JP2008169445A - Copper alloy material provided with plating film for fuse, and manufacturing method therefor - Google Patents

Copper alloy material provided with plating film for fuse, and manufacturing method therefor Download PDF

Info

Publication number
JP2008169445A
JP2008169445A JP2007004619A JP2007004619A JP2008169445A JP 2008169445 A JP2008169445 A JP 2008169445A JP 2007004619 A JP2007004619 A JP 2007004619A JP 2007004619 A JP2007004619 A JP 2007004619A JP 2008169445 A JP2008169445 A JP 2008169445A
Authority
JP
Japan
Prior art keywords
layer
copper alloy
plating
thickness
fuse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007004619A
Other languages
Japanese (ja)
Other versions
JP4845747B2 (en
Inventor
Masayasu Nishimura
昌康 西村
Yukiya Nomura
幸矢 野村
Yukio Sugishita
幸男 杉下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007004619A priority Critical patent/JP4845747B2/en
Publication of JP2008169445A publication Critical patent/JP2008169445A/en
Application granted granted Critical
Publication of JP4845747B2 publication Critical patent/JP4845747B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper alloy material for a fuse, which has improved pre-arcing time-current characteristics. <P>SOLUTION: The copper alloy material provided with a plating film comprises: a copper alloy substrate 1; an Ni layer 2 formed on the surface thereof; an alloy layer 3 containing Ni and Sn formed thereon, which is formed from an Ni-Sn alloy, an Ni-Cu-Sn alloy or both of them; and a pure Sn layer 4 formed thereon as the outermost surface layer. The copper alloy substrate 1 comprises, 0.1 to 1 mass% Ni, 0.1 to 1 mass% Sn, 0.01 to 0.2 mass% P, and the balance Cu with unavoidable impurities. The Ni layer 2 has a thickness of 0 to 10 μm, the alloy layer 3 containing Ni and Sn has a thickness of 0.01 to 50 μm, and the pure Sn layer 4 has a thickness of 0.1 μm or more. The manufacturing method comprises the steps of plating the surface of the copper alloy substrate with Ni and subsequently with Sn, and then subjecting the resultant substrate to reflow treatment or heat treatment; or the steps of plating the surface of the copper alloy substrate with Ni, and then hot-dip-plating the Ni-plated surface with Sn. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車や家電製品の電子部品に使用され、過電流に対する溶断特性に優れ、装置や部品の焼損を防止するように機能するヒューズ用銅合金材料に関するものである。   The present invention relates to a copper alloy material for fuses that is used in electronic parts of automobiles and home appliances, has excellent fusing characteristics against overcurrent, and functions to prevent burnout of devices and parts.

自動車、家電製品及び電子機器等に搭載される電気・電子部品の小型化は急速に進行している。これら電子機器において、過電流が流れた時に、回路を保護し、装置や部品が焼損することを避けるため、瞬時に断線するよう機能する過電流溶断型ヒューズが使用されている。ヒューズエレメントに電流が流れると、そのエレメントが持っている固有の抵抗によって発熱エネルギーは、ほぼジュールの法則に従い、発熱と同時に周囲の部品や外気へと伝播し放熱していくが、短時間で溶断するようなインラッシュ電流の領域では、発熱するジュール熱に比べて熱放散が少ないので、発熱する熱は殆どヒューズエレメントの温度上昇に費やされる。
これらのヒューズ材の固有抵抗が大きければ、過電流時に発生するジュール熱が大きく、このジュール熱でヒューズ材が溶断し、電気回路が保護される。このヒューズの溶断にかかる時間や溶断温度は、使用する材料によって異なる。
Miniaturization of electrical and electronic components mounted on automobiles, home appliances, electronic devices, and the like is progressing rapidly. In these electronic devices, when an overcurrent flows, an overcurrent blown fuse that functions to instantaneously disconnect is used in order to protect the circuit and avoid burning out devices and components. When a current flows through a fuse element, the heat generated by the inherent resistance of the element almost follows Joule's law and propagates to the surrounding components and the outside air as heat is generated. In such an inrush current region, heat dissipation is less than that of Joule heat that generates heat, so that most of the heat that is generated is expended in increasing the temperature of the fuse element.
If the specific resistance of these fuse materials is large, the Joule heat generated at the time of overcurrent is large, and the fuse material is melted by this Joule heat, and the electric circuit is protected. The time required to blow the fuse and the fusing temperature vary depending on the material used.

ヒューズは通常状態で溶断することが無く、かつ異常が発生したなら確実に溶断する必要がある。そのため、使用される材料としてはSn、Pb、Zn、Al、Cu、Ag、W等の単体や合金が使用されていた。ヒューズ用Cu合金に関する特許文献としては、例えば下記特許文献1〜5がある。   The fuse does not blow out in a normal state, and it is necessary to blow out surely if an abnormality occurs. Therefore, simple substances and alloys such as Sn, Pb, Zn, Al, Cu, Ag, and W have been used as materials to be used. Patent documents relating to the Cu alloy for fuses include, for example, the following patent documents 1 to 5.

特開平3−253527号公報JP-A-3-253527 特開平5−86428号公報Japanese Patent Laid-Open No. 5-86428 特開平5−198247号公報JP-A-5-198247 特開昭61−41737号公報JP 61-41737 A 特開昭63−230837号公報JP 63-230837 A 特開平1−315924号公報JP-A-1-315924

ヒューズは、大きく分けて、端子部とヒューズ部とが別材料からなるタイプと、端子部とヒューズ部とが同一材料からなるタイプがある。前者は、端子部とヒューズ部との接合が必要となり、コスト高となるため、後者が一般的に使用されることが多い。従って、端子部とヒューズ部とが同一材料から構成される一体型のヒューズ(ヒューズ端子といわれる)の場合、その材料には、ヒューズ部に要求される溶断特性の他に、端子部に要求される機械的特性、特に強度特性や導電率が必要となる。
しかし、適度な強度及び導電率を有する銅合金において、これまで十分な溶断特性が得られていない。そこで、溶融温度を低下させ、かつ溶断にかかる時間を短くするために、ヒューズ用銅合金材料の表面に溶融Snめっきを施したり、ヒューズ部にSnチップをかしめることがなされている(特許文献6参照)。
The fuse is roughly classified into a type in which the terminal portion and the fuse portion are made of different materials and a type in which the terminal portion and the fuse portion are made of the same material. The former requires joining of the terminal portion and the fuse portion, which increases the cost, and the latter is often used in general. Therefore, in the case of an integrated fuse (called a fuse terminal) in which the terminal portion and the fuse portion are made of the same material, the material is required for the terminal portion in addition to the fusing characteristics required for the fuse portion. Mechanical properties, particularly strength properties and electrical conductivity are required.
However, sufficient fusing characteristics have not been obtained so far in copper alloys having moderate strength and electrical conductivity. Therefore, in order to lower the melting temperature and shorten the time required for fusing, the surface of the copper alloy material for fuse is subjected to molten Sn plating, or the Sn chip is caulked on the fuse portion (Patent Document). 6).

本発明は、このような従来技術の問題点に鑑みてなされたもので、ヒューズ用銅合金材料の溶断特性を改善することを目的とする。なお、本発明においてヒューズ用というとき前記ヒューズ端子用を含む。   The present invention has been made in view of such problems of the prior art, and an object thereof is to improve the fusing characteristics of a copper alloy material for fuses. In the present invention, the term “for a fuse” includes the term “for a fuse terminal”.

