JP5952726B2 - Copper alloy - Google Patents

Copper alloy Download PDF

Info

Publication number
JP5952726B2
JP5952726B2 JP2012269677A JP2012269677A JP5952726B2 JP 5952726 B2 JP5952726 B2 JP 5952726B2 JP 2012269677 A JP2012269677 A JP 2012269677A JP 2012269677 A JP2012269677 A JP 2012269677A JP 5952726 B2 JP5952726 B2 JP 5952726B2
Authority
JP
Japan
Prior art keywords
strength
copper alloy
less
conductivity
bending workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012269677A
Other languages
Japanese (ja)
Other versions
JP2014114485A (en
Inventor
友己 田中
友己 田中
久郎 宍戸
久郎 宍戸
有賀 康博
康博 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012269677A priority Critical patent/JP5952726B2/en
Publication of JP2014114485A publication Critical patent/JP2014114485A/en
Application granted granted Critical
Publication of JP5952726B2 publication Critical patent/JP5952726B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Description

本発明は高強度、高導電性であり、更に曲げ加工性にも優れた銅合金に関し、詳細には電気・電子部品を構成するコネクター、リードフレーム、リレー、スイッチ、配線、端子などに用いられる各種電気・電子部品用材料として好適な銅合金に関するものである。   The present invention relates to a copper alloy having high strength, high conductivity, and excellent bending workability. Specifically, the present invention is used for connectors, lead frames, relays, switches, wirings, terminals, etc. constituting electric and electronic parts. The present invention relates to a copper alloy suitable as a material for various electric and electronic parts.

近年、電子機器の小型化、及び軽量化の要請に伴い、電気・電子部品の電気系統の複雑化、高集積化が進み、各種電気・電子部品用材料には、薄肉化や複雑な形状の加工に耐え得る特性が求められている。   In recent years, with the demand for smaller and lighter electronic devices, the electrical systems of electrical and electronic parts have become more complex and highly integrated, and various materials for electrical and electronic parts have become thinner and have complicated shapes. The characteristic which can endure processing is calculated | required.

例えば、電気・電子部品を構成するコネクター、リードフレーム、リレー、スイッチなどの通電部品に使用される電気・電子部品用材料は、小型・薄肉化によって同一の荷重を受ける材料の断面積が小さくなり、通電量に対する材料の断面積も小さくなるため、通電によるジュール熱の発生を抑制するために良好な導電性が要求されると共に、電気・電子機器の組立時や作動時に付与される応力に耐え得る高い強度や、電気・電子部品を曲げ加工しても、破断等が生じない曲げ加工性が要求されている。   For example, materials for electrical and electronic parts used in current-carrying parts such as connectors, lead frames, relays, and switches that make up electrical and electronic parts are reduced in size and thickness, and the cross-sectional area of the material that receives the same load becomes smaller In addition, since the cross-sectional area of the material with respect to the amount of energization is reduced, good conductivity is required to suppress the generation of Joule heat due to energization, and it can withstand the stress applied during assembly and operation of electrical and electronic equipment. There is a demand for high strength that can be obtained and bending workability that does not cause breakage even when electric and electronic parts are bent.

電気・電子部品用材料としてCu−Fe−P合金が汎用されているが、高強度化を図るためにSnなどの合金成分を添加すると、導電性が低下して強度と導電性のバランス(強度−導電性バランス)を図ることが難しかった。   Cu-Fe-P alloys are widely used as materials for electrical and electronic parts, but adding alloy components such as Sn to increase the strength decreases the conductivity and balance between strength and conductivity (strength) -It was difficult to achieve a conductivity balance.

また高強度材料として析出硬化型の合金(Cu−Ni−Si合金)が提案されているが、導電性を高めるためにNiやSiの含有量を低減させると、引張強度が低下して強度−導電性バランスを図ることが難しかった。   Also, precipitation hardening type alloys (Cu—Ni—Si alloys) have been proposed as high strength materials, but when the content of Ni or Si is reduced to increase conductivity, the tensile strength decreases and the strength— It was difficult to achieve a conductive balance.

従来のCu−Fe−P合金やCu−Ni−Si合金よりも強度−導電性バランスに優れた材料として、Cu−Cr系合金が提案されている(特許文献1)。しかしながら熱間圧延時に粗大な晶出物が生成してしまい、高強度化と高導電性化のいずれにも限界があった。   As a material having a better strength-conductivity balance than conventional Cu-Fe-P alloys and Cu-Ni-Si alloys, Cu-Cr alloys have been proposed (Patent Document 1). However, a coarse crystallized product was generated during hot rolling, and there was a limit to both high strength and high conductivity.

また強度−導電性バランスと加工性に優れた銅合金として、Cu−Cr−Sn系合金が提案されている(特許文献2)。しかしながらCu−Cr−Sn系合金では、高温での溶体化処理が必要であり、製造工程が煩雑になるなど、製造面に問題があった。   Further, a Cu—Cr—Sn alloy has been proposed as a copper alloy excellent in strength-conductivity balance and workability (Patent Document 2). However, the Cu—Cr—Sn alloy has a problem in terms of manufacturing, such as a solution treatment at a high temperature and a complicated manufacturing process.

更に強度と導電性に優れた銅合金として、Cu―Cr−Ti−Zr合金が提案されている(特許文献3)。しかしながらこの銅合金では強度と導電性を向上できるものの、曲げ加工性については不十分であった。   Furthermore, a Cu—Cr—Ti—Zr alloy has been proposed as a copper alloy having excellent strength and conductivity (Patent Document 3). However, although this copper alloy can improve strength and conductivity, bending workability is insufficient.

また高強度、高導電性を有し、曲げ加工性を向上させた銅合金として、Cu−Cr−Ti−Si合金が提案されている(特許文献4)。しかしながらこの銅合金では曲げ加工性を向上できるものの、後記するように従来よりも厳しい条件の曲げ加工を加えると、割れが生じるなどの問題があった。   Further, a Cu—Cr—Ti—Si alloy has been proposed as a copper alloy having high strength and high conductivity and improved bending workability (Patent Document 4). However, although this copper alloy can improve the bending workability, there is a problem such as cracking when bending under severer conditions than before is applied as described later.

特開2005−29857号公報Japanese Patent Laying-Open No. 2005-29857 特開平6−081090号公報Japanese Patent Laid-Open No. 6-081090 特許第3731600号公報Japanese Patent No. 3731600 特許第2515127号公報Japanese Patent No. 2515127

近年の電気、電子機器の軽量・小型化などに伴って、より一層薄肉化した材料を曲げ加工したり、配線を微細幅にノッチング(切欠き加工)した後に曲げ加工が施されたりなど、電気・電子部品用材料には、今まで以上に複雑な加工が行われるため、曲げ加工性に対する要求も高まっている。更に耐久性に対する要求も高くなっており、強度向上に対する要求も高まっているものの、強度を高くすると曲げ加工性が低下するという問題が生じていた。よって導電性、強度、および曲げ加工性の個々の特性が良好なだけでなく、所定以上の曲げ加工性や導電性を維持しつつ、より一層強度が高められたもの、すなわち高強度化を図りつつも強度−導電性バランス、強度−曲げ加工性バランスにも優れた材料が求められていた。   With the recent reduction in weight and size of electrical and electronic equipment, bending of thinner materials and bending after notching (notch processing) of wiring to a fine width, etc.・ Because more complex processing than ever has been performed on electronic component materials, there is an increasing demand for bending workability. Furthermore, although the demand for durability has increased and the demand for improvement in strength has increased, there has been a problem that bending workability is reduced when the strength is increased. Therefore, not only the individual properties of conductivity, strength, and bending workability are good, but also the strength is further enhanced while maintaining the bending workability and conductivity above a certain level, that is, increasing the strength. However, a material excellent in strength-conductivity balance and strength-bending workability balance has been demanded.

本発明は上記のような事情に着目してなされたものであって、その目的は、高強度化(引張強さと0.2%耐力を指す、以下同じ)を図りつつも、強度と導電性、曲げ加工性とのバランスに優れた銅合金を提供することにある。   The present invention has been made by paying attention to the above-described circumstances, and its purpose is to increase the strength (pointing to tensile strength and 0.2% proof stress, the same shall apply hereinafter), while maintaining strength and conductivity. An object of the present invention is to provide a copper alloy having an excellent balance with bending workability.

