoelectric conversion module generates electric power with a temperature difference between a high temperature surface and a low temperature surface. That is, heat is applied to the high temperature surface to cool the low temperature surface, and power is generated with the temperature difference.

図7は熱電変換システムの一例を示す構成図である。図7に示すように、熱電変換システム11は複数の電熱変換モジュール12から構成され、各々の電熱変換モジュール12は配線13で電気的に接続されている。そして、高温面に与えられた熱を効率的に取り込めるように電熱変換モジュール12を熱源に対して圧接して押さえつけられている。   FIG. 7 is a configuration diagram illustrating an example of a thermoelectric conversion system. As shown in FIG. 7, the thermoelectric conversion system 11 includes a plurality of electrothermal conversion modules 12, and each electrothermal conversion module 12 is electrically connected by wiring 13. The electrothermal conversion module 12 is pressed against the heat source so as to efficiently take in heat applied to the high temperature surface.

このような熱電変換システム11の信頼性評価を行う場合には、複数の熱電変換モジュール12で構成された熱電変換システム11に対して信頼性評価試験を行うのではなく、1個単位の個々の熱電変換モジュールに対して信頼性評価試験を行っている。すなわち、信頼性評価試験は、個々の熱電変換モジュールに対して、熱を繰り返し与える熱サイクル試験や一定の熱を与える熱劣化試験が行われる。   When the reliability evaluation of such a thermoelectric conversion system 11 is performed, the reliability evaluation test is not performed on the thermoelectric conversion system 11 configured by the plurality of thermoelectric conversion modules 12, but individual units of one unit. A reliability evaluation test is performed on the thermoelectric conversion module. That is, in the reliability evaluation test, a thermal cycle test in which heat is repeatedly applied and a thermal deterioration test in which constant heat is applied are performed on each thermoelectric conversion module.

このような熱電変換モジュール信頼性評価装置としては、熱を与える手段として炉を備え、1個単位の熱電変換モジュールを炉の中に入れ、モジュールを加熱・冷却するものがある(例えば、非特許文献1参照)。
熱電変換工学−基礎と応用−(株式会社リアライズ社) p.344,表6.
As such a thermoelectric conversion module reliability evaluation apparatus, there is an apparatus provided with a furnace as a means for applying heat, and a unit of thermoelectric conversion module is placed in the furnace to heat / cool the module (for example, non-patent) Reference 1).
Thermoelectric Conversion Engineering-Fundamentals and Applications-(Realize Inc.) p.344, Table 6.

しかし、このような熱電変換モジュール信頼性評価装置においては、1個単位の熱電変換モジュールを炉の中に入れ、単に熱を与えて試験を行うものであるため、熱電変換モジュールの高温面が高温、他方の低温面が低温というように熱電変換モジュール内に温度差がついておらず、また、熱電変換モジュールを圧接した状況を再現していないことから、実環境で使用されることを想定した複数の熱電変換モジュールから構成される熱電変換システムの評価ができない。   However, in such a thermoelectric conversion module reliability evaluation apparatus, one unit of thermoelectric conversion module is put into a furnace and a test is performed simply by applying heat. As the other low-temperature surface has a low temperature, there is no temperature difference in the thermoelectric conversion module, and the situation where the thermoelectric conversion module is pressed is not reproduced. Evaluation of a thermoelectric conversion system composed of these thermoelectric conversion modules is not possible.

すなわち、熱電変換モジュールより構成される熱電変換システムが実環境で使用される場合には、高温面が高温、他方の低温面が低温というように熱電変換モジュール内に温度差がついており、また、熱を効率的に取り込めるように熱電変換モジュールを熱源に圧接して押さえつけていることから、従来の熱電変換モジュール信頼性評価装置においては、これらを再現しているとは言えない。   That is, when a thermoelectric conversion system composed of thermoelectric conversion modules is used in a real environment, there is a temperature difference in the thermoelectric conversion module such that the high temperature surface is high temperature and the other low temperature surface is low temperature, Since the thermoelectric conversion module is pressed and pressed against the heat source so as to efficiently take in heat, it cannot be said that these are reproduced in the conventional thermoelectric conversion module reliability evaluation apparatus.

例えば、熱電変換モジュール12に圧接力を負荷するためには、図8に示すように、ネジ14により熱電変換モジュール12に圧接力を負荷することや、図9に示すように、バネ15により熱電変換モジュール12に圧接力を負荷することが考えられるが、これらの方式では、圧接力に片当たりが生じ、熱電変換システム11を構成する個々の熱電変換モジュール12に均一な圧接力を負荷するのが困難である。   For example, in order to apply a pressure contact force to the thermoelectric conversion module 12, as shown in FIG. 8, the pressure contact force is applied to the thermoelectric conversion module 12 with screws 14, or as shown in FIG. Although it is conceivable to apply a pressure contact force to the conversion module 12, in these methods, the pressure contact force is caused to come into contact with each other, and a uniform pressure contact force is applied to the individual thermoelectric conversion modules 12 constituting the thermoelectric conversion system 11. Is difficult.

本発明の目的は、実環境での熱電変換システムの信頼性試験を行うことができる熱電変換システム信頼性評価装置及び方法を得ることである。   The objective of this invention is obtaining the thermoelectric conversion system reliability evaluation apparatus and method which can perform the reliability test of the thermoelectric conversion system in a real environment.