本発明に係るヒューズ用めっき付き銅合金材料は、Ni:0.1〜1質量%、Sn:0.1〜1質量%、P:0.01〜0.2質量%を含み、残部がCu及び不可避不純物からなり、導電率45%IACS以上とした銅合金素材の表面に、Ni−Sn合金、Ni−Cu−Sn合金、又はその両者からなるNi,Sn含有合金層が形成され、その上に最表層として純Sn層が形成され、前記Ni,Sn含有合金層は厚さが50μm以下、前記純Sn層は厚さが0.1μm以上であることを特徴とする。さらに、前記銅合金基材とNi,Sn含有合金層の間に厚さ10μm以下のNi層が形成されたものも、本発明に係るヒューズ用めっき付き銅合金材料に含まれる。ヒューズ端子用であれば、引張強度が400N/mm以上であることが望ましい。前記銅合金基材の形態は、主として板又は条(コイル状にした板)である。
上記めっき付き銅合金材料をヒューズとして利用するに際し、上記めっき付き銅合金材料のヒューズ部の表面にさらにSnめっきをしてSn層全体の厚さを増すか、ヒューズ部にSnチップをかしめて、ヒューズ溶断温度を低下させ、かつ溶断にかかる時間を短縮することができる。
The copper alloy material with plating for fuse according to the present invention contains Ni: 0.1 to 1% by mass, Sn: 0.1 to 1% by mass, P: 0.01 to 0.2% by mass, with the balance being Cu. And a Ni, Sn-containing alloy layer made of Ni—Sn alloy, Ni—Cu—Sn alloy, or both is formed on the surface of the copper alloy material made of unavoidable impurities and having a conductivity of 45% IACS or more. Further, a pure Sn layer is formed as the outermost layer, the Ni, Sn-containing alloy layer has a thickness of 50 μm or less, and the pure Sn layer has a thickness of 0.1 μm or more. Further, a copper alloy material with a plating for fuse according to the present invention includes a Ni layer having a thickness of 10 μm or less formed between the copper alloy substrate and the Ni, Sn-containing alloy layer. For fuse terminals, the tensile strength is desirably 400 N / mm 2 or more. The form of the copper alloy substrate is mainly a plate or a strip (coiled plate).
When using the plated copper alloy material as a fuse, the surface of the fuse portion of the plated copper alloy material is further plated with Sn to increase the thickness of the entire Sn layer, or an Sn chip is crimped on the fuse portion, The fuse fusing temperature can be lowered and the time required for fusing can be shortened.

上記ヒューズ用めっき付き銅合金材料(Ni層なし)は、前記銅合金基材の表面にSnめっき層を形成した後、リフロー処理又は加熱処理するか、前記銅合金基材の表面に溶融Snめっきによるめっき層を形成することにより製造できる。この場合、生成するNi,Sn含有合金層の中のNiは銅合金基材から、SnはSnめっき層から供給される。
また、上記ヒューズ用めっき付き銅合金材料は、前記銅合金基材の表面にNiめっき層を形成し、その上にSnめっき層を形成した後、リフロー処理又は加熱処理するか、Niめっき層の上に溶融Snめっきによるめっき層を形成することにより製造できる。この場合、生成するNi,Sn含有合金層中のNiはNiめっき層から供給され、その結果、Niめっき層が残留する場合と消滅する場合がある。Niめっき層が早期に消滅した場合、Ni,Sn含有合金層中のNiはさらに銅合金基材から供給される。
両方法において、Ni,Sn含有合金層は柱状結晶として成長する。
The fuse-plated copper alloy material (without Ni layer) is formed by forming a Sn plating layer on the surface of the copper alloy substrate, and then performing reflow treatment or heat treatment, or hot Sn plating on the surface of the copper alloy substrate. It can manufacture by forming the plating layer by. In this case, Ni in the produced Ni and Sn-containing alloy layer is supplied from the copper alloy base material, and Sn is supplied from the Sn plating layer.
Moreover, the copper alloy material with plating for the fuse is formed by forming a Ni plating layer on the surface of the copper alloy base material, forming a Sn plating layer thereon, and then performing reflow treatment or heat treatment, It can manufacture by forming the plating layer by hot-dip Sn plating on it. In this case, Ni in the produced Ni and Sn-containing alloy layer is supplied from the Ni plating layer, and as a result, the Ni plating layer may remain or disappear. When the Ni plating layer disappears early, Ni in the Ni and Sn-containing alloy layer is further supplied from the copper alloy base material.
In both methods, the Ni, Sn-containing alloy layer grows as columnar crystals.

上記のめっき付き銅合金材料中に含まれるNi,Sn含有合金層は、過電流発生時に発生するジュール熱により、銅合金基材中のCuと純Sn層中のSnの合金化を急速に促進させ、銅合金基材をすばやく減肉させる。銅合金基材が減肉することにより、通電の際の電気抵抗を増加させ、過電流発生時にすばやく溶断させる。
銅合金基材が引張強度400N/mm以上及び導電率45%IACS以上であれば、ヒューズ部に要求される溶断特性の他に、端子部に要求される強度及び導電率をも満たし、ヒューズ端子用として好適に用いることができる。
The Ni, Sn-containing alloy layer contained in the plated copper alloy material rapidly promotes the alloying of Cu in the copper alloy substrate and Sn in the pure Sn layer by Joule heat generated when overcurrent occurs. And quickly reduce the thickness of the copper alloy substrate. By reducing the thickness of the copper alloy base material, the electrical resistance during energization is increased, and when the overcurrent occurs, it is quickly blown.
If the copper alloy base material has a tensile strength of 400 N / mm 2 or more and a conductivity of 45% IACS or more, in addition to the fusing characteristics required for the fuse part, it also satisfies the strength and conductivity required for the terminal part. It can be suitably used for terminals.

以下、本発明に係るヒューズ用めっき付き銅合金材料についてより詳細に説明する。
図1に、本発明に係るヒューズ用めっき付き銅合金材料の断面の模式図を示す。(a)では、銅合金基材1の表面にNi層2が形成され、その上にNi,Sn含有合金層3が形成され、その上に最表層として純Sn層4が形成され、(b)では、銅合金基材1の表面にNi,Sn含有合金層3が形成され、その上に最表層として純Sn層4が形成されている。Ni,Sn含有合金層3は、Sn層に向かって成長した柱状結晶からなる。
Hereinafter, the copper alloy material with plating for fuses according to the present invention will be described in more detail.
In FIG. 1, the schematic diagram of the cross section of the copper alloy material with a plating for fuses concerning this invention is shown. In (a), the Ni layer 2 is formed on the surface of the copper alloy substrate 1, the Ni, Sn-containing alloy layer 3 is formed thereon, and the pure Sn layer 4 is formed thereon as the outermost layer. ), A Ni, Sn-containing alloy layer 3 is formed on the surface of the copper alloy substrate 1, and a pure Sn layer 4 is formed thereon as an outermost layer. The Ni, Sn-containing alloy layer 3 is composed of columnar crystals grown toward the Sn layer.