上記課題を解決し得た本発明の銅合金は、Cr:0.10〜0.50%(質量%の意味、以下同じ)、Ti:0.010〜0.30%、Si:0.01〜0.10%、前記Crと前記Tiの質量比:1.0≦(Cr/Ti)≦30、前記Crと前記Siの質量比:3.0≦(Cr/Si)≦30、となるように含有し、残部が銅及び不可避的不純物からなる銅合金であって、前記銅合金の表面においてTEMにより観察される500nm×500nmの領域における円相当直径5nm以下の析出物が200個以上であることに要旨を有する。   The copper alloy of the present invention capable of solving the above problems is Cr: 0.10 to 0.50% (meaning mass%, the same applies hereinafter), Ti: 0.010 to 0.30%, Si: 0.01 ~ 0.10%, Cr to Ti mass ratio: 1.0 ≦ (Cr / Ti) ≦ 30, Cr to Si mass ratio: 3.0 ≦ (Cr / Si) ≦ 30 A copper alloy consisting of copper and unavoidable impurities, and the number of equivalent circle diameters of 5 nm or less in a 500 nm × 500 nm region observed by TEM on the surface of the copper alloy is 200 or more. There is a gist to be.

本発明では、更に、他の元素として、Fe、Ni、およびCoよりなる群から選択される少なくとも一種以上:合計で0.3%以下を含有すること、Zn:0.5%以下を含有すること、Sn、Mg、およびAlよりなる群から選択される少なくとも一種以上:合計で0.3%以下を含有することも好ましい実施態様である。   In the present invention, as other elements, at least one selected from the group consisting of Fe, Ni and Co: containing 0.3% or less in total, Zn: containing 0.5% or less It is also a preferred embodiment that at least one selected from the group consisting of Sn, Mg, and Al: 0.3% or less in total.

本発明の銅合金は、引張強さ520MPa以上(好ましくは540MPa以上、より好ましくは550MPa以上)、0.2%耐力500MPa以上(好ましくは520MPa以上、より好ましくは530MPa以上)の高強度、導電率70%IACS以上(好ましくは75%IACS以上、より好ましくは80%IACS以上)の高導電性を有すると共に、W曲げ加工した際に、R(最小曲げ半径)/t(板厚)=1.0のときに、日本伸銅協会技術標準JBMA−T307:2007年に記載の「しわ」「割れ」の最大幅(μm)の評価基準に準拠した後記実施例で示す9段階の評価において、D〜C評価(好ましくはC評価)よりもより優れた曲げ加工性を有する。したがって本発明の銅合金は、強度と導電性のバランスがよく、また高強度を有しつつも厳しい曲げ加工条件でも割れが発生しない。本発明の銅合金は、特に電気・電子部品用材料として好適である。   The copper alloy of the present invention has a high strength and electrical conductivity with a tensile strength of 520 MPa or more (preferably 540 MPa or more, more preferably 550 MPa or more) and a 0.2% proof stress 500 MPa or more (preferably 520 MPa or more, more preferably 530 MPa or more). High conductivity of 70% IACS or more (preferably 75% IACS or more, more preferably 80% IACS or more), and R (minimum bending radius) / t (plate thickness) = 1. In the case of 0, in the nine-step evaluation shown in the examples below, which is based on the evaluation standard of the maximum width (μm) of “wrinkle” and “crack” described in the Japan Copper and Brass Association Technical Standard JBMA-T307: 2007, Bending workability better than C evaluation (preferably C evaluation). Therefore, the copper alloy of the present invention has a good balance between strength and conductivity, and does not generate cracks even under severe bending conditions while having high strength. The copper alloy of the present invention is particularly suitable as a material for electric / electronic parts.

本発明者らは、上記電気・電子部品用材料として好適な銅合金を得るために、強度と導電性のバランスに優れると共に、特に強度を高めつつ、W曲げ加工(R/t=1.0)のような厳しい加工条件でも割れが発生することがない、強度−曲げ加工性のバランス向上のための条件について検討を重ねた。その結果、Cr−Ti−Si系銅合金において、成分組成を制御すると共に、析出物のサイズと個数を制御することによって、強度をより一層向上できると共に、強度−導電性バランスや強度−曲げ加工性バランスに優れた銅合金を提供できることを見出し、本発明に至った。   In order to obtain a copper alloy suitable as the material for electric / electronic parts, the present inventors have an excellent balance between strength and conductivity, and in particular, while increasing the strength, W bending (R / t = 1.0). The conditions for improving the balance of strength-bending workability so that cracks do not occur even under severe processing conditions such as As a result, in the Cr-Ti-Si based copper alloy, the strength can be further improved by controlling the component composition and the size and number of precipitates, and the strength-conductivity balance and strength-bending process. The present inventors have found that a copper alloy having an excellent balance of properties can be provided, and have reached the present invention.

本発明に係る銅合金は、微細な析出物を所定数以上存在させる点に最大の特徴があるので、まず、この点について詳述する。   The copper alloy according to the present invention has the greatest feature in that a predetermined number or more of fine precipitates are present. First, this point will be described in detail.

一般に銅合金においては、析出物の存在が曲げ加工性に影響を及ぼすことが知られている。例えば析出物が多量に存在すると、曲げ加工した際に析出物の周りに局所的なひずみが発生し、均一な変形ができなくなり、割れやしわが発生するなど曲げ加工性が悪くなる。一方で曲げ加工性を向上させるために析出物の生成を抑制すると、強度が低下してしまうという問題が生じ、強度と曲げ加工性のバランスが悪くなる。   In general, in copper alloys, it is known that the presence of precipitates affects bending workability. For example, when a large amount of precipitates are present, local bending occurs around the precipitates when bending is performed, uniform deformation cannot be performed, and cracking and wrinkling occur, resulting in poor bending workability. On the other hand, if the formation of precipitates is suppressed in order to improve the bending workability, there arises a problem that the strength is lowered, and the balance between the strength and the bending workability is deteriorated.

そこで本発明者らは該析出物のサイズや個数が強度や曲げ加工性に及ぼす影響について詳細に検討した。その結果、析出物のサイズが少なくとも円相当直径で5nm以下に微細化されており(以下、「微細な析出物」ということがある)、且つ該微細な析出物が200個以上(500nm×500nmの範囲内)存在していれば、良好な曲げ加工性を保持しつつ、より一層の高強度化を図ることができ、強度−曲げ加工性バランスに優れた銅合金を提供できることを見出した。   Therefore, the present inventors examined in detail the influence of the size and number of the precipitates on strength and bending workability. As a result, the size of the precipitates has been refined to at least 5 nm in terms of the equivalent circle diameter (hereinafter sometimes referred to as “fine precipitates”), and 200 or more fine precipitates (500 nm × 500 nm). It has been found that a copper alloy having an excellent balance of strength and bending workability can be provided while maintaining good bending workability and further increasing strength.

更に本発明者らが検討を重ねた結果、強度、曲げ加工性、導電性は微細な析出物(円相当直径5nm以下)を所定数確保するだけでなく、成分組成も適切に制御することが重要であることがわかった。   Furthermore, as a result of repeated investigations by the present inventors, not only a predetermined number of fine precipitates (equivalent circle diameter of 5 nm or less) are secured in strength, bending workability, and conductivity, but the component composition can be appropriately controlled. I found it important.

すなわち、後記する実施例にも示しているように、成分組成を適切に制御すると共に、微細な析出物を所定数確保している例(No.1〜24)では、良好な特性(強度、導電性、曲げ加工性)を達成できた。一方、成分組成を適切に制御しなかった場合は、微細な析出物を所定数確保(500nm×500nmの領域において、微細な析出物が200個以上)できないため、良好な特性が得られなかったり(No.28〜30)、あるいは微細な析出物を所定数確保できても、良好な特性が得られない(No.31〜34)ことがわかった。   That is, as shown also in the Example mentioned later, while controlling the component composition appropriately and securing a predetermined number of fine precipitates (No. 1 to 24), good characteristics (strength, Conductivity and bending workability) were achieved. On the other hand, when the component composition is not properly controlled, a predetermined number of fine precipitates cannot be ensured (in the region of 500 nm × 500 nm, 200 or more fine precipitates). (Nos. 28 to 30) or even if a predetermined number of fine precipitates could be secured, it was found that good characteristics could not be obtained (Nos. 31 to 34).

本発明は上記知見に基づきなされたものであり、以下、本発明の構成について説明する。   The present invention has been made based on the above findings, and the configuration of the present invention will be described below.

まず、本発明では、銅合金の表面において透過型電子顕微鏡(Transmission Electron Microscope:TEM)により観察される500nm×500nmの領域における円相当直径5nm以下の析出物が200個以上存在していることが必要である。   First, in the present invention, there are 200 or more precipitates having an equivalent circle diameter of 5 nm or less in a 500 nm × 500 nm region observed by a transmission electron microscope (TEM) on the surface of a copper alloy. is necessary.