本発明の熱電変換システム信頼性評価装置は、複数のモジュールより成る熱電変換システムの温度負荷面を加熱する加熱部と、前記温度負荷面の反対側の面を冷却する低温側冷却部と、熱電変換システムの温度負荷面の温度を計測する高温側温度計測センサと、前記温度負荷面の反対側の面の温度を計測する低温側温度計測センサと、球面座を有し前記熱電変換システム全体を均一に圧接する均一圧接力負荷機構部とを備えたことを特徴とする。   A thermoelectric conversion system reliability evaluation apparatus according to the present invention includes a heating unit that heats a temperature load surface of a thermoelectric conversion system including a plurality of modules, a low-temperature side cooling unit that cools a surface opposite to the temperature load surface, and a thermoelectric A high temperature side temperature measurement sensor for measuring the temperature of the temperature load surface of the conversion system, a low temperature side temperature measurement sensor for measuring the temperature of the surface opposite to the temperature load surface, and a spherical seat, and the entire thermoelectric conversion system. And a uniform pressure contact force load mechanism portion for uniformly pressing.

本発明によれば、熱電変換システムの温度負荷面である高温面と、その反対側の面の低温面との間に温度差を与えながら、複数の電熱変換モジュールに均一な圧接力を負荷することができるので、実環境での熱電変換システムの信頼性試験を行うことができる。   According to the present invention, a uniform pressure contact force is applied to a plurality of electrothermal conversion modules while providing a temperature difference between a high temperature surface which is a temperature load surface of the thermoelectric conversion system and a low temperature surface on the opposite side. Therefore, it is possible to perform a reliability test of the thermoelectric conversion system in an actual environment.

(第1の実施の形態)
図1は本発明の第1の実施の形態に関わる熱電交換システム信頼性評価装置16の構成図である。熱電変換システム11は温度負荷面を支持する高温側治具17と、温度付加面の反対側の面を支持する低温側治具18とで挟持される。そして、熱電交換システム12の温度負荷面の温度は高温側温度計測センサ19で検出され、熱電交換システム12の温度負荷面の反対側面の温度は低温側温度計測センサ20で検出される。
(First embodiment)
FIG. 1 is a configuration diagram of a thermoelectric exchange system reliability evaluation apparatus 16 according to the first embodiment of the present invention. The thermoelectric conversion system 11 is sandwiched between a high temperature side jig 17 that supports the temperature load surface and a low temperature side jig 18 that supports the surface opposite to the temperature addition surface. The temperature on the temperature load surface of the thermoelectric exchange system 12 is detected by the high temperature side temperature measurement sensor 19, and the temperature on the opposite side of the temperature load surface of the thermoelectric exchange system 12 is detected by the low temperature side temperature measurement sensor 20.

熱電変換システム11の温度負荷面は加熱部21で加熱され、熱電変換システム11の温度負荷面の反対側の面は低温側冷却部22で冷却される。これにより、熱電変換システム11の温度負荷面とその反対側の面との間に温度差を生じさせるようにしている。加熱部21としては例えばヒータが用いられ、低温側冷却部22としては例えば水冷冷却盤やペルチェ素子による冷却を行う冷却盤が用いられる。   The temperature load surface of the thermoelectric conversion system 11 is heated by the heating unit 21, and the surface opposite to the temperature load surface of the thermoelectric conversion system 11 is cooled by the low temperature side cooling unit 22. Thus, a temperature difference is generated between the temperature load surface of the thermoelectric conversion system 11 and the surface on the opposite side. As the heating unit 21, for example, a heater is used, and as the low-temperature side cooling unit 22, for example, a water-cooled cooling plate or a cooling plate that performs cooling by a Peltier element is used.

また、天板25は支持棒26で支持され、天板25を挟んで均一圧接力負荷機構部23およびネジ式ハンドル24が設けられている。   The top plate 25 is supported by a support bar 26, and a uniform pressure contact force load mechanism 23 and a screw type handle 24 are provided with the top plate 25 interposed therebetween.

天板25には、ネジ式ハンドル24のネジ部(図示せず)と螺合するネジ支持部24aが設けられている。一方、ネジ式ハンドル24によって、加熱部21に負荷を与える移動式天板25aは、支持棒26に上下移動可能に支持されている。均一圧接力負荷機構部23は球面座を有し、熱電変換システム11全体を均一に圧接するものであり、ネジ式ハンドル24により圧接力が均一圧接力負荷機構部23に負荷される。 The top plate 25 is provided with a screw support portion 24 a that is screwed with a screw portion (not shown) of the screw type handle 24. On the other hand, the movable top plate 25 a that applies a load to the heating unit 21 is supported by the support rod 26 so as to be vertically movable by the screw type handle 24. The uniform pressure contact force load mechanism unit 23 has a spherical seat and uniformly presses the entire thermoelectric conversion system 11, and the pressure contact force is loaded on the uniform pressure contact force load mechanism unit 23 by the screw type handle 24.

このように、球面座を有する均一圧接力負荷機構部23により熱電変換システム11に圧接力を負荷するので、熱電変換システム11に対して均一な圧接力を負荷することが可能となる。また、熱電変換システム11の温度負荷面を加熱部21により加熱し、他方の面を低温側冷却部22により冷却していることから、熱電変換システム11に温度差がついており、実用環境下に近い状態の信頼性評価を行うことができる。   As described above, since the pressure contact force is applied to the thermoelectric conversion system 11 by the uniform pressure contact force load mechanism unit 23 having the spherical seat, it is possible to load a uniform pressure contact force to the thermoelectric conversion system 11. Moreover, since the temperature load surface of the thermoelectric conversion system 11 is heated by the heating unit 21 and the other surface is cooled by the low temperature side cooling unit 22, the thermoelectric conversion system 11 has a temperature difference, and is in a practical environment. It is possible to perform reliability evaluation in a close state.