Ni,Sn含有合金層は、通電による温度上昇と共に銅合金基材中のCuと純Sn層中のSnの拡散を促進させる作用を有する。すなわち、Ni,Sn含有合金層が存在することで、銅合金基材中のCuと純Sn層中のSnとの合金化が促進され、銅合金基材を減肉させやすくなる。なお、このNi,Sn含有合金層は、通常めっき処理後に直ちに厚さ0.01μm以上形成され、その厚さで上記作用を有する。従って、実質的な下限値は0.01μmであり、望ましくは0.1μm以上である。
しかし、Ni,Sn含有合金層は、その厚さが50μmを超えると、銅合金基材と純Sn層の間でバリア層として働き、銅合金基材中のCuと純Sn層中のSnの拡散を起こし難くし、銅合金基材の減肉を抑えてしまうため、厚さが50μm以下である必要がある。望ましくは30μm以下である。
The Ni, Sn-containing alloy layer has an effect of promoting diffusion of Cu in the copper alloy base material and Sn in the pure Sn layer as the temperature rises due to energization. That is, the presence of the Ni, Sn-containing alloy layer promotes alloying of Cu in the copper alloy base material and Sn in the pure Sn layer, and facilitates reducing the thickness of the copper alloy base material. This Ni, Sn-containing alloy layer is usually formed with a thickness of 0.01 μm or more immediately after the plating treatment, and has the above-described action at that thickness. Therefore, the practical lower limit is 0.01 μm, desirably 0.1 μm or more.
However, when the Ni, Sn-containing alloy layer has a thickness exceeding 50 μm, it acts as a barrier layer between the copper alloy substrate and the pure Sn layer, and the Cu in the copper alloy substrate and the Sn in the pure Sn layer The thickness needs to be 50 μm or less in order to make the diffusion difficult and suppress the thinning of the copper alloy base material. Desirably, it is 30 μm or less.

Ni,Sn含有合金層において、Ni含有量は0.02〜75at%の範囲が望ましい。これは、Ni含有量が0.02at%未満か75at%を越えるようだと、ヒューズ溶断時のCuとSnの拡散促進効果が少ない、すなわち基材減肉促進効果が少ないからである。
なお、Ni,Sn含有合金層は、Ni−Sn合金、Ni−Cu−Sn合金又はその両者からなり、Ni−Sn合金は主として金属間化合物のNiSn又は/及びNiSnを含み、Ni−Cu−Sn合金は主として金属間化合物の(Cu,Ni)Snを含む。
In the Ni and Sn-containing alloy layer, the Ni content is preferably in the range of 0.02 to 75 at%. This is because if the Ni content is less than 0.02 at% or more than 75 at%, the effect of promoting the diffusion of Cu and Sn at the time of fusing the fuse is small, that is, the effect of promoting the thinning of the base material is small.
The Ni, Sn-containing alloy layer is made of a Ni—Sn alloy, a Ni—Cu—Sn alloy, or both, and the Ni—Sn alloy mainly contains Ni 3 Sn 4 or / and Ni 3 Sn as an intermetallic compound, The Ni—Cu—Sn alloy mainly contains an intermetallic compound (Cu, Ni) 6 Sn 5 .

純Sn層は、過電流発生時に発生するジュール熱により、Snを銅合金基材から拡散するCuと合金化させてNi,Sn含有合金層を成長させ、銅合金基材をすばやく減肉させる役割を有する。しかし、その厚さが0.1μm以下では過電流発生時に銅合金基材を減肉させるだけの十分な量ではなく、溶断特性が十分とならない。望ましくは0.3μm以上、さらに望ましくは0.4μm以上である。純Sn層の厚さの上限は特に存在しない。しかし、50μmを大きく越える厚さの純Sn層を形成しようとすると、十分な表面性状が得られにくい。従って、純Sn層の厚さは例えば0.1〜60μm、さらに0.1〜50μmが望ましい。
Ni層は、Ni,Sn含有合金層が形成されるときに残留したもので、存在することが必須ではないが、過電流発生時に発生するジュール熱により、Niを銅合金基材から拡散するCu及びSn層から拡散するSnと合金化させてNi,Sn含有合金層を成長させ、銅合金基材をすばやく減肉させる役割を有する。Ni層の厚さが10μmを越えると、過電流発生に伴う温度上昇により拡散しきれず、バリア層となってCuとSnの拡散を抑制し、Ni,Sn含有合金層の成長及び銅合金基材の減肉を抑制する。従って、Ni層の厚さは10μm以下とする。
The pure Sn layer is formed by alloying Sn with Cu that diffuses from the copper alloy base material by Joule heat generated when overcurrent is generated, and growing a Ni, Sn-containing alloy layer, thereby quickly reducing the thickness of the copper alloy base material. Have However, if the thickness is 0.1 μm or less, it is not a sufficient amount to reduce the thickness of the copper alloy substrate when an overcurrent is generated, and the fusing characteristics are not sufficient. The thickness is desirably 0.3 μm or more, and more desirably 0.4 μm or more. There is no particular upper limit for the thickness of the pure Sn layer. However, if a pure Sn layer having a thickness greatly exceeding 50 μm is to be formed, it is difficult to obtain sufficient surface properties. Therefore, the thickness of the pure Sn layer is preferably 0.1 to 60 μm, and more preferably 0.1 to 50 μm.
The Ni layer remains when the Ni, Sn-containing alloy layer is formed and is not necessarily present, but Cu diffuses from the copper alloy base material due to Joule heat generated when an overcurrent occurs. And, it has a role of alloying with Sn diffusing from the Sn layer to grow a Ni, Sn-containing alloy layer and quickly reducing the thickness of the copper alloy substrate. When the thickness of the Ni layer exceeds 10 μm, it cannot be diffused due to the temperature rise caused by the overcurrent, and it becomes a barrier layer to suppress the diffusion of Cu and Sn, and the growth of the Ni, Sn-containing alloy layer and the copper alloy substrate Suppresses the loss of meat. Therefore, the thickness of the Ni layer is 10 μm or less.

銅合金基材はNi:0.1〜1質量%、Sn:0.1〜1質量%、P:0.01〜0.2質量%を含み、残部がCu及び不可避不純物からなる。銅合金基材の組成をこのように規定したのは、ヒューズ溶断特性に優れるためである。各元素毎に説明すると次のとおり。
Ni:0.1質量%未満であると、発熱時に形成される合金層がCu−Sn合金層となりやすく、過電流発生時の合金層成長が十分でない。すなわち素材減肉が促進し難いため、ヒューズ溶断特性に劣る。逆に1重量%を越えると、導電率を確保し難くなる。
Sn:0.1重量%未満であると、発熱時のSnの溶融に伴う溶断性向上効果がみられず、1重量%を越えると、導電率を確保し難くなる。
P:Pは昇華作用があるため発熱向上効果を有するが、0.01質量%未満であると、過電流発生時の発熱促進効果が小さく、溶断性に劣り、逆に0.2%を越えると、熱間加工において割れが発生しやすくなる。好ましくは0.01〜0.15質量%、さらに好ましくは0.03〜0.1質量%である。
一方、導電率は析出物の析出状態を示し、45%IACS未満では導電率が不足する。
なお、銅合金性ヒューズの板厚は一般に1mm以下であり、本発明に係る銅合金基材も溶断特性の面からは薄肉の方がよく、板厚1mm以下、さらに0.8mm以下が望ましい。
The copper alloy substrate contains Ni: 0.1 to 1% by mass, Sn: 0.1 to 1% by mass, and P: 0.01 to 0.2% by mass, with the balance being Cu and inevitable impurities. The reason why the composition of the copper alloy base material is defined in this way is that it has excellent fuse blowing characteristics. The following explains each element.
When Ni is less than 0.1% by mass, the alloy layer formed during heat generation tends to be a Cu—Sn alloy layer, and the alloy layer does not grow sufficiently when an overcurrent occurs. That is, since it is difficult to promote material thinning, the fuse blowing characteristics are inferior. On the other hand, if it exceeds 1% by weight, it will be difficult to ensure conductivity.
When Sn is less than 0.1% by weight, the effect of improving the fusing property due to melting of Sn at the time of heat generation is not observed, and when it exceeds 1% by weight, it is difficult to ensure conductivity.
P: P has a sublimation effect and thus has an effect of improving heat generation. However, if it is less than 0.01% by mass, the effect of promoting heat generation at the time of overcurrent generation is small, the fusing property is poor, and conversely exceeds 0.2%. And it becomes easy to generate | occur | produce a crack in hot processing. Preferably it is 0.01-0.15 mass%, More preferably, it is 0.03-0.1 mass%.
On the other hand, the conductivity indicates the precipitation state of the precipitate, and if it is less than 45% IACS, the conductivity is insufficient.
The plate thickness of the copper alloy fuse is generally 1 mm or less, and the copper alloy substrate according to the present invention is preferably thin in terms of fusing characteristics, and the plate thickness is preferably 1 mm or less, and more preferably 0.8 mm or less.