上記したように析出物は曲げ加工性に影響を及ぼすが、本発明者らが検討した結果、円相当直径で5nm以下の微細な析出物は、上記局所的なひずみに起因する曲げ加工性悪化の問題を生じることなく、良好な曲げ加工性に寄与することがわかった。曲げ加工性向上の観点から析出物は微細であることが望ましく、析出物のサイズは好ましくは3nm以下、より好ましくは1nm以下である。一方、曲げ加工性向上の観点からは析出物のサイズの下限は特に限定されないが、析出物が小さすぎると強度も低下する可能性があるため、例えば0.3nm以上であることが好ましい。   As described above, the precipitate affects the bending workability, but as a result of the study by the present inventors, a fine precipitate having a circle equivalent diameter of 5 nm or less is deteriorated in the bending workability due to the local strain. It was found that this contributes to good bending workability without causing the above problem. From the viewpoint of improving the bending workability, the precipitate is desirably fine, and the size of the precipitate is preferably 3 nm or less, more preferably 1 nm or less. On the other hand, the lower limit of the size of the precipitate is not particularly limited from the viewpoint of improving the bending workability. However, if the precipitate is too small, the strength may be lowered, and therefore, for example, 0.3 nm or more is preferable.

そして良好な曲げ加工性を維持しつつ、より一層高強度化を図る観点から、本発明ではこのような微細な析出物を所定数確保する必要がある。   From the viewpoint of further increasing the strength while maintaining good bending workability, it is necessary to secure a predetermined number of such fine precipitates in the present invention.

具体的にはTEMにより観察される500nm×500nmの領域において円相当直径で5nm以下の微細な析出物が、200個未満の場合、析出強化量が少なくなり、十分な強度が得られず、したがって、微細な析出物の個数は、200個以上、好ましくは300個以上、より好ましくは500個以上、更に好ましくは700個以上である。   Specifically, when the number of fine precipitates having an equivalent circle diameter of 5 nm or less in the region of 500 nm × 500 nm observed by TEM is less than 200, the precipitation strengthening amount is reduced, and sufficient strength cannot be obtained. The number of fine precipitates is 200 or more, preferably 300 or more, more preferably 500 or more, and still more preferably 700 or more.

なお、高強度化の観点からは上記微細な析出物の個数の上限は特に限定されないが、微細な析出物が多くなりすぎると、強度が高くなりすぎて曲げ加工性が悪化し、強度−曲げバランスが悪くなることがある。好ましい微細な析出物の個数は、1500個以下、より好ましくは1400個以下、更に好ましくは1300個以下である。   From the viewpoint of increasing the strength, the upper limit of the number of fine precipitates is not particularly limited, but if the amount of fine precipitates is excessive, the strength becomes too high and bending workability deteriorates, and the strength-bending Balance may get worse. The number of fine precipitates is preferably 1500 or less, more preferably 1400 or less, and still more preferably 1300 or less.

本発明において、析出物のサイズと個数は、銅合金表面の任意の5箇所において、TEMを用いて観察し(倍率15万倍)、観察視野中、500nm×500nmの領域に含まれる円相当直径5nm以下の析出物の個数をカウントし、各視野の測定値から求められる平均値である。   In the present invention, the size and the number of precipitates are observed with TEM (magnification 150,000 times) at any five locations on the surface of the copper alloy, and the equivalent circle diameter included in the 500 nm × 500 nm region in the observation field. It is an average value obtained by counting the number of precipitates of 5 nm or less and measuring from each field of view.

なお、本発明の析出物のサイズは円相当直径で上記範囲内であればよく、その形状については特に限定されない。   In addition, the size of the deposit of the present invention is not particularly limited as long as the equivalent circle diameter is within the above range.

次に、本発明の銅合金の成分組成について説明する。上記所望の効果を得るためには、銅合金の成分組成を適切に制御することも重要である。   Next, the component composition of the copper alloy of the present invention will be described. In order to obtain the desired effect, it is also important to appropriately control the component composition of the copper alloy.

Cr:0.10〜0.50%
Crは、単体の金属CrまたはSiとの化合物として析出することにより、銅合金の強度向上に寄与する作用を有する。Cr含有量が0.10%を下回ると、微細な析出物を所定数確保できず、所望の強度を確保することが困難となる場合がある。またCr含有量が少ないと析出するTi量が減少してTi固溶量が多くなり、導電性が悪化することがある。一方、Cr含有量が0.50%を超えても、上記微細な析出物が所定数確保できず、所望の強度が確保できない場合があり、また粗大な晶出物(例えば数十μm以上のサイズ)が多量に生成してしまい、曲げ加工性が悪化することがある。更に導電性に悪影響を及ぼすことがある。したがってCr含有量は、0.10%以上、好ましくは0.2%以上であって、0.50%以下、好ましくは0.40%以下である。
Cr: 0.10 to 0.50%
Cr has the effect of contributing to the strength improvement of the copper alloy by precipitating as a single metal Cr or a compound with Si. If the Cr content is less than 0.10%, a predetermined number of fine precipitates cannot be secured, and it may be difficult to secure a desired strength. On the other hand, if the Cr content is low, the amount of Ti deposited will decrease and the amount of Ti solid solution will increase, which may deteriorate the conductivity. On the other hand, even if the Cr content exceeds 0.50%, a predetermined number of the fine precipitates cannot be secured, and a desired strength may not be secured, and coarse crystals (for example, several tens μm or more) A large amount of (size) may be generated, and bending workability may deteriorate. In addition, the conductivity may be adversely affected. Accordingly, the Cr content is 0.10% or more, preferably 0.2% or more, and is 0.50% or less, preferably 0.40% or less.

Ti:0.010〜0.30%
Tiは、Siとの化合物として析出することにより、銅合金の強度向上に寄与する作用を有する。またTiは、CrやSiの固溶限を低下させ、これらの析出を促進させる効果がある。Tiの含有量が0.010%を下回ると、微細な析出物を所定数確保できず、所望の強度を確保することが困難となる。一方、Ti含有量が0.30%を超えると、粗大な晶出物が多量に生成してしまい、曲げ加工性が悪化することがある。更に固溶Tiが多くなり導電性に悪影響を及ぼすことがある。したがってTi含有量は、0.010%以上、好ましくは0.02%以上であって、0.30%以下、好ましくは0.15%以下である。
Ti: 0.010 to 0.30%
Ti precipitates as a compound with Si and thereby has an effect of contributing to the strength improvement of the copper alloy. Ti also has the effect of reducing the solid solubility limit of Cr and Si and promoting their precipitation. When the Ti content is less than 0.010%, a predetermined number of fine precipitates cannot be secured, and it becomes difficult to secure a desired strength. On the other hand, if the Ti content exceeds 0.30%, a large amount of coarse crystallized matter is generated, and bending workability may be deteriorated. Further, the amount of solid solution Ti increases, which may adversely affect the conductivity. Therefore, the Ti content is 0.010% or more, preferably 0.02% or more, and is 0.30% or less, preferably 0.15% or less.

Si:0.01〜0.10%
Siは、CrやTiとの前記化合物を析出させて銅合金の強度向上に寄与する作用を有する。Si含有量が0.01%を下回ると、微細な析出物を所定数確保できず、所望の強度を確保することが困難となる。一方、Si含有量が0.10%を超えると、導電性、曲げ加工性が悪くなることがある。したがってSi含有量は、0.01%以上、好ましくは0.02%以上であって、0.10%以下、好ましくは0.08%以下とする。
Si: 0.01-0.10%
Si has the effect | action which precipitates the said compound with Cr and Ti and contributes to the strength improvement of a copper alloy. When the Si content is less than 0.01%, a predetermined number of fine precipitates cannot be secured, and it becomes difficult to secure a desired strength. On the other hand, when the Si content exceeds 0.10%, conductivity and bending workability may be deteriorated. Accordingly, the Si content is 0.01% or more, preferably 0.02% or more, and 0.10% or less, preferably 0.08% or less.

本発明においては、強度、導電性、及び曲げ加工性をバランスよく一層向上させるために、添加元素(Cr、Ti、Si)の含有比率を以下範囲内となるように調整する。   In the present invention, in order to further improve the strength, conductivity, and bending workability in a well-balanced manner, the content ratio of the additive elements (Cr, Ti, Si) is adjusted to be within the following range.

Cr/Ti(質量比、以下同じ):1.0〜30
銅合金に含まれるCrとTiの質量比(Cr/Ti)のバランスは強度、導電性、曲げ加工性に影響する。すなわち、Cr/Tiが小さい方が高い強度が得られる。したがって、Cr/Tiは30以下、好ましくは15以下となるように調整することが望ましい。またCr/Tiが1.0よりも小さいと時効処理後の銅合金中のTi固溶量が多くなりすぎ、導電性が低下する。また曲げ加工性も悪化することがある。したがってCr/Tiは1.0以上、好ましくは3.0以上となるように調整することが望ましい。
Cr / Ti (mass ratio, the same applies hereinafter): 1.0 to 30
The balance of Cr and Ti mass ratio (Cr / Ti) contained in the copper alloy affects the strength, conductivity, and bending workability. That is, higher strength is obtained when Cr / Ti is smaller. Therefore, it is desirable to adjust so that Cr / Ti is 30 or less, preferably 15 or less. On the other hand, if Cr / Ti is smaller than 1.0, the amount of Ti solid solution in the copper alloy after the aging treatment becomes too large, and the conductivity is lowered. Moreover, bending workability may also deteriorate. Therefore, it is desirable to adjust so that Cr / Ti is 1.0 or more, preferably 3.0 or more.

Cr/Si(質量比、以下同じ):3.0〜30
銅合金に含まれるCrとSiの質量比(Cr/Si)のバランスは強度、導電性、曲げ加工性に影響する。すなわち、Cr/Siが大きくなりすぎると、導電性が低下する。したがってCr/Siは30以下、好ましくは20以下となるように調整することが望ましい。またCr/Siが3.0よりも小さいとCrとSiの化合物が粗大な析出物として生成され、強度−曲げ加工性バランスに悪影響を及ぼす。また他の元素の固溶量が増加して導電性が悪化することがある。したがってCr/Siは3.0以上、好ましくは10以上となるように調整することが望ましい。
Cr / Si (mass ratio, the same applies hereinafter): 3.0 to 30
The balance of the mass ratio of Cr and Si (Cr / Si) contained in the copper alloy affects the strength, conductivity, and bending workability. That is, when Cr / Si becomes too large, the conductivity is lowered. Therefore, it is desirable to adjust so that Cr / Si is 30 or less, preferably 20 or less. On the other hand, if Cr / Si is smaller than 3.0, a compound of Cr and Si is generated as a coarse precipitate, which adversely affects the strength-bending workability balance. Moreover, the solid solution amount of other elements may increase and conductivity may deteriorate. Therefore, it is desirable to adjust so that Cr / Si is 3.0 or more, preferably 10 or more.

本発明は上記成分組成、Cr/Ti、およびCr/Siを満足し、残部は銅、および不可避的不純物である。不可避的不純物としては例えばMn、Ca、V、Nb、Mo、Wなどの元素が例示される。不可避的不純物の含有量が多くなると強度、導電性、曲げ加工性などを低下させることがあるため、総量で、好ましくは0.1%以下、より好ましくは0.05%以下とすることが望ましい。   The present invention satisfies the above component composition, Cr / Ti, and Cr / Si, with the balance being copper and inevitable impurities. Examples of unavoidable impurities include elements such as Mn, Ca, V, Nb, Mo, and W. If the content of inevitable impurities increases, the strength, conductivity, bending workability, etc. may be lowered. Therefore, the total amount is preferably 0.1% or less, more preferably 0.05% or less. .

本発明では上記銅合金に更に以下の元素を添加してもよい(選択元素)。   In the present invention, the following elements may be further added to the copper alloy (selective element).

Fe、Ni、およびCoよりなる群から選択される少なくとも一種以上:合計で0.3%以下(Fe、Ni、Coを単独で含むときは単独の含有量であり、複数を含む場合は合計量である。)
Fe、Ni、Coは、Siとの化合物を析出させて銅合金の強度及び導電性を向上させる作用を有する。このような効果はFe、Ni、Coいずれの組み合わせ(Fe−Ni、Fe−Co、Ni−Co)でも同様の効果を発揮し、Fi、Ni、Co全てが含まれている場合も同様の効果を発揮する。また後記する他の選択元素と任意に組み合わせても所定の含有量であれば、各選択元素の効果を奏することができる。これらの元素は所定量(合計)を超えて含まれていると、固溶量が多くなって、上記微細な析出物や成分組成(Cr、Ti、Si)が所定の範囲内であっても導電性に悪影響を及ぼすため、含有量を適切に制御することが望ましい。したがって好ましい含有量(合計)は0.3%以下、より好ましくは0.2%以下である。一方、含有量(合計)が少なすぎると、上記強度及び導電性向上効果が十分に得られないため、添加する場合は、好ましくは0.01%以上、より好ましくは0.03%以上である。
At least one selected from the group consisting of Fe, Ni, and Co: 0.3% or less in total (when Fe, Ni, Co is included alone, it is a single content, and when multiple are included, the total amount .)
Fe, Ni, and Co have a function of improving the strength and conductivity of the copper alloy by precipitating a compound with Si. Such an effect exhibits the same effect with any combination of Fe, Ni, and Co (Fe—Ni, Fe—Co, Ni—Co), and the same effect when all of Fi, Ni, and Co are included. Demonstrate. Moreover, even if it combines arbitrarily with the other selection element mentioned later, if it is a predetermined content, there exists an effect of each selection element. If these elements are contained in excess of a predetermined amount (total), the amount of solid solution increases, and even if the fine precipitates and component composition (Cr, Ti, Si) are within a predetermined range. In order to adversely affect conductivity, it is desirable to control the content appropriately. Therefore, the preferable content (total) is 0.3% or less, more preferably 0.2% or less. On the other hand, if the content (total) is too small, the above-described strength and conductivity improvement effects cannot be obtained sufficiently. Therefore, when added, the content is preferably 0.01% or more, more preferably 0.03% or more. .

Zn:0.5%以下
Znは、電気部品の接合に用いるSnめっきやはんだの耐熱剥離性を改善し、熱剥離を抑制する効果を有する。このような効果を有効に発揮させるためには0.01%以上含有させることが好ましい。しかし、過剰に含有させると、かえって溶融Snやはんだの濡れ広がり性が劣化し、また導電性が悪化することから、好ましくは0.5%以下である。またZnは析出せずに固溶しており、上記範囲内ではZnの固溶状態が他の元素の析出状態に影響を与えることはないため、[Fe、Ni、Co]や[Sn、Mg、Al]のいずれの選択元素(単数または複数)と組み合わせても、上記Znの効果や他の選択元素の効果を奏することができ、いずれの組合せでも同様の効果を発揮する。
Zn: 0.5% or less Zn has the effect of improving the heat-resistant peelability of Sn plating and solder used for joining electrical components and suppressing thermal peeling. In order to exhibit such an effect effectively, it is preferable to make it contain 0.01% or more. However, if excessively contained, the wet-spreading property of molten Sn and solder is deteriorated, and the conductivity is deteriorated. Therefore, the content is preferably 0.5% or less. In addition, Zn is not precipitated but is dissolved, and within the above range, the solid solution state of Zn does not affect the precipitation state of other elements, so [Fe, Ni, Co] or [Sn, Mg] , Al] can be combined with any selected element (single element or plural elements), and the effects of the above Zn and other selected elements can be obtained, and any combination exhibits the same effect.

Sn、Mg、Alよりなる群から選択される少なくとも一種以上:合計で0.3%以下(Sn、Mg、Alを単独で含むときは単独の含有量であり、複数含む場合は合計量である。)
Sn、Mg、Alは、固溶することによって銅合金の強度を向上させる効果を有する。このような効果を十分に発揮させるためには、合計量で0.01%以上含有させることが好ましく、より好ましくは0.03%以上である。一方、過剰に含有させると導電性が得られなくなることから、好ましくは合計量で0.3%以下である。これら選択元素は上記範囲内の含有量であれば、他の元素の析出状態に影響を与えることはない。また、これら選択元素は固溶することによって強度を向上させるため、選択元素の足し合わせが可能であり、Sn、Mg、Alいずれの組み合わせ(Sn−Mg、Sn−Al、Mg−Al)でも同様の効果を発揮し、Sn、Mg、Al全てが含まれている場合も同様の効果を発揮する。また上記Fe、Ni、CoやZnのいずれの選択元素(単数または複数)と組み合わせても、上記Sn、Mg、Alの効果や他の選択元素の効果を奏することができ、いずれの組合せでも同様の効果を発揮する。
At least one or more selected from the group consisting of Sn, Mg, and Al: a total of 0.3% or less (a single content when Sn, Mg, and Al are included alone, and a total amount when multiple are included) .)
Sn, Mg, and Al have an effect of improving the strength of the copper alloy by being dissolved. In order to sufficiently exhibit such an effect, the total amount is preferably 0.01% or more, and more preferably 0.03% or more. On the other hand, if it is excessively contained, the conductivity cannot be obtained, so the total amount is preferably 0.3% or less. If these selected elements are contained in the above range, they do not affect the precipitation state of other elements. Moreover, since these selective elements improve the strength by dissolving, the selective elements can be added together, and any combination of Sn, Mg, and Al (Sn—Mg, Sn—Al, Mg—Al) is the same. The same effect is also exhibited when all of Sn, Mg, and Al are included. In addition, the effect of Sn, Mg, Al and the effect of other selective elements can be achieved by combining with any of the selected elements (single or plural) of Fe, Ni, Co, and Zn. Demonstrate the effect.

