JP2008168207A - 吐出不良検出装置およびその方法 - Google Patents

吐出不良検出装置およびその方法 Download PDF

Info

Publication number
JP2008168207A
JP2008168207A JP2007003858A JP2007003858A JP2008168207A JP 2008168207 A JP2008168207 A JP 2008168207A JP 2007003858 A JP2007003858 A JP 2007003858A JP 2007003858 A JP2007003858 A JP 2007003858A JP 2008168207 A JP2008168207 A JP 2008168207A
Authority
JP
Japan
Prior art keywords
region
droplet
substrate
liquid
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007003858A
Other languages
English (en)
Inventor
Yoshinori Nakajima
吉紀 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007003858A priority Critical patent/JP2008168207A/ja
Publication of JP2008168207A publication Critical patent/JP2008168207A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coating Apparatus (AREA)
  • Ink Jet (AREA)

Abstract

【課題】安価な方法を用いて、液滴の吐出不良を起こしたノズルを正確かつ高速に検出するための吐出不良検出装置および吐出不良検出方法を提供すること。
【解決手段】本発明の吐出不良検出装置10は、ノズル12を通じて基板2に液滴を吐出するインクジェットヘッド11を備え、基板2の表面には、基板2に着弾した状態の液滴が占める面積に応じた形状であり、かつ、液滴に対して第1のぬれ性を有する第1領域21と、第1のぬれ性よりも高い第2のぬれ性を有し、かつ、第1領域21と接する第2領域22とが形成されており、該インクジェットヘッド11は、第1領域21を目標に液滴を吐出し、該吐出不良検出装置10は、第1領域21上に接触した状態の該液滴の形状および位置の少なくともいずれかを検知する検知手段3と、検知手段3による検知結果に基づいて、液滴吐出の良否を判定する判定手段66とを備えている。
【選択図】図1

Description

本発明は、インクジェット方式を用いて対象物に微細なパターンを形成する技術に関する。より詳細には、吐出不良を起こしたノズルを検出する吐出不良検出装置および吐出不良検出方法に関する。
近年、インクジェット技術は、従来の紙媒体への印刷技術としてだけではなく、表示装置用部材や回路として用いる基板に精細なパターンを形成するための技術として応用されている。基板上に形成される精細なパターンとしては、カラーフィルタパネルの画素、発光素子である有機EL素子、回路基板の金属配線などが挙げられる。インクジェット技術を基板に精細なパターンを形成するための製造装置に応用するためには、従来の印刷技術として用いる場合と比較して、液滴の吐出を厳密に制御する必要が生じる。
例えば、製造する製品の種類毎に吐出させる液滴の材料が異なるので、吐出させる液滴の材料の性質(粘度や揮発性)も異なる。製品に対して所望の機能および性質を付与するためには、粘度や揮発性の高い材料を選択せざるを得ない場合が生じる。吐出させる液滴の材料として粘度や揮発性の高い材料を選択すると、従来の印字用インクと比較して液滴の不吐出(吐出指示を受けても実際には液滴が吐出されないこと)が起こり易い。液滴の不吐出は、液滴を塗布した対象物においてパターンの途切れ、むらなど品質の低下および不良品率の増大に直結する。
また、従来の紙媒体への印刷のためのパターン形成と比較して、遥かに精細なパターンを基板などの媒体上に形成する必要がある。媒体上に形成されたパターンの精細さが製造した製品の品質および良品率を左右するため、ノズル孔から飛翔させた液滴の飛翔角度のばらつきなどによって生じる位置ずれは、わずかな範囲においてしか許容することができない。液滴の位置ずれによって製品が不良品となってしまう製造装置の例としては、カラーフィルタの製造装置が挙げられる。カラーフィルタは複数の画素が基板上に形成されたフィルタである。カラーフィルタにおいて、複数の画素のそれぞれは単色で着色され、複数の画素は3色に色分けされている。液滴の位置ずれによって画素を形成する領域に所望の色以外の液滴が着弾すると画素が混色を起こす。混色を起こした画素を有するカラーフィルタは、表示装置において鮮明な画像を表示することができない不良品である。
以上のように、吐出不良(液滴の不吐出、吐出量の異常および位置ずれ)は精細なパターンの形成をするための大きな障害である。よって、インクジェット技術を表示装置などの製造に用いる場合、吐出処理を行う前に液滴の吐出不良を起こすノズルを検出する必要がある。不吐出を起こすノズルを見つけることができれば、修復動作を行う、吐出不良を起こすノズルを使用しない、インクジェットヘッドを交換するといった処理によって製品の品質と良品率とを向上することができる。
インクジェットヘッドの吐出不良を検出するためのカラーフィルタの製造方法が特許文献1に開示されている。特許文献2のカラーフィルタの製造方法は、カラーフィルタ基板における画素の形成領域の外に対して予備吐出を行うことによって、画素の着色前にインクジェットヘッドの吐出不良を検出する製造方法である。上記予備吐出を行った場所をカメラなどのエリアセンサを用いて撮像することによって、不吐出、吐出量の異常およびインクジェットヘッドの位置ずれを検出する。
記録紙を利用することなく、吐出ヘッドからのインク吐出量の異常やインク不足を検出できるインク吐出検出装置が特許文献2に開示されている。特許文献2のインク吐出検出装置は、撥水性が高く光反射性を有する反射板に対してインク吐出口からインクを吐出させ、該反射板からの反射光を検知することによってインク吐出の異常を検出する装置である。また、上記反射板が傾斜して設けられている、あるいは該反射板を傾斜または回転させる反射板回動手段を備えているので、インク吐出の異常を検出が完了するとインクが該反射板から落下させることができる。
特開平9−101410号公報(平成9年4月15日公開) 特開平8−332786号公報(平成8年12月17日公開)
しかし、特許文献1の方法では、エリアセンサを用いて2次元データを取得することによって吐出の良否を判定しなければならないため、吐出不良を検出するためには多大な時間を要する。例えば、吐出不良の検出に以下のような処理が必要となるため処理時間が長くなる。基板に着弾させた液滴のそれぞれの近傍領域をデジタルカメラなどによって撮像する。撮像した画像を、液滴の着弾箇所と被着弾箇所とに分けて2値化処理を行うことによって、データ化する。2値化処理したデータを用いて着弾した液滴の重心値を導出することによって、着弾した液滴の位置および形状を決定する。着弾した液滴の位置および形状に基づいて吐出の良否を判定する。
上述のように複雑な処理を行う必要があるため、吐出不良の検出処理に時間がかかる。媒体に対する吐出処理のタクトタイムを短縮するために、1つの製造装置が備えるノズルを増加させる傾向にある。よって、製造装置が備えるノズルを増加させればさせるほど、ノズルの全てについて吐出の良否を判定するための処理時間が増加する。吐出不良を起こしたノズルを検出することは、製品の品質および良品率の向上の観点から簡略化することが困難である。よって、単にノズルを増やすだけでは装置の生産性を低下させてしまう恐れがある。
さらに、位置ずれおよびその程度を精度よく検出するための処理、特に、基板の撮像、データの取得およびデータの解析を行うために必要な設備は高価なものが多い。吐出不良の検出処理を高速化するためには性能の高い、すなわちより高価な設備を揃える必要がある。当然、高価な設備の導入は製品のコストアップに繋がる。
上記のように、特許文献1の方法を用いた場合、吐出不良の検出の処理速度を向上させることと製品の低コスト化とは同時に解決し得ない問題である。
また、特許文献2の装置では、媒体に対して液滴を吐出することなく、不吐出および吐出量の異常を検出することができるが、液滴の着弾位置のずれを検出することについては何ら考慮されていない。さらに、ノズルのそれぞれについて検出を行うことについて特許文献1の方法と変わりがないため、同じ装置を複数設置することでしか処理時間の短縮を実現し得ない。ノズルの増加に合わせて装置の増設が必要であることを考えると、この解決方法が現実的であるとは考え難い。
以上のように従来の技術では、簡便かつ安価な方法によって着弾位置のずれを高い精度および効率で検出することが困難であった。その上、今後、製品の高性能化および高品質化が進んで行くことが予想される。製品の高性能化および高品質化には製品の精密化が必要である。よって、これまで以上に媒体へ形成するパターンを精細化する必要がある。すなわち、吐出不良の検出精度、吐出不良の検出処理速度、製品の生産性、製品の低コスト化という要求を、これまで以上に高いレベルで実現する必要がある。吐出不良の内、不吐出を検出するための技術開発は進んでいるが、液滴の着弾位置のずれを効率よく検出する技術は処理速度、検出精度および検出装置のコストなど解決すべき課題が多く、実現が困難であった。このため、着弾位置のずれと液滴の不吐出とを同時に検出し得る技術の開発が望まれている。
本発明は上記課題を鑑みてなされたものであり、本発明の目的は、インクジェット方式を用いて、効率よく媒体に対して精細なパターンを形成するために、簡便かつ安価な方法を用いて液滴の吐出不良を起こしたノズルを正確かつ高速に検出するための吐出不良検出装置および吐出不良検出方法を提供することにある。
上記課題を解決するために、本発明の吐出不良検出装置は、ノズルを通じて基板に液滴を吐出するインクジェットヘッドを備え、当該ノズルにおける液滴吐出の良否を検出するために、該基板の表面には、該基板に着弾した状態の液滴が占める面積に応じた形状であり、かつ、該液滴に対して第1のぬれ性を有する第1領域と、第1のぬれ性よりも高い第2のぬれ性を有し、かつ、第1領域と接する第2領域とが形成されており、インクジェットヘッドは、第1領域を目標に液滴を吐出し、吐出不良検出装置は、第1領域上に接触した状態の該液滴の形状および位置の少なくともいずれかを検知する検知手段と、検知手段による検知結果に基づいて、液滴吐出の良否を判定する判定手段とを備えている。
上記の構成を有することによって、液滴の吐出が良好だった場合、液滴は正常に第1領域に着弾する。一方、ノズルから吐出された液滴が位置ずれを起こした場合、上記基板に着弾した該液滴は、第1領域以外の箇所と接触し易くなる。ここで、上記液滴が第1領域と接する第2領域に接触した場合、第1領域上に静止している液滴と比較して、位置ずれを起こした液滴は形状の変化を起こし、かつ第1領域の中心から大きく離れた位置に静止する。
そのため、たとえば検出手段が液滴の高さを検出し、判定手段が、検出された高さと、液滴が第1領域に正常に着弾した場合の高さとを比較する、といった簡易な検出および判定によって、液滴吐出の良否を判定できる。
これは、上記液滴に対するぬれ性が第1領域よりも第2領域において高いため、着弾位置ずれを起こした液滴が第2領域に引っ張られ易いことに起因する。すなわち、液滴の位置ずれの度合いが同じである場合、本発明に係る上記基板において、従来の均一なぬれ性を有する基板と比較して着弾した液滴が形状の変化を起こし、かつ該液滴の第1領域の中心からの移動距離が大きくなる。すなわち、液滴の着弾位置ずれを、該液滴の形状変化および第1領域の中心からの移動距離という観点において、増幅させることができると言い換えることができる。
よって、従来のように感度は高いが高価である設備を用いることなく、簡易かつ安価な検知手段を用いて、液滴の吐出不良(着弾位置ずれおよび不吐出)を起こしたノズルを検出し得る。
つまり、吐出不良を起こしたノズルを、低コストな設備を用いて容易かつ高速に検出し得るという効果を奏する。
また、本発明の吐出不良検出装置において、上記液滴が第1領域上に静止した状態における、該液滴と第1領域とがなす接触角が、50°〜90°であることが好ましい。
上記の構成を有することによって、第1領域におけるぬれ性が小さくなる(液滴をはじき易くなる)ため、液滴は第2領域へより引っ張られ易くなる。すなわち、着弾位置ずれを起こした液滴の形状変化および第1領域の中心からの移動距離を、さらに大きくすることができる。
よって、吐出不良を起こしたノズルの検出をより容易かつ高速に行うことができるという効果を奏する。
また、本発明の吐出不良検出装置において、上記液滴が第1領域上に静止した状態における、該液滴と第1領域とがなす接触角と、該液滴が第2領域上に静止した状態における、該液滴と第2領域とがなす接触角との差が、40°以上であることが好ましい。
上記の構成を有することによって、第1領域と第2領域とが有するぬれ性の差が十分に大きくなる(液滴が第1領域から第2領域に引っ張られ易くなる)。すなわち、着弾位置ずれを起こした液滴の形状変化および第1領域の中心からの移動距離を、十分に大きくすることができる。
よって、吐出不良を起こしたノズルの検出精度をより向上し得るという効果を奏する。
また、本発明の吐出不良検出装置において、第1領域は略円形であってもよい。
上記の構成を有することによって、どの方向からであっても第2領域を第1領域に接触させることができる。つまり、液滴がどの方向に対して位置ずれを起こしたとしても、その位置ずれを検出することができる。
よって、吐出不良を起こしたノズルの検出精度をより向上し得る。
また、本発明の吐出不良検出装置において、複数の第1領域が、上記インクジェットヘッドから見た上記基板の移動方向と直交する直線上に、それぞれ等間隔に並んで形成されていてもよい。
例えば、上記吐出不良検出装置による吐出不良の検出は、インクジェットヘッドまたは基板を走査することによって行う。すなわち、上記インクジェットヘッドから見た上記基板の移動方向とは、インクジェットヘッドと基板との相対的な走査方向を意味している。
上記の構成を有することによって、複数のインクジェットヘッドが備える複数のノズルから吐出される吐出不良を起こしたノズルの検出を一度に行うことができる。
よって、吐出不良を起こしたノズルの検出をより高速に行うことができる。
また、本発明の吐出不良検出装置において、第1領域が第2領域に取り囲まれていることが好ましい。
上記構成を有することによって、第1領域の中心から見て、360°全ての方向に対する液滴の位置ずれを、該液滴の一度の着弾で検出することができる。
よって、吐出不良を起こしたノズルの検出をより精度よく、高速に行うことができるという効果を奏する。
また、本発明の吐出不良検出装置において、第1領域は帯状であり、第1領域の長辺方向が上記基板の走査方向と平行であってもよい。
上記の構成を有することによって、基板の走査方向に平行な方向に対する着弾位置ずれと基板の走査方向に垂直な方向に対する着弾位置ずれを区別することができる。特に、基板の走査方向に平行な方向に対する着弾位置ずれは、ぬれ性が変化しない領域上において起こる。つまり、液滴の形状が変化しない。
基板の走査方向に対する着弾位置ずれは、ノズルからの吐出タイミングの調整によって補正することができる。吐出不良を起こしたノズルの内、吐出タイミングの調整によって着弾位置を補正することができるノズルの修復動作を省略することができる。
よって、吐出不良を起こしたノズルの検出をより高速に行うことができる。
また、本発明の吐出不良検出装置において、複数の第1領域のそれぞれが等間隔かつ平行に配置されていてもよい。
上記構成を有することによって、一度に多くのノズルの吐出の良否を判定することができる。
よって、吐出不良の検出をより高速に行うことができる。
また、本発明の吐出不良検出装置において、第1領域が有する2つの長辺が第2領域と接触していることが好ましい。
上記の構成を有することによって、第1領域の長辺の外側に向かって位置ずれを起こした液滴を、一度の着弾で検出することができる。
よって、吐出不良を起こしたノズルの検出をより高速に行うことができる。
また、本発明の吐出不良検出装置において、第1領域および第2領域が形成されている上記基板面の法線方向が、重力の向かう方向の反対方向と略一致しており、第1領域が第2領域よりも突出していることが好ましい。
上記の構成を有することによって、第1領域から第2領域へ液滴が引っ張られる力として、さらに引力(重力)が加わる。また、着弾時の反動によって起こる、第2領域から第1領域への液滴の逆流が起こりにくくなる。よって、液滴の位置ずれによって起こる該液滴の形状変化および第1領域の中心からの移動距離を大きくすることができる。
よって、吐出不良を起こしたノズルの検出精度をより向上し得るという効果を奏する。
また、本発明の吐出不良検出装置において、第2領域における第1領域との境界付近には、吸水性が付与されていることが好ましい。
上記の構成を有することによって、第2領域へ引っ張られていった液滴を、第1領域と第2領域との境界付近において吸収することができる。よって、液滴の着弾位置ずれによって起こる形状の変化および第1領域からの距離を大きくすることができる。特に、吸収された残りの液滴の高さが極端に小さくなるため、ノズルが吐出不良を起こしているか否かを、液滴の高さに基づいて判別することが容易になる。
よって、吐出不良を起こしたノズルの検出精度をより向上し得るという効果を奏する。
また、本発明の吐出不良検出装置において、上記検知手段が第1センサを備え、第1センサが、上記基板表面の内、第1領域の中心における凹凸を検知する。
上述のように、吐出不良を起こした液滴は、正常に吐出された液滴と比較して、第1領域上に静止している液滴の形状(特に高さ)が大きく変化する。上記構成によれば、検知手段は、基板上の液滴が有する高さに基づいて、ノズルの吐出不良検出を行うことができる。すなわち、正常に着弾した液滴の高さと吐出不良(不吐出および位置ずれ)を起こした液滴の高さを比較するという、比較が容易なパラメータを用いて吐出不良の検出を行うことができる。このため、吐出の良否を判定することが容易であり、簡易な検知手段を用いて検出精度の向上を図ることができる。
さらに、基板上の凹凸を検知し得るセンサであれば、第1領域上に着弾した液滴の高さを容易に検知することができる。例えば、基板上の凹凸を検知し得るセンサとしては、高さの変位を検知する変位センサや、対象物の光の反射率を計測するセンサなどを用いることができる。すなわち、検知手段として、安価な検知センサを用いて吐出不良の検出を行うことができる。
よって、吐出不良検出装置の低コスト化および検出精度の向上を実現することができる。
また、本発明の吐出不良検出装置において、上記検知手段は第1センサを備え、第1センサは、第1領域の中心の真上を通過するように走査しながら、上記基板表面の凹凸を検知してもよい。
上記の構成を有することによって、検知手段は、一度の走査で、基板上に静止している複数の液滴の高さおよび位置ずれを検知することができる。
よって、吐出不良を起こしたノズルの検出をより容易かつ高速に行うことができるという効果を奏する。
また、本発明の吐出不良検出装置において、上記検知手段は第2センサをさらに備え、第2センサは、第1センサによって検知された上記基板表面の凹凸に基づいて検知すべき該基板上の領域を決定し、かつ上記液滴の形状、第1領域の中心からの移動距離および第1領域の中心からの移動方向を検知してもよい。
上記構成を有することによって、液滴の位置ずれの方向および第1領域の中心からの距離をさらに検知することができる。
よって、位置ずれを起こしたノズルの補正を正確に行うことができるという効果を奏する。
また、本発明の吐出不良検出装置において、上記基板には、上記液滴を吐出することによって所望のパターンを形成するための領域がさらに形成されていてもよい。
上記の構成を有することによって、吐出不良を起こしたノズルの検出と所望のパターン形成とを連続して行うことができる。
よって、製品の生産性を高めることができるという効果を奏する。
上記課題を解決するために、本発明の吐出不良検出方法は、インクジェットヘッドに形成されたノズルを用いて基板に液滴を着弾させることによって該ノズルの吐出の良否を検出するために、該ノズルに合わせた形状、および該液滴に対して第1のぬれ性を有する第1領域、ならびに第1領域と接する、第1のぬれ性よりも高い第2のぬれ性を有する第2領域が形成されて該基板に対して、第1の領域を目標に液滴を吐出する工程と、第1領域上に接触した状態の該液滴の形状および位置の少なくともいずれかを検知する工程と、検知結果に基づいて吐出の良否を判定する工程とを包含する。
上記の構成を有することによって、上記吐出不良検出装置と同様の効果を奏することができる。
以上のように、本発明は、インクジェットヘッドに形成されたノズルを用いて基板に液滴を着弾させることによって該ノズルの吐出の良否を検出する吐出不良検出装置であって、該基板の表面には、該ノズルに合わせた形状、および該液滴に対して第1のぬれ性を有する第1領域、ならびに第1領域と接する、第1のぬれ性よりも高い第2のぬれ性を有する第2領域が形成されており、該基板表面に形成された第1領域上に接触している該液滴の形状または位置を検知する検知手段、ならびに該液滴の形状または位置に基づいて該ノズルの吐出の良否を判定する判定手段を備えている。よって、従来のように感度は高いが高価である設備を用いることなく、簡易かつ安価な検知手段を用いて、液滴の吐出不良(着弾位置ずれおよび不吐出)を起こしたノズルを検出し得る。すなわち、液滴の吐出不良を起こしたノズルを、低コストな設備を用いて容易かつ高速に検出し得るという効果を奏する。
本発明に係る実施形態について、図1〜図9を参照して説明する。以下の説明において同一の部材および構成要素のそれぞれには、同一の符号を付してある。それらの名称および機能も同様である。従ってそれらについての詳細な説明は繰り返さない。
〔実施の形態1〕
本発明の一実施形態である吐出不良検出装置10の構成について図1〜図3を参照して説明する。
図1は一実施形態に係る吐出不良検出装置10の装置構成を示す模式図である。図1に示すように、吐出不良検出装置10は、インクジェットヘッドユニット1、検知手段3、基板2が載置された基板ステージ4、マークセンサ5およびコンピュータ6を備えている。
インクジェットヘッドユニット1は、複数のノズル12が形成された3つのインクジェットヘッド11から構成されている。インクジェットヘッド11R、11Gおよび11Bのそれぞれは、赤(R)、緑(G)、青(B)のいずれか1色のインクを吐出するためのインクジェットヘッド11である。
基板ステージ4上に載置された基板2の被着弾面には第1領域である撥液領域21、第2領域である非撥液領域22およびアラインメントマーク23が形成されている。撥液領域21は、略円形を有する複数の島状の領域として形成されており、非撥液領域22に取り囲まれている。撥液領域21を構成する島状の領域の中心点は、ノズル12から吐出される液滴の正常な着弾位置である。アラインメントマーク23は、基板2の方向調整、および撥液領域21とノズル12との位置合わせ(アラインメント)に用いるマークであり、基板2を形成している材料とは異なる材料によって形成されている。
検知手段3は、基板2上の対象物の高さ(Z軸方向の距離)を検出するための3つのセンサ31、および基板2の被着弾面を撮像するための3つの撮像カメラ32(図2(a)を参照のこと)を備えている。つまり、センサ31および撮像カメラ32は、インクジェットヘッド11と同数だけ備えられている。さらに、検知手段3は、検知手段3をX軸方向へ移動させるための走査手段に接続されている(図2(b)を参照のこと)。
基板ステージ4は、基板2を真空吸着によって保持するための基板保持台41、基板保持台41の移動距離の計測に用いるリニアスケール42、および基板保持台41の移動距離を読み取るリニアエンコーダ43から構成されている。基板ステージ4には、基板保持台41をY軸方向に平行移動させるための基板搬送手段がさらに備えられている(図示せず)。
本実施の形態の吐出不良検出装置10においては、インクジェットヘッドユニット1を静止させた状態で、基板ステージ4を用いて基板2をY軸方向に移動させる構成を有している。しかし、上記構成に限らず、基板2を静止させた状態で、インクジェットヘッドユニット1を従来公知の駆動手段を用いてY軸方向に移動させる構成であってもよい。
マークセンサ5は、その直下にアラインメントマーク23が到達したことを認識するためのセンサであり、基板2の角度のずれなどを検出するためのセンサである。
コンピュータ6は、インクジェットヘッドユニット1、検知手段3、基板ステージ4およびマークセンサ5に接続されている。コンピュータ6は、検知手段3、基板ステージ4および/またはマークセンサ5から送られてくる情報に基づいて、インクジェットヘッド11、検知手段3および基板ステージ4のそれぞれの動作を制御する。また、コンピュータ6は、検知手段3において検知した基板表面の液滴の形状または位置に基づいて、ノズル12の吐出の良否を判定する判定手段66を備えている。
図2(a)は、本実施形態に係る吐出不良検出装置10の主要部を示す平面図であり、図2(b)は、検知手段3の構成を示す側面図である。
(撥液領域21および非撥液領域22)
図2(a)に示すように、基板2の被着弾面上には、12の真円状の撥液領域21が形成されており、12の撥液領域21が3行4列に配置されている。1行をなす4つの撥液領域21は、その中心24のそれぞれがX軸と平行にW1(ここでは、200μm)の間隔を空けて並ぶように配置されている。また、一列をなす3つの撥液領域21は、その中心24のそれぞれが、Y軸と平行に1つの線分(例えば、線分A−A’)上にW2(ここでは、500μm)の間隔を空けて並ぶように配置されている。
本実施形態における撥液領域21が真円状に形成されているので、全て(360°)の方向のいずれの方向に向かって液滴が位置ずれを起こした場合であっても、該液滴を吐出したノズル12の吐出不良を検出することができる。
撥液領域21は、ノズル12から吐出される液滴に対して撥液性を示す、ぬれ性を有する領域である。撥液領域21のぬれ性を表す、上記液滴の撥液領域21に対する接触角が50〜90°であることが好ましく、該接触角が60〜80°であることがさらに好ましい。
上記液滴の撥液領域21に対する接触角が90°を上回る場合、正常に着弾した液滴であっても撥液領域21によって弾かれ易くなる。さらに、上記液滴は、気流、振動等の外部からの影響(外乱)を受けて、撥液領域21上をスライド移動し易くなる。このため、正常に着弾した上記液滴の一部が非撥液領域22に接触し易くなるので、吐出不良の検出精度を低下させる。また、上記液滴の撥液領域21に対する接触角が50°を下回る場合、上記液滴の非撥液領域22に対する接触角との差が小さくなる。よって、位置ずれを起こした液滴が非撥液領域22に移動する量が少なくなるので、吐出不良の検出精度を低下させ、検出の高速化の妨げになる。
撥液領域21を形成するためには、基板2上の所望の領域に対して、ノズル12から吐出される液滴に対する撥液性を付与すればよい。基板2に対して撥液性を付与するためには、用いた基板2の材質に応じて、従来公知の方法から選択すればよい。撥液領域21に上記撥液性を付与するための従来公知の方法としては、基板2上に撥水膜を形成する方法を挙げることができる。基板2上に撥水膜を形成する方法としては、例えば、ガラスからなる基板2上の所望の領域に対してフッ素系材料を含む液体を塗工した後、加熱によって該液体を固化させる方法を挙げることができる。また、ポリイミドから構成された面に対して撥液領域21を形成する場合、ポリイミド膜に対してマイクロウェーブプラズマ処理を施せばよい。
非撥液領域22は、撥液領域21が有するぬれ性よりも高いぬれ性を有する領域である。非撥液領域22のぬれ性を表す、上記液滴の非撥液領域22に対する接触角が5〜30°であることが好ましい。非撥液領域22のぬれ性を表す接触角が上記範囲であるこが好ましい理由については、後述の実施例において説明する。
5〜30°の接触角として表されるぬれ性を有する非撥液領域22を形成するためには、ガラスからなる基板2の所望の領域に対してアッシング処理を施せばよい。アッシング処理の条件を変えることによって接触角を変更することができる。ここに挙げた方法以外であっても、所望のぬれ性を有する非撥液領域22を形成し得る従来公知の方法を採用することができる。
なお、撥液領域21および非撥液領域22のぬれ性を表す接触角は、従来公知の接触角の測定方法または装置を用いて測定すればよい。
本実施形態において、上記液滴が基板2と接触する領域の直径が36μmであり、真円状の撥液領域21の直径が40μmである。ここで、真円状の撥液領域21の直径は、ノズル12から正常に吐出された液滴が基板2に着弾した後に、該液滴が基板2と接触する領域(略円形の領域)の直径よりも大きい。撥液領域21の直径は、上記液滴の液滴量、該液滴の撥液領域21に対する接触角の大きさ、および許容される該液滴の位置ずれの大きさに比例して、上記液滴が基板2と接触する領域の直径より大きくなるように設定すればよい。
真円状の撥液領域21の直径は、該液滴が基板2と接触する領域の直径よりも3〜10μm大きいことが好ましい。上記範囲を下回る場合、上記液滴が正常に着弾したと看做し得るときであっても、該液滴の一部が非撥液領域22に接触してしまう可能性が高くなるため、実際以上に吐出不良と判定されるノズル12が増加する。すなわち、吐出不良の検出精度の低下、および吐出不良を起こしたノズル12の修復処理に要する時間の増大を引き起こす。
上記液滴の撥液領域21に対する接触角と該液滴の非撥液領域22に対する接触角との差が40°以上であることが好ましい。上記液滴の撥液領域21に対する接触角と該液滴の非撥液領域22に対する接触角との差が40°に満たない場合とは、上記液滴の非撥液領域22に対する接触角との差が小さくなることである。よって、位置ずれを起こした液滴が非撥液領域22に移動する量が少なくなるので、吐出の良否を簡便な方法を用いて検出することができなくなる。
非撥液領域22における撥液領域21との境界付近には、吸水性が付与されていることが好ましい。例えば、撥液領域21の周囲を形成する非撥液領域22の材料として、ビニルアルコール系樹脂のような多孔質材料を挙げることができる。位置ずれにより、一部が非撥液領域22に着弾した液滴は、その殆どが非撥液領域22に吸収される。よって、着弾ずれを起こしたノズル21の検出をより正確に行うことが可能となる。
(マークセンサ5およびアラインメントマーク23)
基板2上には、2つのアラインメントマーク23がさらに形成されている。2つのアラインメントマーク23のそれぞれは、2つのマークセンサ5のそれぞれによって検知される。
2つのアラインメントマーク23と撥液領域21との基板2上における位置関係は予め決定されている。2つのアラインメントマーク23と撥液領域21との位置関係の一例を以下に示す。
例えば、2つのアラインメントマーク23は、X軸に平行に並んでいる。つまり、2つのアラインメントマーク23は、1行をなす4つの撥液領域21と平行に並んでいる。例えば、さらに、2つのアラインメントマーク23の中心は、3行の両端に位置する撥液領域21の非撥液領域22との境界と接する線分C−C’またはD−D’上に配置されている。基板2上にアラインメントマーク23および撥液領域21が、上述のように配置されていれば、2つのアラインメントマーク23の位置関係を検知することによって、基板2上の撥液領域21の位置を検出することができる。
次に、マークセンサ5によるアラインメントマーク23の検知方法の一例について説明する。例えば、2つのアラインメントマーク23と同じ間隔で、かつX軸方向に平行に配列した2つのカメラ(図示せず)を用いて2つのアラインメントマーク23を撮像する。撮像された2つのアラインメントマーク23の位置関係を検出する。上記位置関係を検出するとは、2つのアラインメントマーク23が平行に並んだ状態であるか否か、および2つのアラインメントマーク23のそれぞれが、基板2の方向のずれによって回転した状態であるか否かを検出することである。
検出した位置関係に基づいて、基板2の方向の補正および撥液領域21の位置の把握を行う。具体的には、基板ステージ4内に形成された基板方向調節部(図示せず)を用いて、基板2を平行にX軸方向、Y軸方向および/または回転移動させることによって、線分B−B’の直下を線分A−A’が通過するように基板2の方向調整をする。さらに、撮像した2つのアラインメントマーク23の位置関係、およびアラインメントマーク23と撥液領域21との上記配置に基づいて、基板2における撥液領域21の位置を把握する。
ここでは、アラインメントマーク23と撥液領域21との基板2における配置の一例を用いて説明した。アラインメントマーク23およびカメラを用いた基板2の方向調整に限らず、上述のように基板2の方向調整および撥液領域21の位置の把握を適切に行い得るのであれば、従来公知の方法および装置を採用することができる。
例えば、アラインメントマーク23は、ガラスの基板2上に形成された金属からなる領域(メタルマーク)であり、マークセンサ5は、反射型のファイバーセンサである。この場合、マークセンサ5は、ガラスと金属との反射率の差を検出することによって、アラインメントマーク23の存在を検知する。
マークセンサ5から各ノズル12までの距離、および基板2における撥液領域21の位置に基づいて、各ノズル12から液滴を吐出するタイミングを決定する。
(インジェットヘッド11およびノズル12)
インクジェットヘッドユニット1を構成するインクジェットヘッド11R、11Gおよび11Bのそれぞれには、直線状に並んだ複数のノズル12がW3(ここでは210μm)のピッチで配置されている。
また、インクジェットヘッド11R、11Gおよび11Bのそれぞれは、複数のノズル12のそれぞれがX軸方向に対してW1の間隔を有するように角度の調節が行われている。さらに、インクジェットヘッド11R、11Gおよび11Bは、それぞれが有するノズル12の3つが1つの線分(例えば、線分B−B’)上に並ぶように調節されている。
ここでは、Y軸に対してノズル12の配列が80°の角度をなすように、インクジェットヘッド11R、11Gおよび11Bは調節されている。また、インクジェットヘッド11R、11Gおよび11Bはユニット保持部材(図示せず)に固定されている。
基板2は、上述のように、基板輸送手段を備えた基板ステージ4へ真空吸着によって固定されている。基板輸送手段を用いることによって、基板2を、インクジェットヘッドユニット1の直下を平行(スライド)移動させることができる。
よって、基板2をY軸方向に平行移動させることによって、4列からなる撥液領域いずれか1列が、1つの線分(例えば、線分B−B’)上に並んだ3つのノズル12の直下を通過する。
(検知器3)
検知器3について図2(b)を参照して以下に説明する。図2(b)は、吐出不良検出装置10を、図2(a)のY方向とは逆の方から見た側面図である。
図2(b)に示すように、検知器3は、対象物の高さを検知するための第1センサであるセンサ31、および基板2上の領域の一部を撮像することができる第2センサである撮像カメラ32を備えている。センサ31および撮像カメラ32は、それぞれの検知部および撮像部と基板2の被着弾面とが対向するように設置されている。さらに、検知器3は、スライドビーム34に接続されたレール33を用いることによってX軸方向に可動する。
例えば、センサ31としてはレーザ方式を用いて変位を検知する変位センサなどを挙げることができる。検知器3を、基板2上をX軸方向に平行移動させながら、上記変位センサを用いて高低差を検知することによって、基板2上に着弾した液滴7が撥液領域21上に存在するか否か、さらに撥液領域21上における液滴の形状を検知することができる。例えば、撮像カメラ32としては、CCD素子を備えるデジタルカメラに拡大レンズを取り付けたカメラなどを挙げることができる。上記カメラを用いることによって、基板2上の所望の領域(センサ31によって撥液領域21上に液滴7が存在しないこと、または形状変化を起こしているが検知された箇所を含む領域など)の画像を取得することができる。上記カメラによって取得した画像を、従来公知の画像処理技術を用いて着弾した液滴7の形状、および撥液領域21の中心24からの距離を特定することができる。
例示した変位センサ以外のセンサであっても、基板2上をX軸方向に平行移動させることによって、撥液領域21上における液滴7の有無を検出し得るセンサであれば、本発明に係るセンサ31として用いることができる。
(基板ステージ4)
上述のように、基板ステージ4は基板保持台41、リニアスケール42およびリニアエンコーダ43から構成されている。リニアスケール42として高精度ガラススケールを用いている。基板ステージ4には、基板保持台41をY軸方向に平行移動させるための基板搬送手段がさらに備えられている。さらに、基板ステージ4は、コンピュータ6に接続されている。
コンピュータ6の制御によって上記基板搬送手段を動作させることによって、任意の速度で基板2を移動させること、および任意の位置にて静止させることができる。基板2の位置は、リアルタイムに基板2および基板保持台4の位置情報(リニアスケール42を用いて測定したリニアエンコーダ43出力値)がコンピュータ6に送信および処理されることによって認識される。
(液滴を着弾させた基板2)
液滴を着弾させた後の基板2の状態について図3を参照して説明する。図3は、吐出不良検出装置10の部分的な平面図であり、液滴を着弾させた後の基板2および検知器3を図2のZ方向とは逆の方向から見た平面図である。
図3に示すように、撥液領域21の中心24付近に着弾した液滴71は、撥液領域21上に留まっている。しかし、位置ずれを起こした液滴(液滴72aと72b、液滴73aと73b、および液滴74)は、いずれも着弾した液滴の一部または全部が第2領域へ移動している。センサ31a、31bおよび31cのそれぞれは、基板2上に形成された12の撥液領域21の内、4つの撥液領域21の中心24を結ぶ3つ線分(線分E−E’、F−F’およびG−G’)のいずれか1つの真上を通過する。
センサ31a、31bおよび31cのいずれを用いて検出した場合であっても、液滴71は1つの山を有する、撥液領域21上に存在する形状として検知される。
センサ31aを用いて検出した場合、液滴72aは線分E−E’上および撥液領域21上に存在する、液滴71と比較して高さの低い、かつ幅の狭い形状として検知される。センサ31aを用いて検出した場合、液滴72bは線分E−E’上および非撥液領域22上に存在する、液滴71と比較して高さの低い、かつ同程度の幅を有する形状として検知される。また、1つのノズル12から吐出された液滴72aおよび72bは、2つの山と1つの谷を有する形状として検知される。
センサ31bを用いて検出した場合、液滴73aは線分F−F’上の一部および撥液領域21上に存在する、液滴71と比較して非常に高さの低い、かつ非常に幅の狭い形状として検知される。センサ31bを用いて検出した場合、液滴73bは検知されない。
センサ31cを用いて検出した場合、液滴74は線分G−G’上および非撥液領域22上に存在する、液滴71と比較して高さの低い、かつ幅の広い形状として検知される。
以上のように、位置ずれを起こした液滴(液滴72aと72b、液滴73aと73b、および液滴73)は、撥液領域21の中心24に着弾した液滴71と比較して、形状(高さおよび幅)が著しく異なる。
センサ32は、3つのセンサ31による検知結果に基づいて、液滴72aと72b、液滴73aと73b、および液滴73に最も近い撥液領域21を中心とする基板2上の領域を撮像する。
(判定手段66)
上述のように、コンピュータ6は判定部66を備えている。判定部66は、検知器3(3つのセンサ31およびセンサ32)によって得られた基板2上の液滴の形状または位置に基づいて、各ノズル12の吐出の良否を判定する。つまり、撥液領域21上にのみ接触している液滴71と比較して形状変化を起こした液滴、または一部でも非撥液領域22に接触している液滴を吐出したノズルを吐出不良と判定する。
上述のように、検知器3、特にセンサ31を用いることによって、基板2に着弾した液滴の位置および形状を容易に検知することができる。よって、判定手段66を用いてノズルの吐出不良を容易に検出することができる。
〔実施の形態2〕
実施の形態1の吐出不良検出装置10の変形例について図4を参照して説明する。図4(a)は、本実施形態に係る基板2の平面図であり、(b)は、液滴を着弾させた後の基板2および検知器3を図2のZ方向とは逆の方向から見た平面図である。
図4(a)に示すように、基板2には、複数の撥液領域21および複数の撥液領域21を取り囲む非撥液領域22が形成されている。
撥液領域21は、Y軸方向に伸びる長辺を有する矩形状として形成されている。また、撥液領域21は3つの中点25を含んでおり、3つの中点25を結ぶ線は、撥液領域21をX軸方向に2分する線分H−H’と重なっている。つまり、基板2をY軸方向に移動させた場合、線分H−H’の真上を、線分B−B’(図2(a)の複数のノズル12が通過する軌跡)が通過する。
撥液領域21のX軸方向の長さは40μmであり、撥液領域21のY軸方向の長さは200μmである。本実施形態における液滴の直径が36μmであり、撥液領域21のX軸方向の長さが40μmであるため、吐出不良として看做すべき位置ずれを、X軸方向に対して起こした液滴は非撥液領域22と接触する。一方、正常な吐出として許容される範囲の位置ずれを、X軸方向に対して起こした液滴は非撥液領域22に接触することはない。よって、精度の高い吐出不良の検出を行うことができる。
さらに、撥液領域21のY軸方向の長さは200μmであるため、Y軸方向に位置ずれを起こした液滴は非撥液領域22に接触することはない。よって、X軸方向に対する位置ずれとは違い、非撥液領域22に液滴が接触したときに起こる着弾した液滴の液状の変化、および中点25との距離の増大を起こさない。Y軸方向に対する位置ずれは、吐出のタイミングを調整することによって補正が可能である。Y軸方向に位置ずれを起こした液滴と中点25との距離を測定することによって、正確な吐出タイミングの補正を行うために本実施形態に係る撥液領域21は、Y軸方向に長辺を有する形状として形成されている。位置ずれを起こした液滴と撥液領域21の中心との距離を測定する方法は、実施の形態1を参照のこと。
隣接する撥液領域21が有する、撥液領域21のそれぞれをX軸方向に2分する2つの線分同士は、200μm離れている。これは、インクジェットヘッド11に形成された隣接する2つのノズル12のX軸方向における間隔と一致している。よって、インクジェットヘッド11に形成された複数のノズル12から正常に吐出された液滴を確実に撥液領域21上に着弾させることができる。
図4(b)に示すように、撥液領域21の中点25付近に着弾した液滴7は、撥液領域21上に留まっている。しかし、X軸方向に位置ずれを起こした液滴72aと72b、および液滴74は、いずれも着弾した液滴の一部または全部が非撥液領域22へ移動している。Y軸方向位置ずれを起こした液滴73は、撥液領域21上に静止している。センサ31a、31bおよび31cのそれぞれは、基板2上に形成された12の撥液領域21の内、4つの撥液領域21の中点25を結ぶ3つ線分(線分I−I’、線分J−J’および線分K−K’)のいずれか1つの真上を通過する。
センサ31a、31bおよび31cのいずれを用いて検出した場合であっても、液滴71は1つの山を有する、撥液領域21上に存在する形状として検知される。
センサ31aを用いて検出した場合、液滴72aは線分I−I’上および撥液領域21上に存在する、液滴71と比較して高さの低い、かつ幅の狭い形状として検知される。センサ31aを用いて検出した場合、液滴72bは線分I−I’上および非撥液領域22上に存在する、液滴7と比較して高さの低い、かつ同程度の幅を有する形状として検知される。また、1つのノズル12から吐出された液滴72aおよび72bは、2つの山と1つの谷を有する形状として検知される。
センサ31bを用いて検出した場合、液滴73は線分J−J’上の一部および撥液領域21上に存在する、液滴71と比較して非常に高さの低い、かつ非常に幅の狭い形状として検知される。
センサ31cを用いて検出した場合、液滴74は線分K−K’上および非撥液領域22上に存在する、液滴7と比較して高さの低い、かつ幅の広い形状として検知される。
以上のように、位置ずれを起こした液滴(液滴72aと72b、液滴73および液滴73)は、撥液領域21の中点25に着弾した液滴7と比較して、形状(高さおよび幅)が著しく異なる。
上述のように、Y軸方向への位置ずれはノズル12からの吐出のタイミングの調整に補正によって補正することができる。吐出のタイミングの調整を正確に行うために、センサ32を用いて、位置ずれを起こした液滴の撥液領域21の中点25から距離を検知する。
センサ32は、3つのセンサ31による検知結果に基づいて、液滴72aと72b、液滴73aおよび液滴73に最も近い撥液領域21を中心とする基板2上の領域を撮像する。
センサ31およびセンサ32の検知結果に基づいて、判定手段66は、液滴の吐出の良否を判定する。詳細については実施の形態1を参照のこと。
〔実施の形態3〕
実施の形態1および2の吐出不良検出装置10を用いた吐出不良検出方法について、図5〜図8を参照して説明する。図5は、吐出不良検出装置10の処理手順を説明するフローチャートである。図6は、吐出不良検出装置10による基板2のアラインメント処理について説明した側面図である。図7は、吐出不良検出装置10による基板2への液滴の吐出処理について説明した側面図である。図8は、吐出不良検出装置10による基板2上に着弾した液滴の位置および形状を検知する処理について説明した側面図である。
吐出不良検出装置10は、インクジェット方式の製造装置の一部を構成しており、該製造装置の動作を制御するコンピュータ6は、同時に吐出不良検出装置10の動作制御も行っている。すなわち、吐出不良検出装置10を用いたノズル12の吐出不良検出は、上記製造装置の製造工程に含まれる一工程である。
上記製造装置および吐出不良検出装置10が共有するコンピュータ6内部の制御部65は、インクジェットヘッド11の吐出不良の検出準備が完了したという信号を受信することによって、基板2が基板ステージ4上に搬入される(ステップS1)。
吐出不良の検出準備が完了したという上記信号とは、例えば、製造用の基板に対する液滴の吐出が完了したときに制御部65に入力される信号、および新たな製造用の基板に対する製造装置を用いた液滴の吐出を指示する信号などである。基板2の搬入は、上記信号を受信した制御部65からの動作指示信号に従って、図には示していない基板搬入ロボットによって行われる。搬入された基板2は、真空吸着によって基板保持台41に固定される。なお、基板2と製造用の基板とが一体形成されている場合、基板2はすでに基板保持台41上に搬入および固定された状態であるため、ステップS1の工程は不要である。
次に、基板2に形成されたアライメントマーク23を、吐出不良検出装置10に設けられているアライメントカメラシステム(図示せず)を用いて、基板2の方向調整および検出することによって、ノズル孔に対する吐出検出基板の位置決めを行う(ステップS2)。
カメラによってアラインメントマーク23を撮像する。撮像した画像に基づいて、アラインメントマーク23の位置関係から基板2の方向を検知する。基板ステージ4に設けられた方向微調整部(基板2の法線方向を保持しつつ、基板2をX軸方向およびY軸方向に移動させる、ならびに基板2を回転させる構造)によって、基板2の方向を調整する。アラインメントマーク23と撥液領域21とは、実施の形態1において述べたように所望の位置関係を有している。このため、基板2の方向を調整することによって、インクジェットヘッド11のノズル12に対する撥液領域21の位置決定を行うことができる。
上記位置決定とは、基板2をY軸方向に移動させることによって、線分B−B’の真下を線分A−A’が通過するように、基板2の方向を調整することである(図2(a)を参照のこと)。
なお、上記位置決定を確実に行うために、基板2上のアライメントマーク23と線分A−A’の位置関係を予め計測しておくことが好ましい。さらに、ノズル12が通過する基板2の位置を調べるために、アライメントマーク23が形成されているダミー基板に対して液滴を吐出して着弾位置を確認しておくことが好ましい。
基板2の方向調整を行った後、基板2を保持した基板ステージ4をヘッドユニット1および検出器3の直下に向けて移動させる(ステップS4)。ヘッドユニット1および検出器3の直下に向けて移動させるとは、図2(a)におけるY軸方向に移動させることであり、線分A−A’およびB−B’と平行な方向に移動させることである。
マークセンサ5およびアラインメントマーク23を用いてインクジェットヘッドユニット1からの吐出タイミングを決定する(ステップS4)。
基板2に形成されたアラインメントマーク23がマークセンサ5の直下に到達すると、アライメントマーク23はマークセンサ5によって検知される。マークセンサ5によるアラインメントマーク23の検知の詳細については、実施の形態1を参照のこと。
なお、Y方向へ順にマークセンサ5、インクジェットヘッドユニット1、検知器3と並んでいる。つまり、基板2は、インクジェットヘッドユニット1よりも先にマークセンサ5の直下を通過する。マークセンサ5がアライメントマーク23を検知するまでは、インクジェットヘッドユニット1は液滴を吐出しない。
インクジェットヘッドユニット1からの吐出タイミングの決定について、図6を用いて詳細に説明する。図6は、吐出不良検出装置10を側面から見た模式図であり、マークセンサ5がアライメントマーク23を検知した状態を示している。なお、各ブロックを繋ないでいる矢印は信号の送信方向を表しており、基板保持台4および基板2はY方向に定速移動している。
マークセンサ5は、自らが出射した光が対象物に反射された光を検知する。よって、マークセンサ5の真下をアライメントマーク23が通過すると、マークセンサ5によって検知される反射率が変化する。反射率の変化は、信号としてセンサアンプ62に送信される。センサアンプ62は、マークセンサ5から送られた信号を増幅して制御部65に送信する。
ここで、基板2および基板保持台4の位置情報は、リニアスケール42を用いて測定したリニアエンコーダ43出力値として、ステージコントローラ61から制御部65へ送信される。制御部65は、アラインメントマーク23がマークセンサ5によって検知されたことと基板2および基板保持台4の位置情報とを照合して、アライメントマーク23の基板2における座標を決定する。マークセンサ5によるアラインメントマーク23の検知についての詳細は、実施の形態1を参照のこと。
アラインメントマーク23の位置(基板2における座標)を決定することができれば、撥液領域21の基板上2の位置も決定することができる(実施の形態1の(アラインメントマーク23およびマークセンサ5)を参照のこと)。これによって、各ノズル12に対応する撥液領域21がノズル12の真下を通過するタイミングを、リニアエンコーダ43の出力値に基づいて決定することができる。
インクジェットヘッドユニット1を用いて基板2へ液滴の吐出を行う(ステップS5)。
インクジェットヘッドユニット1を用いた基板2への液滴の吐出動作について図7を用いて説明する。図7は、吐出不良検出装置10を側面から見た模式図であり、インクジェットヘッド1基板2に向けて液滴を吐出している状態を示している。なお、右の2つのノズル12から吐出された液滴は、正常に(吐出不良を起こさずに)飛翔した液滴であり、左端のノズル12から吐出された液滴は、吐出不良によって飛翔方向に異常が発生した液滴を示している。
ここまでの処理において、アライメントマーク23の基板2上の座標が決定されている。撥液領域21のそれぞれとアラインメントマーク23の位置関係は予め測定されている。よって、各ノズル12は、それぞれが対応する撥液領域21(正常着弾位置)に向けて液滴の吐出を行うことができる。
ここで、正常着弾位置とは、X方向に対する、マークセンサ5と各ノズル12と相対位置、およびアラインメントマーク23の基板2の座標によって関連付けされた位置である。すなわち、正常着弾位置は、アライメントマーク23の座標を基準として予測される各ノズル12から吐出された液滴の着弾位置である。なお、正常着弾位置は、ノズル12周囲の汚れ等によって生じる飛翔方向のずれなどを考慮していない、基板2上に設定した仮想の位置である。また、Y方向に並んだ正常着弾位置の中心のそれぞれを結ぶ線分の真上を、基板2がY方向に移動することによって、ノズル12が通過する。
なお、液滴の吐出は、各ノズル12に対応した撥液領域21がノズル12の真下にある状態で行えばよい。すなわち、基板2を移動させながら行う必要はなく、基板2を静止させた状態で吐出を行ってもよい。基板2を静止させた状態で吐出を行うと、処理全体に要する時間が多少増加するが、高精度に吐出不良を判別することが可能である。
ステップ4において、制御部65は、各ノズル12の吐出タイミングに対応するリニアエンコーダ42の出力値を記憶している。制御部65は、ステージコントローラ61を介して送られるリニアエンコーダ42の出力値が制御部65において記憶したリニアエンコーダ42の出力値と一致すると、対応するノズル12からの液滴の吐出信号の送信をヘッドコントローラ63に指示する。上記吐出信号を受信したインクジェットヘッドユニット1のノズル12から液滴が吐出される。
ここで、例えば、制御部65が吐出タイミングの演算をする構成であり、ステージコントローラ61とヘッドコントローラ63とが直接に接続された構成であってもよい。この構成であれば、基板2および基板保持台41の移動の高速化に対応することができる。
液滴の撥液領域21への吐出が完了し、撥液領域21が検知器3による検知可能な位置にまで移動すると、基板保持台41は移動を停止する。なお、センサ31は、センサスライダ32を用いて基板の走査方向に直交したX方向(図5の紙面奥方向)に走査しながら、X方向に規則配列している撥液領域21上の液滴の形状を順次確認することが可能な位置にある。
基板保持台41が移動を停止すると、センサ31が基板2上をX方向に移動することによって、センサ31は基板2表面の凹凸を検知する(ステップS6)。
センサ31による基板2表面の凹凸の検知の詳細について図8を用いて説明する。図8は、吐出不良検出装置10を側面から見た模式図であり、センサ31が基板2上を走査することによって、着弾した液滴によって形成される基板2の凹凸を検知している状態を示している。
図8に示すように、基板2には、ノズル12によって正常な吐出が行われた、撥液領域21に静止している液滴7と、飛翔方向のずれによって撥液領域21および非撥液領域22上に静止している不良着弾液滴75がある。
センサ31はX方向に移動しながら、基板2表面の凹凸を検知する。撥液領域21上に静止している液滴71はZ方向に凸状である。液滴71による基板2表面の高さの変化はセンサ31(変位センサ)を用いて検知される。一方、撥液領域21および非撥液領域22上に静止している液滴75は、撥液領域21の中心から離れて静止しているため、センサ31によって検知されない。
センサ31によって検知された基板2表面の凹凸の情報は、判定部66に送られる。
判定部66は、センサ31の検知結果に基づいて、吐出の良否判定を行う(ステップS7)。
判定部66における吐出の良否判定について図9を用いて説明する。図9(a)は、図3のセンサ31aによる検知結果、図9(b)は、図3の31bの検知結果、図9(c)は、図3の31cによる検知された結果をグラフ化したものである。横軸は、センサ31の走査距離、縦軸はセンサ31によって検知された変位値を表している。4本の破線は、撥液領域21の中心がある位置を示しており、この破線と交差するグラフが一定値以上を示している場合には正常吐出と判定され、一定値以下である場合には吐出不良と判定される。判定の基準に用いる上記一定値は、液滴の量、撥液領域21の大きさ等に応じて適宜、数値を選択すればよい。予め、基板2に液滴を吐出することによって、上記一定値として好適な数値を決定することが好ましい。
図9(a)に示すように、破線で囲まれた部分は、液滴72aおよび72b(図3または図4(c)を参照のこと)を検知した場合のグラフの波形である。このグラフの波形は、撥液領域21および非撥液領域22の一部に液滴が静止していることを示している。
液滴7が撥液領域2および非撥液領域22の一部に着弾した場合、液滴の表面張力によって、着弾した液滴の殆どが非撥液領域22に引きずられたために撥液領域21上に残存する少量の液滴と、非撥液領域22上に濡れ広がった液滴とに分離する。撥液領域21に残った液滴72aの量は吐出された液滴の量の半分以下であり、その高さは低い。よって、上述のような波形として検出される。
このため、破線で囲まれた撥液領域21に液滴を吐出したノズル12は、判定部66によって、吐出不良であると判定される。他の3つのノズル12は吐出が良好に行われていると判定される。
図9(b)に示すように、破線で囲まれた部分は、液滴73aおよび73b、あるいは液滴73(図3または図4(c)を参照のこと)を検知した場合のグラフの波形である。液滴73aおよび73bは、撥液領域21および非撥液領域22の一部に液滴が静止しているが、全く高低差が検知されていない。これは、吐出された液滴がY方向に対してずれを起こしたため、着弾した液滴73aおよび73b撥液領域21の中心から離れてしまっていることが理由である。
もちろん、破線で囲まれた撥液領域21に液滴を吐出したノズル12は、判定部66によって吐出不良と判定される。
図9(c)に示すように、破線で囲まれた部分は、液滴74(図3または図4(c)を参照のこと)を検知した場合のグラフの波形である。このグラフの波形は、非撥液領域22に液滴74が静止していることを示している。良好に吐出された液滴と比較して、幅の広い、非常に高さの低い波形として検知されている。液滴が非撥液領域22に着弾することによって広範囲に渡って濡れ広がった場合、このような波形のグラフが得られる。
なお、ノズル12の詰まり等によって液滴の吐出が行われず、液滴が飛翔しなかった場合、図9(b)の破線で囲まれた部分と同じようにセンサ31に検知される。よって、不吐出を含めて吐出不良を検出することができる。上述のように、Y方向に対する位置ずれは、吐出タイミングの調整によって補正することができる。従って、図9(b)の破線で囲まれた部分のように検出された場合、センサ32(図3および図4を参照のこと)を用いて、全く高低差を検知できなかった撥液領域21付近の撮像が行われる。
以上のように、着弾した位置のずれを生じた液滴は、良好な吐出が行われた液滴と比較して明らかに異なる高さを有する形状として検知される。また、検知結果はある程度の位置情報を含んでいる。このため、判定部66は容易に吐出不良を起こしたノズル12を検出することができる。
制御部65は、判定手段66の判定結果に基づいて、吐出不良を起こしたノズルを決定する(ステップS8)。
図9に示したように、4本の破線は、センサ31の移動距離から想定される撥液領域21の中心である。吐出不良と判定された撥液領域21を決定し、その撥液領域21の中心に向かって液滴を吐出したノズル12を、ステップS5で得られたノズル12と撥液領域21の対応関係より決定する。
吐出不良と判定されたノズル12は使用しないか、キャップ吸引等の従来公知の回復処理を行った後、もう一度、吐出不良の検査を行うかのいずれかの措置が講じられる。
ここで、図2に示すような、基板2には真円状の撥液領域21が形成されている場合、360°全ての方向に対して位置ずれが発生しても、吐出不良を起こしたノズル12を正確に検出することができる。
一方、図3に示すような、撥液領域21がY方向に伸びる矩形状として形成されている場合、X方向に対する位置ずれについて、同様に正確に吐出不良を判定することができる。ここで、図9(b)のような検知結果が得られた場合、Y方向について位置ずれが生じているのか、不吐出が発生したのかを確認するために、撮像センサ32を用いて該検知結果が得られ他領域付近を撮像する。撮像された画像の解析によって、不吐出なのか、Y方向への位置ずれかが明確になり、さらに、位置ずれであった場合、撥液領域21の中点25(図3を参照のこと)からの距離を測定することによって、ノズル12の吐出タイミングの調整の程度を決定することができる。
上記の図3に示したような構成は、吐出不良検出装置10を備えるインクジェット方式を用いた生産装置において、基板2の走査方向と製造用の基板の走査方向が同一である場合(例えば、基板2が製造用の基板を含む場合)に有効である。これは、上述のように、Y方向(製造用の基板の走査方向)の位置ずれは、製造用基板への液滴の吐出において、吐出のタイミングを補正することによって解決可能であることが理由である。一方のX方向の位置ずれは補正する手段がないので、吐出不良と判断する必要がある。
以上のように、インクジェットヘッドユニット1が備えるノズル12の全てについて、各ノズル12に対応して形成された撥液領域21に向けて液滴を着弾させる。撥液領域21に静止した着弾液滴の状態(形状および撥液領域21からの距離)を検知ることができる。全てのノズル孔についての吐出不良(位置ずれおよび不吐出)を検出することが可能となる。上記検出結果に基づいて、インクジェットヘッドユニット1に対する処理が必要か否かを判断することできる。
以上の処理によって、簡便かつ安価な方法を用いて液滴の吐出不良を起こしたノズル12を正確かつ高速に検出することができる。
インクジェット方式を用いた製造装置に本発明の吐出不良検出装置を適用した。上記製造装置は、液晶表示装置用のカラーフィルタ基板を製造するための装置であり、本発明に係る基板2として、カラーフィルタ基板を製造するための領域をさらに備えている製造用の基板を用いた。
図10(a)は製造用のガラス基板20の平面図であり、吐出不良検出用の基板2と、カラーフィルタ基板26から構成されている。ガラス基板20上には、高さ1μmのポリイミド製のパターンが形成されている。上記パターンは、例えば、光硬化型の液状のポリイミド材をスピンコートによって均一に塗布した後、パターンに対応した選択的な露光など従来公知の技術を用いて形成されている。パターンの位置は、誤差2μm程度の精度で、パターン幅は誤差0.5μm程度の精度で製造することが可能である。
図10(b)は図10(a)の破線で囲まれた部分を拡大した平面図であり、(c)は、線分L−L’の断面図である。撥液領域21およびとバンクパターン25は、ポリイミド材を用いた上記パターン形成により作製されたものであり、マイクロウェーブプラズマ処理によって、純水に対する接触角を100°程度にすることができる。一方、非撥液領域23、および、バンクパターン25で囲まれた画素部分26の底面は、それぞれガラスから構成されており、マイクロウェーブプラズマ処理によって、純水に対する接触角を15°程度にすることができる。撥液領域21およびバンクパターン25の接触角は、マイクロウェーブプラズマ処理の条件設定により調整できる。
撥液領域21は非撥液領域22から突出した形状として形成されている。吐出不良検知にかかる吐出は、矢印ア位置に向けて着弾させる。一方、画素への吐出は、矢印イ位置に向けて着弾させる。
なお、吐出に用いる液滴材料として、純水と比較して表面張力が小さく、かつ粘度が高い材料を用いた。撥液領域21およびバンクパターン25の表面に対する上記液滴材料の接触角は50°〜100°の範囲で調整可能であり、非撥液領域23および画素部分26の表面に対する上記液滴材料の接触角は5〜30°の範囲で調整可能であった。
吐出不良を検出するための吐出動作、および画素26への吐出動作は、複数のノズル12をX方向に配列したインクジェットヘッド11を用いて、ガラス基板20をY方向の走査させながら行った。
円形の撥液領域21は直径40μmの領域である。隣接する2つのノズル12のX方向の距離(X方向に投影した投影ピッチ)が30μmであり、撥液領域21aおよび21bの中心間の距離W4と一致している。また、撥液領域21aおよび21cの中心間の距離W5は、ノズル12隣接する2つのノズル12のX方向の距離(X方向に投影した投影ピッチ)の2倍の60μmである。このため、吐出タイミングを調整することによって、連続して配列した3つのノズル12は、撥液領域21a、21bおよび21cに向けて液滴を吐出することが可能である。なお、ガラス基板20は、X方向に2m、Y方向に3mの長さを有している。インクジェットヘッド11には、X方向の全領域をカバーできるように、複数のノズル12が30μmのピッチを有する配列として設けられている。
撥液領域21を千鳥状に配置することによって、撥液領域21の大きさに対してW4が小さい場合であっても、撥液領域21の周囲を取り囲むように非撥液領域22を形成することができる。
1pl、2pl、4plまたは6plの液滴を、ぬれ性を表す接触角が5〜80°である面に対して、インクジェットヘッド11を用いて着弾させた。表1に示す数値は、着弾させた液滴を上面から見た直径と、該液滴の高さを計測した結果をまとめたものである。液滴材料としてカラーフィルタ基板の製造に実際に使用される液滴材料を用いた。上記液滴の直径の計測は、非接触式の3次元測定機(ミツトヨ社製QUICKVISON)を用いて行った。上記液滴の最大高さは、レーザ変位センサ(キーエンス製LK−G10)を用いて計測した。接触角が5〜30°を有する面は、ガラス基板20に対して、条件を変えたアッシング処理を行うことによって形成した。接触角が60〜80°を有する面は、ポリイミド面に対して、マイクロウェーブプラズマ処理を行うことによって形成した。
液滴の直径は、誤差がプラスマイナス2μm程度の再現性を有し、液滴の最大高さは、誤差がプラスマイナス0.5μm程度の再現性を有していた。
Figure 2008168207
表1より、非撥液領域22(表1の接触角5〜30°)と撥液領域21(表1の接触角60〜80°)とは、最大高さについて、最大で2倍以上の差を有している。着弾した液滴の最大高さを計測することによって、撥液領域22上に静止した液滴量を把握することが可能であることがわかった。
本実施例では、液滴量を6plに設定し、液滴材料の撥液領域21表面に対する接触角を60°、該液滴材料の非撥液領域22表面に対する接触角を5°となるように処理したガラス基板20を用いた。このとき、6plの上記液滴が撥液領域21上に静止している時の直径が約36μmであるので、撥液領域21の直径を40μmにした。
図11は、吐出した液滴7が撥液領域21上に着弾したときの模式図であり、図11(a)は撥液領域21の中心に液滴が着弾した時(正常着弾時)を示している。図11(b)は撥液領域21の中心から5μmずれて着弾したときを示している。図11(c)は撥液領域21の中心から10μmずれて着弾したときを示している。図11(d)は撥液領域21の中心から15μmずれて着弾したときを示している。
図11(a)に示すように、撥液領域21の中心に液滴が着弾した時は、非撥液領域22と液滴71とは接触しない。
図11(b)に示すように、撥液領域21の中心から5μmずれて着弾すると、液滴の一部が非撥液領域23に到達し、撥液領域21上に着弾した液滴の一部が非撥液領域22に引き込まれる。よって、撥液領域21上の着弾液滴75a、および非撥液領域22上の着弾液滴75bという2つの液滴が形成される。このとき、撥液領域21上に静止している着弾液滴75aは、吐出された液滴量が分割されており、かつ中心位置からずれた位置に頂点を有する凸形状である。よって、変位センサを用いた場合、図中の破線の位置における高さを計測するので、図11(a)の液滴71より遥かに高さの低い凸形状として検知される。
図9(c)および(d)において、撥液領域21の中心から10μmまたは15μmの場合における状態を示しており、位置ずれが大きくなるほど、撥液領域21上に静止する液滴の量は少なくなる。さらに、撥液領域21の中心からの着弾液滴の頂点の位置が遠くなる。よって、変位センサによって検知される高さがより小さくなる。なお、変位センサによって検知されるこの高さの値を用いて、位置ずれの量を計測することも可能である。
なお、本実施例では、位置ずれが生じた液滴について、撥液領域21上と非撥液領域22上に分割する場合を示したが、表面張力が大きい液滴材料の場合、5μm程度の位置ずれであっても、非撥液領域22の一部に接触した着弾液滴のすべてが非撥液領域22側に引き込まれる場合がある。
また、本実施例では、撥液領域21が基板面に対して1μm程度高くなっているが、撥液領域21が凸状になっている必要はない。同じ高さを有する面に撥液領域21が選択的に形成された構成であってもよい。撥液領域21が凸状に形成されていると、位置ずれが生じた場合、着弾液滴は撥液領域21から非撥液領域22に移動しやすいので、位置ずれによる吐出不良を判断が容易となる。
撥液領域の大きさは、液滴量、撥液領域の接触角、許容する位置ずれにより異なるが、占有領域である着弾液滴の直径に対して円形であれば直径が3〜10μm大きく、矩形であれば幅が3〜10μm大きいことが望ましい。
撥液領域21および非撥液領域22の表面に対する液滴の接触角をパラメータとして用い、(1)撥液領域21の中心(正常着弾位置)に着弾させた場合、(2)撥液領域21の中心から外れた位置(位置ずれを起こした位置)に着弾させた場合に分けて、液滴の繰り返し安定性について確認した。この結果を表2に示す。
Figure 2008168207
(1)では、位置ずれを起こさないことを確認した1つのノズルを用いて、100箇所の撥液領域21の中心へに着弾させた。撥液領域21表面の液滴材料に対する接触角が50〜80°のとき、液滴の全てが正常な位置に静止していた。一方、接触角90°のときには1箇所、接触角100°のときには10箇所、液滴が撥液領域21の中心付近に着弾するにもかかわらず撥液領域21以外の領域に接触していた。これは、撥液性が高すぎるために着弾後に、撥液領域21内から着弾液滴がずれたためと考えられる。なお、液滴の飛翔速度が大きいほどずれが大きくなる傾向が見られた。
(2)では、位置ずれを起こさないことを確認した1つのノズルを用いて、撥液領域21の中心(正常位置)から5μmずらした位置に液滴を着弾させた。これを100箇所の撥液領域21に対して行った。そして、撥液領域21の中心に変位センサのセンサ中心を合わせて変位センサによって検知された高さの変動を計測した。変動値として標準偏差が0.5μm以内である場合を○、2μm以内である場合を△、2μm以上である場合を×とした。また、本来、吐出不良とすべきであるにもかかわらず、正常な吐出と判断するような結果が10個以上得られた場合については×とした。撥液領域21の接触角が90°以上の場合、上述のように、着弾した後に液滴がシフトしやすいので、ばらつきが大きく、標準偏差が大きくなっている。撥液領域21の接触角が50〜60°で、非撥液領域の接触角が30°の場合、撥液領域21と非撥液領域22との接触角の差が小さいために、着弾した液滴が非撥液領域22へ十分に引き込まれないためと考えられる。以上の結果から、撥液領域21の接触角は50〜90°であることが好ましく、60〜80°であることがさらに好ましい。さらに、撥液領域21と非撥液領域22との接触角の差が40°以上であることが好ましい。
なお、非撥液領域22における撥液領域21との境界付近には、吸水性が付与されていることが好ましい。吸水性を付与するとは、例えば、上記境界付近が多孔質材料から形成されていることである。撥液領域21の周囲を形成する非撥液領域22について、上記多孔質材料としては、例えば、ビニルアルコール系樹脂からなるスポンジ状の材料を挙げることができる。ビニルアルコール系樹脂からなるスポンジ状の材料を非撥液領域22における撥液領域21との境界付近に配配置した場合、位置ずれを起こした液滴の一部が非撥液領域22に接触し、その殆どが非撥液領域22に吸収される。よって、吐出不良(位置ずれ)を起こしたノズル12の検出をより正確に行うことが可能となる。
検知器3の構成例を図2(b)を用いて以下に説明する。図2(b)は、図1の装置側面をY方向から見た図である。検知器3は、X方向に移動可能な状態でセンサスライドレール33に接続されており、センサスライドレール33はスライドビーム34に取り付け固定されている。検知器3は、ボールねじ送り機構を備えるステッピングモータの制御によって、X方向に対して、等速移動、および任意の位置における停止が可能である。
検知器3には、センサ31と、撮像センサ32(例えばフローベル社製ADP−210)が設置されており、検知器3が、スラードレール33に沿って等速移動しながら、基板2表面の形状の状態(撥液領域21上にある着弾液滴の有無)を検知する。センサ31として、レーザ変位型のセンサ(例えばキーエンス製LK−G10)または反射率計測型のセンサ(例えばキーエンス製F−2HA)を用いた。センサ31としてレーザ変位型センサを用いる場合、正常着弾位置(撥液領域21の内部)における着弾液滴の最大高さを計測し、得られた高さの値から吐出不良を起こしているか否かを判定した。センサ31として反射率計測型のセンサを用いた場合、曲面を有する液滴の表面に対して光を照射すると反射率が低下することを利用して、正常着弾位置における反射率の変化量から吐出不良の有無を判定した。センサ31としては、いずれを用いても良いが、着弾液滴の高さを計測するセンサを用いることによって、より計測精度を高めることが可能である。
基板2に設けられている撥液領域21は、図4に示すような基板2の走査方向の直交方向が短辺をなす矩形状を有している。矩形を有する撥液領域21の短辺の長さは、着弾液滴直径に対して3〜10μm長くなるよう設定した。
センサ31は、着弾液滴の全てを検知した。正常着弾位置における高さの計測の結果、高さの変化が大きい(例えば通常値の半分程度)場合、X方向へ位置ずれが生じたと判定した。高さの変化が大きい液滴とは、図3における着弾液滴72aおよび72bに相当する。X方向のずれは、ノズルからの液滴の吐出タイミングを調整することによって補正することが不可能である。よって、X方向のずれは全て吐出不良と判定された。X方向のずれを起こした液滴を吐出したノズル孔は、吐出不良と判定し、修復動作等の次の工程に移行した。
次に、高さが正常ではないが、その変化量が小さいものを選定した。これはY方向のずれの可能性が高い。Y方向のずれは液滴吐出時の吐出タイミングを調整することによって補正できるので、撮像センサ32を用いた撮像、およびずれを起こした距離の計測を行った。撮像センサ32を用いて着弾液滴を基板2の法線方向である上面から撮像し、その画像から着弾位置を割り出すという動作は、センサ31の検査に比べると時間がかかる(1秒間に10個以下程度)。しかし、X方向に位置ずれを生じた液滴を吐出不良と看做した結果、撮像を要するノズル12の割合は、全てのノズル12に対して少ない。
高速で検出が可能なセンサ31を用いることによって、調整不可能なX方向の位置ずれを起こしたノズルを検出することができる。よって、撮像センサ32を用いて、Y方向の着弾位置ずれのデータを取得する必要のあるノズル12の個数を減らすことができる。つまり、検出処理の速度を低下させることなく、効率的に位置ずれを含めた調整不可能な吐出不良のノズル12の検出を行い、かつ調整可能な吐出不良のノズルの検出とその調整のための補正値とを得ることができる。
図12は撮像センサ32が着弾液滴を撮像した画像の例であり、図12(a)はセンサ31によりY方向に位置ずれの可能性のある着弾液滴43を撮像した画像である。着弾液滴を撮像した画像の2値化処理を行って、着弾液滴の画像の重心位置を算出し、CCDカメラのピクセル分解能およびピクセル数に基づいて、Y方向のずれ量W6を導出することが可能である。基板2の走査方向であるY方向(製造用基板に対して吐出を行う時の走査方向)について、導出されたずれ量W6に基づいて位置ずれを起こしたノズル12の液滴の吐出タイミングを制御することによって、正常な着弾位置に補正することが可能である。一方、図12(b)は、センサ31が正常吐出と判断した着弾液滴の画像を示している。図12(b)は比較対照としてここに示したが、無駄な処理でしかないため、実際の吐出不良の検出において正常に吐出された液滴を撮像することはない。
〔その他の構成〕
本発明は、以下のような構成によっても実現することができる。
(第1の構成)
液滴を吐出するノズル孔を備えたインクジェットヘッドと、
前記ノズル孔から吐出される液滴の正常着弾位置に設けられ、着弾液滴の占有領域に対応した領域で構成された撥液性を有する第1の領域と、
前記第1の領域の周囲に設けられ、前記第1の領域と異なる撥液性を有する第2の領域からなる
吐出検出基板と、
正常着弾位置における着弾液滴の形状に基づいて吐出不良を検出する検知手段と、
を備えた吐出不良検出装置。
(第2の構成)
前記第2の領域は、前記第1の領域に対して親液性である、第1の構成に係るの吐出不良検出装置。
(第3の構成)
前記第1の領域において、液滴材料による接触角が50〜90°である第1または第2の構成に係るの吐出不良検出装置。
(第4の構成)
前記第1の領域は、略円形である、第1〜第3のいずれか1つに係る吐出不良検出装置。
(第5の構成)
前記第1の領域は、複数の略円形が一方向に配列してなり、
前記検出手段は前記一方向に走査可能である、
第1〜第3の構成のいずれか1つに係る吐出不良検出装置。
(第6の構成)
前記第1の領域は、一方向に帯状に連なるとともに、前記一方向と異なる第二の方向に前記第2の領域を挟んで複数配列されている、第1〜第3の構成のいずれか1つに係る吐出不良検出装置。
(第7の構成)
前記検出手段は、前記第二の方向に走査可能である第1のセンサーと、
前記第1のセンサーの出力に基づいて選定された着弾液滴について、前記一方向に対する液滴の位置ずれ量を検出可能な第2のセンサーからなる、
第6の構成に係る吐出不良検出装置。
(第8の構成)
前記検知手段は、基板の法線方向の高さを検出可能なセンサーからなる、第1〜第7の構成に係る吐出不良検出装置。
(第9の構成)
前記第1の領域は、前記第2の領域に対して凸である、第1〜第8の構成に係る吐出不良検出装置。
(第10の構成)
前記第2の領域は、少なくとも前記第1の領域の周囲部分ついて、多孔質材料により構成されている、第1〜第9の構成に係る吐出不良検出装置。
(第11の構成)
前記吐出検出基板は、前記インクジェットヘッドを用いて加工される基板内に設けられている、第1〜第10の構成に係る吐出不良検出装置。
本発明を用いることによって、簡便かつ安価な方法を用いて液滴の吐出不良を起こしたノズルを正確かつ高速に検出することができる。よって、インクジェット方式を用いた製造装置全般の吐出不良の検出に用いることができる。特に、画像表示装置に用いるカラーフィルタ基板、有機EL(electroluminescence)素子などの製造装置への応用に適している。
本発明の吐出不良検出装置を側面から見た、装置構成図である。 (a)は、図1の吐出不良検出装置一部を示す平面図であり、図2(b)は吐出不良検出装置一部を示す側面図である。 本発明に係る液滴を着弾させた基板および検知器を示した平面図である。 (a)は、図2(a)の基板の変形例を示しており、(b)は、液滴を着弾させた図4(a)の基板および検知器を示した平面図である。 本発明に係る吐出不良検出装置の処理を説明するフローチャートである。 本発明に係る吐出不良検出装置の処理の内、基板の位置決めを行う処理を説明する側面図である。 本発明に係る吐出不良検出装置の処理の内、基板へ液滴を吐出する処理を説明する側面図である。 本発明に係る吐出不良検出装置の処理の内、基板へ着弾させた液滴の形状を検知する処理を説明する側面図である。 (a)は、図3の基板の線分E−E’における表面形状を検知器で検出した結果を示すグラフであり、(b)は、図3の基板の線分F−F’における表面形状を検知器で検出した結果を示すグラフであり、(c)は、図3の基板の線分G−G’における表面形状を検知器で検出した結果を示すグラフである。 (a)は、実施例1のカラーフィルタ基板を上面から見た平面図であり、(b)は、(a)の破線部を拡大した平面図であり、(c)は、(b)の線分L−L’における断面図である。 (a)は撥液領域の中心に液滴が着弾した時の液滴の形状を示す断面図であり、(b)は撥液領域の中心から5μm離れた位置に液滴が着弾した時の液滴の形状を示す断面図であり、(c)は撥液領域の中心から10μm離れた位置に液滴が着弾した時の液滴の形状を示す断面図であり、(d)は撥液領域の中心から15μm離れた位置に液滴が着弾した時の液滴の形状を示す断面図である。 (a)は、Y方向に位置ずれを起こした液滴と、ずれを起こした距離を示す平面図であり、(b)は位置ずれを起こさなかった液滴を示す平面図である。
符号の説明
1 インクジェットヘッドユニット
2 基板
3 検知器(検知手段)
7 液滴
10 吐出不良検出装置
11 インクジェットヘッド
12 ノズル
21 撥液領域(第1領域)
22 非撥液領域(第2領域)
26 カラーフィルタ基板(パターンを形成するための領域)
31 センサ(第1センサ)
32 撮像カメラ(第2センサ)
66 判定部(判定手段)

Claims (16)

  1. ノズルを通じて基板に液滴を吐出するインクジェットヘッドを備え、当該ノズルにおける液滴吐出不良を検出する吐出不良検出装置であって、
    該基板の表面には、
    該基板に着弾した状態の液滴が占める面積に応じた形状であり、かつ、該液滴に対して第1のぬれ性を有する第1領域と、
    第1のぬれ性よりも高い第2のぬれ性を有し、かつ、第1領域と接する第2領域とが形成されており、
    インクジェットヘッドは、第1領域を目標に液滴を吐出し、
    吐出不良検出装置は、
    第1領域上に接触した状態の該液滴の形状および位置の少なくともいずれかを検知する検知手段と、
    検知手段による検知結果に基づいて、液滴吐出の良否を判定する判定手段とを
    備えていることを特徴とする吐出不良検出装置。
  2. 上記液滴が第1領域上に静止した状態における、該液滴と第1領域とがなす接触角が、50°〜90°であることを特徴とする請求項1に記載の吐出不良検出装置。
  3. 上記液滴が第1領域上に静止した状態における、該液滴と第1領域とがなす接触角と、該液滴が第2領域上に静止した状態における、該液滴と第2領域とがなす接触角との差が、40°以上であることを特徴とする請求項2に記載の吐出不良検出装置。
  4. 第1領域は略円形であることを特徴とする請求項1〜3のいずれか1項に記載の吐出不良検出装置。
  5. 複数の第1領域が、上記インクジェットヘッドから見た上記基板の移動方向と直交する直線上に、それぞれ等間隔に並んで形成されていることを特徴とする請求項4に記載の吐出不良検出装置。
  6. 第1領域が第2領域に取り囲まれていることを特徴とする請求項4または5に記載の吐出不良検出装置。
  7. 第1領域は帯状であり、第1領域の長辺方向が上記基板の走査方向と平行であることを特徴とする請求項項1〜3のいずれか1項に記載の吐出不良検出装置。
  8. 複数の第1領域のそれぞれが等間隔かつ平行に配置されていることを特徴とする請求項7に記載の吐出不良検出装置。
  9. 第1領域が有する2つの長辺が第2領域と接触していることを特徴とする請求項7または8に記載の吐出不良検出装置。
  10. 第1領域および第2領域が形成されている上記基板面の法線方向が、重力の向かう方向の反対方向と略一致しており、
    第1領域が第2領域よりも突出していることを特徴とする請求項1〜9のいずれか1項に記載の吐出不良検出装置。
  11. 第2領域における第1領域との境界付近には、吸水性が付与されていることを特徴とする請求項1〜10のいずれか1項に記載の吐出不良検出装置。
  12. 上記検知手段が第1センサを備え、
    第1センサが、上記基板表面における第1領域の凹凸を検知することを特徴とする請求項1〜11のいずれか1項に記載の吐出不良検出装置。
  13. 第1センサが、第1領域の中心の真上を通過するように走査しながら、上記基板表面の凹凸を検知することを特徴とする請求項1〜12のいずれか1項に記載の吐出不良検出装置。
  14. 上記検知手段は第2センサをさらに備え、
    第2センサは、第1センサによって検知された上記基板表面の凹凸に基づいて検知すべき該基板上の領域を決定し、かつ上記液滴の形状、第1領域の中心からの移動距離および第1領域の中心からの移動方向を検知することを特徴とする請求項13に記載の吐出不良検出装置。
  15. 上記基板には、上記液滴を着弾させることによって所望のパターンを形成するための領域がさらに形成されていることを特徴とする請求項1〜14のいずれか1項に記載の吐出不良検出装置。
  16. ノズルを通じて基板に液滴を吐出するインクジェットヘッドを備え、当該ノズルにおける液滴吐出不良を検出する吐出不良検出方法であって、
    該ノズルに合わせた形状、および該液滴に対して第1のぬれ性を有する第1領域、ならびに第1領域と接する、第1のぬれ性よりも高い第2のぬれ性を有する第2領域が形成された該基板に対して、第1の領域を目標に液滴を吐出する工程と、
    第1領域上に接触した状態の該液滴の形状および位置の少なくともいずれかを検知する工程と、
    検知結果に基づいて吐出の良否を判定する工程と
    を包含することを特徴とする吐出不良検出方法。
JP2007003858A 2007-01-11 2007-01-11 吐出不良検出装置およびその方法 Pending JP2008168207A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007003858A JP2008168207A (ja) 2007-01-11 2007-01-11 吐出不良検出装置およびその方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007003858A JP2008168207A (ja) 2007-01-11 2007-01-11 吐出不良検出装置およびその方法

Publications (1)

Publication Number Publication Date
JP2008168207A true JP2008168207A (ja) 2008-07-24

Family

ID=39696804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007003858A Pending JP2008168207A (ja) 2007-01-11 2007-01-11 吐出不良検出装置およびその方法

Country Status (1)

Country Link
JP (1) JP2008168207A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012213955A (ja) * 2011-04-01 2012-11-08 Seiko Epson Corp 液滴噴射装置及び液滴噴射方法
JP2013237005A (ja) * 2012-05-15 2013-11-28 Sumitomo Heavy Ind Ltd 薄膜形成装置及び薄膜形成装置の調整方法
JP2014103189A (ja) * 2012-11-19 2014-06-05 Dainippon Printing Co Ltd インプリント樹脂滴下位置決定方法、インプリント方法及び半導体装置製造方法
JP5556661B2 (ja) * 2008-09-18 2014-07-23 コニカミノルタ株式会社 インクジェット描画装置
KR20220090286A (ko) * 2020-12-22 2022-06-29 (주)에스티아이 잉크젯 프린트 헤드의 액적 검사 방법
EP4201684A3 (en) * 2021-12-22 2023-09-20 Ricoh Company, Ltd. Liquid discharge apparatus, liquid discharge method, and carrier medium
JP7522819B2 (ja) 2022-02-22 2024-07-25 サムス カンパニー リミテッド 接着剤塗布システムおよび方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09277571A (ja) * 1996-04-08 1997-10-28 Canon Inc カラーフィルタ製造装置および方法ならびにカラーフィルタ
JP2004165153A (ja) * 2001-06-25 2004-06-10 Seiko Epson Corp 発光用基板およびその製造方法、発光用基板用液滴材料着弾精度試験基板およびその製造方法、液滴材料着弾精度の測定方法、電気光学装置ならびに電子機器
JP2004361234A (ja) * 2003-06-04 2004-12-24 Seiko Epson Corp 液滴吐出評価試験装置
JP2006007115A (ja) * 2004-06-25 2006-01-12 Sharp Corp シミュレーション装置、液体塗布装置、シミュレーション方法、プログラム、および、記録媒体
JP2006136836A (ja) * 2004-11-15 2006-06-01 Hitachi Industries Co Ltd 液滴塗布装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09277571A (ja) * 1996-04-08 1997-10-28 Canon Inc カラーフィルタ製造装置および方法ならびにカラーフィルタ
JP2004165153A (ja) * 2001-06-25 2004-06-10 Seiko Epson Corp 発光用基板およびその製造方法、発光用基板用液滴材料着弾精度試験基板およびその製造方法、液滴材料着弾精度の測定方法、電気光学装置ならびに電子機器
JP2004361234A (ja) * 2003-06-04 2004-12-24 Seiko Epson Corp 液滴吐出評価試験装置
JP2006007115A (ja) * 2004-06-25 2006-01-12 Sharp Corp シミュレーション装置、液体塗布装置、シミュレーション方法、プログラム、および、記録媒体
JP2006136836A (ja) * 2004-11-15 2006-06-01 Hitachi Industries Co Ltd 液滴塗布装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5556661B2 (ja) * 2008-09-18 2014-07-23 コニカミノルタ株式会社 インクジェット描画装置
JP2012213955A (ja) * 2011-04-01 2012-11-08 Seiko Epson Corp 液滴噴射装置及び液滴噴射方法
JP2013237005A (ja) * 2012-05-15 2013-11-28 Sumitomo Heavy Ind Ltd 薄膜形成装置及び薄膜形成装置の調整方法
JP2014103189A (ja) * 2012-11-19 2014-06-05 Dainippon Printing Co Ltd インプリント樹脂滴下位置決定方法、インプリント方法及び半導体装置製造方法
KR20220090286A (ko) * 2020-12-22 2022-06-29 (주)에스티아이 잉크젯 프린트 헤드의 액적 검사 방법
KR102473640B1 (ko) * 2020-12-22 2022-12-02 (주)에스티아이 잉크젯 프린트 헤드의 액적 검사 방법
EP4201684A3 (en) * 2021-12-22 2023-09-20 Ricoh Company, Ltd. Liquid discharge apparatus, liquid discharge method, and carrier medium
JP7522819B2 (ja) 2022-02-22 2024-07-25 サムス カンパニー リミテッド 接着剤塗布システムおよび方法

Similar Documents

Publication Publication Date Title
JP6925143B2 (ja) 液滴吐出装置、液滴吐出方法、プログラム及びコンピュータ記憶媒体
US8196543B2 (en) Defect repairing apparatus, defect repairing method, program, and computer-readable recording medium
TWI757440B (zh) 液滴吐出裝置、液滴吐出方法及電腦記憶媒體
US20090309905A1 (en) Droplet Discharging and Drawing Apparatus
JP4058453B2 (ja) 液滴塗布装置
JP2008168207A (ja) 吐出不良検出装置およびその方法
US8473086B2 (en) Substrate reworking by liquid drop ejection means
TWI784937B (zh) 用以處理基體之噴墨列印系統及方法
JP2018143975A (ja) 液滴吐出装置、液滴吐出方法、プログラム及びコンピュータ記憶媒体
JP2010214350A (ja) 液滴吐出ヘッドの検査方法、液滴吐出ヘッドの検査装置及び液滴吐出装置
KR101986894B1 (ko) 액적 토출 장치 및 액적 토출 조건 보정 방법
JP2004141758A (ja) 液滴吐出装置のドット位置補正方法、アライメントマスク、液滴吐出方法、電気光学装置およびその製造方法、並びに電子機器
JP4541321B2 (ja) 液滴塗布装置、液滴塗布方法、プログラム及びコンピュータ読み取り可能な記録媒体
JP2010069707A (ja) インクジェット記録装置及びインクジェット記録方法
JP2004358353A (ja) 液滴吐出装置、液滴吐出方法、薄膜形成方法、及び電気光学装置
TWI433729B (zh) 吐出裝置及吐出方法
JP3922226B2 (ja) 半導体ウエハのマーキング装置及びこれを有する半導体検査装置
JP4615415B2 (ja) 表示素子部品修正装置および表示素子部品修正方法
JP4302749B2 (ja) インク吐出装置およびその制御方法
JP2001267380A (ja) 半導体ウエハのマーキング装置及びこれを有する半導体検査装置
KR20230154614A (ko) 처리액 토출 장치 및 방법
JP2024037137A (ja) インクジェットヘッドユニットおよびそれを含む基板処理装置
KR20230032165A (ko) 잉크젯 프린트 설비, 잉크젯 프린트 설비의 제조방법, 및 잉크젯 프린트 방법
KR20240024631A (ko) 액적 검사 장치 및 이를 구비한 잉크젯 인쇄 장치
JP2021151736A (ja) ノズル観察装置、ノズル観察方法、ノズル検査装置およびノズル検査方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110927