次に、上記ヒューズ用めっき付き銅合金材料の製造方法について説明する。主な方法は次の4通りである。
(1)銅合金基材の表面にSnめっき層を形成した後、リフロー処理又は加熱処理する。
(2)銅合金基材の表面に溶融Snめっきによるめっき層を形成する。
(3)銅合金基材の表面にNiめっき層を形成し、その上にSnめっき層を形成した後、リフロー処理又は加熱処理する。
(4)銅合金基材の表面にNiめっき層を形成し、その上に溶融Snめっきによるめっき層を形成する。
Next, the manufacturing method of the said copper alloy material with a plating for fuses is demonstrated. The main methods are the following four.
(1) After forming the Sn plating layer on the surface of the copper alloy substrate, reflow treatment or heat treatment is performed.
(2) A plating layer is formed by hot Sn plating on the surface of the copper alloy substrate.
(3) After forming the Ni plating layer on the surface of the copper alloy base material and forming the Sn plating layer thereon, reflow treatment or heat treatment is performed.
(4) A Ni plating layer is formed on the surface of the copper alloy substrate, and a plating layer by hot Sn plating is formed thereon.

さらに、上記ヒューズ用めっき付き銅合金材料は、銅合金基材の表面にSnめっき層を形成しただけ、あるいは銅合金基材の表面にNiめっき層を形成し、その上にSnめっき層を形成しただけでも製造される。これは、Ni,Sn含有合金層は、常温においても、めっき処理後に直ちに厚さ0.01μm以上形成されるからである。   Furthermore, the above-mentioned copper alloy material with plating for fuse is formed by forming an Sn plating layer on the surface of the copper alloy base material, or forming an Ni plating layer on the surface of the copper alloy base material, and forming an Sn plating layer thereon. Even just doing it is manufactured. This is because the Ni, Sn-containing alloy layer is formed with a thickness of 0.01 μm or more immediately after the plating process even at room temperature.

上記製造方法において、Snめっき層の厚さに特に上限はない、ただし、Snめっき層の厚さが50μmを大きく越えると、リフロー処理又は加熱処理を施したとき、めっき付き銅合金材料において純Sn層に十分な表面性状が得られにくい。また、溶融Snめっきによるめっき層において50μmを大きく越える厚さの純Sn層を形成しようとすると、同じく十分な表面性状が得られにくい。一方、Snめっき層の厚さ又は溶融Snめっきによる純Sn層の厚さが0.1μm未満では、めっき付き銅合金材料において純Sn層の厚みが不足し、ヒューズとして十分な溶断特性が得られない。従って、Snめっき層の厚さ又は溶融Snめっきによる純Sn層の厚さは例えば0.1〜60μm、さらに0.1〜50μmの範囲とするのが望ましい。   In the above manufacturing method, there is no particular upper limit on the thickness of the Sn plating layer. However, if the thickness of the Sn plating layer greatly exceeds 50 μm, pure Sn in the plated copper alloy material is obtained when reflow treatment or heat treatment is performed. It is difficult to obtain sufficient surface properties for the layer. Further, if a pure Sn layer having a thickness greatly exceeding 50 μm is formed in a plated layer formed by hot Sn plating, it is difficult to obtain sufficient surface properties. On the other hand, if the thickness of the Sn plating layer or the thickness of the pure Sn layer by hot Sn plating is less than 0.1 μm, the thickness of the pure Sn layer is insufficient in the plated copper alloy material, and sufficient fusing characteristics as a fuse can be obtained. Absent. Therefore, the thickness of the Sn plating layer or the thickness of the pure Sn layer formed by hot Sn plating is preferably 0.1 to 60 μm, and more preferably 0.1 to 50 μm.

上記製造方法において、Niめっき層は必要に応じて形成される。しかし、Niめっき厚さが20μmを越えるようだと、Snめっき層のリフロー処理又は加熱処理を施した後、あるいは溶融Snめっきを行った後でさえ、めっき付き銅合金材に残存するNi層の厚さが10μmを越えやすい。従って、銅合金基材表面にNiめっきを行う場合、その厚さは20μm以下が望ましい。   In the said manufacturing method, Ni plating layer is formed as needed. However, if the Ni plating thickness seems to exceed 20 μm, the Ni layer remaining on the plated copper alloy material after the reflow treatment or heat treatment of the Sn plating layer or even after the hot Sn plating is performed. The thickness tends to exceed 10 μm. Therefore, when Ni plating is performed on the copper alloy substrate surface, the thickness is desirably 20 μm or less.

リフロー処理を行う際の雰囲気温度は、270℃〜700℃が好ましく、280℃〜350℃がより好ましい。加熱処理を行う際はSnを溶融しない程度の温度、即ちSnの融点である230℃以下で行う。
本発明の製造方法において、一般的に、Niめっき層の厚みが大きく、Niめっきがない場合は銅合金基材のNi含有量が高く、リフロー処理又は加熱処理の温度が高く処理時間が長く、あるいは溶融SnめっきのSn浴温度が高く処理時間が長いとき、Ni,Sn含有合金層のNi含有量が高く、又は/及びその厚みが大きくなる。また、めっき付き銅合金材のNi層及びSn層は、当初のNiめっき層又はSnめっき層が厚いほど厚く残留し、リフロー処理等による製造時のNi,Sn含有合金層の成長が大きいほど薄くなる。
The atmospheric temperature during the reflow treatment is preferably 270 ° C to 700 ° C, and more preferably 280 ° C to 350 ° C. The heat treatment is performed at a temperature at which Sn is not melted, that is, at 230 ° C. or lower, which is the melting point of Sn.
In the production method of the present invention, generally, when the thickness of the Ni plating layer is large and there is no Ni plating, the Ni content of the copper alloy substrate is high, the temperature of the reflow treatment or the heat treatment is high, and the treatment time is long. Alternatively, when the Sn bath temperature of molten Sn plating is high and the treatment time is long, the Ni content of the Ni and Sn-containing alloy layer is high and / or the thickness thereof is increased. Further, the Ni layer and the Sn layer of the plated copper alloy material remain thicker as the initial Ni plating layer or Sn plating layer is thicker, and thinner as the growth of the Ni, Sn-containing alloy layer during manufacturing by reflow treatment or the like becomes larger. Become.