次に、上記本発明に係る銅合金の好ましい製造条件について説明する。   Next, preferable production conditions for the copper alloy according to the present invention will be described.

本発明者らが上記微細な析出物を所定数確保するための具体的な製造条件について検討した結果、熱間圧延終了後から冷却を開始するまでの時間が長くなると、微細な析出物が所定数得られないことがわかった(No.26)。更に熱間圧延後の冷却方法や時効処理前の冷間圧延の圧下率などを適切に制御することも、微細な析出物を所定数確保するためには重要であることがわかった(No.25、27、35)。   As a result of examining specific manufacturing conditions for securing a predetermined number of the fine precipitates by the present inventors, if the time from the end of hot rolling to the start of cooling becomes long, the fine precipitates are predetermined. It was found that a number could not be obtained (No. 26). Furthermore, it has been found that appropriately controlling the cooling method after hot rolling and the reduction ratio of cold rolling before aging treatment are also important for securing a predetermined number of fine precipitates (No. 25, 27, 35).

本発明は、上記成分組成の銅合金を用いて析出物のサイズと個数を上記特定の範囲内に制御して、優れた強度、導電性、曲げ加工性を発現させるために、特に熱間圧延後60秒以内に急冷することと、時効前の冷間圧延率を90%以上にするところに特徴を有する。   The present invention uses a copper alloy having the above component composition to control the size and number of precipitates within the specific range described above, in order to express excellent strength, conductivity, and bending workability. It is characterized in that it is rapidly cooled within 60 seconds and the cold rolling ratio before aging is 90% or more.

まず、成分組成を調整した銅合金を溶解、鋳造して得られた鋳塊を加熱(均質化熱処理を含む)した後、熱間圧延を行い、続いて冷間圧延を行い、その後、時効処理を行うことにより、本発明の銅合金(最終板)が製造される。   First, an ingot obtained by melting and casting a copper alloy with an adjusted composition is heated (including homogenization heat treatment), then hot rolled, followed by cold rolling, and then aging treatment By performing this, the copper alloy (final plate) of the present invention is manufactured.

銅合金の溶解、鋳造、その後の加熱処理は通常の方法によって行うことができる。例えば所定の化学成分組成に調整した銅合金を電気炉で溶解した後、連続鋳造などにより銅合金鋳塊を鋳造する。その後、鋳塊をおおむね800〜1000℃程度に加熱し、必要に応じて一定時間保持(例えば10〜120分)する。   The melting, casting, and subsequent heat treatment of the copper alloy can be performed by ordinary methods. For example, after a copper alloy adjusted to a predetermined chemical composition is melted in an electric furnace, a copper alloy ingot is cast by continuous casting or the like. Thereafter, the ingot is heated to about 800 to 1000 ° C. and held for a certain time (for example, 10 to 120 minutes) as necessary.

本発明では熱間圧延の圧下率は特に限定されず、目的とする板厚、及び後記冷間圧延率との関係で決定すればよい。なお、熱間圧延は1回、あるいは複数回行うことができる。例えば好ましい熱間圧延率は70%以上、より好ましくは90%以上である。   In the present invention, the reduction ratio of the hot rolling is not particularly limited, and may be determined in relation to the target plate thickness and the cold rolling reduction described later. The hot rolling can be performed once or a plurality of times. For example, the preferable hot rolling rate is 70% or more, more preferably 90% or more.

熱間圧延後冷却するが、本発明では熱間圧延後、冷却を開始するまでの時間を60秒以内とする必要がある。熱間圧延後、冷却を開始するまでの時間が短くなると、粗大な析出物の生成を抑制することができ、時効処理で円相当直径で5nm以下の微細な析出物をより多く生成でき、強度向上効果も高めることができる。好ましくは45秒以下、更に好ましくは15秒以下である。下限は特に限定されないが好ましくは1秒以上である。   Although it cools after hot rolling, in this invention, after hot rolling, it is necessary to make time to start cooling within 60 second. When the time until the cooling starts after the hot rolling is shortened, the formation of coarse precipitates can be suppressed, and more fine precipitates having an equivalent circle diameter of 5 nm or less can be generated more by aging treatment. The improvement effect can also be enhanced. Preferably it is 45 seconds or less, More preferably, it is 15 seconds or less. Although a minimum is not specifically limited, Preferably it is 1 second or more.

なお、熱間圧延後、冷却を開始するまでの時間が長くなると、熱間圧延後冷却するまでの間(時間)に粗大な析出物が生成してしまうため、時効処理を行っても円相当直径で5nm以下の微細な析出物を十分に生成することができず、微細な析出物を所定数確保できず、所望の強度向上効果が得られなくなると共に、曲げ加工性も悪くなる。   In addition, if the time until the cooling starts after the hot rolling becomes long, coarse precipitates are generated until the cooling after the hot rolling (time). Fine precipitates having a diameter of 5 nm or less cannot be sufficiently generated, a predetermined number of fine precipitates cannot be secured, and a desired strength improvement effect cannot be obtained, and bending workability also deteriorates.

熱間圧延温度は特に限定されず、例えば好ましくは700℃以上、より好ましくは750℃以上、更に好ましくは800℃以上であればよく、また冷却開始温度も上記所定の時間内であれば、ほぼ同程度の温度域(例えば好ましくは650℃以上、より好ましくは700℃以上、更に好ましくは750℃以上)であるため、特に限定されない。   The hot rolling temperature is not particularly limited. For example, the hot rolling temperature is preferably 700 ° C. or higher, more preferably 750 ° C. or higher, and still more preferably 800 ° C. or higher. Since it is in the same temperature range (for example, preferably 650 ° C. or higher, more preferably 700 ° C. or higher, more preferably 750 ° C. or higher), there is no particular limitation.

熱間圧延後の冷却では、室温まで急冷することが望ましい。熱間圧延後の冷却速度が小さいと、冷却過程で粗大な析出物が生成してしまい、時効処理を行っても円相当直径で5nm以下の微細な析出物を十分に生成することができず、微細な析出物を所定数確保できず、所望の強度向上効果が得られなくなると共に、曲げ加工性も悪くなる。   In cooling after hot rolling, it is desirable to rapidly cool to room temperature. If the cooling rate after hot rolling is low, coarse precipitates are generated in the cooling process, and even if aging treatment is performed, fine precipitates having a circle equivalent diameter of 5 nm or less cannot be sufficiently generated. In addition, a predetermined number of fine precipitates cannot be secured, and a desired strength improvement effect cannot be obtained, and bending workability is also deteriorated.

本発明で急冷とは、空冷を超える速度(平均冷却速度)での冷却であり、好ましくは50℃/秒以上である。冷却速度の上限は特に限定されないが、実操業などを考慮すると、おおむね500℃/秒以下が好ましい。急冷手段は特に限定されず、例えば水冷など各種公知の冷却手段を採用できる。   In the present invention, rapid cooling is cooling at a rate exceeding air cooling (average cooling rate), and is preferably 50 ° C./second or more. The upper limit of the cooling rate is not particularly limited, but is preferably about 500 ° C./second or less in consideration of actual operation and the like. The rapid cooling means is not particularly limited, and various known cooling means such as water cooling can be employed.

本発明では、冷却後、時効処理直前の冷間圧延率を90%以上とする必要がある。冷間圧延率を90%以上とすることによって、後記する時効処理時に析出物発生の核として働く格子欠陥を導入し、微細な析出物を所定数以上確保できる。冷間圧延率は高いほど、微細な析出物の数も多くなるため、好ましい冷間圧延率は93%以上、より好ましくは97%以上である。   In the present invention, after cooling, the cold rolling rate immediately before the aging treatment needs to be 90% or more. By setting the cold rolling rate to 90% or more, lattice defects that serve as nuclei for precipitate generation during the aging treatment described later can be introduced, and a predetermined number or more of fine precipitates can be secured. Since the number of fine precipitates increases as the cold rolling rate increases, the preferable cold rolling rate is 93% or more, more preferably 97% or more.