第1の実施の形態によれば、熱電変換システム11の上下面に温度差を与えながら、複数のモジュールに均一な圧接力を負荷するという実環境を模擬する機構が備わっているので、実環境で使用される熱電変換システムの信頼性試験を提供できる熱電変換システム信頼性評価装置を得ることができる。   According to the first embodiment, there is provided a mechanism for simulating an actual environment in which a uniform pressure contact force is applied to a plurality of modules while giving a temperature difference to the upper and lower surfaces of the thermoelectric conversion system 11. The thermoelectric conversion system reliability evaluation apparatus which can provide the reliability test of the thermoelectric conversion system used by this can be obtained.

(第2の実施の形態)
図2は本発明の第2の実施の形態に係わる熱電交換システム信頼性評価装置16の構成図である。この第2の実施の形態は、図1に示した第1の実施の形態に対し、均一圧接力負荷機構部23は、ネジ式ハンドル24による圧接力を調整する負荷荷重調整機構部27を備えたものである。図1に示した第1の実施の形態と同一要素には、同一の符号を付し、重複する説明は省略する。
(Second Embodiment)
FIG. 2 is a configuration diagram of the thermoelectric exchange system reliability evaluation device 16 according to the second exemplary embodiment of the present invention. In the second embodiment, compared to the first embodiment shown in FIG. 1, the uniform pressure contact force load mechanism portion 23 includes a load load adjustment mechanism portion 27 that adjusts the pressure contact force by the screw type handle 24. It is a thing. The same elements as those of the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

負荷荷重調整機構部27は、例えばバネを有し、天板25でバネを受けており、バネを受けている天板25と支持棒26との間にネジは切っておらず、単に貫通しているだけとしている。そして、ネジ式ハンドル24を圧接力が負荷される方向に動かすと、天板25が図中矢印Xの方向に動き出すようになっている。   The load load adjustment mechanism unit 27 includes, for example, a spring, and receives a spring by the top plate 25. A screw is not cut between the top plate 25 receiving the spring and the support rod 26, and simply passes therethrough. Just trying to do that. When the screw type handle 24 is moved in the direction in which the pressing force is applied, the top plate 25 starts to move in the direction of the arrow X in the figure.

ここで、バネの圧縮量を測定すれば、これにバネ定数を乗じることにより圧接力を計測することができ、この圧接力を調整するようにネジ式ハンドル24を動かすことができる。また、熱電変換システム11は、圧接力を負荷しているので、長時間の高温試験を行っている際に、圧縮変形することも考えられる。このような場合、ネジで圧接力を与えているだけであれば、圧縮変形に伴い圧接力が減少するが、第2の実施の形態では、バネにより圧接力を負荷しているので、圧縮変形した場合も継続的にほぼ一定の圧接力を負荷することができる。   Here, if the amount of compression of the spring is measured, the pressure contact force can be measured by multiplying this by the spring constant, and the screw type handle 24 can be moved to adjust this pressure contact force. Further, since the thermoelectric conversion system 11 is loaded with a pressure contact force, it can be considered that the thermoelectric conversion system 11 is compressed and deformed during a long-time high-temperature test. In such a case, if only the pressure contact force is applied by the screw, the pressure contact force decreases with the compression deformation. However, in the second embodiment, the pressure contact force is loaded by the spring, so the compression deformation is performed. In this case, it is possible to continuously apply a substantially constant pressure contact force.

第2の実施の形態によれば、負荷荷重調整機構部27により圧接力を調整することができ、また、試験中に一定の圧接力を継続して与えることができるので、実環境で使用される熱電変換システム11に対して、より正確な評価を行える信頼性試験を行うことができる。   According to the second embodiment, the pressure contact force can be adjusted by the load load adjustment mechanism 27, and a constant pressure force can be continuously applied during the test. A reliability test that can perform more accurate evaluation can be performed on the thermoelectric conversion system 11.

(第3の実施の形態)
図3は本発明の第3の実施の形態に係わる熱電交換システム信頼性評価装置16の構成図である。この第3の実施の形態は、図1に示した第1の実施の形態に対し、均一圧接力負荷機構部23は、ネジ式のハンドル24に代えて、アクチュエータ28とし、均一圧接力負荷機構部23の圧接力による熱電変換システム11への荷重を検知する荷重センサ29と、荷重センサ29で検知した荷重が所定値になるように駆動部30を介してアクチュエータ28を制御する制御部31とを備えたものである。図1に示した第1の実施の形態と同一要素には、同一の符号を付し、重複する説明は省略する。
(Third embodiment)
FIG. 3 is a configuration diagram of the thermoelectric exchange system reliability evaluation apparatus 16 according to the third exemplary embodiment of the present invention. This third embodiment is different from the first embodiment shown in FIG. 1 in that the uniform pressure contact force load mechanism 23 is an actuator 28 instead of the screw type handle 24, and a uniform pressure contact load mechanism. A load sensor 29 that detects a load on the thermoelectric conversion system 11 due to the pressure contact force of the unit 23, and a control unit 31 that controls the actuator 28 via the drive unit 30 so that the load detected by the load sensor 29 becomes a predetermined value; It is equipped with. The same elements as those of the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

すなわち、第3の実施の形態に係わる熱電変換システム信頼性評価装置16は第1の実施の形態におけるネジ式ハンドル24の部分にアクチュエータ28を備え、また、アクチュエータを駆動する駆動装置30と、圧接力荷重を感知するための荷重センサ29と、制御部31とを備えている。   That is, the thermoelectric conversion system reliability evaluation device 16 according to the third embodiment includes the actuator 28 in the screw-type handle 24 portion of the first embodiment, and is connected to the driving device 30 that drives the actuator and the pressure contact. A load sensor 29 for detecting a force load and a control unit 31 are provided.

アクチュエータ28が圧接力を負荷すると、荷重センサ29が圧接力の荷重値を検知し、検出された荷重データが制御部30に取り込まれる。制御部30では取り込まれたデータと予め設定した目標値との差を計算し、制御データとして駆動部30を通じてアクチュエータ28にフィードバックされるようになっている。   When the actuator 28 applies a pressing force, the load sensor 29 detects the load value of the pressing force, and the detected load data is taken into the control unit 30. The control unit 30 calculates the difference between the captured data and a preset target value, and feeds it back to the actuator 28 through the drive unit 30 as control data.

ここで、アクチュエータ28は電動式アクチュエータあるいは油圧式アクチュエータのいずれであってもよい。電動式アクチュエータの場合には駆動装置30は電源装置となり、油圧式アクチュエータの場合には駆動装置30は油圧源装置となる。   Here, the actuator 28 may be either an electric actuator or a hydraulic actuator. In the case of an electric actuator, the driving device 30 is a power supply device, and in the case of a hydraulic actuator, the driving device 30 is a hydraulic power source device.

第3の実施の形態によれば、荷重センサ29で検知される圧接力荷重値が目標値となるようにフィードバック制御を行いながら試験を行えるので、試験を行っている間、一定の圧接力を継続して与えることができる。従って、実環境で使用される熱電変換システム11に対して、より正確な評価を行える信頼性試験を行うことができる。   According to the third embodiment, the test can be performed while performing feedback control so that the pressure contact force load value detected by the load sensor 29 becomes a target value, so that a constant pressure contact force is applied during the test. Can be given continuously. Therefore, the reliability test which can perform more exact evaluation can be performed with respect to the thermoelectric conversion system 11 used in a real environment.

(第4の実施の形態)
図4は本発明の第4の実施の形態に係わる熱電交換システム信頼性評価装置16の構成図である。この第4の実施の形態は、図1に示した第1の実施の形態に対し、熱電変換システムの温度負荷面を加熱する加熱部21に対し、加熱部21を冷却する高温側冷却部32を設けたものである。図1に示した第1の実施の形態と同一要素には、同一の符号を付し、重複する説明は省略する。
(Fourth embodiment)
FIG. 4 is a configuration diagram of a thermoelectric exchange system reliability evaluation device 16 according to the fourth exemplary embodiment of the present invention. The fourth embodiment is different from the first embodiment shown in FIG. 1 in that the high temperature side cooling unit 32 that cools the heating unit 21 with respect to the heating unit 21 that heats the temperature load surface of the thermoelectric conversion system. Is provided. The same elements as those of the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

第4の実施の形態に係わる熱電変換システム信頼性評価装置16は第1の実施の形態における温度負荷面を加熱する加熱部21の上部に、高温側冷却部32を備えている。なお、高温側冷却部32は熱電変換システムの温度負荷面側を冷却するものであり、冷却水による水冷あるいはペルチェ素子による電子冷却のいずれの冷却方式であってもよい。   The thermoelectric conversion system reliability evaluation apparatus 16 according to the fourth embodiment includes a high temperature side cooling unit 32 on the heating unit 21 that heats the temperature load surface in the first embodiment. The high temperature side cooling unit 32 cools the temperature load surface side of the thermoelectric conversion system, and may be any cooling method of water cooling with cooling water or electronic cooling with Peltier elements.

熱電変換システム11の信頼性評価の際には、熱サイクルに対する信頼性を評価することも多くあり、熱電変換システム11の温度負荷面の温度を昇降する必要がある。昇温の際には加熱部21に通電して温度を上昇させ、降温の際には通常、加熱部21の電流を遮断して自然放熱により温度を下げるが、自然放熱による降温は時間が掛かり、繰り返し温度の昇降を行う熱サイクル試験の効率が著しく悪い。具体的には、200℃から50℃までの降温に要する時間が3分の1以下となった。   When evaluating the reliability of the thermoelectric conversion system 11, the reliability with respect to the thermal cycle is often evaluated, and it is necessary to raise and lower the temperature of the temperature load surface of the thermoelectric conversion system 11. When the temperature rises, the heating unit 21 is energized to raise the temperature, and when the temperature falls, the current of the heating unit 21 is usually cut off and the temperature is lowered by natural heat dissipation. The efficiency of the thermal cycle test that repeatedly raises and lowers the temperature is extremely poor. Specifically, the time required for the temperature drop from 200 ° C. to 50 ° C. became one third or less.

第4の実施の形態においては、温度負荷面側にも高温側冷却部32を設けているので、熱サイクル試験において、降温時間が短縮され効率の良い試験を実施することができる。また、サイクル数の非常に多い試験を行うことも可能となる。   In the fourth embodiment, since the high temperature side cooling unit 32 is provided also on the temperature load surface side, in the thermal cycle test, the temperature drop time is shortened and an efficient test can be performed. It is also possible to perform a test with a very large number of cycles.

第4の実施の形態によれば、温度の昇降を行う熱サイクル試験において、降温の時間が短縮されるので、実環境で使用される熱電変換システムに対して、長期的に起こり得る熱サイクルの劣化評価のための信頼性試験を短時間で行うことができる。   According to the fourth embodiment, in the thermal cycle test that raises and lowers the temperature, the temperature lowering time is shortened. Therefore, the thermal cycle that can occur in the long term is compared with the thermoelectric conversion system used in the actual environment. A reliability test for deterioration evaluation can be performed in a short time.

(第5の実施の形態)
図5は本発明の第5の実施の形態に係わる熱電交換システム信頼性評価装置16の構成図である。この第5の実施の形態は、図1に示した第1の実施の形態に対し、低温側温度計測センサ20で検知した温度が所定値になるように冷却調整部33を介して低温側冷却部22を制御する温度制御部34を設けたものである。図1に示した第1の実施の形態と同一要素には、同一の符号を付し、重複する説明は省略する。
(Fifth embodiment)
FIG. 5 is a configuration diagram of a thermoelectric exchange system reliability evaluation device 16 according to the fifth exemplary embodiment of the present invention. The fifth embodiment is different from the first embodiment shown in FIG. 1 in that the low temperature side cooling is performed via the cooling adjustment unit 33 so that the temperature detected by the low temperature side temperature measurement sensor 20 becomes a predetermined value. A temperature control unit 34 for controlling the unit 22 is provided. The same elements as those of the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

図5に示すように、第5の実施の形態に係わる熱電変換システム信頼性評価装置16は、低温側冷却部22の冷却を調整する冷却調整部33と、低温側温度計測センサ20で検知した温度が所定値になるように冷却調整部33を調節する温度制御部34とが追加して設けられている。   As shown in FIG. 5, the thermoelectric conversion system reliability evaluation device 16 according to the fifth exemplary embodiment is detected by the cooling adjustment unit 33 that adjusts the cooling of the low temperature side cooling unit 22 and the low temperature side temperature measurement sensor 20. A temperature control unit 34 that adjusts the cooling adjustment unit 33 so that the temperature becomes a predetermined value is additionally provided.

この構成では、低温側温度計測センサ20により計測された低温側温度が温度制御部34に取り込まれる。温度制御部34は取り込まれたデータと、予め設定した低温側温度目標値との差を計算し、制御データとして冷却調整部34を通じて低温側冷却部22にフィードバックされるようになっている。   In this configuration, the low temperature side temperature measured by the low temperature side temperature measurement sensor 20 is taken into the temperature control unit 34. The temperature control unit 34 calculates a difference between the fetched data and a preset low temperature side temperature target value, and feeds it back to the low temperature side cooling unit 22 through the cooling adjustment unit 34 as control data.

ここで、低温側冷却部22は、冷却水による冷却を行う冷却部あるいは低温側冷却部22がペルチェ素子による電子冷却を行う冷却部のいずれを用いることも可能であり、冷却水による冷却を行う冷却部である場合には、冷却調整部33は冷却水水量調整装置となり、低温側冷却部22がペルチェ素子による冷却を行う冷却部である場合には、冷却調整部33はペルチェ素子用電流調整装置となる。   Here, the low temperature side cooling unit 22 can use either a cooling unit that performs cooling with cooling water or a cooling unit that performs low temperature side cooling unit 22 that performs electronic cooling using a Peltier element, and performs cooling using cooling water. When the cooling unit 33 is a cooling unit, the cooling adjustment unit 33 is a cooling water amount adjustment device. When the low temperature side cooling unit 22 is a cooling unit that performs cooling by a Peltier element, the cooling adjustment unit 33 adjusts the current for the Peltier element. It becomes a device.

第5の実施の形態によれば、低温側温度計測センサ20により計測された低温側温度が目標値となるようにフィードバック制御を行いながら試験を行えるので、試験を行っている間、低温側の温度を一定に保つことができる。従って、実環境で使用される熱電変換システムに対して、より正確な評価を行える信頼性試験を行うことができる。   According to the fifth embodiment, the test can be performed while performing feedback control so that the low temperature side temperature measured by the low temperature side temperature measurement sensor 20 becomes the target value. The temperature can be kept constant. Therefore, the reliability test which can perform more accurate evaluation with respect to the thermoelectric conversion system used in a real environment can be performed.

(第6の実施の形態)
図6は本発明の第6の実施の形態に係わる熱電交換システム信頼性評価装置16の構成図である。この第6の実施の形態は、図1に示した第1の実施の形態に対し、熱電変換システム11を囲む環境槽35を設けたものである。図1に示した第1の実施の形態と同一要素には、同一の符号を付し、重複する説明は省略する。
(Sixth embodiment)
FIG. 6 is a configuration diagram of a thermoelectric exchange system reliability evaluation apparatus 16 according to the sixth exemplary embodiment of the present invention. In the sixth embodiment, an environmental tank 35 surrounding the thermoelectric conversion system 11 is provided with respect to the first embodiment shown in FIG. The same elements as those of the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

第6の実施の形態に係わる熱電変換システム信頼性評価装置16は、熱電変換システム11を囲む環境槽35を備えている。環境槽35は腐食環境槽ユニットなどを内蔵しており、蒸気、真空、大気、ガス等様々な環境下での試験が可能となっている。   The thermoelectric conversion system reliability evaluation apparatus 16 according to the sixth embodiment includes an environmental tank 35 that surrounds the thermoelectric conversion system 11. The environmental tank 35 incorporates a corrosive environmental tank unit and the like, and can perform tests under various environments such as steam, vacuum, air, and gas.

第6の実施の形態によれば、様々な実機環境を模擬して試験を行えるので、実環境で使用される熱電変換システム11に対して、より正確な評価を行える信頼性試験を行うことが可能となる。   According to the sixth embodiment, since various real machine environments can be simulated and tested, a reliability test that can perform more accurate evaluation can be performed on the thermoelectric conversion system 11 used in the real environment. It becomes possible.

本発明の第1の実施の形態に関わる熱電交換システム信頼性評価装置の構成図。The block diagram of the thermoelectric exchange system reliability evaluation apparatus in connection with the 1st Embodiment of this invention. 本発明の第2の実施の形態に係わる熱電交換システム信頼性評価装置の構成図。The block diagram of the thermoelectric exchange system reliability evaluation apparatus concerning the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係わる熱電交換システム信頼性評価装置の構成図。The block diagram of the thermoelectric exchange system reliability evaluation apparatus concerning the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係わる熱電交換システム信頼性評価装置の構成図。The block diagram of the thermoelectric exchange system reliability evaluation apparatus concerning the 4th Embodiment of this invention. 本発明の第5の実施の形態に係わる熱電交換システム信頼性評価装置の構成図。The block diagram of the thermoelectric exchange system reliability evaluation apparatus concerning the 5th Embodiment of this invention. 本発明の第6の実施の形態に係わる熱電交換システム信頼性評価装置の構成図。The block diagram of the thermoelectric exchange system reliability evaluation apparatus concerning the 6th Embodiment of this invention. 熱電変換システムの一例を示す構成図。The block diagram which shows an example of a thermoelectric conversion system. 熱電変換システムの圧接の仕方の一例を示す斜視図。The perspective view which shows an example of the method of the pressure welding of a thermoelectric conversion system. 熱電変換システムの圧接の仕方の他の一例を示す斜視図。The perspective view which shows another example of the method of the pressure welding of a thermoelectric conversion system.

符号の説明Explanation of symbols

11…熱電変換システム、12…熱電変換モジュール、13…配線、14…ネジ、15…バネ、16…熱電交換システム信頼性評価装置、17…高温側治具、18…低温側治具、19…高温側温度計測センサ、20…低温側温度計測センサ、21…加熱部、22…低温側冷却部、23…均一圧接力負荷機構部、24…ネジ式ハンドル、24a…ネジ支持部、25…天板、25a…移動式天板、26…支持棒、27…負荷荷重調整機構部、28…アクチュエータ、29…荷重センサ、30…駆動装置、31…熱電変換システム、32…高温側冷却部、33…冷却調整部、34…温度制御部、35…環境槽 DESCRIPTION OF SYMBOLS 11 ... Thermoelectric conversion system, 12 ... Thermoelectric conversion module, 13 ... Wiring, 14 ... Screw, 15 ... Spring, 16 ... Thermoelectric exchange system reliability evaluation apparatus, 17 ... High temperature side jig, 18 ... Low temperature side jig, 19 ... High temperature side temperature measurement sensor, 20 ... Low temperature side temperature measurement sensor, 21 ... Heating part, 22 ... Low temperature side cooling part, 23 ... Uniform pressure contact force load mechanism part, 24 ... Screw type handle, 24a ... Screw support part, 25 ... Sky Plate, 25a ... Mobile top plate, 26 ... Support bar, 27 ... Load load adjusting mechanism, 28 ... Actuator, 29 ... Load sensor, 30 ... Drive device, 31 ... Thermoelectric conversion system, 32 ... High temperature side cooling unit, 33 ... Cooling adjustment part, 34 ... Temperature control part, 35 ... Environmental tank

Claims (11)

複数のモジュールより成る熱電変換システムの温度負荷面を加熱する加熱部と、前記温度負荷面の反対側の面を冷却する低温側冷却部と、熱電変換システムの温度負荷面の温度を計測する高温側温度計測センサと、前記温度負荷面の反対側の面の温度を計測する低温側温度計測センサと、球面座を有し前記熱電変換システム全体を均一に圧接する均一圧接力負荷機構部とを備えたことを特徴とする熱電変換システム信頼性評価装置。 A heating unit that heats a temperature load surface of a thermoelectric conversion system including a plurality of modules, a low temperature side cooling unit that cools a surface opposite to the temperature load surface, and a high temperature that measures the temperature of the temperature load surface of the thermoelectric conversion system A side temperature measurement sensor, a low temperature side temperature measurement sensor that measures the temperature of the surface opposite to the temperature load surface, and a uniform pressure contact force load mechanism that has a spherical seat and presses the entire thermoelectric conversion system uniformly. A thermoelectric conversion system reliability evaluation apparatus characterized by comprising. 前記均一圧接力負荷機構部は、ネジ式のハンドルで前記球面座を介して前記熱電変換システムを圧接することを特徴とする請求項1に記載の熱電変換システム信頼性評価装置。 The thermoelectric conversion system reliability evaluation apparatus according to claim 1, wherein the uniform pressure contact force load mechanism unit presses the thermoelectric conversion system through the spherical seat with a screw-type handle. 前記均一圧接力負荷機構部は、前記ネジ式のハンドルによる圧接力を調整する負荷荷重調整機構部を備えたことを特徴とする請求項2記載の熱電変換システム信頼性評価装置。 The thermoelectric conversion system reliability evaluation device according to claim 2, wherein the uniform pressure contact force load mechanism portion includes a load load adjustment mechanism portion that adjusts a pressure contact force by the screw type handle. 前記均一圧接力負荷機構部は、ネジ式のハンドルに代えて、電動式アクチュエータまたは油圧式アクチュエータとしたことを特徴とする請求項2または3に記載の熱電変換システム信頼性評価装置。 The thermoelectric conversion system reliability evaluation apparatus according to claim 2 or 3, wherein the uniform pressure contact force load mechanism is an electric actuator or a hydraulic actuator instead of a screw-type handle. 前記均一圧接力負荷機構部の圧接力による前記熱電変換システムへの荷重を検知する荷重センサと、前記荷重センサで検知した荷重が所定値になるように電動式アクチュエータまたは油圧式アクチュエータを制御する制御部とを備えたことを特徴とする請求項4に記載の熱電変換システム信頼性評価装置。 A load sensor that detects a load on the thermoelectric conversion system due to the pressure contact force of the uniform pressure contact force load mechanism, and a control that controls the electric actuator or the hydraulic actuator so that the load detected by the load sensor becomes a predetermined value The thermoelectric conversion system reliability evaluation apparatus according to claim 4, further comprising: 前記熱電変換システムの温度負荷面を加熱する加熱部に、前記加熱部を冷却する高温側冷却部を備えたことを特徴とする請求項1乃至5のいずれか1項に記載の熱電変換システム信頼性評価装置。 The thermoelectric conversion system reliability according to any one of claims 1 to 5, further comprising a high-temperature side cooling unit that cools the heating unit in a heating unit that heats a temperature load surface of the thermoelectric conversion system. Sex evaluation device. 前記低温側冷却部または前記高温側冷却部は、ペルチェ素子による電子冷却を行う冷却部であることを特徴とする請求項1乃至6のいずれか1項に記載の熱電変換システム信頼性評価装置。 The thermoelectric conversion system reliability evaluation apparatus according to any one of claims 1 to 6, wherein the low temperature side cooling unit or the high temperature side cooling unit is a cooling unit that performs electronic cooling by a Peltier element. 前記低温側冷却部または前記高温側冷却部は、冷却水による冷却を行う冷却部であることを特徴とする請求項1乃至6のいずれか1項に記載の熱電変換システム信頼性評価装置。 The thermoelectric conversion system reliability evaluation apparatus according to any one of claims 1 to 6, wherein the low temperature side cooling unit or the high temperature side cooling unit is a cooling unit that performs cooling with cooling water. 前記低温側温度計測センサで検知した温度が所定値になるように前記低温側冷却部を制御する温度制御部を備えたことを特徴とする請求項1に記載の熱電変換システム信頼性評価装置。 The thermoelectric conversion system reliability evaluation apparatus according to claim 1, further comprising a temperature control unit that controls the low-temperature side cooling unit so that the temperature detected by the low-temperature side temperature measurement sensor becomes a predetermined value. 前記熱電変換システムを囲む環境槽を備えたことを特徴とする請求項1に記載の熱電変換システム信頼性評価装置。 The thermoelectric conversion system reliability evaluation apparatus according to claim 1, further comprising an environmental tank surrounding the thermoelectric conversion system. 複数のモジュールより成る熱電変換システムの温度負荷面を加熱し、前記温度負荷面の反対側の面を冷却し、前記熱電変換システム全体を均一に圧接することを特徴とする熱電変換システム信頼性評価方法。 A thermoelectric conversion system reliability evaluation characterized by heating a temperature load surface of a thermoelectric conversion system comprising a plurality of modules, cooling a surface opposite to the temperature load surface, and uniformly pressing the entire thermoelectric conversion system Method.
JP2007013564A 2007-01-24 2007-01-24 Device and method for evaluating reliability on thermoelectric conversion system Pending JP2008182011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007013564A JP2008182011A (en) 2007-01-24 2007-01-24 Device and method for evaluating reliability on thermoelectric conversion system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007013564A JP2008182011A (en) 2007-01-24 2007-01-24 Device and method for evaluating reliability on thermoelectric conversion system

Publications (1)

Publication Number Publication Date
JP2008182011A true JP2008182011A (en) 2008-08-07

Family

ID=39725681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007013564A Pending JP2008182011A (en) 2007-01-24 2007-01-24 Device and method for evaluating reliability on thermoelectric conversion system

Country Status (1)

Country Link
JP (1) JP2008182011A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101102414B1 (en) 2010-05-28 2012-01-05 한국표준과학연구원 Thermoelectric device characteristics measuring apparatus and measuring method of the same
JP2014139558A (en) * 2012-12-21 2014-07-31 Kotohira Kogyo Kk Heating test device
CN104007139A (en) * 2014-06-10 2014-08-27 中国华能集团清洁能源技术研究院有限公司 Testing system and method of thermoelectric module
JP2016183959A (en) * 2015-03-26 2016-10-20 コトヒラ工業株式会社 Heating test device
WO2017164104A1 (en) * 2016-03-23 2017-09-28 国立研究開発法人産業技術総合研究所 Thermoelectric module power generation evaluation device
KR101804710B1 (en) * 2016-12-20 2017-12-04 주식회사 블루시스 Apparatus for evaluating a thermoelectric device
IT201600096675A1 (en) * 2016-09-27 2018-03-27 Veil Energy S R L THERMOELECTRIC CONVERTER PERFECTED WITH THERMO-ELECTRIC CONVERTERS SUBJECT TO VARIABLE COMPRESSION DURING OPERATION
CN108760824A (en) * 2018-07-04 2018-11-06 佛山科学技术学院 A kind of heating power electricity THM coupling device testing apparatus
KR101933156B1 (en) 2017-03-08 2018-12-28 한국표준과학연구원 Apparatus for measuring thermoelectric property
CN111596162A (en) * 2020-06-19 2020-08-28 中国核动力研究设计院 Integrated thermoelectric device experimental device and method based on temperature difference type thermoelectric conversion
CN113219283A (en) * 2021-05-06 2021-08-06 国网上海市电力公司 System and method for testing power generation performance of micro thermoelectric device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254975A (en) * 1988-08-19 1990-02-23 Nippon Telegr & Teleph Corp <Ntt> Peltier element
JPH09321349A (en) * 1996-05-27 1997-12-12 Matsushita Electric Works Ltd Thermoelectric converter
JPH1140583A (en) * 1997-07-23 1999-02-12 Daido Steel Co Ltd Alloy for soldering and solder bonding method
JP2001174497A (en) * 1999-12-17 2001-06-29 Yamaha Corp Method for testing power conduction of thermionic element and apparatus for testing power conduction of thermionic element
JP2004208476A (en) * 2002-12-26 2004-07-22 Toyota Motor Corp Waste heat power generator
JP2004296959A (en) * 2003-03-28 2004-10-21 Citizen Watch Co Ltd Thermoelectric element performance evaluating device and method for evaluating performance of thermoelectric element
JP2005101544A (en) * 2003-08-15 2005-04-14 Toshiba Corp Heat-flow rate control system and evaluation system of endothermic/exothermic characteristics of thermoelectric conversion module
JP2005260155A (en) * 2004-03-15 2005-09-22 Central Res Inst Of Electric Power Ind Thermo-electric conversion system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254975A (en) * 1988-08-19 1990-02-23 Nippon Telegr & Teleph Corp <Ntt> Peltier element
JPH09321349A (en) * 1996-05-27 1997-12-12 Matsushita Electric Works Ltd Thermoelectric converter
JPH1140583A (en) * 1997-07-23 1999-02-12 Daido Steel Co Ltd Alloy for soldering and solder bonding method
JP2001174497A (en) * 1999-12-17 2001-06-29 Yamaha Corp Method for testing power conduction of thermionic element and apparatus for testing power conduction of thermionic element
JP2004208476A (en) * 2002-12-26 2004-07-22 Toyota Motor Corp Waste heat power generator
JP2004296959A (en) * 2003-03-28 2004-10-21 Citizen Watch Co Ltd Thermoelectric element performance evaluating device and method for evaluating performance of thermoelectric element
JP2005101544A (en) * 2003-08-15 2005-04-14 Toshiba Corp Heat-flow rate control system and evaluation system of endothermic/exothermic characteristics of thermoelectric conversion module
JP2005260155A (en) * 2004-03-15 2005-09-22 Central Res Inst Of Electric Power Ind Thermo-electric conversion system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101102414B1 (en) 2010-05-28 2012-01-05 한국표준과학연구원 Thermoelectric device characteristics measuring apparatus and measuring method of the same
JP2014139558A (en) * 2012-12-21 2014-07-31 Kotohira Kogyo Kk Heating test device
CN104007139A (en) * 2014-06-10 2014-08-27 中国华能集团清洁能源技术研究院有限公司 Testing system and method of thermoelectric module
JP2016183959A (en) * 2015-03-26 2016-10-20 コトヒラ工業株式会社 Heating test device
CN108886086A (en) * 2016-03-23 2018-11-23 国立研究开发法人产业技术综合研究所 Electrothermal module power generation evaluating apparatus
WO2017164104A1 (en) * 2016-03-23 2017-09-28 国立研究開発法人産業技術総合研究所 Thermoelectric module power generation evaluation device
CN108886086B (en) * 2016-03-23 2022-03-04 国立研究开发法人产业技术综合研究所 Thermoelectric module power generation evaluation device
JPWO2017164104A1 (en) * 2016-03-23 2019-05-30 国立研究開発法人産業技術総合研究所 Thermoelectric module power generation evaluation device
IT201600096675A1 (en) * 2016-09-27 2018-03-27 Veil Energy S R L THERMOELECTRIC CONVERTER PERFECTED WITH THERMO-ELECTRIC CONVERTERS SUBJECT TO VARIABLE COMPRESSION DURING OPERATION
KR101804710B1 (en) * 2016-12-20 2017-12-04 주식회사 블루시스 Apparatus for evaluating a thermoelectric device
KR101933156B1 (en) 2017-03-08 2018-12-28 한국표준과학연구원 Apparatus for measuring thermoelectric property
CN108760824A (en) * 2018-07-04 2018-11-06 佛山科学技术学院 A kind of heating power electricity THM coupling device testing apparatus
CN111596162A (en) * 2020-06-19 2020-08-28 中国核动力研究设计院 Integrated thermoelectric device experimental device and method based on temperature difference type thermoelectric conversion
CN113219283A (en) * 2021-05-06 2021-08-06 国网上海市电力公司 System and method for testing power generation performance of micro thermoelectric device

Similar Documents

Publication Publication Date Title
JP2008182011A (en) Device and method for evaluating reliability on thermoelectric conversion system
US8766656B2 (en) Systems and methods for thermal control
CN100578206C (en) Testing method of thermal resistance of heat-conducting material and testing clamp
CN107607849B (en) Thermoelectric device power generation performance testing device and method
KR101804710B1 (en) Apparatus for evaluating a thermoelectric device
KR101484956B1 (en) Thermoelectric device&#39;s test apparatus and test method for it
US11061067B2 (en) Apparatus and method for a high temperature test and a low temperature test and configured to maintain an electronic component under test near a test temperature
CN111521923A (en) Thermoelectric device performance test system and test method
TWI342958B (en) Cooling control device for use in a press coupling mechanism of a testing machine
JP2020122707A (en) Electronic component handling device and electronic component tester
JP2004296959A (en) Thermoelectric element performance evaluating device and method for evaluating performance of thermoelectric element
JP5978992B2 (en) Electronic device test apparatus and test method
KR102164075B1 (en) Warm test apparatus
TW201637077A (en) Thermal processing apparatus and thermal processing method
CN212364156U (en) Adjustable thermal conductivity coefficient testing arrangement
JP2006226876A (en) Burn-in apparatus for semiconductor laser device
CN110749783B (en) High-low temperature test equipment and test method thereof
JP4560057B2 (en) Electronic component inspection equipment
JP2008170179A (en) Autohandler
JP6198534B2 (en) Heating test equipment
JP3508991B2 (en) Method and apparatus for testing thermal fatigue resistance of sintered ceramics
JP4598781B2 (en) Electronic component inspection container
JP2013020471A (en) Temperature controller and temperature control method
JP4116526B2 (en) Differential scanning calorimeter with second heater
KR20210105354A (en) A sintering press for sintering electronic components on a substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002