銅基合金基材は、例えば、熱間圧延終了直後に急冷し、冷間圧延した後、500〜600℃の温度範囲で60〜180min程度の再結晶焼鈍を行い、さらに冷間圧延した後、再度350℃未満で1/3〜120min程度の析出焼鈍を行い、所定厚さにするため仕上げ冷間圧延を施すことで製造することができる。なお、熱間圧延終了時(急冷前)の温度は750℃以上が望ましい。この銅合金機材をヒューズエレメントで使用する場合は、以上の工程で製造し、端子付きヒューズであるヒューズ端子、特にヒューズエレメントと端子が一体化したものでは、さらに350℃程度で約1/3〜120min程度の低温焼鈍を行うことが望ましい。この製造方法により、導電率45%IACS以上が得られ、またヒューズ端子の場合に必要とされる引張強度400N/mm以上が得られる。 The copper base alloy substrate is, for example, rapidly cooled immediately after the end of hot rolling, cold rolled, and then subjected to recrystallization annealing at a temperature range of 500 to 600 ° C. for about 60 to 180 minutes, and further cold rolled, It can be manufactured by performing precipitation annealing for about 1/3 to 120 min again at a temperature lower than 350 ° C., and performing finish cold rolling to obtain a predetermined thickness. The temperature at the end of hot rolling (before quenching) is preferably 750 ° C. or higher. When this copper alloy material is used in a fuse element, it is manufactured by the above process, and in the case of a fuse terminal that is a fuse with a terminal, in particular, a fuse element and a terminal integrated, about 1/3 at about 350 ° C. It is desirable to perform low temperature annealing for about 120 minutes. With this manufacturing method, an electrical conductivity of 45% IACS or higher is obtained, and a tensile strength of 400 N / mm 2 or higher required for a fuse terminal is obtained.

以上述べためっき付き銅合金材料(最表層に純Sn層が形成されているもの)に対し、特にヒューズ端子のヒューズ部にSnめっき、例えば溶融Snめっきを施すと溶断特性がさらに向上する。あるいは、ヒューズ部にSnチップをかしめることによっても溶断特性がさらに向上する。   When the plated copper alloy material (with a pure Sn layer formed on the outermost layer) is subjected to Sn plating, for example, molten Sn plating, in particular, the fusing characteristics are further improved. Alternatively, the fusing characteristics can be further improved by caulking the Sn chip to the fuse portion.

表1〜3に示すNo.1〜19,21〜22,25〜26の組成の銅合金を小型電気炉で大気中にて木炭被覆下で溶解し、厚さ50mm、幅80mm、長さ180mmの鋳塊を溶製した。全ての鋳塊について表裏面を各5mmずつ面削し、No.25は900℃で熱間圧延を行い、それ以外は全て950℃で熱間圧延して、厚さ15mmの板材とした。熱間圧延終了温度は全て750℃以上であり、熱間圧延後直ちに急冷した。続いて、板材の表裏面を面削し、冷間圧延後、520℃×120minの再結晶焼鈍を行い、さらに冷間圧延し、340℃×120minの析出焼鈍を行った。このとき形成された表面の酸化スケールを20vol%硫酸水にて酸洗し、さらに研磨して除去した。この後、冷間圧延を施し、350℃×120minの低温焼鈍を行い、板厚0.2mmの供試材薄板を得た。
一方、No.20はCu−0.1Fe−0.03P−0.2Sn−0.2Mg−0.4Zn(CDA.No.C19800)、No.23はCu−3.2Ni−0.7Si−0.3Zn(CDA.No.C64710)、No.24はCu−2.3Fe−0.03P−0.1Zn(CDA.No.C19400)であり、いずれも厚さ0.2mmの市販品を用いた(元素の前の数字は質量%)。
No. shown in Tables 1-3. A copper alloy having a composition of 1 to 19, 21 to 22, and 25 to 26 was melted under a charcoal coating in the air in a small electric furnace to produce an ingot having a thickness of 50 mm, a width of 80 mm, and a length of 180 mm. For all ingots, the front and back surfaces were chamfered by 5 mm each. No. 25 was hot-rolled at 900 ° C., and everything else was hot-rolled at 950 ° C. to obtain a plate material having a thickness of 15 mm. The hot rolling end temperatures were all 750 ° C. or higher, and they were quenched immediately after hot rolling. Subsequently, the front and back surfaces of the plate material were chamfered, and after cold rolling, recrystallization annealing was performed at 520 ° C. for 120 minutes, further cold rolling was performed, and precipitation annealing was performed at 340 ° C. for 120 minutes. The oxidized scale on the surface formed at this time was pickled with 20 vol% sulfuric acid, and further polished and removed. Thereafter, cold rolling was performed, and low-temperature annealing at 350 ° C. for 120 minutes was performed to obtain a test material thin plate having a thickness of 0.2 mm.
On the other hand, no. No. 20 is Cu-0.1Fe-0.03P-0.2Sn-0.2Mg-0.4Zn (CDA. No. C19800), No. 20; 23 is Cu-3.2Ni-0.7Si-0.3Zn (CDA. No. C64710), No. 23. 24 is Cu-2.3Fe-0.03P-0.1Zn (CDA.No. C19400), and commercially available products with a thickness of 0.2 mm were used for each (the number before the element is mass%).

No.1〜26の板材について(No.1〜12は同一の板材を振り分けた)、表1〜3に示すように、Niめっき及びSnめっきを行った後リフロー処理又は加熱処理を行い、あるいはNiめっきを行った後溶融Snめっきを行った。Niめっき層及びSnめっき層の厚さを表1,2に示す(めっきなしの場合は各欄に0と記載)。また、リフロー処理、加熱処理及び溶融Snめっき処理のいずれも行わなかった場合は、表1〜3のめっき処理方法の欄に−で示す。
Niめっき及びSnめっきは表4の条件で行った。リフロー処理は240℃〜600℃×5〜30secで行い、加熱処理は80〜200℃で、溶融Snめっきは250℃で適当な時間処理することにより行った。
No. For the plate materials 1 to 26 (Nos. 1 to 12 were assigned the same plate material), as shown in Tables 1 to 3, after Ni plating and Sn plating were performed, reflow treatment or heat treatment was performed, or Ni plating was performed. After that, molten Sn plating was performed. The thicknesses of the Ni plating layer and the Sn plating layer are shown in Tables 1 and 2 (in the case of no plating, 0 is described in each column). In addition, when none of the reflow treatment, the heat treatment, and the molten Sn plating treatment is performed, it is indicated by-in the column of the plating treatment method in Tables 1 to 3.
Ni plating and Sn plating were performed under the conditions shown in Table 4. The reflow treatment was performed at 240 ° C. to 600 ° C. × 5 to 30 seconds, the heat treatment was performed at 80 to 200 ° C., and the molten Sn plating was performed at 250 ° C. for an appropriate time.