なお、本発明では1回の冷間圧延で圧延率を90%以上としてもよいし、冷間圧延を複数回行って合計圧延率を90%以上としてもよく、圧延回数は特に限定されない。複数回冷間圧延を行う場合は所定の微細な析出物を確保する観点から中間焼鈍などの加熱処理を施すことなく、所定の圧延率となるように冷間圧延を行うことが望ましい。   In the present invention, the rolling rate may be 90% or more by one cold rolling, or the total rolling rate may be 90% or more by performing cold rolling a plurality of times, and the number of rolling is not particularly limited. When performing cold rolling a plurality of times, it is desirable to perform cold rolling so as to obtain a predetermined rolling rate without performing heat treatment such as intermediate annealing from the viewpoint of securing predetermined fine precipitates.

冷間圧延後、時効処理を行う。時効処理を適切に行うことによって、上記所定の微細な析出物を確保して銅合金の強度をより一層向上させつつ、強度−導電性、および強度−曲げ加工性バランスを向上させることができる。   After cold rolling, aging treatment is performed. By appropriately performing the aging treatment, it is possible to improve the strength-conductivity balance and the strength-bending workability balance while ensuring the predetermined fine precipitates and further improving the strength of the copper alloy.

時効処理は、350℃〜650℃の温度にて30分〜10時間程度行い、時効後は水冷または放冷により冷却することが望ましい。   The aging treatment is preferably performed at a temperature of 350 ° C. to 650 ° C. for about 30 minutes to 10 hours, and after aging, it is desirable to cool by water cooling or standing to cool.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

銅合金をクリプトル炉において、大気中、木炭被覆下で溶解し、鋳鉄製ブックモールドに鋳造し、表1に記載する化学組成(残部銅及び不可避的不純物)を有する厚さ(=t)200mmt(No.1〜3、5〜24、26、28〜35)または100mmt(No.4、25、27)の鋳塊を得た。   Thickness (= t) 200 mmt (= t) having a chemical composition (residual copper and unavoidable impurities) described in Table 1 after the copper alloy was melted in the kryptor furnace in the atmosphere under charcoal coating and cast into a cast iron book mold No. 1-3, 5-24, 26, 28-35) or 100 mmt (No. 4, 25, 27) ingots were obtained.

その後、加熱して950℃に到達後、1時間保持した後、熱間圧延して所定の厚さ(No.1〜3、6〜24、26、28〜35:20mmt、No.5:64mmt、No.4、25、27:10mmt)の板とし、圧延終了後、750℃以上の温度から室温まで水冷(平均冷却速度:100℃/s)した。この際、冷却は圧延終了後、所定の時間内(表中、「熱間圧延終了から冷却までの時間(秒)」)に開始した。なお、No.25、35については、冷却方法を空冷(平均冷却速度:0.5℃/s)に変更して行った。   Then, after reaching 950 ° C. by heating and holding for 1 hour, it is hot-rolled to a predetermined thickness (No. 1 to 3, 6 to 24, 26, 28 to 35: 20 mmt, No. 5: 64 mmt). No. 4, 25, 27: 10 mmt), and after completion of rolling, the plate was water-cooled from a temperature of 750 ° C. to room temperature (average cooling rate: 100 ° C./s). At this time, cooling was started within a predetermined time after completion of rolling (in the table, “time from completion of hot rolling to cooling (seconds)”). In addition, No. For 25 and 35, the cooling method was changed to air cooling (average cooling rate: 0.5 ° C./s).

その後、酸化スケールを除去した後、一部の試料は面削を行ってから(No.4は9mmt、No.25、27は3.2mmtとした)、冷間圧延を行い、厚さが0.64mmの銅合金板を得た。この際、時効処理直前の合計の冷間圧延率が所定の圧下率となるようにした(表中、「時効直前の冷間圧延率(%)」)。   Then, after removing the oxide scale, some samples were chamfered (No. 4 was 9 mmt, No. 25 and 27 were 3.2 mmt), then cold-rolled, and the thickness was 0 A copper alloy plate of 64 mm was obtained. At this time, the total cold rolling rate immediately before the aging treatment was set to a predetermined reduction rate (in the table, “cold rolling rate (%) immediately before aging”).

その後、バッチ焼鈍炉にて、450℃にて2時間の時効処理を行った。   Thereafter, an aging treatment was performed at 450 ° C. for 2 hours in a batch annealing furnace.

得られた銅合金板(最終板)から試料(試験片)を切り出し、析出物、引張強度、0.2%耐力、導電性、および曲げ加工性を下記要領で測定した。これらの結果を表2に示す。   A sample (test piece) was cut out from the obtained copper alloy plate (final plate), and precipitates, tensile strength, 0.2% proof stress, conductivity, and bending workability were measured as follows. These results are shown in Table 2.

(析出物の測定方法)
試験片表面(任意の箇所)の銅合金組織をTEM(日立製作所製:透過型電子顕微鏡H−800、加速電圧:200kV、観察方向:[001]、倍率:15万倍)で観察し(5視野)、500nm×500nmの領域内に存在する5nm以下の析出物の個数を肉眼で視認できる範囲でカウントし、5視野の平均を求めた。結果を表2に示す(表中、「析出物の数」)なお、析出物のサイズ(円相当直径)は、画像解析ソフトを用いてその面積Aを求め、A=πrとして円相当直径2r(r=半径)を算出した。
(Measurement method of precipitate)
The copper alloy structure on the surface of the specimen (arbitrary location) was observed with TEM (manufactured by Hitachi, Ltd .: transmission electron microscope H-800, acceleration voltage: 200 kV, observation direction: [001], magnification: 150,000 times) (5 Field of view), the number of precipitates of 5 nm or less existing in the region of 500 nm × 500 nm was counted within a range that can be visually recognized by the naked eye, and the average of the five fields of view was determined. The results are shown in Table 2 (in the table, “the number of precipitates”). The size (equivalent circle diameter) of the precipitates was obtained by calculating the area A using image analysis software, and the equivalent circle diameter 2r (A = πr 2 ) r = radius) was calculated.

(引張強度、0.2%耐力)
圧延方向に平行に切り出した試験片(サイズ:JIS5号)を作製し、5882型インストロン社製万能試験機により、室温、試験速度10.0mm/min、GL=50mmの条件で、引張強度、0.2%耐力を測定した。本発明では引張強度520MPa以上、且つ0.2%耐力500MPa以上を高強度と評価した。
(Tensile strength, 0.2% proof stress)
A test piece cut out parallel to the rolling direction (size: JIS No. 5) was prepared, and the tensile strength, 0.2% yield strength was measured. In the present invention, a tensile strength of 520 MPa or more and a 0.2% proof stress of 500 MPa or more were evaluated as high strength.

(導電性)
導電性は、ミーリングにより、幅10mm×長さ300mmの短冊状の試験片を加工し、ダブルブリッジ式抵抗測定装置により電気抵抗を測定して、平均断面積法により算出した。本発明では導電性70%(IACS)以上を良好と評価した。
(Conductivity)
The conductivity was calculated by an average cross-sectional area method by processing a strip-shaped test piece having a width of 10 mm and a length of 300 mm by milling, measuring an electric resistance with a double bridge resistance measuring device. In the present invention, a conductivity of 70% (IACS) or higher was evaluated as good.

(曲げ加工性)
銅合金板試料の曲げ試験は、日本伸銅協会技術標準に従って行った。板材を幅10mm×長さ30mmに切り出した試料を用いてW曲げ試験を行った。曲げ半径Rと、銅合金板の板厚tとの比(R/t)が、1.0となるように曲げ加工を実施した。W曲げ加工後、曲げ部における割れの有無を10倍の光学顕微鏡で観察した。割れの評価は日本伸銅協会技術標準(JBMA−T307:2007年)に準拠して評価した。具体的には伸銅協会技術標準では評価が5段階であるが、本発明では詳細に曲げ加工性を評価するために、「しわ」「われ」の最大幅(μm)をA(10以下)、A〜B(10超〜15以下)、B(15超〜20以下)、B〜C(20超〜25以下)、C(25超〜30以下)、C〜D(30超〜35以下)、D(35超〜40以下)、D〜E(40超〜45以下)、E(45超)の9段階で評価し、本発明ではD評価より優れているもの(すなわち、C〜D評価以上)を曲げ加工性が優れていると評価した。結果を表2に記載する。
(Bending workability)
The bending test of the copper alloy sheet sample was performed according to the Japan Copper and Brass Association technical standard. A W-bending test was performed using a sample obtained by cutting a plate material into a width of 10 mm and a length of 30 mm. Bending was performed so that the ratio (R / t) of the bending radius R to the thickness t of the copper alloy plate was 1.0. After W bending, the presence or absence of cracks in the bent portion was observed with a 10 × optical microscope. The evaluation of the crack was performed according to the Japan Copper and Brass Association technical standard (JBMA-T307: 2007). Specifically, although the evaluation is based on five levels in the technical standard of the Copper and Brass Association, in the present invention, in order to evaluate the bending workability in detail, the maximum width (μm) of “wrinkles” and “cracks” is set to A (10 or less). A to B (over 10 to 15 or less), B (over 15 to 20 or less), B to C (over 20 to 25 or less), C (over 25 to 30 or less), C to D (over 30 to 35 or less) ), D (over 35 to 40 or less), D to E (above 40 to 45 or less), and E (above 45), which are superior to D evaluation in the present invention (that is, C to D). Evaluation or higher) was evaluated as having excellent bending workability. The results are listed in Table 2.

Figure 0005952726
Figure 0005952726

Figure 0005952726
Figure 0005952726

No.1〜24は、本発明の上記規定を満足する化学組成、及び製造条件の例であり、いずれも十分な導電率を有すると共に、強度(引張強度、0.2%耐力)と曲げ加工性のバランスにも優れていた。   No. 1 to 24 are examples of chemical compositions and production conditions that satisfy the above-mentioned provisions of the present invention, all having sufficient conductivity, strength (tensile strength, 0.2% proof stress) and bending workability. The balance was also excellent.

これら実施例のうち、No.1〜3は「熱間圧延終了から冷却までの時間(秒)」以外は同一条件にした例である。冷却開始までの時間が最も短かったNo.3では、微細な析出物をより多く生成することができ、導電性、および曲げ加工性はNo.1、2と同程度に維持しつつ、高い強度を得ることができた。   Of these examples, no. 1 to 3 are examples in which the same conditions are used except for “time from completion of hot rolling to cooling (seconds)”. No. with the shortest time to start cooling No. 3 can produce more fine precipitates, and the conductivity and bending workability are No.3. While maintaining the same level as 1 and 2, high strength could be obtained.

またNo.No.4、5は「時効直前の冷間圧延率(%)」以外は同一条件にした例である。冷間圧延率が高いNo.5では、微細な析出物をより多く生成することができ、導電性、および曲げ加工性はNo.4と同程度に維持しつつ、高い強度を得ることができた。   No. No. Examples 4 and 5 are the same conditions except for “cold rolling ratio (%) immediately before aging”. No. with a high cold rolling rate. In No. 5, fine precipitates can be generated more, and the conductivity and bending workability are No.5. While maintaining the same level as 4, high strength could be obtained.

更にNo.8、10は必須成分であるTi含有量以外は同一条件にした例である。これらの例から、Ti含有量が多くなると微細な析出物の数が多くなり、より高い強度が得られると共に、導電性は減少する傾向を示した。   Furthermore, no. 8 and 10 are examples in which the same conditions except for the Ti content which is an essential component are used. From these examples, as the Ti content increased, the number of fine precipitates increased, and higher strength was obtained and the conductivity tended to decrease.

また更にNo.16、23は選択元素であるSnの有無以外は同一条件にした例である。これらの例から、選択元素を含有させると、強度向上効果が得られた。   Furthermore, no. 16 and 23 are examples in which the same conditions are used except for the presence or absence of Sn as a selective element. From these examples, when a selective element was included, an effect of improving the strength was obtained.

No.25〜27、35は製造条件が本発明の規定を外れたため、微細な析出物の数を確保できなかった例であり、No.28〜34は、本発明で規定する成分組成を満足しなかった例(No.28〜30は更に析出物の数も満足しない例)である。   No. Nos. 25 to 27 and 35 are examples in which the number of fine precipitates could not be secured because the manufacturing conditions deviated from the provisions of the present invention. Nos. 28 to 34 are examples in which the component composition defined in the present invention was not satisfied (Nos. 28 to 30 were examples in which the number of precipitates was not satisfied).

No.25は、熱間圧延後の冷却を空冷にし、時効直前の冷間圧延率が低かった例であり、微細な析出物を所定数確保できなかったため強度が低く、また冷却が空冷であるため粗大な析出物が生成し、曲げ加工性が悪かった。   No. 25 is an example in which the cooling after hot rolling was air-cooled, and the cold rolling rate just before aging was low, and because a predetermined number of fine precipitates could not be secured, the strength was low, and the cooling was air-cooled and coarse Precipitates were formed and bending workability was poor.

No.26は、熱間圧延後冷却開始までの時間が長かった例であり、微細な析出物を所定数確保できなかったため強度が低く、また粗大な析出物が生成して曲げ加工性が悪かった。   No. No. 26 is an example in which the time from the hot rolling to the start of cooling was long. Since a predetermined number of fine precipitates could not be secured, the strength was low, and coarse precipitates were generated, resulting in poor bending workability.

No.27は、時効直前の冷間圧延率が低かった例であり、微細な析出物を所定数確保できなかったため強度が低かった。   No. 27 is an example in which the cold rolling rate just before aging was low, and the strength was low because a predetermined number of fine precipitates could not be secured.

No.28は、Cr含有量が本発明の規定よりも多く、またCr/Si比が本発明の規定を上回る例である。No.28では微細な析出物を所定数確保できず、強度を確保できなかった。またCr含有量が多いため、粗大な晶出物が生成してしまい、十分な曲げ加工性が得られなかった。また、Cr/Si比が所定の条件を満たしていないため導電性が悪かった。   No. No. 28 is an example in which the Cr content is higher than that specified in the present invention and the Cr / Si ratio exceeds the value specified in the present invention. No. In 28, a predetermined number of fine precipitates could not be secured, and the strength could not be secured. Moreover, since there is much Cr content, the coarse crystallization thing produced | generated and sufficient bending workability was not obtained. Also, the conductivity was poor because the Cr / Si ratio did not satisfy the predetermined condition.

No.29は、Cr含有量が本発明の規定よりも少なく、またCr/Ti比が本発明の規定を下回る例である。No.29では微細な析出物を所定数確保できず、強度を確保できなかった。またCr含有量が少ないため、析出せずに固溶しているTi量が多くなって導電性が悪化した。なお、この例は強度が低いため曲げ加工性はよかったが、所定の強度を有しておらず、強度−曲げ加工性バランスが悪かった。   No. No. 29 is an example in which the Cr content is less than that of the present invention and the Cr / Ti ratio is lower than that of the present invention. No. In 29, a predetermined number of fine precipitates could not be secured, and the strength could not be secured. Moreover, since there was little Cr content, the amount of Ti which did not precipitate but became solid solution increased, and electroconductivity deteriorated. In this example, since the strength was low, the bending workability was good, but it did not have a predetermined strength, and the strength-bending workability balance was poor.

No.30は、Ti含有量が本発明の規定よりも少なく、またCr/Ti比が本発明の規定を上回る例である。No.30では微細な析出物を所定数確保できず、強度を確保できなかった。強度が低いため曲げ加工性はよかったが、所定の強度を有しておらず、強度−曲げ加工性バランスが悪かった。   No. No. 30 is an example in which the Ti content is less than that defined in the present invention and the Cr / Ti ratio exceeds the value defined in the present invention. No. In 30, the predetermined number of fine precipitates could not be secured, and the strength could not be secured. Bending workability was good because the strength was low, but it did not have a predetermined strength, and the strength-bending workability balance was poor.

No.31は、Ti含有量が本発明の規定よりも多く、またCr/Ti比が本発明の規定を下回る例である。No.31では、Ti量が過剰であったため、析出せずに固溶しているTi量が多くなって導電率が悪化し、また、粗大な晶出物が生成してしまい、曲げ加工性が悪かった。   No. No. 31 is an example in which the Ti content is higher than that of the present invention and the Cr / Ti ratio is lower than that of the present invention. No. In No. 31, since the amount of Ti was excessive, the amount of Ti dissolved in the solution without increasing was increased, the conductivity was deteriorated, and coarse crystals were formed, resulting in poor bending workability. It was.

No.32は、Si含有量が本発明の規定よりも多く、またCr/Si比が本発明の規定を下回る例である。No.32では、本発明で規定する微細な析出物を所定数確保できたが、Cr/Si比が小さく、粗大な析出物が生成されたため、導電性、および曲げ加工性が悪かった。   No. No. 32 is an example in which the Si content is higher than that of the present invention and the Cr / Si ratio is lower than that of the present invention. No. In No. 32, a predetermined number of fine precipitates defined in the present invention could be secured, but since the Cr / Si ratio was small and coarse precipitates were generated, the conductivity and bending workability were poor.

No.33は、Fe含有量が本発明の規定を上回る例である。No.33では、本発明で規定する微細な析出物を所定数確保できたが、Feを過剰に含有していたため、Fe固溶量が多くなりすぎて、導電性が悪かった。   No. 33 is an example in which the Fe content exceeds the definition of the present invention. No. In No. 33, a predetermined number of fine precipitates defined in the present invention could be secured. However, since Fe was excessively contained, the amount of Fe solid solution was too large and the conductivity was poor.

No.34は、Sn含有量が本発明の規定よりも多い例である。No.34では、Snを過剰に含有していたため、導電性が悪かった。   No. 34 is an example in which the Sn content is greater than that of the present invention. No. In No. 34, since Sn was contained excessively, conductivity was bad.

No.35は、熱間圧延後の冷却を空冷にした例である。この例では、微細な析出物を所定数確保できなかったため強度が低く、また冷却が空冷であるため粗大な析出物が生成し、曲げ加工性が悪かった。   No. 35 is an example in which the cooling after hot rolling is air cooling. In this example, since a predetermined number of fine precipitates could not be secured, the strength was low, and since cooling was air-cooled, coarse precipitates were generated, and bending workability was poor.

Claims (4)

Cr:0.10〜0.50%(質量%の意味、以下同じ)、
Ti:0.010〜0.30%、
Si:0.01〜0.10%、
前記Crと前記Tiの質量比:1.0≦(Cr/Ti)≦30、
前記Crと前記Siの質量比:3.0≦(Cr/Si)≦30、
となるように含有し、残部が銅、および不可避的不純物からなる銅合金であって、
前記銅合金の表面においてTEMにより観察される500nm×500nmの領域における円相当直径5nm以下の析出物が200個以上であり、
引張強さ520MPa以上、0.2%耐力500MPa以上、
導電率70%IACS以上、
W曲げ加工した際に、R(最小曲げ半径)/t(板厚)=1.0のときに日本伸銅協会技術標準JBMA−T307:2007年に記載の「しわ」「割れ」の最大幅(μm)の評価基準に準拠した9段階の評価において、D〜C評価より優れた曲げ加工性を有することを特徴とする銅合金。
Cr: 0.10 to 0.50% (meaning mass%, the same shall apply hereinafter)
Ti: 0.010 to 0.30%,
Si: 0.01 to 0.10%,
Mass ratio of Cr and Ti: 1.0 ≦ (Cr / Ti) ≦ 30,
Mass ratio of Cr and Si: 3.0 ≦ (Cr / Si) ≦ 30,
A copper alloy composed of copper and unavoidable impurities,
The circle equivalent diameter 5nm less precipitates in the region of 500 nm × 500 nm observed by TEM on the surface of the copper alloy Ri 200 or more der,
Tensile strength 520 MPa or more, 0.2% proof stress 500 MPa or more,
Conductivity 70% IACS or more,
The maximum width of “wrinkles” and “cracking” described in Japan Technical Standard JBMA-T307: 2007 when R (minimum bending radius) / t (plate thickness) = 1.0 A copper alloy characterized by having a bending workability superior to that of D to C evaluation in a nine-stage evaluation based on an evaluation standard of (μm) .
更に、他の元素として、
Fe、Ni、およびCoよりなる群から選択される少なくとも一種以上:合計で0.3%以下を含有するものである請求項1に記載の銅合金。
Furthermore, as other elements,
2. The copper alloy according to claim 1, comprising at least one selected from the group consisting of Fe, Ni, and Co: 0.3% or less in total.
更に、他の元素として、
Zn:0.5%以下を含有するものである請求項1または2に記載の銅合金。
Furthermore, as other elements,
The copper alloy according to claim 1 or 2, which contains Zn: 0.5% or less.
更に、他の元素として、
Sn、Mg、およびAlよりなる群から選択される少なくとも一種以上:合計で0.3%以下を含有するものである請求項1〜3のいずれかに記載の銅合金。
Furthermore, as other elements,
The copper alloy according to any one of claims 1 to 3, which contains at least one or more selected from the group consisting of Sn, Mg, and Al: 0.3% or less in total.
JP2012269677A 2012-12-10 2012-12-10 Copper alloy Active JP5952726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012269677A JP5952726B2 (en) 2012-12-10 2012-12-10 Copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012269677A JP5952726B2 (en) 2012-12-10 2012-12-10 Copper alloy

Publications (2)

Publication Number Publication Date
JP2014114485A JP2014114485A (en) 2014-06-26
JP5952726B2 true JP5952726B2 (en) 2016-07-13

Family

ID=51170804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012269677A Active JP5952726B2 (en) 2012-12-10 2012-12-10 Copper alloy

Country Status (1)

Country Link
JP (1) JP5952726B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016211054A (en) * 2015-05-12 2016-12-15 株式会社神戸製鋼所 Copper alloy
JP7213083B2 (en) * 2018-11-05 2023-01-26 Dowaメタルテック株式会社 Copper alloy sheet material and manufacturing method thereof
CN113913642B (en) * 2021-09-26 2022-07-05 宁波博威合金板带有限公司 Copper alloy strip and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2178448B (en) * 1985-07-31 1988-11-02 Wieland Werke Ag Copper-chromium-titanium-silicon alloy and application thereof
JPH0551671A (en) * 1991-08-21 1993-03-02 Nikko Kyodo Co Ltd High-strength and high-conductivity copper alloy for electronic equipment excellent in bendability and stress relaxation property
US6749699B2 (en) * 2000-08-09 2004-06-15 Olin Corporation Silver containing copper alloy
JP2006097113A (en) * 2004-09-30 2006-04-13 Nippon Mining & Metals Co Ltd Method for manufacturing precipitation-hardening type copper alloy, precipitation-hardening type copper alloy, and elongated copper product
JP4916206B2 (en) * 2006-03-31 2012-04-11 Jx日鉱日石金属株式会社 Cu-Cr-Si alloy and Cu-Cr-Si alloy foil for electric and electronic parts

Also Published As

Publication number Publication date
JP2014114485A (en) 2014-06-26

Similar Documents

Publication Publication Date Title
TWI631226B (en) Cuppor alloy plate and method for producing the same and conductive parts
JP4357536B2 (en) Copper alloy sheet for electrical and electronic parts with excellent strength and formability
JP4596493B2 (en) Cu-Ni-Si alloy used for conductive spring material
JP5367999B2 (en) Cu-Ni-Si alloy for electronic materials
JP5261500B2 (en) Cu-Ni-Si-Mg alloy with improved conductivity and bendability
JP5657311B2 (en) Copper alloy sheet and manufacturing method thereof
JP5654571B2 (en) Cu-Ni-Si alloy for electronic materials
JP2008248333A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND MANUFACTURING METHOD THEREFOR
JP2004149874A (en) Easily-workable high-strength high-electric conductive copper alloy
JP6366298B2 (en) High-strength copper alloy sheet material and manufacturing method thereof
JP5802150B2 (en) Copper alloy
JP5750070B2 (en) Copper alloy
JP5439610B2 (en) High strength, high conductivity copper alloy and method for producing the same
JP5107093B2 (en) Copper alloy with high strength and high conductivity
JP5952726B2 (en) Copper alloy
JP5207927B2 (en) Copper alloy with high strength and high conductivity
JP6799933B2 (en) Manufacturing method of copper alloy plate and connector and copper alloy plate
WO2013125623A1 (en) Copper alloy
JP5981866B2 (en) Copper alloy
JP5867859B2 (en) Copper alloy
TW201714185A (en) Cu-Co-Ni-Si Alloy for Electronic Components
JP2013067848A (en) Cu-Co-Si-BASED COPPER ALLOY STRIP AND METHOD FOR PRODUCING THE SAME
JP2011190469A (en) Copper alloy material, and method for producing the same
JP5867861B2 (en) Copper alloy
JP2015203141A (en) Cu-Co-Si ALLOY AND PRODUCTION METHOD THEREOF

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160404

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160610

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5952726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150