JP2008181830A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2008181830A
JP2008181830A JP2007015877A JP2007015877A JP2008181830A JP 2008181830 A JP2008181830 A JP 2008181830A JP 2007015877 A JP2007015877 A JP 2007015877A JP 2007015877 A JP2007015877 A JP 2007015877A JP 2008181830 A JP2008181830 A JP 2008181830A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
mass
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007015877A
Other languages
Japanese (ja)
Other versions
JP5230108B2 (en
Inventor
Anten Iwami
安展 岩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007015877A priority Critical patent/JP5230108B2/en
Publication of JP2008181830A publication Critical patent/JP2008181830A/en
Application granted granted Critical
Publication of JP5230108B2 publication Critical patent/JP5230108B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery which exhibits superior safety at an overcharging time. <P>SOLUTION: The nonaqueous electrolyte secondary battery includes a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a nonaqueous electrolyte, wherein the positive electrode active material is composed of a material in which nickel cobaltate manganate lithium (Li<SB>a</SB>Ni<SB>x</SB>Co<SB>y</SB>Mn<SB>z</SB>O<SB>2</SB>, 0<a≤1.1, 0.1≤x≤0.5, 0<y, 0.1≤z≤0.5, x+y+z=1) and spinel-type manganate lithium (Li<SB>a</SB>Mn<SB>2</SB>O<SB>4</SB>, 0<a≤1.1) are mixed at a mass ratio in a range from 100:0 to 50:50, and lithium carbonate with a mean particle diameter of 5 to 30 μm is added to the positive electrode with 0.5 to 2.0 percent by mass. The positive electrode active material and the lithium carbonate are mixed uniformly. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、万が一過充電状態になった電池における安全性の向上及び高温サイクル特性の向上を目的とした非水電解質二次電池の改良に関する。   The present invention relates to an improvement in a non-aqueous electrolyte secondary battery for the purpose of improving safety and high-temperature cycle characteristics in a battery that is overcharged.

今日、携帯電話、ノートパソコン等の移動情報端末の高機能化・小型化および軽量化が急速に進展している。これらの端末の駆動電源として、高いエネルギー密度を有し、高容量であるリチウムイオン二次電池に代表される非水電解質二次電池が広く利用されている。   Today, mobile information terminals such as mobile phones and laptop computers are rapidly becoming more functional, smaller, and lighter. As a driving power source for these terminals, non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries having high energy density and high capacity are widely used.

近年では、リチウムイオン二次電池は、電動工具、電動アシスト自転車、ハイブリッド自動車等に使用することがなされており、これらの用途では、通常よりもハイレートで充放電を行うことが求められている。しかしながら、リチウムイオン二次電池をハイレートで充電する場合、通常の充電条件で充電する場合に比べて、過充電状態になりやすい。このため、ハイレート充電する際の安全性の向上が強く求められている。   In recent years, lithium ion secondary batteries have been used in electric tools, electric assist bicycles, hybrid vehicles, and the like. In these applications, it is required to charge and discharge at a higher rate than usual. However, when the lithium ion secondary battery is charged at a high rate, it is likely to be in an overcharged state as compared with the case of charging under normal charging conditions. For this reason, the improvement of the safety | security at the time of high rate charge is calculated | required strongly.

過充電の安全性を向上させるために、電池内圧の上昇により作動する電流遮断手段を組み込み、過充電の初期に分解してガスを発生させる炭酸リチウムを添加する技術が、特許文献1〜6に提案されている。   In order to improve the safety of overcharge, a technique that incorporates a current interrupting means that operates by increasing the battery internal pressure and adds lithium carbonate that decomposes and generates gas in the initial stage of overcharge is disclosed in Patent Documents 1 to 6. Proposed.

特開2002-110251号公報JP 2002-110251 A 特開2002-151155号公報JP 2002-151155 A 特開2002-313340号公報JP 2002-313340 A 特開平5-151997号公報Japanese Patent Laid-Open No. 5-151997 特許第3010781号公報Japanese Patent No. 3010781 特許第3103899号公報Japanese Patent No. 3103899

しかし、これらの技術によっても、万が一過充電となってしまった場合における電池の安全性(以下、過充電時安全性という)が未だ十分ではない。   However, even with these technologies, the safety of the battery in the event of overcharging (hereinafter referred to as overcharge safety) is still not sufficient.

本発明は、上記に鑑みなされたものであって、万が一過充電となってしまった場合でも安全性が高い非水電解質二次電池を提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a non-aqueous electrolyte secondary battery with high safety even if it is overcharged.

上記課題を解決するための第1の本発明は、正極活物質を有する正極と、負極活物質を有する負極と、非水電解質と、を備えた非水電解質二次電池において、前記正極活物質としてニッケルコバルトマンガン酸リチウム(LiNiCoMn、0<a≦1.1、0.1≦x≦0.5、0<y、0.1≦z≦0.5、x+y+z=1)のみからなり、平均粒径5〜30μmの炭酸リチウムが、前記正極に対して0.5〜2.0質量%添加され、前記正極活物質と前記炭酸リチウムとが均一に混合されていることを特徴とする。 A first aspect of the present invention for solving the above problems is a nonaqueous electrolyte secondary battery comprising a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a nonaqueous electrolyte. As nickel cobalt lithium manganate (Li a Ni x Co y Mn z O 2 , 0 <a ≦ 1.1, 0.1 ≦ x ≦ 0.5, 0 <y, 0.1 ≦ z ≦ 0.5, x + y + z = 1), lithium carbonate having an average particle size of 5 to 30 μm is added to the positive electrode in an amount of 0.5 to 2.0 mass%, and the positive electrode active material and the lithium carbonate are uniformly mixed. It is characterized by.

ニッケルコバルトマンガン酸リチウムは、過充電時の化合物としての安定性が、従来より正極活物質として用いられているコバルト酸リチウムよりも極めて高い。また、理由は定かではないが、平均粒径5〜30μmの炭酸リチウムと正極活物質とが均一に混合されていることにより、過充電時の安全性が高まる。そして、これらの効果が相乗的に作用することにより、過充電時安全性が飛躍的に高まる。   Nickel cobalt lithium manganate has extremely higher stability as a compound during overcharge than lithium cobalt oxide conventionally used as a positive electrode active material. Moreover, although the reason is not certain, the safety | security at the time of an overcharge increases because lithium carbonate with an average particle diameter of 5-30 micrometers and a positive electrode active material are mixed uniformly. And these effects act synergistically, and the safety at the time of overcharge increases remarkably.

炭酸リチウムの添加量が0.5質量%未満であると十分な過充電時安全性向上効果が得られず、他方2.0質量%よりも多いと、炭酸リチウムが充放電サイクルのスムースな進行を阻害して、サイクル特性を低下させる。よって、炭酸リチウムの添加量は0.5〜2.0質量%であることが好ましい。   When the amount of lithium carbonate added is less than 0.5% by mass, a sufficient overcharge safety improvement effect cannot be obtained, while when it is more than 2.0% by mass, the lithium carbonate smoothly progresses in the charge / discharge cycle. To inhibit the cycle characteristics. Therefore, it is preferable that the addition amount of lithium carbonate is 0.5-2.0 mass%.

また、炭酸リチウムの平均粒径が5μm未満であると、炭酸リチウム粒子同士が凝集してしまい、炭酸リチウムと正極活物質とが均一に混合されなくなるので、炭酸リチウムによる過充電時安全性向上効果が十分に得られなくなるとともに、凝集した炭酸リチウムが充放電サイクルを阻害して、サイクル特性を低下させる。他方、30μmより大きい場合にも、炭酸リチウムと正極活物質とが均一に混合されなくなるので、炭酸リチウムによる過充電時安全性向上効果が十分に得られなくなるとともに、正極中に不均一に分散した炭酸リチウムが充放電サイクルを阻害して、サイクル特性を低下させる。よって、炭酸リチウムの平均粒径は5〜30μmであることが好ましい。   In addition, when the average particle size of lithium carbonate is less than 5 μm, the lithium carbonate particles are aggregated, and the lithium carbonate and the positive electrode active material are not uniformly mixed. Cannot be sufficiently obtained, and the agglomerated lithium carbonate hinders the charge / discharge cycle and deteriorates the cycle characteristics. On the other hand, even when the thickness is larger than 30 μm, the lithium carbonate and the positive electrode active material are not uniformly mixed, so that the lithium carbonate cannot sufficiently obtain the effect of improving the safety during overcharge and is unevenly dispersed in the positive electrode. Lithium carbonate inhibits the charge / discharge cycle and deteriorates the cycle characteristics. Therefore, the average particle size of lithium carbonate is preferably 5 to 30 μm.

上記課題を解決するための第2の本発明は、正極活物質を有する正極と、負極活物質を有する負極と、非水電解質と、を備えた非水電解質二次電池において、前記正極活物質としてニッケルコバルトマンガン酸リチウム(LiNiCoMn、0<a≦1.1、0.1≦x≦0.5、0<y、0.1≦z≦0.5、x+y+z=1)と、スピネル型マンガン酸リチウム(LiMn、0<a≦1.1)と、からなり、前記正極活物質に占める前記スピネル型マンガン酸リチウムの質量割合が、50質量%以下であり、平均粒径5〜30μmの炭酸リチウムが、前記正極に対して0.5〜2.0質量%添加され、前記正極活物質と前記炭酸リチウムとが均一に混合されていることを特徴とする。 A second aspect of the present invention for solving the above problems is a nonaqueous electrolyte secondary battery comprising a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a nonaqueous electrolyte. As nickel cobalt lithium manganate (Li a Ni x Co y Mn z O 2 , 0 <a ≦ 1.1, 0.1 ≦ x ≦ 0.5, 0 <y, 0.1 ≦ z ≦ 0.5, x + y + z = 1) and spinel type lithium manganate (Li a Mn 2 O 4 , 0 <a ≦ 1.1), and the mass proportion of the spinel type lithium manganate in the positive electrode active material is 50 0.5% to 2.0% by mass of lithium carbonate having an average particle diameter of 5 to 30 μm is added to the positive electrode, and the positive electrode active material and the lithium carbonate are uniformly mixed. It is characterized by that.

スピネル型マンガン酸リチウムもまた、過充電時の化合物としての安定性が、従来より正極活物質として用いられているコバルト酸リチウムよりも極めて高い。このため、正極活物質を、ニッケルコバルトマンガン酸リチウムと、スピネル型マンガン酸リチウムと、の混合物とした場合にも、平均粒径が5〜30μmの炭酸リチウムを0.5〜2.0質量%正極に均一混合した状態で含ませることにより、過充電時安全性に優れた非水電解質二次電池が得られる。また、スピネル型マンガン酸リチウムは、ニッケルコバルトマンガン酸リチウムよりも低コストであるため、電池の低コスト化を図れる。   Spinel-type lithium manganate is also extremely higher in stability as a compound during overcharge than lithium cobaltate conventionally used as a positive electrode active material. For this reason, even when the positive electrode active material is a mixture of nickel cobalt lithium manganate and spinel type lithium manganate, 0.5 to 2.0 mass% of lithium carbonate having an average particle diameter of 5 to 30 μm is used. By including it in a state of being uniformly mixed in the positive electrode, a nonaqueous electrolyte secondary battery having excellent safety during overcharge can be obtained. Moreover, since spinel type lithium manganate is lower in cost than nickel cobalt lithium manganate, the cost of the battery can be reduced.

しかしながら、スピネル型マンガン酸リチウムは、ニッケルコバルトマンガン酸リチウムよりも放電容量が小さいというデメリットがあり、スピネル型マンガン酸リチウムを50質量%よりも多くすると、非水電解質二次電池の放電容量が低下する。このため、正極活物質に占めるスピネル型マンガン酸リチウムの質量割合を、50質量%以下とすることが好ましい。   However, the spinel type lithium manganate has a disadvantage that the discharge capacity is smaller than that of the nickel cobalt lithium manganate. If the spinel type lithium manganate is more than 50% by mass, the discharge capacity of the nonaqueous electrolyte secondary battery decreases. To do. For this reason, it is preferable that the mass ratio of the spinel type lithium manganate to the positive electrode active material is 50 mass% or less.

ここで、炭酸リチウムの添加量とは、正極材(正極集電体を除く正極の全構成要素)の合計質量を100とした場合の炭酸リチウムの質量%を意味する。   Here, the addition amount of lithium carbonate means mass% of lithium carbonate when the total mass of the positive electrode material (all components of the positive electrode excluding the positive electrode current collector) is 100.

また、炭酸リチウムの平均粒径とは、レーザー回折式粒度分布測定装置(島津製作所製SALD-2000J)を用いて測定された、体積基準での積算粒子量が50%となる粒子径を意味する。   The average particle size of lithium carbonate means a particle size at which the cumulative particle amount on a volume basis is 50%, measured using a laser diffraction particle size distribution analyzer (SALD-2000J manufactured by Shimadzu Corporation). .

以上説明したように、本発明によると、過充電時安全性に優れた非水電解質二次電池を実現することができる。   As described above, according to the present invention, it is possible to realize a nonaqueous electrolyte secondary battery excellent in safety during overcharge.

以下に、本発明を実施するための最良の形態を、実施例を用いて詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail using embodiments.

(実施例1)
(正極の作製)
炭酸リチウムと、Ni0.33Co0.34Mn0.33(OH)で示される共沈水酸化物とを混合し、空気雰囲気中で1000℃で20時間焼成し、その後解砕して、平均粒径11μmのニッケルコバルトマンガン酸リチウム(LiNi0.03Co0.34Mn0.33)を得た。
(Example 1)
(Preparation of positive electrode)
Lithium carbonate and a coprecipitated hydroxide represented by Ni 0.33 Co 0.34 Mn 0.33 (OH) 2 were mixed, fired at 1000 ° C. for 20 hours in an air atmosphere, and then crushed, A nickel cobalt lithium manganate (LiNi 0.03 Co 0.34 Mn 0.33 O 2 ) having an average particle diameter of 11 μm was obtained.

上記ニッケルコバルトマンガン酸リチウムからなる正極活物質89.5質量部と、平均粒径が15μmである炭酸リチウム0.5質量部と、炭素粉末からなる導電剤5質量部と、ポリビニリデンフルオライド(PVdF)からなる結着剤5質量部と、N−メチル−2−ピロリドン(NMP)と、を均一に混合して正極活物質スラリーを調整した。この正極活物質スラリーを、厚み20μmのアルミニウム箔から成る正極集電体の両面にドクターブレード法により塗布し、その後乾燥して、スラリー調整時に用いた有機溶剤(NMP)を除去した。この後、圧縮ローラーを用いて圧延し、55×600mmの正極板を得た。   89.5 parts by mass of a positive electrode active material composed of the above-described nickel cobalt lithium manganate, 0.5 part by mass of lithium carbonate having an average particle size of 15 μm, 5 parts by mass of a conductive agent composed of carbon powder, and polyvinylidene fluoride ( A positive electrode active material slurry was prepared by uniformly mixing 5 parts by mass of a binder composed of PVdF) and N-methyl-2-pyrrolidone (NMP). This positive electrode active material slurry was applied to both surfaces of a positive electrode current collector made of an aluminum foil having a thickness of 20 μm by a doctor blade method, and then dried to remove the organic solvent (NMP) used in preparing the slurry. Then, it rolled using the compression roller and obtained the positive electrode plate of 55x600mm.

(負極の作製)
天然黒鉛からなる負極活物質95質量部と、ポリビニリデンフルオライド(PVdF)からなる結着剤5質量部と、N−メチル−2−ピロリドン(NMP)と、を混合して負極活物質スラリーを調整した。この負極活物質スラリーを、厚み10μmの銅箔から成る負極集電体の両面にドクターブレード法により塗布し、その後乾燥して、スラリー調整時に用いた有機溶剤(NMP)を除去した。この後、圧縮ローラーを用いて圧延し、57×650mmの負極板を得た。
(Preparation of negative electrode)
A negative electrode active material slurry is prepared by mixing 95 parts by mass of a negative electrode active material made of natural graphite, 5 parts by mass of a binder made of polyvinylidene fluoride (PVdF), and N-methyl-2-pyrrolidone (NMP). It was adjusted. This negative electrode active material slurry was applied to both surfaces of a negative electrode current collector made of a copper foil having a thickness of 10 μm by a doctor blade method, and then dried to remove the organic solvent (NMP) used for slurry preparation. Then, it rolled using the compression roller and obtained the 57 * 650mm negative electrode plate.

(電極体の作製)
上記正極板と、負極板との間に、ポリプロピレン製微多孔膜からなるセパレータを介在させて巻回し、渦巻電極体を作製した。
(Production of electrode body)
A spiral electrode body was manufactured by interposing a separator made of a polypropylene microporous film between the positive electrode plate and the negative electrode plate.

(非水電解質の調整)
エチレンカーボネート50体積部と、ジエチルカーボネート50体積部と、を混合し(25℃、1気圧における)、LiPFを1モル/リットルとなるように溶解して、非水電解質となした。
(Nonaqueous electrolyte adjustment)
50 parts by volume of ethylene carbonate and 50 parts by volume of diethyl carbonate were mixed (at 25 ° C. and 1 atm), and LiPF 6 was dissolved at 1 mol / liter to obtain a non-aqueous electrolyte.

(電池の組み立て)
この上記渦巻電極体を電池外装缶内に挿入し、上記非水電解質を注液し、開口を封口することにより、理論容量が1800mAhである円筒形の実施例1にかかるリチウムイオン二次電池を作製した。
(Battery assembly)
By inserting the spiral electrode body into a battery outer can, injecting the nonaqueous electrolyte, and sealing the opening, the lithium ion secondary battery according to the cylindrical example 1 having a theoretical capacity of 1800 mAh was obtained. Produced.

(実施例2)
正極活物質を89質量部とし、炭酸リチウムを1.0質量部としたこと以外は、上記実施例1と同様にして、実施例2にかかるリチウムイオン二次電池を作製した。
(Example 2)
A lithium ion secondary battery according to Example 2 was produced in the same manner as in Example 1 except that the positive electrode active material was 89 parts by mass and lithium carbonate was 1.0 part by mass.

(実施例3)
正極活物質を88質量部とし、炭酸リチウムを2.0質量部としたこと以外は、上記実施例1と同様にして、実施例3にかかるリチウムイオン二次電池を作製した。
(Example 3)
A lithium ion secondary battery according to Example 3 was manufactured in the same manner as in Example 1 except that the positive electrode active material was 88 parts by mass and lithium carbonate was 2.0 parts by mass.

(実施例4)
正極活物質を、平均粒径が11μmのニッケルコバルトマンガン酸リチウム(LiNi0.03Co0.34Mn0.33)と、公知の方法で作製した平均粒径が11μmのスピネル型マンガン酸リチウム(LiMn)と、を質量比7:3で混合した混合物としたこと以外は、上記実施例1と同様にして、実施例4にかかるリチウムイオン二次電池を作製した。
Example 4
The positive electrode active material is made of nickel cobalt lithium manganate (LiNi 0.03 Co 0.34 Mn 0.33 O 2 ) having an average particle diameter of 11 μm and spinel manganic acid having an average particle diameter of 11 μm prepared by a known method. A lithium ion secondary battery according to Example 4 was produced in the same manner as in Example 1 except that lithium (LiMn 2 O 4 ) was mixed at a mass ratio of 7: 3.

(実施例5)
正極活物質を89質量部とし、炭酸リチウムを1.0質量部としたこと以外は、上記実施例4と同様にして、実施例5にかかるリチウムイオン二次電池を作製した。
(Example 5)
A lithium ion secondary battery according to Example 5 was produced in the same manner as in Example 4 except that the positive electrode active material was 89 parts by mass and lithium carbonate was 1.0 part by mass.

(実施例6)
正極活物質を88質量部とし、炭酸リチウムを2.0質量部としたこと以外は、上記実施例4と同様にして、実施例6にかかるリチウムイオン二次電池を作製した。
(Example 6)
A lithium ion secondary battery according to Example 6 was produced in the same manner as in Example 4 except that the positive electrode active material was 88 parts by mass and lithium carbonate was 2.0 parts by mass.

(実施例7)
正極活物質を、ニッケルコバルトマンガン酸リチウムとスピネル型マンガン酸リチウムを質量比5:5で混合した混合物としたこと以外は、上記実施例1と同様にして、実施例7にかかるリチウムイオン二次電池を作製した。
(Example 7)
The lithium ion secondary according to Example 7 was performed in the same manner as in Example 1 except that the positive electrode active material was a mixture in which nickel cobalt lithium manganate and spinel type lithium manganate were mixed at a mass ratio of 5: 5. A battery was produced.

(実施例8)
正極活物質を89質量部とし、炭酸リチウムを1.0質量部としたこと以外は、上記実施例7と同様にして、実施例8にかかるリチウムイオン二次電池を作製した。
(Example 8)
A lithium ion secondary battery according to Example 8 was produced in the same manner as in Example 7 except that the positive electrode active material was 89 parts by mass and lithium carbonate was 1.0 part by mass.

(実施例9)
正極活物質を88質量部とし、炭酸リチウムを2.0質量部としたこと以外は、上記実施例7と同様にして、実施例9にかかるリチウムイオン二次電池を作製した。
Example 9
A lithium ion secondary battery according to Example 9 was produced in the same manner as in Example 7 except that the positive electrode active material was 88 parts by mass and lithium carbonate was 2.0 parts by mass.

(実施例10)
炭酸リチウムの平均粒径を5μmとしたこと以外は、上記実施例1と同様にして、実施例10にかかるリチウムイオン二次電池を作製した。
(Example 10)
A lithium ion secondary battery according to Example 10 was produced in the same manner as in Example 1 except that the average particle size of lithium carbonate was 5 μm.

(実施例11)
炭酸リチウムの平均粒径を30μmとしたこと以外は、上記実施例1と同様にして、実施例11にかかるリチウムイオン二次電池を作製した。
(Example 11)
A lithium ion secondary battery according to Example 11 was produced in the same manner as in Example 1 except that the average particle size of lithium carbonate was 30 μm.

(実施例12)
ニッケルコバルトマンガン酸リチウムの平均粒径を5μmとしたこと以外は、上記実施例1と同様にして、実施例12にかかるリチウムイオン二次電池を作製した。
(Example 12)
A lithium ion secondary battery according to Example 12 was produced in the same manner as in Example 1 except that the average particle size of nickel cobalt lithium manganate was 5 μm.

(実施例13)
ニッケルコバルトマンガン酸リチウムの平均粒径を20μmとしたこと以外は、上記実施例1と同様にして、実施例13にかかるリチウムイオン二次電池を作製した。
(Example 13)
A lithium ion secondary battery according to Example 13 was produced in the same manner as in Example 1 except that the average particle diameter of nickel cobalt lithium manganate was 20 μm.

(比較例1)
炭酸リチウムを混合しなかったこと以外は、上記実施例1と同様にして、比較例1にかかるリチウムイオン二次電池を作製した。
(Comparative Example 1)
A lithium ion secondary battery according to Comparative Example 1 was produced in the same manner as in Example 1 except that lithium carbonate was not mixed.

(比較例2)
正極活物質を89.9質量部とし、炭酸リチウムを0.1質量部としたこと以外は、上記実施例1と同様にして、比較例2にかかるリチウムイオン二次電池を作製した。
(Comparative Example 2)
A lithium ion secondary battery according to Comparative Example 2 was produced in the same manner as in Example 1 except that the positive electrode active material was 89.9 parts by mass and lithium carbonate was 0.1 parts by mass.

(比較例3)
正極活物質を87.0質量部とし、炭酸リチウムを3.0質量部としたこと以外は、上記実施例1と同様にして、比較例3にかかるリチウムイオン二次電池を作製した。
(Comparative Example 3)
A lithium ion secondary battery according to Comparative Example 3 was produced in the same manner as in Example 1 except that the positive electrode active material was changed to 87.0 parts by mass and lithium carbonate was changed to 3.0 parts by mass.

(比較例4)
正極活物質を89.9質量部とし、炭酸リチウムを0.1質量部としたこと以外は、上記実施例4と同様にして、比較例4にかかるリチウムイオン二次電池を作製した。
(Comparative Example 4)
A lithium ion secondary battery according to Comparative Example 4 was produced in the same manner as in Example 4 except that the positive electrode active material was 89.9 parts by mass and lithium carbonate was 0.1 parts by mass.

(比較例5)
正極活物質を87.0質量部とし、炭酸リチウムを3.0質量部としたこと以外は、上記実施例4と同様にして、比較例5にかかるリチウムイオン二次電池を作製した。
(Comparative Example 5)
A lithium ion secondary battery according to Comparative Example 5 was produced in the same manner as in Example 4 except that the positive electrode active material was changed to 87.0 parts by mass and lithium carbonate was changed to 3.0 parts by mass.

(比較例6)
正極活物質を89.9質量部とし、炭酸リチウムを0.1質量部としたこと以外は、上記実施例7と同様にして、比較例6にかかるリチウムイオン二次電池を作製した。
(Comparative Example 6)
A lithium ion secondary battery according to Comparative Example 6 was produced in the same manner as in Example 7 except that the positive electrode active material was 89.9 parts by mass and lithium carbonate was 0.1 parts by mass.

(比較例7)
正極活物質を87.0質量部とし、炭酸リチウムを3.0質量部としたこと以外は、上記実施例7と同様にして、比較例7にかかるリチウムイオン二次電池を作製した。
(Comparative Example 7)
A lithium ion secondary battery according to Comparative Example 7 was produced in the same manner as in Example 7 except that the positive electrode active material was changed to 87.0 parts by mass and lithium carbonate was changed to 3.0 parts by mass.

(比較例8)
正極活物質を、ニッケルコバルトマンガン酸リチウムとスピネル型マンガン酸リチウムを質量比4:6で混合した混合物としたこと以外は、上記実施例1と同様にして、比較例8にかかるリチウムイオン二次電池を作製した。
(Comparative Example 8)
The lithium ion secondary material according to Comparative Example 8 was the same as Example 1 except that the positive electrode active material was a mixture of nickel cobalt lithium manganate and spinel type lithium manganate mixed at a mass ratio of 4: 6. A battery was produced.

(比較例9)
正極活物質を89質量部とし、炭酸リチウムを1.0質量部としたこと以外は、上記比較例8と同様にして、比較例9にかかるリチウムイオン二次電池を作製した。
(Comparative Example 9)
A lithium ion secondary battery according to Comparative Example 9 was produced in the same manner as in Comparative Example 8 except that the positive electrode active material was 89 parts by mass and lithium carbonate was 1.0 part by mass.

(比較例10)
正極活物質を88質量部とし、炭酸リチウムを2.0質量部としたこと以外は、上記比較例8と同様にして、比較例10にかかるリチウムイオン二次電池を作製した。
(Comparative Example 10)
A lithium ion secondary battery according to Comparative Example 10 was produced in the same manner as Comparative Example 8 except that the positive electrode active material was 88 parts by mass and lithium carbonate was 2.0 parts by mass.

(比較例11)
炭酸リチウムの平均粒径を3μmとしたこと以外は、上記実施例1と同様にして、比較例11にかかるリチウムイオン二次電池を作製した。
(Comparative Example 11)
A lithium ion secondary battery according to Comparative Example 11 was produced in the same manner as in Example 1 except that the average particle size of lithium carbonate was 3 μm.

(比較例12)
炭酸リチウムの平均粒径を50μmとしたこと以外は、上記実施例1と同様にして、比較例12にかかるリチウムイオン二次電池を作製した。
(Comparative Example 12)
A lithium ion secondary battery according to Comparative Example 12 was produced in the same manner as in Example 1 except that the average particle size of lithium carbonate was 50 μm.

(比較例13)
正極活物質をコバルト酸リチウム(LiCoO)としたこと以外は、上記実施例1と同様にして、比較例13にかかるリチウムイオン二次電池を作製した。
(Comparative Example 13)
A lithium ion secondary battery according to Comparative Example 13 was produced in the same manner as in Example 1 except that the positive electrode active material was lithium cobalt oxide (LiCoO 2 ).

〔平均粒径の測定〕
上記ニッケルコバルトマンガン酸リチウム、スピネル型マンガン酸リチウム、炭酸リチウムの平均粒径を、レーザー回折式粒度分布測定装置(島津製作所製SALD-2000J)を用いて測定した。この測定結果の体積基準での積算粒子量が50%となる粒子径を、平均粒径とした。なお、この測定にあたり、ニッケルコバルトマンガン酸リチウム、スピネル型マンガン酸リチウムについては水を分散媒に用い、炭酸リチウムについてはエタノールを分散媒に用いた。
(Measurement of average particle size)
The average particle diameters of the nickel cobalt lithium manganate, spinel type lithium manganate, and lithium carbonate were measured using a laser diffraction particle size distribution analyzer (SALD-2000J manufactured by Shimadzu Corporation). The particle diameter at which the cumulative particle amount on the volume basis of this measurement result was 50% was taken as the average particle diameter. In this measurement, water was used as a dispersion medium for nickel cobalt lithium manganate and spinel type lithium manganate, and ethanol was used as a dispersion medium for lithium carbonate.

〔初期放電容量の測定〕
上記実施例1〜13、比較例1〜13にかかる電池を、25℃において定電流1800mAで電圧が4.2Vとなるまで充電し、その後定電圧4.2Vで電流が36mAとなるまで充電した。この後、定電流1800mAで電圧が2.75Vとなるまで放電し、その放電容量を測定した。この結果を下記表1に示す。
[Measurement of initial discharge capacity]
The batteries according to Examples 1 to 13 and Comparative Examples 1 to 13 were charged at a constant current of 1800 mA at 25 ° C. until the voltage reached 4.2 V, and then charged at a constant voltage of 4.2 V until the current reached 36 mA. . Thereafter, the battery was discharged at a constant current of 1800 mA until the voltage reached 2.75 V, and the discharge capacity was measured. The results are shown in Table 1 below.

〔内部短絡試験〕
上記実施例1〜13、比較例1〜7、比較例11〜13にかかる電池を各10個用意し、それぞれ25℃において定電流1800mAで電圧が4.4Vとなるまで充電し、その後定電圧4.4Vで電流が36mAとなるまで充電した。この充電状態の電池の中央付近に、直径3mmの鉄製の釘を100mm/秒で貫通させ、貫通させた。この試験において電池が燃焼したものをNG、燃焼しなかったものをOKと判定した。この結果を下記表1に示す。なお、4.4Vという充電電圧は、電池が過充電された状態であり(通常の電池の使用電圧は4.2V以下)、実際の商品として市場に流通する電池には保護回路等の安全機構が設けられているため、このような過充電状態となることはない。また、通常の電池の使用環境においては、釘刺しのような極度の内部短絡が生じることもない。
[Internal short circuit test]
Ten batteries according to Examples 1 to 13, Comparative Examples 1 to 7, and Comparative Examples 11 to 13 were prepared, and each battery was charged at a constant current of 1800 mA at 25 ° C. until the voltage became 4.4 V, and then the constant voltage. The battery was charged at 4.4 V until the current reached 36 mA. An iron nail having a diameter of 3 mm was penetrated at 100 mm / second in the vicinity of the center of the charged battery. In this test, the battery burned was determined as NG, and the battery not burned was determined as OK. The results are shown in Table 1 below. The charging voltage of 4.4 V is a state in which the battery is overcharged (a normal battery operating voltage is 4.2 V or less), and a battery such as a protection circuit is provided for a battery distributed as an actual product in the market. Therefore, such an overcharge state is not caused. Further, in an ordinary battery usage environment, an extreme internal short circuit such as nail penetration does not occur.

〔サイクル特性試験〕
上記実施例1〜13、比較例1〜7、比較例11〜13にかかる電池を、40℃において定電流1800mAで電圧が4.2Vとなるまで充電し、その後定電圧4.2Vで電流が36mAとなるまで充電した。この後、40℃において定電流1800mAで電圧が2.75Vとなるまで放電した。この充放電サイクルを300サイクル行い、下記の式によりサイクル特性を算出した。この結果を下記表1に示す。
サイクル特性(%)=300サイクル目放電容量÷1サイクル目放電容量×100
[Cycle characteristic test]
The batteries according to Examples 1 to 13, Comparative Examples 1 to 7, and Comparative Examples 11 to 13 were charged at 40 ° C. with a constant current of 1800 mA until the voltage became 4.2 V, and then the current was constant with a constant voltage of 4.2 V. The battery was charged until it reached 36 mA. Thereafter, the battery was discharged at a constant current of 1800 mA at 40 ° C. until the voltage reached 2.75V. This charge / discharge cycle was performed 300 times, and the cycle characteristics were calculated by the following formula. The results are shown in Table 1 below.
Cycle characteristics (%) = 300th cycle discharge capacity / first cycle discharge capacity × 100

〔DSC発熱開始温度の測定〕
上記実施例1〜13、比較例1〜7、比較例11〜13にかかる電池を、25℃において定電流1800mAで電圧が4.4Vとなるまで充電し、その後定電圧4.4Vで電流が36mAとなるまで充電した。この電池をドライボックス中で分解し、正極板を取り出し、正極板をジエチルカーボネートで洗浄した後、真空乾燥した。この正極板から正極材(正極集電体を除く正極の全構成要素を意味し、本実施例、比較例においては、正極活物質+炭酸リチウム+導電剤+結着剤の合計)を5mg採取した。これを、エチレンカーボネート2mgとともにアルゴン雰囲気下でステンレス製のセル中に封じ、示差走査熱量計(DSC)にて5℃/分で昇温し、自己発熱が開始する温度を測定した。なお、4.4Vという電圧は、電池が過充電された状態である。この結果を下記表1に示す。
[Measurement of DSC heat generation start temperature]
The batteries according to Examples 1 to 13, Comparative Examples 1 to 7, and Comparative Examples 11 to 13 were charged at 25 ° C. at a constant current of 1800 mA until the voltage became 4.4 V, and then the current was constant at 4.4 V. The battery was charged until it reached 36 mA. This battery was disassembled in a dry box, the positive electrode plate was taken out, the positive electrode plate was washed with diethyl carbonate, and then vacuum-dried. From this positive electrode plate, 5 mg of positive electrode material (meaning all components of the positive electrode excluding the positive electrode current collector, in this example and comparative example, total of positive electrode active material + lithium carbonate + conductive agent + binder) was sampled. did. This was sealed in a stainless steel cell together with 2 mg of ethylene carbonate in an argon atmosphere, heated at 5 ° C./min with a differential scanning calorimeter (DSC), and the temperature at which self-heating was started was measured. The voltage of 4.4V is a state where the battery is overcharged. The results are shown in Table 1 below.

Figure 2008181830
Figure 2008181830

なお、比較例8〜10にかかる電池について、内部短絡試験、サイクル特性試験、DSC発熱開始温度の測定を行っていないのは、上記表1に示すように、初期放電容量が1644〜1662mAhと、理論容量の1800mAhよりも大幅に低下しており、電池として不適であるためである。この初期放電容量の低下の理由は、スピネル型マンガン酸リチウム自体の放電容量がニッケルコバルトマンガン酸リチウムよりも低く、これを正極活物質中に60質量%と多量に含ませているためによると考えられる。スピネル型マンガン酸リチウムの含有量が正極活物質全体の50質量%以下である実施例1〜9では、初期放電容量の低下が見られないことから(表1参照)、スピネル型マンガン酸リチウムの含有量は、正極活物質全体の50質量%以下であることが好ましい。   As for the batteries according to Comparative Examples 8 to 10, the internal short circuit test, the cycle characteristic test, and the DSC heat generation start temperature were not measured, as shown in Table 1 above, the initial discharge capacity was 1644 to 1662 mAh, This is because it is significantly lower than the theoretical capacity of 1800 mAh and is not suitable as a battery. The reason for the decrease in the initial discharge capacity is considered to be that the discharge capacity of the spinel type lithium manganate itself is lower than that of nickel cobalt lithium manganate and is contained in a large amount of 60% by mass in the positive electrode active material. It is done. In Examples 1 to 9 in which the content of the spinel type lithium manganate is 50% by mass or less of the whole positive electrode active material, since the initial discharge capacity is not reduced (see Table 1), the spinel type lithium manganate The content is preferably 50% by mass or less of the whole positive electrode active material.

上記表1から、正極活物質として従来より用いられているコバルト酸リチウムを用いた比較例13は、内部短絡試験NG率が100%、DSC発熱開始温度が170℃と、正極活物質としてニッケルコバルトマンガン酸リチウムを用いた実施例1〜3、正極活物質としてニッケルコバルトマンガン酸リチウムとスピネル型マンガン酸リチウムとの混合物を用いた実施例4〜9の0%、204〜214℃よりも劣っていることがわかる。   From Table 1 above, Comparative Example 13 using lithium cobaltate conventionally used as the positive electrode active material has an internal short circuit test NG rate of 100%, a DSC heat generation start temperature of 170 ° C., and nickel cobalt as the positive electrode active material. Examples 1 to 3 using lithium manganate, 0% of Examples 4 to 9 using a mixture of nickel cobalt lithium manganate and spinel type lithium manganate as the positive electrode active material, inferior to 204 to 214 ° C I understand that.

このことは、コバルト酸リチウムは、化合物としての熱安定性や過充電時の安定性が、ニッケルコバルトマンガン酸リチウムやスピネル型マンガン酸リチウムよりも低いため、炭酸リチウムを含ませても過充電時安全性が向上しないことによると考えられる。   This is because lithium cobaltate has lower thermal stability as a compound and overcharge stability than nickel cobalt lithium manganate and spinel type lithium manganate. This is thought to be due to the fact that safety does not improve.

また、上記表1から、炭酸リチウムの添加量が0.1質量%以下である比較例1,比較例2,比較例4,比較例6は、内部短絡試験NG率が100%と、炭酸リチウムの添加量が0.5質量%以上である実施例1〜9、比較例3,比較例5,比較例7の内部短絡試験NG率の0%よりも顕著に劣っていることがわかる。   Further, from Table 1 above, Comparative Example 1, Comparative Example 2, Comparative Example 4, and Comparative Example 6 in which the amount of lithium carbonate added is 0.1% by mass or less have an internal short circuit test NG ratio of 100%, and lithium carbonate. It can be seen that the amount of added is significantly inferior to 0% of the internal short-circuit test NG ratio of Examples 1 to 9, Comparative Example 3, Comparative Example 5, and Comparative Example 7 in which the amount of addition is 0.5 mass% or more.

この理由は定かではないが、正極に含まれる炭酸リチウム自体が過充電時の電池の安全性を高めるように作用して、釘刺しのような極度の内部短絡を生じさせても、電池を燃焼に至らせない。このため、炭酸リチウムを0.5質量%以上含む実施例1〜9、比較例3,比較例5,比較例7では、内部短絡試験NG率が0%となる。他方、炭酸リチウムの添加量が0.5質量%未満であると、炭酸リチウムによる過充電時安全性向上効果が十分に得られないため、比較例1,比較例2,比較例4,比較例6は、内部短絡試験NG率が100%となる。よって、炭酸リチウムの添加量は、0.5質量%以上であることが好ましい。   The reason for this is not clear, but the lithium carbonate contained in the positive electrode itself works to enhance the safety of the battery when overcharged, causing the battery to burn even if it causes an extreme internal short circuit such as nail penetration. I will not lead to. For this reason, in Examples 1-9, Comparative Example 3, Comparative Example 5, and Comparative Example 7 containing 0.5 mass% or more of lithium carbonate, the internal short circuit test NG rate is 0%. On the other hand, if the amount of lithium carbonate added is less than 0.5% by mass, the effect of improving safety during overcharging with lithium carbonate cannot be sufficiently obtained, so Comparative Example 1, Comparative Example 2, Comparative Example 4, Comparative Example 6 has an internal short circuit test NG rate of 100%. Therefore, it is preferable that the addition amount of lithium carbonate is 0.5 mass% or more.

また、上記表1から、炭酸リチウムの添加量が3.0質量%である比較例3,比較例5,比較例7は、サイクル特性が59〜60%と、炭酸リチウムの添加量が0.5〜2.0質量%である実施例1〜9の71〜83%よりも大きく低下していることがわかる。   From Table 1 above, Comparative Example 3, Comparative Example 5, and Comparative Example 7 in which the amount of lithium carbonate added is 3.0% by mass has a cycle characteristic of 59 to 60% and the amount of lithium carbonate added is 0.00. It turns out that it has fallen largely from 71 to 83% of Examples 1-9 which are 5 to 2.0 mass%.

このことは、次のように考えられる。炭酸リチウムは充放電に寄与する物質ではなく、逆に充放電サイクルのスムースな進行を妨げるように作用する。よって、炭酸リチウムが3.0質量%以上含まれると、サイクル特性が大きく低下する。よって、正極中の炭酸リチウムの含有量は、2.0質量%以下であることが好ましい。   This is considered as follows. Lithium carbonate is not a substance that contributes to charge / discharge, but conversely acts to prevent the smooth progress of the charge / discharge cycle. Therefore, when lithium carbonate is contained in an amount of 3.0% by mass or more, the cycle characteristics are greatly degraded. Therefore, the lithium carbonate content in the positive electrode is preferably 2.0% by mass or less.

また、上記表1から、炭酸リチウムの平均粒径が3μmである比較例11では、内部短絡試験NG率が20%、サイクル特性が65%と、炭酸リチウムの平均粒径が5〜30μmである実施例2、実施例10、実施例11の0%、77〜83%よりも劣っていることがわかる。また、上記表1から、炭酸リチウムの平均粒径が50μmである比較例12では、内部短絡試験NG率が50%、サイクル特性が66%と、炭酸リチウムの平均粒径が5〜30μmである実施例2、実施例10、実施例11の0%、77〜83%よりも劣っていることがわかる。   Moreover, from the said Table 1, in the comparative example 11 whose average particle diameter of lithium carbonate is 3 micrometers, internal short circuit test NG rate is 20%, cycling characteristics are 65%, and the average particle diameter of lithium carbonate is 5-30 micrometers. It turns out that it is inferior to 0% of Example 2, Example 10, and Example 11, 77 to 83%. Moreover, from the said Table 1, in the comparative example 12 whose average particle diameter of lithium carbonate is 50 micrometers, internal short circuit test NG rate is 50%, cycling characteristics are 66%, and the average particle diameter of lithium carbonate is 5-30 micrometers. It turns out that it is inferior to 0% of Example 2, Example 10, and Example 11, 77 to 83%.

このことは、次のように考えられる。炭酸リチウムの平均粒径が5μm未満であると、炭酸リチウム粒子同士が凝集してしまい、炭酸リチウムと正極活物質とが均一に混合されなくなるので、炭酸リチウムによる過充電時安全性向上効果が十分に得られなくなるとともに、凝集した炭酸リチウムが充放電サイクルのスムースな進行を阻害して、サイクル特性が低下する。他方、30μmより大きい場合にも、炭酸リチウムと正極活物質とが均一に混合されなくなるので、炭酸リチウムによる過充電時安全性向上効果が十分に得られなくなるとともに、正極中に不均一に分散した炭酸リチウムが、充放電サイクルのスムースな進行を阻害して、サイクル特性が低下する。よって、炭酸リチウムの平均粒径は5〜30μmであることが好ましい。   This is considered as follows. If the average particle size of the lithium carbonate is less than 5 μm, the lithium carbonate particles aggregate together, and the lithium carbonate and the positive electrode active material are not mixed uniformly. In addition, the agglomerated lithium carbonate inhibits the smooth progress of the charge / discharge cycle, and the cycle characteristics deteriorate. On the other hand, even when the thickness is larger than 30 μm, the lithium carbonate and the positive electrode active material are not uniformly mixed, so that the lithium carbonate cannot sufficiently obtain the effect of improving the safety during overcharge and is unevenly dispersed in the positive electrode. Lithium carbonate inhibits the smooth progress of the charge / discharge cycle, and the cycle characteristics deteriorate. Therefore, the average particle size of lithium carbonate is preferably 5 to 30 μm.

また、上記表1から、ニッケルコバルトマンガン酸リチウムの平均粒径が、5〜20μmである実施例2、実施例12、実施例13では、電池性能や内部短絡試験NG率に大きな差がないことがわかる。   Also, from Table 1 above, in Example 2, Example 12, and Example 13 in which the average particle size of nickel cobalt lithium manganate is 5 to 20 μm, there is no significant difference in battery performance and internal short circuit test NG rate. I understand.

(追加事項)
負極活物質としては、上記実施例で用いたもの以外に、炭素質物、リチウム合金、金属リチウム、リチウムを吸蔵・脱離できる金属酸化物等を単独で、あるいは複数種混合して用いることができる。
(extra content)
As the negative electrode active material, carbonaceous materials, lithium alloys, metal lithium, metal oxides capable of inserting and extracting lithium, etc. can be used alone or in combination of a plurality of types in addition to those used in the above examples. .

また、非水溶媒としては、上記実施例で用いたもの以外に、ブチレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン、ジエチルカーボネート、スルホラン、酢酸エチル、テトラヒドロフラン、1,2−ジメトキシエタン、1,3−ジオキソラン、2−メトキシテトラヒドロフラン、ジエチルエーテル等を単独で、あるいは複数種混合して用いることができる。   In addition to those used in the above examples, non-aqueous solvents include butylene carbonate, γ-butyrolactone, γ-valerolactone, diethyl carbonate, sulfolane, ethyl acetate, tetrahydrofuran, 1,2-dimethoxyethane, 1,3. -Dioxolane, 2-methoxytetrahydrofuran, diethyl ether and the like can be used alone or in combination.

また、電解質塩としては、上記LiPF以外に、LiN(CSO、LiN(CFSO、LiClO、LiBFを単独で、あるいは複数種混合して用いることができる。 In addition to LiPF 6 described above, LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiClO 4 , LiBF 4 may be used alone or in combination as an electrolyte salt. Can do.

以上説明したように、本発明によると、過充電時安全性に優れた非水電解質二次電池を実現できるので、産業上の意義は大きい。   As described above, according to the present invention, a nonaqueous electrolyte secondary battery excellent in safety at the time of overcharge can be realized.

Claims (2)

正極活物質を有する正極と、負極活物質を有する負極と、非水電解質と、を備えた非水電解質二次電池において、
前記正極活物質としてニッケルコバルトマンガン酸リチウム(LiNiCoMn、0<a≦1.1、0.1≦x≦0.5、0<y、0.1≦z≦0.5、x+y+z=1)のみからなり、
平均粒径5〜30μmの炭酸リチウムが、前記正極に対して0.5〜2.0質量%添加され、
前記正極活物質と前記炭酸リチウムとが均一に混合されている、
ことを特徴とする非水電解質二次電池。
In a non-aqueous electrolyte secondary battery comprising a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte,
As the positive electrode active material, lithium nickel cobalt manganate (Li a Ni x Co y Mn z O 2 , 0 <a ≦ 1.1, 0.1 ≦ x ≦ 0.5, 0 <y, 0.1 ≦ z ≦ 0.5, x + y + z = 1) only,
Lithium carbonate having an average particle size of 5 to 30 μm is added in an amount of 0.5 to 2.0 mass% with respect to the positive electrode.
The positive electrode active material and the lithium carbonate are uniformly mixed,
A non-aqueous electrolyte secondary battery.
正極活物質を有する正極と、負極活物質を有する負極と、非水電解質と、を備えた非水電解質二次電池において、
前記正極活物質としてニッケルコバルトマンガン酸リチウム(LiNiCoMn、0<a≦1.1、0.1≦x≦0.5、0<y、0.1≦z≦0.5、x+y+z=1)と、スピネル型マンガン酸リチウム(LiMn、0<a≦1.1)と、からなり、
前記正極活物質に占める前記スピネル型マンガン酸リチウムの質量割合が、50質量%以下であり、
平均粒径5〜30μmの炭酸リチウムが、前記正極に対して0.5〜2.0質量%添加され、
前記正極活物質と前記炭酸リチウムとが均一に混合されている、
ことを特徴とする非水電解質二次電池。
In a non-aqueous electrolyte secondary battery comprising a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte,
As the positive electrode active material, lithium nickel cobalt manganate (Li a Ni x Co y Mn z O 2 , 0 <a ≦ 1.1, 0.1 ≦ x ≦ 0.5, 0 <y, 0.1 ≦ z ≦ 0.5, x + y + z = 1) and spinel type lithium manganate (Li a Mn 2 O 4 , 0 <a ≦ 1.1),
The mass proportion of the spinel-type lithium manganate in the positive electrode active material is 50% by mass or less,
Lithium carbonate having an average particle size of 5 to 30 μm is added in an amount of 0.5 to 2.0 mass% with respect to the positive electrode.
The positive electrode active material and the lithium carbonate are uniformly mixed,
A non-aqueous electrolyte secondary battery.
JP2007015877A 2007-01-26 2007-01-26 Nonaqueous electrolyte secondary battery Active JP5230108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007015877A JP5230108B2 (en) 2007-01-26 2007-01-26 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007015877A JP5230108B2 (en) 2007-01-26 2007-01-26 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2008181830A true JP2008181830A (en) 2008-08-07
JP5230108B2 JP5230108B2 (en) 2013-07-10

Family

ID=39725551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007015877A Active JP5230108B2 (en) 2007-01-26 2007-01-26 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5230108B2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102449818A (en) * 2010-03-31 2012-05-09 松下电器产业株式会社 Positive electrode for lithium ion battery, method for producing same, and lithium ion battery using the positive electrode
JP2013501316A (en) * 2009-12-27 2013-01-10 シェンヅェン ヅェンファ ニュー マテリアル カンパニー リミテッド High manganese polycrystalline cathode material, method for producing the same, and power lithium ion battery
WO2013069670A1 (en) * 2011-11-09 2013-05-16 新神戸電機株式会社 Nonaqueous electrolyte secondary battery
WO2013128676A1 (en) * 2012-02-29 2013-09-06 新神戸電機株式会社 Lithium-ion battery
WO2013128678A1 (en) * 2012-02-29 2013-09-06 新神戸電機株式会社 Lithium-ion battery
WO2013128677A1 (en) * 2012-02-29 2013-09-06 新神戸電機株式会社 Lithium-ion battery
KR20140090216A (en) * 2011-11-10 2014-07-16 닛산 지도우샤 가부시키가이샤 Secondary battery control device and soc detection method
KR20160065106A (en) 2013-09-30 2016-06-08 도판 인사츠 가부시키가이샤 Electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP6070824B2 (en) * 2013-03-15 2017-02-01 日産自動車株式会社 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same
US9716266B2 (en) 2013-03-15 2017-07-25 Nissan Motor Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
WO2017126687A1 (en) * 2016-01-22 2017-07-27 旭化成株式会社 Positive electrode precursor
WO2017126698A1 (en) * 2016-01-22 2017-07-27 旭化成株式会社 Nonaqueous lithium power storage element
WO2017126693A1 (en) * 2016-01-22 2017-07-27 旭化成株式会社 Nonaqueous lithium storage element
JP6261807B2 (en) * 2016-01-22 2018-01-17 旭化成株式会社 Non-aqueous lithium storage element
JP2018026393A (en) * 2016-08-08 2018-02-15 旭化成株式会社 Nonaqueous lithium type power storage element
JP2018056412A (en) * 2016-09-30 2018-04-05 旭化成株式会社 Wound type nonaqueous lithium power storage element
JP2018056426A (en) * 2016-09-30 2018-04-05 旭化成株式会社 Nonaqueous lithium type power storage element
JP2018056438A (en) * 2016-09-30 2018-04-05 旭化成株式会社 Wound type nonaqueous lithium power storage element
JP2018056414A (en) * 2016-09-30 2018-04-05 旭化成株式会社 Nonaqueous lithium power storage element
JP2018056405A (en) * 2016-09-30 2018-04-05 旭化成株式会社 Nonaqueous lithium type power storage element
JP2018056439A (en) * 2016-09-30 2018-04-05 旭化成株式会社 Nonaqueous lithium power storage element
JP2018056400A (en) * 2016-09-30 2018-04-05 旭化成株式会社 Nonaqueous lithium power storage element
JP2018074081A (en) * 2016-11-02 2018-05-10 旭化成株式会社 Negative electrode for lithium ion capacitor
CN108475588A (en) * 2016-01-22 2018-08-31 旭化成株式会社 Nonaqueous lithium charge storage element
CN108604504A (en) * 2016-01-22 2018-09-28 旭化成株式会社 Nonaqueous lithium-type storage element
WO2018230058A1 (en) * 2017-06-13 2018-12-20 日立オートモティブシステムズ株式会社 Secondary battery
US20190013508A1 (en) * 2017-07-05 2019-01-10 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
WO2019022422A1 (en) * 2017-07-28 2019-01-31 주식회사 엘지화학 Secondary battery cathode and lithium secondary battery comprising same
US10340526B2 (en) 2016-01-22 2019-07-02 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium-type power storage element
US10636582B2 (en) 2016-01-22 2020-04-28 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium-type power storage element
CN114709397A (en) * 2022-04-15 2022-07-05 珠海鹏辉能源有限公司 Manganese-based lithium ion soft-package laminated battery and preparation method thereof
WO2022202291A1 (en) * 2021-03-23 2022-09-29 三洋電機株式会社 Non-aqueous electrolyte secondary battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328278A (en) * 1991-04-26 1992-11-17 Sony Corp Nonaqueous electrolyte secondary battery
JPH10134817A (en) * 1996-10-28 1998-05-22 Shin Kobe Electric Mach Co Ltd Organic electrolyte secondary battery
JPH10188953A (en) * 1996-12-27 1998-07-21 Sony Corp Non-aqueous electrolyte secondary battery
JP2001297764A (en) * 2000-04-04 2001-10-26 Sony Corp Positive electrode activator and nonaqueous electrolyte secondary cell
JP2004095188A (en) * 2002-08-29 2004-03-25 Yuasa Corp Manufacturing method of lithium secondary battery electrode and lithium secondary battery, and lithium secondary battery electrode and lithium secondary battery using the same
JP2006120612A (en) * 2004-09-24 2006-05-11 Sanyo Electric Co Ltd Lithium secondary battery
JP2006196435A (en) * 2004-12-17 2006-07-27 Sanyo Electric Co Ltd Lithium secondary battery
JP2006278322A (en) * 2005-03-02 2006-10-12 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2006313739A (en) * 2005-04-04 2006-11-16 Matsushita Electric Ind Co Ltd Cylindrical lithium secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328278A (en) * 1991-04-26 1992-11-17 Sony Corp Nonaqueous electrolyte secondary battery
JPH10134817A (en) * 1996-10-28 1998-05-22 Shin Kobe Electric Mach Co Ltd Organic electrolyte secondary battery
JPH10188953A (en) * 1996-12-27 1998-07-21 Sony Corp Non-aqueous electrolyte secondary battery
JP2001297764A (en) * 2000-04-04 2001-10-26 Sony Corp Positive electrode activator and nonaqueous electrolyte secondary cell
JP2004095188A (en) * 2002-08-29 2004-03-25 Yuasa Corp Manufacturing method of lithium secondary battery electrode and lithium secondary battery, and lithium secondary battery electrode and lithium secondary battery using the same
JP2006120612A (en) * 2004-09-24 2006-05-11 Sanyo Electric Co Ltd Lithium secondary battery
JP2006196435A (en) * 2004-12-17 2006-07-27 Sanyo Electric Co Ltd Lithium secondary battery
JP2006278322A (en) * 2005-03-02 2006-10-12 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2006313739A (en) * 2005-04-04 2006-11-16 Matsushita Electric Ind Co Ltd Cylindrical lithium secondary battery

Cited By (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013501316A (en) * 2009-12-27 2013-01-10 シェンヅェン ヅェンファ ニュー マテリアル カンパニー リミテッド High manganese polycrystalline cathode material, method for producing the same, and power lithium ion battery
US8658312B2 (en) 2010-03-31 2014-02-25 Panasonic Corporation Positive electrode for lithium ion battery, fabrication method thereof, and lithium ion battery using the same
CN102449818A (en) * 2010-03-31 2012-05-09 松下电器产业株式会社 Positive electrode for lithium ion battery, method for producing same, and lithium ion battery using the positive electrode
CN102449818B (en) * 2010-03-31 2014-06-04 松下电器产业株式会社 Positive electrode for lithium ion battery, method for producing same, and lithium ion battery using the positive electrode
WO2013069670A1 (en) * 2011-11-09 2013-05-16 新神戸電機株式会社 Nonaqueous electrolyte secondary battery
EP2779302A4 (en) * 2011-11-10 2015-05-06 Nissan Motor Secondary battery control device and soc detection method
US9755280B2 (en) 2011-11-10 2017-09-05 Nissan Motor Co., Ltd. Secondary battery control device and SOC detection method
KR101951067B1 (en) * 2011-11-10 2019-02-21 닛산 지도우샤 가부시키가이샤 Secondary battery control device and soc detection method
KR20140090216A (en) * 2011-11-10 2014-07-16 닛산 지도우샤 가부시키가이샤 Secondary battery control device and soc detection method
JPWO2013128678A1 (en) * 2012-02-29 2015-07-30 新神戸電機株式会社 Lithium ion battery
JP5621933B2 (en) * 2012-02-29 2014-11-12 新神戸電機株式会社 Lithium ion battery
JP5637316B2 (en) * 2012-02-29 2014-12-10 新神戸電機株式会社 Lithium ion battery
JP5620005B2 (en) * 2012-02-29 2014-11-05 新神戸電機株式会社 Lithium ion battery
JPWO2013128676A1 (en) * 2012-02-29 2015-07-30 新神戸電機株式会社 Lithium ion battery
WO2013128677A1 (en) * 2012-02-29 2013-09-06 新神戸電機株式会社 Lithium-ion battery
JPWO2013128677A1 (en) * 2012-02-29 2015-07-30 新神戸電機株式会社 Lithium ion battery
WO2013128678A1 (en) * 2012-02-29 2013-09-06 新神戸電機株式会社 Lithium-ion battery
US9406929B2 (en) 2012-02-29 2016-08-02 Hitachi Chemical Company, Ltd. Lithium ion battery
WO2013128676A1 (en) * 2012-02-29 2013-09-06 新神戸電機株式会社 Lithium-ion battery
JPWO2014142283A1 (en) * 2013-03-15 2017-02-16 日産自動車株式会社 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same
US9608261B2 (en) 2013-03-15 2017-03-28 Nissan Motor Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
US9716266B2 (en) 2013-03-15 2017-07-25 Nissan Motor Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP6070824B2 (en) * 2013-03-15 2017-02-01 日産自動車株式会社 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same
KR20160065106A (en) 2013-09-30 2016-06-08 도판 인사츠 가부시키가이샤 Electrode for lithium ion secondary batteries, and lithium ion secondary battery
CN108475587B (en) * 2016-01-22 2019-07-09 旭化成株式会社 Nonaqueous lithium-type storage element
CN108475585B (en) * 2016-01-22 2020-04-14 旭化成株式会社 Nonaqueous lithium storage element
JP6227837B1 (en) * 2016-01-22 2017-11-08 旭化成株式会社 Non-aqueous lithium storage element
JP6227840B1 (en) * 2016-01-22 2017-11-08 旭化成株式会社 Positive electrode precursor
JP6262402B2 (en) * 2016-01-22 2018-01-17 旭化成株式会社 Non-aqueous lithium storage element
JP6261807B2 (en) * 2016-01-22 2018-01-17 旭化成株式会社 Non-aqueous lithium storage element
JPWO2017126693A1 (en) * 2016-01-22 2018-01-25 旭化成株式会社 Non-aqueous lithium storage element
JPWO2017126686A1 (en) * 2016-01-22 2018-02-01 旭化成株式会社 Non-aqueous lithium storage element
US11387052B2 (en) 2016-01-22 2022-07-12 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium-type power storage element
CN111415821B (en) * 2016-01-22 2022-06-07 旭化成株式会社 Method for manufacturing nonaqueous lithium storage device
US11107639B2 (en) 2016-01-22 2021-08-31 Asahi Kasei Kabushiki Kaisha Positive electrode precursor
EP3770933A1 (en) * 2016-01-22 2021-01-27 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium storage element
US10886533B2 (en) 2016-01-22 2021-01-05 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium power storage element
US10825616B2 (en) 2016-01-22 2020-11-03 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium storage element
US10748716B2 (en) 2016-01-22 2020-08-18 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium-type power storage element
CN111415821A (en) * 2016-01-22 2020-07-14 旭化成株式会社 Method for manufacturing nonaqueous lithium storage element
CN108475588B (en) * 2016-01-22 2020-06-12 旭化成株式会社 Nonaqueous lithium storage element
CN108028138A (en) * 2016-01-22 2018-05-11 旭化成株式会社 Cathode precursor
CN108475586A (en) * 2016-01-22 2018-08-31 旭化成株式会社 Nonaqueous lithium charge storage element
CN108475585A (en) * 2016-01-22 2018-08-31 旭化成株式会社 Nonaqueous lithium charge storage element
CN108475587A (en) * 2016-01-22 2018-08-31 旭化成株式会社 Nonaqueous lithium-type storage element
CN108475588A (en) * 2016-01-22 2018-08-31 旭化成株式会社 Nonaqueous lithium charge storage element
CN108604504A (en) * 2016-01-22 2018-09-28 旭化成株式会社 Nonaqueous lithium-type storage element
KR101903939B1 (en) 2016-01-22 2018-10-02 아사히 가세이 가부시키가이샤 Positive electrode precursor
TWI641008B (en) * 2016-01-22 2018-11-11 旭化成股份有限公司 Non-aqueous lithium storage element
US10636582B2 (en) 2016-01-22 2020-04-28 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium-type power storage element
WO2017126693A1 (en) * 2016-01-22 2017-07-27 旭化成株式会社 Nonaqueous lithium storage element
US10468199B2 (en) 2016-01-22 2019-11-05 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium power storage element
EP3392897A4 (en) * 2016-01-22 2019-01-23 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium-type power storage element
US20190027319A1 (en) * 2016-01-22 2019-01-24 Asahi Kasei Kabushiki Kaisha Nonaqueous Lithium Storage Element
CN108604504B (en) * 2016-01-22 2019-09-10 旭化成株式会社 Nonaqueous lithium-type storage element
US10403447B2 (en) 2016-01-22 2019-09-03 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium storage element
WO2017126698A1 (en) * 2016-01-22 2017-07-27 旭化成株式会社 Nonaqueous lithium power storage element
CN108028138B (en) * 2016-01-22 2019-05-03 旭化成株式会社 Cathode precursor
EP3392893A4 (en) * 2016-01-22 2019-05-15 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium storage element
US10340526B2 (en) 2016-01-22 2019-07-02 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium-type power storage element
WO2017126687A1 (en) * 2016-01-22 2017-07-27 旭化成株式会社 Positive electrode precursor
CN108475586B (en) * 2016-01-22 2019-08-02 旭化成株式会社 Nonaqueous lithium charge storage element
US10395848B2 (en) 2016-01-22 2019-08-27 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium storage element
US10396361B2 (en) 2016-01-22 2019-08-27 Asahi Kasei Kabushiki Kaisha Nonaqueous lithium-type power storage element
JP2018026393A (en) * 2016-08-08 2018-02-15 旭化成株式会社 Nonaqueous lithium type power storage element
JP2018056426A (en) * 2016-09-30 2018-04-05 旭化成株式会社 Nonaqueous lithium type power storage element
JP2018056412A (en) * 2016-09-30 2018-04-05 旭化成株式会社 Wound type nonaqueous lithium power storage element
JP2018056414A (en) * 2016-09-30 2018-04-05 旭化成株式会社 Nonaqueous lithium power storage element
JP2018056438A (en) * 2016-09-30 2018-04-05 旭化成株式会社 Wound type nonaqueous lithium power storage element
JP2018056405A (en) * 2016-09-30 2018-04-05 旭化成株式会社 Nonaqueous lithium type power storage element
JP2018056400A (en) * 2016-09-30 2018-04-05 旭化成株式会社 Nonaqueous lithium power storage element
JP2018056439A (en) * 2016-09-30 2018-04-05 旭化成株式会社 Nonaqueous lithium power storage element
JP2018074081A (en) * 2016-11-02 2018-05-10 旭化成株式会社 Negative electrode for lithium ion capacitor
WO2018230058A1 (en) * 2017-06-13 2018-12-20 日立オートモティブシステムズ株式会社 Secondary battery
CN109216756B (en) * 2017-07-05 2023-05-09 三洋电机株式会社 Nonaqueous electrolyte secondary battery
US20190013508A1 (en) * 2017-07-05 2019-01-10 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JP2019016482A (en) * 2017-07-05 2019-01-31 三洋電機株式会社 Nonaqueous electrolyte secondary battery
CN109216756A (en) * 2017-07-05 2019-01-15 三洋电机株式会社 Non-aqueous electrolyte secondary battery
US10892467B2 (en) * 2017-07-05 2021-01-12 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
US11145860B2 (en) 2017-07-28 2021-10-12 Lg Chem, Ltd. Positive electrode for secondary battery and lithium secondary battery including the same
WO2019022422A1 (en) * 2017-07-28 2019-01-31 주식회사 엘지화학 Secondary battery cathode and lithium secondary battery comprising same
WO2022202291A1 (en) * 2021-03-23 2022-09-29 三洋電機株式会社 Non-aqueous electrolyte secondary battery
CN114709397A (en) * 2022-04-15 2022-07-05 珠海鹏辉能源有限公司 Manganese-based lithium ion soft-package laminated battery and preparation method thereof

Also Published As

Publication number Publication date
JP5230108B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5230108B2 (en) Nonaqueous electrolyte secondary battery
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
CN103620836B (en) Rechargeable nonaqueous electrolytic battery and manufacture method thereof
JP3669064B2 (en) Nonaqueous electrolyte secondary battery
JP5247196B2 (en) Nonaqueous electrolyte secondary battery
WO2007139130A1 (en) High-voltage charge type nonaqueous electrolyte secondary battery
JP2009140919A (en) Nonaqueous secondary battery
JP2008210573A (en) Nonaqueous electrolyte secondary battery
KR102220490B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP5052161B2 (en) Nonaqueous electrolyte secondary battery
JP2011054462A (en) Negative electrode for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery
JP2010231958A (en) Nonaqueous electrolyte secondary battery
JP2010176996A (en) Nonaqueous electrolyte secondary battery
JPWO2014068904A1 (en) Electrode plate for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JP2009129721A (en) Non-aqueous secondary battery
JP4929701B2 (en) Non-aqueous electrolyte secondary battery
JP2012146590A (en) Positive electrode for nonaqueous electrolyte secondary battery, method for producing positive electrode, and nonaqueous electrolyte secondary battery
JP6011785B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP5030559B2 (en) Nonaqueous electrolyte secondary battery
WO2012081518A2 (en) Nonaqueous electrolyte secondary battery
JP2014067629A (en) Nonaqueous electrolyte secondary battery
JP2008251212A (en) Non-aqueous electrolyte secondary battery
WO2014068903A1 (en) Non-aqueous electrolyte secondary cell
JP2012079470A (en) Nonaqueous electrolyte secondary battery
WO2024027551A1 (en) Electrochemical apparatus and electronic apparatus including same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5230108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350