Figure 2008169445
Figure 2008169445

Figure 2008169445
Figure 2008169445

Figure 2008169445
Figure 2008169445

Figure 2008169445
Figure 2008169445

めっき処理していない板材の引張強度及び導電率を下記要領で測定した。また、No.4,11以外は、Snめっき層とNiめっき層の厚さをリフロー処理又は加熱処理を行う前に下記要領で測定し、リフロー処理又は加熱処理を行った後、残存するNi層の厚さと純Sn層の厚さ及び形成されたNi,Sn含有合金層の厚さを下記要領で測定した。No.4は、Niめっき層の厚さを溶融Snめっきを行う前に下記要領で測定し、溶融Snめっきを行った後、残存するNi層の厚さ、形成された純Sn層の厚さ及びNi,Sn含有合金層の厚さを下記要領で測定した。また、Ni,Sn含有合金層の合金種類の同定を下記要領で行った。以上の測定結果を表1〜3にあわせて示す。   The tensile strength and electrical conductivity of the plate material not subjected to plating treatment were measured as follows. No. Except 4 and 11, the thicknesses of the Sn plating layer and the Ni plating layer were measured as follows before reflow treatment or heat treatment, and after the reflow treatment or heat treatment, the thickness and purity of the remaining Ni layer were measured. The thickness of the Sn layer and the thickness of the formed Ni, Sn-containing alloy layer were measured as follows. No. 4, the thickness of the Ni plating layer was measured in the following manner before performing the hot Sn plating, and after the hot Sn plating, the thickness of the remaining Ni layer, the thickness of the formed pure Sn layer, and Ni The thickness of the Sn-containing alloy layer was measured as follows. Moreover, the identification of the alloy kind of a Ni and Sn containing alloy layer was performed in the following way. The above measurement results are shown in Tables 1-3.

[引張強度]引張強度は板材の長手方向を圧延方向に平行とし、JIS5号試験片にて圧延平行方向の引張強度を測定した。
[導電率]導電率は、JISH0505に基づいて測定した。
[Snめっき層の厚さ]Snめっき層の厚さは、蛍光X線膜厚計(セイコー電子工業株式会社;型式SFT3200)を用いて測定した。
[Niめっき層の厚さ]Niめっき層の厚さは蛍光X線膜厚計(セイコー電子工業株式会社;型式SFT3200)を用いて測定した。
[純Sn層の厚さ]純Sn層の厚さは、次の手順で測定した。まず、蛍光X線膜厚計(セイコー電子工業株式会社;型式SFT3200)を用いてSn層全体(純Sn層とNi,Sn含有合金層)の厚さを測定する。その後、p−ニトロフェノール及び苛性ソーダを主成分とする剥離液に10分間浸漬し、純Sn層を剥離後、蛍光X線膜厚計を用いて、Ni,Sn含有合金層中のSn量を測定する。この測定値から求めた両者の層厚さの差から純Sn層の厚さを算出した。
[Tensile strength] Tensile strength was measured by measuring the tensile strength in the rolling parallel direction with a JIS No. 5 test piece with the longitudinal direction of the plate material parallel to the rolling direction.
[Conductivity] The conductivity was measured based on JISH0505.
[Thickness of Sn plating layer] The thickness of the Sn plating layer was measured using a fluorescent X-ray film thickness meter (Seiko Electronics Co., Ltd .; model SFT3200).
[Thickness of Ni Plating Layer] The thickness of the Ni plating layer was measured using a fluorescent X-ray film thickness meter (Seiko Electronics Co., Ltd .; model SFT3200).
[Thickness of Pure Sn Layer] The thickness of the pure Sn layer was measured by the following procedure. First, the thickness of the entire Sn layer (pure Sn layer and Ni, Sn-containing alloy layer) is measured using a fluorescent X-ray film thickness meter (Seiko Electronics Co., Ltd .; model SFT3200). Then, after dipping in a stripping solution containing p-nitrophenol and caustic soda as main components for 10 minutes and stripping the pure Sn layer, the amount of Sn in the Ni, Sn-containing alloy layer is measured using a fluorescent X-ray film thickness meter. To do. The thickness of the pure Sn layer was calculated from the difference between the two layer thicknesses determined from this measured value.

[Ni,Sn含有合金層の厚さ]Ni,Sn含有合金層の厚さは、板材断面をミクロトームにより切断し、その切断面をSEM観察して測定した。
[Ni,Sn含有合金層の合金種類の同定]合金の種類はX線回折実験により同定した。
[Ni層厚さ]リフロー処理、加熱処理又は溶融Snめっき後のNi層の厚さは、蛍光X線膜厚計(セイコー電子工業株式会社;型式SFT3200)を用いて測定した。
[Thickness of Ni, Sn-containing alloy layer] The thickness of the Ni, Sn-containing alloy layer was measured by cutting the cross section of the plate with a microtome and observing the cut surface with an SEM.
[Identification of Alloy Type of Ni, Sn-Containing Alloy Layer] The type of alloy was identified by an X-ray diffraction experiment.
[Ni layer thickness] The thickness of the Ni layer after reflow treatment, heat treatment, or hot Sn plating was measured using a fluorescent X-ray film thickness meter (Seiko Electronics Co., Ltd .; model SFT3200).

続いて、No.1〜26のめっき付き銅合金材料(一部にめっきなしが含まれる)を、0.5mmW×40mmLに切断して溶断特性評価試料を作製し、下記要領で溶断特性を評価した。その結果を表1〜3にあわせて示す。なお、No.13,14については、追加処理として、さらに溶融Snめっきを100μmの厚さで施し又は5mm角のSnチップを溶断部分にかしめた。
[溶断特性評価]各試料に対し、5V、19Aの定電圧条件下で溶断試験を行った。評価は切断に要する時間を測定し、溶断時間10sec未満を合格とした。
Subsequently, no. 1 to 26 plated copper alloy materials (some of which are not plated) were cut into 0.5 mmW × 40 mmL to prepare fusing characteristic evaluation samples, and the fusing characteristics were evaluated in the following manner. The results are shown in Tables 1 to 3. In addition, No. For 13 and 14, as an additional process, molten Sn plating was further applied to a thickness of 100 μm, or a 5 mm square Sn chip was caulked to the melted portion.
[Fusing Characteristic Evaluation] A fusing test was performed on each sample under a constant voltage condition of 5V and 19A. In the evaluation, the time required for cutting was measured, and a fusing time of less than 10 seconds was regarded as acceptable.

表1〜3に示すように、本発明の規定を満たすNo.1〜7,12〜18は溶断特性に優れている。さらに追加処理として溶融Snめっきを施し又はSnチップをかしめたNo.13,14は、溶断特性がより優れている。また、これらは銅合金基材の引張強度が400N/mm以上であり、ヒューズ端子用としても適している。
一方、No.8は、Snめっき層厚さが0.05μmと薄いため、リフロー処理後に純Sn層が残存せず、溶断特性が劣っている。No.9は、Niめっき層厚さが25μmと厚いため、加熱処理後に残存するNi層厚さが厚く、溶断時の素材減肉が抑制され、溶断特性が劣っている。No.10は、加熱処理後に形成されるNi,Sn含有合金層が厚く、溶断時の素材減肉が抑制され、溶断特性が劣っている。No.11はめっきを施していないため、本条件下では溶断が起こっていない。
As shown in Tables 1 to 3, No. 1 satisfying the provisions of the present invention. 1-7 and 12-18 are excellent in fusing characteristics. Further, as an additional treatment, No. 1 was applied by hot-dip Sn plating or crimped Sn chip. 13 and 14 have better fusing characteristics. In addition, the tensile strength of the copper alloy base material is 400 N / mm 2 or more, and these are also suitable for fuse terminals.
On the other hand, no. In No. 8, since the Sn plating layer thickness is as thin as 0.05 μm, the pure Sn layer does not remain after the reflow treatment, and the fusing characteristics are inferior. No. In No. 9, since the Ni plating layer thickness is as thick as 25 μm, the Ni layer thickness remaining after the heat treatment is large, the material thickness reduction during fusing is suppressed, and the fusing characteristics are inferior. No. No. 10 has a thick Ni, Sn-containing alloy layer formed after the heat treatment, suppresses material thinning during fusing, and is inferior in fusing characteristics. No. Since 11 is not plated, fusing does not occur under this condition.

No.19,20は、銅合金基材にNiを含有せず、かつNiめっきを行っていないため、リフロー処理により形成される合金層がCu−Sn合金層となり、過電流発生時の合金層成長が十分でなく、銅合金基材の減肉が促進されにくいため、溶断特性が劣っている。No.21は、銅合金基材中にSnを含有せず、そのため発熱時のSn溶融に伴う溶断性向上効果が小さく、溶断特性が劣っている。No.22は、銅合金基材中にPを含有せず、そのため過電流発生時の発熱促進効果が小さく、溶断特性が劣っている。No.23は、銅合金基材がNi−Si系銅合金であり、基材中に析出したNi−Si析出物が過電流発生時の発熱により再固溶し、急激な基材の導電率変化により溶断性が向上するが、実施例に比べると溶断性が劣る。No.24は、銅合金基材中にNi、Snを含有せず、リフロー処理により形成される合金層がCu−Sn合金層となり、過電流発生時の合金層成長が十分でなく、銅合金基材の減肉が促進されにくいため、溶断特性が劣っている。No.25は、銅合金基材中のSn含有量が過剰であるため、溶断特性は良好だが、導電率が劣る。No.26は、銅合金基材中のNi含有量が過剰であるため、溶断特性は良好だが、導電率が劣る。   No. 19 and 20, since the copper alloy base material does not contain Ni and Ni plating is not performed, the alloy layer formed by the reflow process becomes a Cu-Sn alloy layer, and the alloy layer grows when an overcurrent occurs. It is not sufficient, and it is difficult to promote thinning of the copper alloy base material, so the fusing characteristics are inferior. No. No. 21 does not contain Sn in the copper alloy base material, so that the effect of improving the fusing property accompanying Sn melting during heat generation is small, and the fusing property is inferior. No. No. 22 does not contain P in the copper alloy base material, so that the effect of promoting heat generation at the occurrence of overcurrent is small and the fusing characteristics are inferior. No. 23, the copper alloy base material is a Ni—Si based copper alloy, and the Ni—Si precipitate deposited in the base material is re-dissolved due to the heat generated when an overcurrent is generated, and a sudden change in the conductivity of the base material occurs. Although fusing property improves, fusing property is inferior compared with an Example. No. No. 24 does not contain Ni and Sn in the copper alloy base material, the alloy layer formed by the reflow process becomes a Cu-Sn alloy layer, and the alloy layer does not grow sufficiently when an overcurrent occurs, and the copper alloy base material Since the thinning of the metal is difficult to promote, the fusing characteristics are inferior. No. In No. 25, the Sn content in the copper alloy substrate is excessive, so that the fusing characteristics are good, but the conductivity is inferior. No. In No. 26, since the Ni content in the copper alloy substrate is excessive, the fusing characteristics are good, but the conductivity is inferior.

本発明に係るヒューズ用めっき付き銅合金材料の断面模式図である。It is a cross-sectional schematic diagram of the copper alloy material with plating for fuses concerning this invention.

符号の説明Explanation of symbols

1 銅合金基材
2 Ni層
3 Ni,Sn含有合金層
4 純Sn層
DESCRIPTION OF SYMBOLS 1 Copper alloy base material 2 Ni layer 3 Ni, Sn containing alloy layer 4 Pure Sn layer

Claims (9)

Ni:0.1〜1質量%、Sn:0.1〜1質量%、P:0.01〜0.2質量%を含み、残部がCu及び不可避不純物からなり、導電率45%IACS以上とした銅合金素材の表面に、Ni−Sn合金、Ni−Cu−Sn合金、又はその両者からなるNi,Sn含有合金層が形成され、その上に最表層として純Sn層が形成され、前記Ni,Sn含有合金層は厚さが50μm以下、前記純Sn層は厚さが0.1μm以上であることを特徴とするヒューズ用めっき付き銅合金材料。 Ni: 0.1 to 1% by mass, Sn: 0.1 to 1% by mass, P: 0.01 to 0.2% by mass, the balance is made of Cu and inevitable impurities, and the conductivity is 45% IACS or more. A Ni-Sn alloy, a Ni-Cu-Sn alloy, or a Ni-Sn-containing alloy layer made of both of them is formed on the surface of the copper alloy material, and a pure Sn layer is formed as the outermost layer on the Ni-Sn alloy. , Sn-containing alloy layer has a thickness of 50 μm or less, and the pure Sn layer has a thickness of 0.1 μm or more. Ni:0.1〜1質量%、Sn:0.1〜1質量%、P:0.01〜0.2質量%を含み、残部がCu及び不可避不純物からなり、導電率45%IACS以上とした銅合金素材の表面に、Ni層が形成され、その上にNi−Sn合金、Ni−Cu−Sn合金、又はその両者からなるNi,Sn含有合金層が形成され、その上に最表層として純Sn層が形成され、前記Ni層は厚さが10μm以下、前記Ni,Sn含有合金層は厚さが50μm以下、前記純Sn層は厚さが0.1μm以上であることを特徴とするヒューズ用めっき付き銅合金材料。 Ni: 0.1 to 1% by mass, Sn: 0.1 to 1% by mass, P: 0.01 to 0.2% by mass, the balance is made of Cu and inevitable impurities, and the conductivity is 45% IACS or more. An Ni layer is formed on the surface of the copper alloy material, a Ni—Sn alloy, a Ni—Cu—Sn alloy, or a Ni, Sn-containing alloy layer made of both of them is formed thereon, and an uppermost layer is formed thereon. A pure Sn layer is formed, wherein the Ni layer has a thickness of 10 μm or less, the Ni, Sn-containing alloy layer has a thickness of 50 μm or less, and the pure Sn layer has a thickness of 0.1 μm or more. Copper alloy material with plating for fuses. 銅合金基材の引張強度が400N/mm以上であることを特徴とする請求項1又は2に記載されたヒューズ用めっき付き銅合金材料。 3. The copper alloy material with plated plating for fuses according to claim 1 or 2, wherein the copper alloy base material has a tensile strength of 400 N / mm 2 or more. 前記銅合金素材の表面にSnめっき層を形成した後、リフロー処理又は加熱処理することを特徴とする請求項1に記載されたヒューズ用めっき付き銅合金材料の製造方法。 2. The method for producing a copper alloy material with a plating for a fuse according to claim 1, wherein after the Sn plating layer is formed on the surface of the copper alloy material, reflow treatment or heat treatment is performed. 前記銅合金素材の表面に溶融Snめっきを行うことを特徴とする請求項1に記載されたヒューズ用めっき付き銅合金材料の製造方法。 The method for producing a copper alloy material with a plating for a fuse according to claim 1, wherein the surface of the copper alloy material is subjected to hot Sn plating. 前記銅合金素材の表面にNiめっき層を形成し、その上にSnめっき層を形成した後、リフロー処理又は加熱処理することを特徴とする請求項1又は2に記載されたヒューズ用めっき付き銅合金材料の製造方法。 3. The copper with fuse plating according to claim 1, wherein a Ni plating layer is formed on the surface of the copper alloy material, and a Sn plating layer is formed thereon, and then reflow treatment or heat treatment is performed. 4. Manufacturing method of alloy material. 前記銅合金素材の表面にNiめっき層を形成した後、溶融Snめっきを行うことを特徴とする請求項1又は2に記載されたヒューズ用めっき付き銅合金材料の製造方法。 The method for producing a copper alloy material with a plating for a fuse according to claim 1 or 2, wherein hot-dip Sn plating is performed after forming a Ni plating layer on the surface of the copper alloy material. 請求項1〜3のいずれかに記載されたヒューズ用めっき付き銅合金材料の表面に、さらにSnめっき層が形成されたことを特徴とするヒューズ。 A fuse, further comprising an Sn plating layer formed on the surface of the copper alloy material with a plating for a fuse according to claim 1. 請求項1〜3のいずれかに記載されたヒューズ用めっき付き銅合金材料の表面に、さらにSnチップをかしめて取り付けたことを特徴とするヒューズ。 4. A fuse, wherein a Sn chip is further caulked and attached to the surface of the plated copper alloy material for fuses according to claim 1.
JP2007004619A 2007-01-12 2007-01-12 Copper alloy material with plating for fuse and manufacturing method thereof Expired - Fee Related JP4845747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007004619A JP4845747B2 (en) 2007-01-12 2007-01-12 Copper alloy material with plating for fuse and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007004619A JP4845747B2 (en) 2007-01-12 2007-01-12 Copper alloy material with plating for fuse and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008169445A true JP2008169445A (en) 2008-07-24
JP4845747B2 JP4845747B2 (en) 2011-12-28

Family

ID=39697819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007004619A Expired - Fee Related JP4845747B2 (en) 2007-01-12 2007-01-12 Copper alloy material with plating for fuse and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4845747B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012016882A1 (en) * 2010-07-26 2012-02-09 Vishay Bccomponents Beyschlag Gmbh Thermal link
JP2012506952A (en) * 2008-10-31 2012-03-22 ズントビガー、メッシングベルク、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング、ウント、コンパニー、コマンディトゲゼルシャフト Copper-tin alloy, composite material and use thereof
CN111519064A (en) * 2020-06-05 2020-08-11 浙江天河铜业股份有限公司 Manufacturing method of ultrathin electronic-grade copper plate strip based on metal processing field

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198247A (en) * 1992-01-20 1993-08-06 Kobe Steel Ltd Copper alloy for fuse terminal material
JPH09209061A (en) * 1996-02-05 1997-08-12 Mitsubishi Shindoh Co Ltd Copper alloy excellent in plating adhesion
JP2003293187A (en) * 2002-03-29 2003-10-15 Dowa Mining Co Ltd Copper or copper alloy subjected to plating and method for manufacturing the same
JP2004300524A (en) * 2003-03-31 2004-10-28 Dowa Mining Co Ltd Sn-COATED COPPER OR COPPER ALLOY MEMBER AND ITS MANUFACTURING METHOD
WO2007004581A1 (en) * 2005-06-30 2007-01-11 Nippon Mining & Metals Co., Ltd. Sn-PLATED COPPER ALLOY BAR HAVING EXCELLENT FATIGUE CHARACTERISTICS
JP2007035314A (en) * 2005-07-22 2007-02-08 Kobe Steel Ltd Plated copper alloy material for fuse and its manufacturing method
JP2007262458A (en) * 2006-03-27 2007-10-11 Nikko Kinzoku Kk WHISKER RESISTANT REFLOW Sn PLATING MATERIAL

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198247A (en) * 1992-01-20 1993-08-06 Kobe Steel Ltd Copper alloy for fuse terminal material
JPH09209061A (en) * 1996-02-05 1997-08-12 Mitsubishi Shindoh Co Ltd Copper alloy excellent in plating adhesion
JP2003293187A (en) * 2002-03-29 2003-10-15 Dowa Mining Co Ltd Copper or copper alloy subjected to plating and method for manufacturing the same
JP2004300524A (en) * 2003-03-31 2004-10-28 Dowa Mining Co Ltd Sn-COATED COPPER OR COPPER ALLOY MEMBER AND ITS MANUFACTURING METHOD
WO2007004581A1 (en) * 2005-06-30 2007-01-11 Nippon Mining & Metals Co., Ltd. Sn-PLATED COPPER ALLOY BAR HAVING EXCELLENT FATIGUE CHARACTERISTICS
JP2007035314A (en) * 2005-07-22 2007-02-08 Kobe Steel Ltd Plated copper alloy material for fuse and its manufacturing method
JP2007262458A (en) * 2006-03-27 2007-10-11 Nikko Kinzoku Kk WHISKER RESISTANT REFLOW Sn PLATING MATERIAL

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506952A (en) * 2008-10-31 2012-03-22 ズントビガー、メッシングベルク、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング、ウント、コンパニー、コマンディトゲゼルシャフト Copper-tin alloy, composite material and use thereof
WO2012016882A1 (en) * 2010-07-26 2012-02-09 Vishay Bccomponents Beyschlag Gmbh Thermal link
US9899171B2 (en) 2010-07-26 2018-02-20 Vishay Bccomponents Beyschlag Gmbh Thermal safety device
CN111519064A (en) * 2020-06-05 2020-08-11 浙江天河铜业股份有限公司 Manufacturing method of ultrathin electronic-grade copper plate strip based on metal processing field
CN111519064B (en) * 2020-06-05 2021-04-16 浙江天河铜业股份有限公司 Manufacturing method of ultrathin electronic-grade copper plate strip based on metal processing field

Also Published As

Publication number Publication date
JP4845747B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP4357536B2 (en) Copper alloy sheet for electrical and electronic parts with excellent strength and formability
JP4984108B2 (en) Cu-Ni-Sn-P based copper alloy with good press punchability and method for producing the same
US10233517B2 (en) Copper alloy sheet strip with surface coating layer excellent in heat resistance
JP6052829B2 (en) Copper alloy material for electrical and electronic parts
JP4566020B2 (en) Copper alloy sheet for electrical and electronic parts with low anisotropy
JPWO2006101172A1 (en) Copper alloy for electronic materials
JPH0741887A (en) Copper alloy for electric and electronic part and its preparation
JP5132467B2 (en) Copper alloy and Sn-plated copper alloy material for electrical and electronic parts with excellent electrical conductivity and strength
JP6611222B2 (en) Copper alloy plate for electric and electronic parts having high strength, high conductivity and excellent stress relaxation characteristics, and method for producing the same
JP5950499B2 (en) Copper alloy for electrical and electronic parts and copper alloy material with Sn plating
JP4397245B2 (en) Tin-plated copper alloy material for electric and electronic parts and method for producing the same
JP5468798B2 (en) Copper alloy sheet
JP2013520571A (en) High strength, high conductivity copper alloy and method for producing the same
JP4987028B2 (en) Copper alloy tin plating material for printed circuit board terminals
TWI527914B (en) Strength, heat resistance and bending workability of the Fe-P copper alloy plate
JP4845747B2 (en) Copper alloy material with plating for fuse and manufacturing method thereof
TWI537401B (en) Strength and heat resistance and flexographic workability of the Fe-P copper alloy plate
JP4646721B2 (en) Copper alloy material with plating for fuse and manufacturing method thereof
JP4251672B2 (en) Copper alloy for electrical and electronic parts
JP5952726B2 (en) Copper alloy
JP2001279347A (en) High strength copper alloy excellent in bending workability and heat resistance and its producing method
JP5137998B2 (en) Method for producing plated copper alloy material for fuse
JPS6250426A (en) Copper alloy for electronic appliance
JPH09209061A (en) Copper alloy excellent in plating adhesion
KR20160001634A (en) Copper alloy material, method for producing copper alloy material, lead frames and connectors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4845747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees