JP2008166104A - 接地電極、接地電極群及び雷サージ電圧の低減方法 - Google Patents

接地電極、接地電極群及び雷サージ電圧の低減方法 Download PDF

Info

Publication number
JP2008166104A
JP2008166104A JP2006354186A JP2006354186A JP2008166104A JP 2008166104 A JP2008166104 A JP 2008166104A JP 2006354186 A JP2006354186 A JP 2006354186A JP 2006354186 A JP2006354186 A JP 2006354186A JP 2008166104 A JP2008166104 A JP 2008166104A
Authority
JP
Japan
Prior art keywords
ground electrode
lightning surge
ground
conductor
lightning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006354186A
Other languages
English (en)
Inventor
Takashi Miyagawa
隆 宮川
Koichi Nakamura
光一 中村
Isao Horibe
勲夫 堀部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaela R & D Co Ltd
Nippon Steel Corp
Original Assignee
Kaela R & D Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaela R & D Co Ltd, Nippon Steel Corp filed Critical Kaela R & D Co Ltd
Priority to JP2006354186A priority Critical patent/JP2008166104A/ja
Priority to CN2007800320188A priority patent/CN101513133B/zh
Priority to PCT/JP2007/067245 priority patent/WO2008026766A1/ja
Priority to TW096132252A priority patent/TWI369696B/zh
Publication of JP2008166104A publication Critical patent/JP2008166104A/ja
Priority to HK10100520.7A priority patent/HK1133524A1/xx
Pending legal-status Critical Current

Links

Images

Landscapes

  • Elimination Of Static Electricity (AREA)

Abstract

【課題】雷害防止の対象である建造物や各種設備等の接地インピーダンスを従来よりも低くすることによって、雷サージ電流による雷害を防止することが可能な接地電極、接地電極群及び雷サージ電圧の低減方法を提供する。
【解決手段】落雷7による雷サージ電流Iを大地15に流す接地電極1を、少なくとも一部分が大地に埋設された鋼管33と、この鋼管33内に同軸配置された導体34と、鋼管33及び前記導体34の間に充填された、導電性を有する充填材40と、を有するように構成する。これにより、接地電極1を流れる雷サージ電流Iが分流され、その低周波成分Iが導体34を流れ、且つその高周波成分Iが導体34の外側の鋼管33及び充填材40を流れるようにする。
【選択図】図2

Description

本発明は、落雷による雷サージ電流を大地に流すことにより雷害を防止する接地電極、接地電極群及び雷サージ電圧の低減方法に関する。
落雷により高出力の雷サージ電流が建造物、信号機等の各種設備又は樹木等に流れると、これらは破壊されてしまう。また送電系統では、逆閃絡が生じてその電力設備が雷災害を被ることがある。近年では、電気的な衝撃に対して特に弱い電子機器も増加しており、雷害が非常に脅威になっている。このような雷害を防止するため、落雷による雷サージ電流を接地側に流す経路を備えた導体(通常、避雷針とも呼ばれ、避雷突針や避雷導体等が含まれる)が用いられている。
一般に、上記導体の一方の端部は、避雷突針が接続され、落雷を受けるように雷害防止の対象である建造物や各種設備等の上部に配置されている。また、他方の端部は、大地に埋設された接地電極に接続されている。これにより、雷サージ電流を、避雷導体、接地電極、大地の順に流し、雷害防止の対象である建造物等から迂回させることで、被害を防止するようになっている。なお、接地工事で、例えばA種接地での接地抵抗(一般に、接地インピーダンスと呼ばれている)は10Ω以下である。通常、接地インピーダンスは抵抗、インダクタンス、キャパシタンスからなる等価回路で表される。抵抗は主に接地電極の大地との接触抵抗並びに大地抵抗であり、インダクタンスは接地電極のインダクタンスであり、キャパシタンスは接地電極と大地との間のキャパシタンスである。上述の等価回路では、インダクタンスと抵抗は直列接続に構成され、また抵抗とキャパシタンスは並列接続に構成されている。
この等価回路で表される接地インピーダンスにおいて、特にインダクタンスと抵抗の直列回路に加わる電圧が、流れる電流の周波数成分によって異なる点に留意しなければならない。即ち、直流や50Hz、60Hzの商用周波数電流ならば、回路電圧の大部分は抵抗に加わる成分である。一方、電流の周波数成分が広くなるとともに、インダクタンス成分の電圧も顕著になり、回路電圧は抵抗成分とインダクタンス成分が重畳する値になる。したがって接地電極に雷サージ電流が流れるとき抵抗値相当以上の高い電圧が接地電極に生じるのはこの理由による。
本発明は、上述のインダクタンスを見かけ上低減する技術である。これにより雷サージ電流による接地電極の電位上昇を抑制することができる。従来の接地工事においては、雷サージ電流に対する接地電極の電位上昇を抑制する観点から[1]抵抗を更に下げる工事、又は[2]接地インピーダンスを下げる工事を行う等の対策が採られている。しかし、これらの工事は非常に大きなコストや日数を要している。また、上記[1]での抵抗の低減が必ずしも接地インピーダンスの低減に結び付かず費用対効果が悪い。上記[2]では、所望の値を得るまで何度も追加工事と計測を必要とする等、これも費用対効果が悪いという課題がある。
いま、接地インピーダンスのうち、抵抗を10Ω、インダクタンスを10μHとし、雷サージ電流の大きさを100kAかつ100kA/μsとすると、上述した接地電極に雷サージ電流が流れる際には、10(Ω)×100(kA)+100(kA/μs)×10(μH)=1000(kV)+1000(kV)=2000(kV)の電位上昇が生ずる。このインダクタンス成分電圧を極力低減することが、接地電極に直接又は間接につながった電気設備や付近にある設備の絶縁破壊防止に極めて有効である。
雷サージ電流により発生する接地電極の電位上昇が大きいと接触電圧や歩幅電圧が高くなり付近の住民や動物が感電する事が有り危険である。また、2本の接地電極が近くに離間して接地されている時、1本目に雷サージ電流が直接流れると、2本目にも雷サージ電流が分流してその接地電極につながった電気設備が災害を受ける事が多々ある。家電設備の雷災害の典型の1つである。
本発明は上記課題に鑑みてなされたものであり、雷害防止の対象である建造物や各種設備等の接地インピーダンス、特に上述のインダクタンスを導体固有の値よりも低くすることによって、雷サージ電流による雷害を防止すると共に、費用対効果を向上させることが可能な接地電極、接地電極群及び雷サージ電圧の低減方法を提供することをその目的とする。
上記課題を解決するために、本発明によれば、商用周波の地絡電流のみならず落雷による雷サージ電流を大地に流す接地電極であって、少なくとも一部分が大地に埋設された管状導体と、前記管状導体内に同軸配置された内部導体と、前記管状導体と前記内部導体の間に充填された、導電性を有する充填材と、を有し、前記落雷による雷サージ電流が分流され、その低周波成分が主として前記内部導体を流れ、且つその高周波成分が主として前記管状導体及び前記充填材を流れることを特徴とする、接地電極が提供される。
本発明は、接地インピーダンスを低減する効果を有する接地電極である。特に、接地電極固有のインダクタンスを低減する構造を有する接地電極である。従って、商用周波の地絡電流のみならず、雷サージ電流に対しても電流が流れる際の接地電圧上昇を抑制する機能を備えている。特に、従来は接地インピーダンス低減のための工事がカットアンドトライであるのに対し、本発明では、現地に備え付ける程度の工事で済む点で、日数の短縮を含めた費用対効果は優れている。また、本発明の同軸構造の接地電極は内部導体(中心導体)が管状導体としての外側鋼管で電磁気的に遮蔽されるので、分流サージの割合は極めて小さくなる。この分流サージ電流の低減効果により電気設備の雷災害は減ずる。
上記接地電極において、前記充填材は、抵抗体、誘電体及び磁性体より成る群から選択した1以上の材料を含有していてよい。
上記接地電極において、前記管状導体と前記内部導体が、同軸系の特性インピーダンスにより終端された後に接地されていてもよい。
上記接地電極において、落雷による雷サージ電流を接地側に流す避雷装置に接続されていてもよい。
上記接地電極において、前記避雷装置と一体型の同軸形状に形成されていてもよい。
上記接地電極において、商用周波電力施設や電力設備の地絡故障電流を接地側に流す接地装置に接続されてもよい。
上記接地電極において、前記管状導体は、軸方向を鉛直方向にして埋設されていてもよい。
上記接地電極において、前記管状導体は、軸方向を水平方向にして埋設されていてもよい。
上記接地電極において、前記管状導体と前記内部導体は、等電位ボンディング導体に接続されていてもよい。
また、本発明によれば、上記接地電極を複数有することを特徴とする、接地電極群が提供される。
また、本発明によれば、落雷による雷サージ電流を大地に流す際に雷サージ電圧を低減する方法であって、第1の電流路をその一端が大地の中に配置されるように設けると共に、前記雷サージ電流の高周波成分に対するインピーダンスが前記第1の電流路よりも低い第2の電流路を設け、前記雷サージ電流の低周波成分が主として第1の電流路に流れ、且つ高周波成分が主として第2の電流路に流れるように、雷サージ電流を周波成分に応じて分流させることにより前記第1の電流路の雷サージ電圧を低減することを特徴とする、雷サージ電圧の低減方法が提供される。また、通常の接地電極としても従来と同様に機能する。
上記雷サージ電圧の低減方法において、前記第1の電流路は、内部導体で構成され、前記第2の電流路は、前記内部導体の外周を被覆するように同軸配置した管状導体と、前記管状導体及び前記内部導体の間に充填された、導電性を有する充填材とで構成されていてもよい。
上記雷サージ電圧の低減方法において、前記充填材は、抵抗体、誘電体及び磁性体より成る群から選択した1以上の材料を含有していてもよい。
上記雷サージ電圧の低減方法において、前記同軸配置した管状導体の外周に外皮を設けるようにしてもよい。この外皮として、例えばコンクリート等を用いることによって埋設時に鋼管の腐食対策をとることができる。
本発明によれば、雷サージ電流に対し接地電極の電位上昇を効果的に抑制し、従来よりも非常に低い接地インピーダンスを実現することができる。これにより、雷サージ電流を接地電極経由で確実に大地に流すことができ、建物側に流れて電子機器を破壊する等、不測の事態を防止できる。また、大地に流した雷サージ電流が、周囲にある他の建物等の設備、隣接する他の接地電極、周囲の人間等に大地経由で流れても、接地電極の雷サージ電圧が非常に低い値になっているため、その被害を最小限に抑え、より安全にすることができる。
以下、図面を参照しながら、本発明の好適な実施形態について説明をする。なお、本明細書及び図面において、実質的に同一の機能構成を有する要素については、同一の符号を付することにより重複説明を省略する。
図1は、本発明の第1の実施形態に係る接地電極1を、雷害防止の対象として建物5に適用した場合の一例を示す構成図である。図1に示すように、建物5の屋根の上には、落雷7による雷サージ電流を接地側に流す避雷装置としての避雷突針10が鉛直方向に立設されている。避雷突針10の下端には、引き下げ導線13が接続されており、上端に落ちた雷7の雷サージ電流を導線13に流すことができるようになっている。この導線13は、建物5の外面に沿って下方まで延設され、大地15よりも低い位置で建物5内に導入され、建物5の内部に設けた接地部17に接続されている。この接地部17は、建物5内の底部全体に亘って配置された金属等が用いられてもよい。
図1に示すように、接地部17は、接地電極1と等電位ボンディング導体20に接続されている。電位等電位ボンディング導体20には、例えばパソコン等の電子機器25や例えば水道管等の金属管26等が接続されている。本実施の形態では、電子機器25は、外部の電源27に接続されている。等電位ボンディング導体20は、接続された電子機器25、金属管26等を等電位に保持するように設けた例えば金属板である。これにより、落雷7による雷サージ電流が流れても各機器間25、26の間に電位差が発生しないため、雷害を防止することができる。
図2は、接地電極1の鉛直方向の断面図である。図3は、図2のX−X矢視拡大断面図である。図2及び図3に示すように、接地電極1は、大地15中に鉛直方向に埋設された円環形状の鋼管33の内部に裸の導体34を同軸配置した構成を有する。管状導体としての鋼管33は、例えばステンレス鋼や防食対策鋼管で構成されている。内部導体としての導体34は、例えば銅等で構成され、鋼管33内を軸方向に沿って上端側から下端側まで配設されている。導体34の上端は、鋼管33の上端の外側に若干突出して配置され、接地部17に接続されている。場合によっては、導体34は、鋼管33の軸方向に沿って所定間隔で複数設けた絶縁性の固定装置35によって鋼管33内の中央位置に固定されている。
図3に示すように、鋼管33及び導体34の間には導電性を有する充填材40が充填されている。本実施の形態では、充填材40としては、抵抗体45、誘電体46及び磁性体47の各材料を、所定の割合で混入させた例えばセメントが用いられている。抵抗体45としては、例えば金属微粉末(銀粉、銅粉等)又はグラファイト等が用いられる。誘電体46としては比較的誘電率の高い材料(例えば酸化アルミ、チタン酸バリウム等)が用いられる。さらに、磁性体47としては、例えばフェライト等が用いられる。なお、充填材40としてのセメントは、例えば発泡状に構成する等により軽量化されているのが好ましい。
図4は、大地15付近における接地電極1を拡大した斜視図である。図1、図2及び図4に示すように、鋼管33は軸方向に沿って概ね全長に亘って大地15内に埋設されているが、その上端は大地15から突出した構成になっている。整合器51は、鋼管33及び導体34の下端を、両者(33、34)が形成する同軸系の特性インピーダンスにより終端するように構成されている。なお、本実施の形態では、整合器51として、鋼管33と軸方向を平行に且つ同心に配置された円柱形状のコンクリート材が用いられている。
以上のように構成された接地電極1によって実施される、本発明の第1の実施形態に係る雷サージ電圧の低減方法について説明する。
図1に示すように、雷7が発生し、避雷装置である避雷突針10の上端に落雷すると、雷サージ電流Iが避雷突針10の下端から引き下げ導線13に流れ、次いで、導線13から接地電極1に流れる。この雷サージ電流Iは、多くの周波数成分を含んでいる。接地電極1に流れた雷サージ電流Iは、図2の接地電極1の導体34を軸方向に沿って上端側から下端側に流れる。導体34の周囲には、導体34の外周を被覆するように同軸配置した鋼管33が配置されており、且つ導体34と鋼管33との間には導電性を有する充填材40が充填されているため、雷サージ電流Iは導体34を流れる際に減衰する。この現象を図5に示す回路図を用いて以下で説明する。
図5は、導体34の上端側から流された雷サージ電流Iを接地側に流す際の、鋼管33、導体34及び充填材40によって構成される本発明の第1の実施形態に係る接地電極1の単位長さ当たりの等価回路を示した回路図である。図5において、Lは導体34のインダクタンス、Rは導体34の抵抗、Cは導体34と鋼管33の間のキャパシタンスである。Gは、抵抗体45、誘電体46及び磁性体47を含有する充填材40に起因するコンダクタンスである。
雷サージ電流Iが導体34を流れる際には、図5に示すように、雷サージ電流Iの高周波成分を主体とする電流Iは、導体34の外側の充填材40及び鋼管33に(即ち、図5に示す点A1から点B2の方に)流れ易い。従って、導体34に流れる雷サージ電流は、雷サージ電流IからIを減じた低周波成分を主体とするIである。このように、本発明の第1の実施形態に係る接地電極1は、落雷7の雷サージ電流Iが低周波成分Iと、高周波成分Iとに分流され、低周波成分Iが主として第1の電流路としての導体34を流れ、高周波成分Iが主として第2の電流路としての鋼管33及び充填材40を流れるように構成されている。
減衰した雷サージ電流I(即ち、雷サージ電流Iの低周波成分I)が導体34を流れる際に発生するおおよその雷サージ電圧Vは、V=L×dI/dtとなる。この雷サージ電圧Vは、従来公知の接地電極のように、雷サージ電流I(=I+I)が導体34に流れる場合に発生する雷サージ電圧VL+H=L×{d(I+I)/dt}よりも低減されている。
一方、雷サージ電流Iの高周波成分Iが導体34の外側の鋼管33及び充填材40を流れる際には、主として充填材40が含有する抵抗体35、誘電体36及び磁性体37によって抵抗加熱、誘電加熱、及び誘導加熱が生じ、そのエネルギーの一部が消費される。
導体34を流れる雷サージ電流Iの低周波成分Iと、充填材40及び鋼管33を流れる雷サージ電流Iの高周波成分Iの主なものは、軸方向に沿って下端側に流れて大地15よりも低い位置に到達すると、図4に示すように、整合器51を経由して大地15に流出し、その一部は、鋼管33と接触している部分から大地15に流出する。
以上の実施の形態によれば、接地電極1を鋼管33の中心に導体34を配置した同軸ケーブルに構成し、さらに、鋼管33及び導体34の間に、導電性を有する充填材40を充填したことによって、雷サージ電流Iが導体34を流れる際に分流され、その低周波成分Iが主として第1の電流路としての導体34を流れ、且つその高周波成分Iが主として導体34の周囲に設けた第2の電流路を流れるようにすることができる。これにより、ほとんど全ての雷サージ電流Iが導体34を流れる従来公知の接地電極の場合よりも、導体34を流れる電流量を低減し、導体34に生じる雷サージ電圧(L×di/dt)を低減させることができ、接地インピーダンスを従来よりも低い値にすることが可能になる。これにより、建物側に流れる分流分が低減し、結果として電気的につながった電子機器の破壊等の事態が少なくなる。
さらに、上述したように接地電極1による雷サージ電圧を低減させたことによって、接地電極1経由で大地15に流された雷サージ電流が、周囲にある建物や人間に及ぼす被害を最小限に抑えることが可能になる。以下、図6及び図7に示す例を用いて、その効果について説明する。
図6(a)に示す例では、接地電極1を備えた建物5の近くに他の建物55が存在している。図6(a)に示すように、他の建物55は、例えば外部電源67に接続された電子機器65等を内部に備えている。他の建物55は、大地15に埋設された従来公知の接地電極61によって接地されている。接地電極61は、導線60を介して電子機器65に接続されている。図6(b)は、図6(a)に示す建物5に雷7が落ちた際に、その雷サージ電流Iが接地電極1から大地15に流された場合の大地15の中の雷サージ電圧の値を、大地15における位置と共に示したグラフである。なお、図6(b)では、縦軸が雷サージ電圧の値を表し、横軸が大地15における位置(即ち、距離)を表している。図6(a)の横方向の位置関係は、図6(b)の横軸で示される距離と対応している。図6(a)に示す建物5が接地電極1の代わりに従来公知の接地電極を備えている場合には、雷サージ電圧と距離との関係は、図6(b)の点線のようになる。
図6(b)に示すように、従来公知の接地電極を用いた場合に、大地15に流れた時の雷サージ電流の電圧(雷サージ電圧)の初期値がUE0であるのに対し無限遠点の電位を零として本発明の接地電極1を用いた場合には、大地15に流される雷サージ電圧の値が大幅に低減され、大地15に流された直後の雷サージ電圧の初期値はUE1になっている。一般に、雷サージ電圧は、大地15に流された地点からより遠い位置(距離)に進行するに従ってその値が徐々に減衰するが、建物5に従来公知の接地電極が用いられた場合には、隣接する接地電極61の地点Dにおける雷サージ電圧はと依然として非常に高い値UD0になっており、この高い電圧によって電子機器65が損傷する。これに対して、本発明による接地電極1を用いた場合には、隣接する接地電極61の地点Dにおける雷サージ電圧は充分に低い値UD1になり、電子機器65の損傷は免れる。このように、本発明によって、隣接する接地電極61に対する雷サージ電圧による被害を低減化又は無害化することが可能である。
一方、建物5の接地電極として本発明の接地電極1ではなく、従来公知の接地電極61を用いた場合には、図6(b)の点線で示すように、大地に流れた時の雷サージ電流の電圧(雷サージ電圧)の初期値がUE0になるが、隣接する接地電極として本発明の接地電極1を用いれば、大地15と直接接触しているのは従来公知の接地電極のように導体ではなく鋼管部分33であり、中心導体34ではないため、鋼管部分33が中心導体34に対して電磁気的な遮蔽体として働くので、中心導体34への雷サージ電流の侵入は抑制される。また、中心導体34には、その性質上低周波成分の電流が選択的に流れるので、電流サージ電圧は大幅に低減される。
次に、図7を用いて周囲の人間に及ぼされる被害が最小限に抑えられていることの説明をする。図7(a)に示す例では、接地電極1を備えた建物5の近くを歩いている歩行者70が示されている。図7(b)は、図7(a)に示す建物5に雷7が落ちた際に、その雷サージ電流Iが接地電極1から大地15に流れた場合の大地15の中の雷サージ電圧の値を、大地15における位置と共に示したグラフである。なお、図7(b)では、縦軸が雷サージ電圧の値を表し、横軸が大地15における位置(即ち、距離)を表している。図7(a)の横方向の位置関係は、図7(b)の横軸で示される距離と対応している。図7(a)に示す建物5が接地電極1の代わりに従来公知の接地電極を備えている場合には、雷サージ電圧と距離との関係は、図7(b)に示す点線のようになる。
図7(a)及び図7(b)に示すように、従来公知の接地電極を用いた場合に、大地15に流れたときの雷サージ電流の電圧(雷サージ電圧)の初期値がUE0であるのに対し、本発明の接地電極1を用いた場合には、大地15に流れる雷サージ電圧の値が大幅に低減され、大地15に流れた直後の雷サージ電圧の初期値はUE1になっている。これにより、本発明の接地電極1を用いた場合の雷サージ電圧の勾配(図7(b)の実線)は、従来公知の接地電極を用いた場合の雷サージ電圧の勾配(図7(b)の点線)よりも緩やかになっている。
図7(a)に示すように、歩行者70の両足は大地15に対して別々の位置L1、L2で接触しているため、接触電極1から大地15に流れた雷サージ電流が歩行者70の直下の大地15に流れた場合には、両足間の電位差に対応した雷サージ電圧(歩幅電圧と呼ばれる)が歩行者70に加わることになる。しかしながら、本発明の接地電極1を用いた場合には、上述したように雷サージ電圧の勾配を緩やかにされているため、一方の足の位置L1と他方の足の位置L2との間の電位差はUS1と、従来公知の接地電極を用いた場合の電位差US0から著しく低い値に低減されている。このように、本発明によって、歩行者70に雷サージ電流が流れた場合にもその被害を効果的に低減することが可能である。
上述した例では、歩行者70の雷サージ電流による感電について説明したが、図7(a)に示すように、本発明の接地電極1を用いることによって建物5に直接接触している接触者71の感電被害をも効果的に低減化又は無害化することができる。
例えば、図7(b)の点線で示すように、従来公知の接地電極が用いられている場合には、接触者71が感電した際に受ける雷サージ電圧(接触電圧と呼ばれる)は、壁の位置Wと接触者71の位置L0との間の電位差UT0であり、前述した歩行者70の受ける電位差US0と比較して、著しく大きくなっている。ところが、本発明の接地電極1を用いた場合には、図7(b)の実線で示すように、雷サージ電圧が十分に低減され、減衰度合いも緩やかになるため、接触者71が感電した場合に印加される電位差UT1が非常に低い値になっている。このように、本発明によって、雷サージ電流が流れてしまった場合においても接触者71の感電の被害を効果的に低減することが可能である。
さらに、上述したように接地電極1を同軸構造にしたことによって、基本的には、従来形接地電極のインダクタンス成分を大幅に低減することができ、これにより接地インピーダンスの値は小さくなる。その接地インピーダンスのうち、リアクタンス成分の値は、接地電極1を設置する通常の土壌環境(例えば抵抗率等)に依存しないという利点が得られる。また、接地電極1を雷害防止の対象である建物5等に設置する際には、製造した接地電極1を設置場所(例えば建物5等)のある現場に搬送し、鉛直方向に沿って孔を掘削した後に、この孔に接地電極1を挿入して固定するという非常に単純な手順で実行でき、その施工が非常に容易化される。
さらに、上述したように接地電極1を同軸構造にしたことによって、接地電極1の鋼管33が外からの電流を遮蔽し、導体34を保護することができる。これにより、誘導雷サージ電流が大地15から導体34に流れ込んでしまう事態を防止できる。また、例えば接地電極1に隣接して他の接地電極が設けられている場合等に、この隣接する他の接地電極から大地15に流された雷サージ電流が接地電極1の中心導体34に流れ込む量を低減できる。
本発明の第2の実施形態として、図8に示すように、複数の異なる特性インピーダンスの接地電極1を互いに接続し、接地電極群2を形成するようにしてもよい。図8は、一例として3つの接地電極1を有する接地電極群2の鉛直方向の断面を示した断面図である。図8に示す接地電極群2の例では、3つの接地電極1が、いずれも管状導体としての鋼管33の管軸方向を鉛直方向にして互いに概ね等間隔で大地15に埋設されている。図8に示すように、3つの接地電極1の導体34は、各鋼管33の外で互いに接続されて1つになっている。このように1つに合流した導体34は、例えば図1に示す接地部17等を介して建物5の上部に設けた避雷装置10に接続されている。
本発明の第2の実施形態によれば、複数の接地電極1を用いるようにしたことにより、各々の接地電極1を従来よりも小型化できる。これにより、各接地電極1の搬送及び施工が非常に容易化される。なお、第2の実施形態においても、第1の実施形態と同様の効果を有する。
本発明の第3の実施形態として、図9に示すように、異なる特性インピーダンスの接地電極1を複数設置する際に、その管軸方向を水平にして大地15に埋設するようにしてもよい。図9は、一例として4つの接地電極1を有する接地電極群2の水平方向の断面を示した断面図である。図9に示す接地電極群2の例では、4つの接地電極1が、いずれも管状導体としての鋼管33の管軸方向を水平方向にして同一水平面内に配置されている。4つの接地電極1は、互いの管軸方向が直角になるように放射状に配置されている。各接地電極1は、内部導体としての導体34が鋼管33の外に延設されている側の端部を放射の中心に向けて配置されている。本発明の第3の実施形態では、放射状の接地電極群2の中心部に中空の空間80が設けられており、この空間80内で4つの接地電極1の各導体34が互いに接続されて1つになっている。このように1つに合流した導体34は、鉛直方向に沿って上方に延設され、例えば図1に示す接地部17等を介して建物5の上部に設けた避雷装置10に接続されている。
本発明の第3の実施形態によれば、接地電極1の鋼管33の管軸方向を水平に配置したことによって、接地電極1を埋設する際に例えば大地15に形成する孔が同じ深さでよくなる等、その施工が容易化される。また、複数の接地電極1を接続して接地電極群2を形成する場合に、各接地電極1の大地15に雷サージ電流を流す側の端部を互いに遠ざけて配置することができ、相互の影響を低減することが可能になる。なお、第3の実施形態においても、第1の実施形態と同様の効果を有する。
本発明の第4の実施形態として、図10に示すように、落雷7による雷サージ電流を接地側に流す避雷装置10と接地電極1とを一体型の同軸形状に形成してもよい。図10は、避雷装置10と接地電極1が一体型の同軸形状に形成された一例としての立設型避雷針85の鉛直方向の断面図である。図10に示す例では、避雷針85が単独で立設されており、上端に突針86を備えている。なお、避雷装置及び接地電極を一体型にして既存の設備等に設けるようにしてもよい。この構成を例えば、送電線の架空地線に接続し、接地電極の上端を架空地線に接続して使用すれば、架空地線の雷サージ電圧の上昇が低減できる。
本発明の第4の実施形態によれば、落雷7による雷サージ電流が接地電極1に到達する前から同軸形状の避雷装置10を流れるため、雷サージ電流の電位上昇がより効果的に抑制され、接地インピーダンスを大幅に低下させることができる。また、雷サージ電流が避雷装置10から整合器51を介して大地15に流されるまでの間の全経路(即ち、大地15より上の大気中を流れる経路と、大地15の中の経路)において、雷サージ電流によるフラッシオーバ等の放電の発生を防止することができる。さらに、外部からこの経路に電流が流れ込む事態も防止できる。なお、第4の実施形態においても、第1の実施形態と同様の効果を有する。
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
上述した実施形態においては、管状導体として例えばステンレス鋼や防食対策鋼管で構成された鋼管33が用いられている場合について説明したが、その他の材料で形成された管状導体が用いられてもよい。
上述した実施形態においては、充填材40として、抵抗体45、誘電体46及び磁性体47の全てを所定の割合で混入させたセメントが用いられている場合について説明したが、充填材40は、導電性を有する任意の材料を用いてよい。また、充填材40には、抵抗体45、誘電体46及び磁性体47より成る群から選択した1以上の材料が含有されるようにしてもよい。さらに、これら抵抗体45、誘電体46及び磁性体47以外の材料が含まれていてもよい。
上述した実施形態においては、抵抗体45が金属微粉末(銀粉、銅粉等)又はグラファイトである場合について説明したが、抵抗体45としてこれら以外の材料を用いてもよい。
上述した実施形態においては、誘電体46が酸化アルミ、チタン酸バリウムである場合について説明したが、誘電体46としてこれら以外の材料を用いてもよい。
上述した実施形態においては、磁性体47がフェライトである場合について説明したが、磁性体47としてこれら以外の材料を用いてもよい。
上述した実施形態においては、整合器51として、鋼管33と軸方向を平行に且つ同心に配置された円柱形状のコンクリート材が用いられている場合について説明したが、整合器51は、インピーダンスの整合をとるための任意の材料及び形状であってもよい。
上述した実施形態においては、本発明の接地電極1を単独で用いる場合について説明したが、例えばメッシュ接地極等の従来公知の接地電極と併用してもよく、この併用によって従来公知の接地電極の接地インピーダンスを低減させる効果がある。
上述した実施形態においては、接地電極群2が接地電極1を3つ又は4つ有する場合について説明したが、任意の数の接地電極1を有していてもよい。また、接地電極群2が有する複数の接地電極1は任意の配置構成であってもよい。
上述した実施形態(第4の実施形態)においては、避雷装置10と接地電極1とが一体型の同軸形状に形成されている場合について説明したが、同軸形状の避雷装置10と同軸形状の接地電極1との間に例えば蛇腹形状の同軸形状又は非同軸形状の中間部分を設け、この中間部分を介して避雷装置10と接地電極1とを接続するようにしてもよい。
上述した実施形態においては、接地電極1が落雷7による雷サージ電流に対して効果を発揮する場合について説明したが、接地電極1は、例えば図1に示す電気機器25が地絡故障した場合においても、商用周波数の漏電電流に対して雷サージ電流に対する効果と同様の効果を発揮することが可能である。
上述した実施形態においては、接地電極1が大地15の中に直接的に埋設されている場合について説明したが、接地電極1の外周に例えばセメント等の外皮を設けるようにしてもよい。このようにして鋼管33の外周に外皮を設けることによって、接地電極1の埋設時に鋼管33の腐食対策をとることができる。
一般に、雷サージ電流の主要な周波数成分は10KHz〜1MHzとみなされており、図2に示す本発明の実施の形態に係る接地電極1に、一般的な伝送式を適用した試算を行うことによって正弦波定常電流法による解析からその有効性を検証する。
既述したように、本発明による接地電極1は、図5に示す有損失線路の等価回路とみなせるので、以下では、公知の一般式を適用して試算を行う。なお、図5に示す有損失線路の等価回路において、抵抗R及びコンダクタンスGを0に設定した場合には、無損失線路の等価回路に該当する。
一般的に、図11に示すように、内部導体91の外径がa、外部導体92の内径がbである同軸ケーブル95は、これら内部導体91及び外部導体92が空気絶縁されている状態において、周波数f(Hz)の電流を流した場合には、この同軸ケーブル95の単位長さ当たりのインダクタンスL(μH/m)、キャパシタンスC(pF/m)及び抵抗R(Ω/m)、並びにインピーダンスZ(Ω)は、各々下記式(1)〜(4)で得られることは公知である。
L=0.2×ln(b/a)・・・・・・・・・・・・(1)
C=(55.6×ε)/{ln(b/a)}・・・・・・・・・・(2)
R={4.15×10−8×(a+b)×√f}/(a×b)・・・・(3)
=60×ln(b/a)・・・・・・・・・・・・・(4)
なお、上式(2)におけるεは誘電率である。
また、図11に示す同軸ケーブル95の内部導体91及び外部導体92の間に空気の代わりにポリエチレンを充填し、同軸ケーブル95に周波数f=3×10(Hz)の電流を流した場合には、同軸ケーブル95のコンダクタンスG(S/m)が下記式(5)で得られることが分かっている。
G=(7.35×10−10)/{ln(b/a)}・・・・・・・(5)
しかしながら、本発明の場合、接地電極1の導体34及び鋼管33の間の充填材40は、導電性が支配的であるため、接地電極1のコンダクタンスGは、充填材40の導電率σ(S/m)に対して下記式(6)で求めるのが適切である。
G=(σ×2π)/{ln(b/a)}・・・・・・・(6)
表1には、(抵抗体45、誘電体46及び磁性体47を含有する)充填材40として種々の導電率σ(S/m)の物質を用いた場合について、上式(6)から計算される接地電極1のコンダクタンスG(S/m)の各値が示されている。なお、表1においては、内部導体91の外径をa=10(mm)、外部導体92の内径をb=1000(mm)としている。
Figure 2008166104
さて、図5に示す等価回路において、下記式(7)で示すγは一般に伝播係数と呼ばれている。
γ=√{(R+jωL)×(G+jωC)}・・・・・・・(7)
なお、ω(rad/s)は等価回路を流れる電流の角周波数であり、ω=2πfである。ここで、
γ=α+jβ・・・・・・・・・・・・・・・・・・・(8)
とα、βを設定すると、電流が図5に示す等価回路をl(m)流れた際の外部導体92に対する内部導体91の電圧成分の比は、下記式(9)で得られることが知られている。
|{v(x)/v(x+l)}|=eαl・・・・・・・・(9)
但し、電流が等価回路を位置xから位置(x+l)までl(m)流れたと仮定し、位置xの電圧成分の値をv(x)、位置(x+l)の電圧成分の値をv(x+l)とする。これにより、減衰率D(dB)は、下記式(10)で得られる。
D=20×log10αl
=(αl)×20×log10
=8.686×(αl)・・・・・・・・・・・・・・・・(10)
従って、上式(1)〜(3)、(6)から各々得られるL、C、R及びGの値を上式(7)に代入し、伝播係数γの値を計算してから、上式(8)を用いてαの値を算出すると、上式(10)から接地電極1の導体34を流れる雷サージ電流の電圧成分の減衰率D(dB)を求めることができる。なお、上式(10)では、電圧成分を対象にしたものであるが、電流の減衰率に対しても同様である。
ここでの試算は、図2に示す接地電極1の導体34の外径が10(mm)、鋼管33の内径が1000(mm)であると仮定する。従って、a=10、b=1000を上式(1)、(2)に適用することによって、接地電極1のインダクタンスL及びキャパシタンスCは、L=1(μH/m)、C=12(pF/m)となる。また、表1を参照し、試算に最適であるコンダクタンスGの値をG=0.01、0.1、1.0、10.0(S/m)(即ち、導電率σ=0.00733、0.0733、0.733、7.33(S/m))に設定して試算を行う。図12は、これら4種類のコンダクタンスGの各値について、3種類の周波数f=10、10、10(Hz)の雷サージ電流が接地電極1の導体34を流れる際の単位長さ当たりの減衰率D(dB)を各々試算した結果を示したものである。
図12に示されるように、コンダクタンスG(即ち、導電率σ)の値が(金属のコンダクタンス程極端に大きくない範囲内で)大きくなるほど導体34を流れる雷サージ電流の減衰率D(dB)が増大することが分かる。従って、本発明のように、接地電極1を同軸ケーブルに構成した上で、充填材40が抵抗体45を有するようにして導電率σを高くすると、導体34を流れる雷サージ電流が相対的に減衰し、導体34の外側(即ち、充填材40及び鋼管33)により分流させる効果があることが分かる。
また、図12に示すように、G=0.01(S/m)(即ち、導電率σ=0.00733(S/m))である場合に、減衰率Dは、周波数f=10(Hz)の雷サージ電流がD=0.2(dB)、周波数f=10(Hz)の雷サージ電流がD=0.5(dB)、周波数f=10(Hz)の雷サージ電流がD=1.5(dB)であることが分かる。これは、導体34を流れる雷サージ電流のうちで、より周波数の高い高周波成分がより減衰し、導体34の外側(即ち、充填材40及び鋼管33)により分流することを示している。
図13は、上記4種類のコンダクタンスGの値に、G=0(σ=0)の値を加えた5種類のコンダクタンスGの各値について、3種類の周波数f=10、10、10(Hz)の雷サージ電流が導体34を流れる際の接地電極1の特性インピーダンスZを上式(4)を用いて各々試算した結果を示したものである。これは、整合器の抵抗に対応したものである。
図13は、本発明の整合インピーダンスに目安を与えるグラフである。無損失の場合(G=0(σ=0))には、図13に示すように、特性インピーダンスZは、288.7(Ω)となる。このように無損失である場合に、特性インピーダンスが周波数に依存せずに一定であることは周知であり、このことは、無損失である場合、整合抵抗を288.7(Ω)とすることが電圧−電流特性が乱れることなく、終端で消費されることを意味する。一方、有損失である場合には、図13に示されるコンダクタンスG(即ち、誘電率σ)の値によって、特性インピーダンスは異なり、また、周波数に依存する。これが整合インピーダンスである。図13に示すように、接地電極1のインピーダンスZは、コンダクタンスG(即ち、導電率σ)の値が大きくなるほど接地電極1のインピーダンスZの値が無損失である場合(G=0(σ=0))の288.7(Ω)より低くなっており、整合インピーダンスの目安が得られている。
次に、本発明の実施の形態に係る接地電極1を用いた場合に、従来公知の接地電極を用いた場合と比較して雷サージ電圧の値をどれだけ低減することができるか試算を行ってみる。この試算では、本発明の接地電極は、図2に示す接地電極1の導体34の外径が10(mm)、鋼管33の内径が1000(mm)の同軸ケーブルであると仮定する。即ち、図11においてa=10、b=1000になる。これに対して、従来公知の接地電極は鋼管を有さずに外径10(mm)の導体が剥き出しになっているケーブルであると仮定する。雷サージ電流が流れる大気領域を同軸モデルで扱うとして、その外周半径を50(m)と仮定すると、図11においてa=10、b=50000になる。
以上のように仮定した本発明の接地電極1と従来公知の接地電極とについて、周波数が1(MHz)、大きさが20(kA)の電流がケーブルの軸方向に沿って長さ5(m)の距離を流れた場合の、各々の雷サージ電圧を具体的に算出する。既述したように、本発明の接地電極1のコンダクタンスLは、上式(1)からL=1(μH/m)と求められる。同様にして、上式(1)から従来公知の接地電極のコンダクタンスLを求めるとL=1.7(μH/m)と約2倍の値になる。
まず、全ての電流が導体を流れると想定すると、雷サージ電圧vは、ケーブル間に発生する電圧として下記式(11)から算出できる。
v=j×ω×L×I・・・・・・・・・・・・・・・・(11)
即ち、本発明の接地電極1の場合には、雷サージ電圧vはv=2π×1×10×1×10−6×20×10≒600(kV)になる。これに対して、従来公知の接地電極の場合には、コンダクタンスLの値が約1.7倍であるので、雷サージ電圧vも1.7倍の値、即ち、v≒1020(kv)と非常に高い値になっている。
さらに、本発明の接地電極1では、G=1.0(S/m)とした場合に、図12に示すように、雷サージ電圧が分流効果によって単位長さ当たりで減衰率D=15(dB)程度減衰するので、雷サージ電流が軸方向に沿って5(m)流れる際には、その減衰率がD=5×15=75(dB)になる。75(dB)は1000分の1以下に相当するので、本発明の接地電極1を用いた場合の雷サージ電圧vは、周波数が1(MHz)であると仮定すると、600(kV)の1000分の1以下、即ち、v≒1(kv)と非常に小さい値に抑制されていることが理論的に算定される。
なお、上述のようにして説明した雷サージ電圧は、接地電極1の出口端に発生する雷サージ電圧に相当する。従って、この値が低いことから雷サージ電圧の周辺への影響を非常に小さくすることができ、且つ、接触電圧及び歩幅電圧を低減させ、感電事故災害の効果的に減少させることが可能になる。
本発明は、落雷による雷サージ電流を大地に流し、雷害を防止する接地電極に特に有用である。例えば、電力系統分野における配線系統の配電柱等の接地電極、電気鉄道分野における架線支持柱等の接地電極、道路分野における道路照明柱及び交通信号柱等の接地電極、情報通信分野における移動体通信基地極のアンテナ用の接地電極や監視カメラ等の接地電極、エンジニアリング分野における各種製造工場や備蓄設備等の接地電極に非常に有用である。
本発明の第1の実施形態に係る接地電極1を、雷害防止の対象として建物5に適用した場合の一例を示す構成図である。 接地電極1の鉛直方向の断面図である。 図2のX−X矢視拡大断面図である。 大地15付近における接地電極1を拡大した斜視図である。 導体34の上端側から流された雷サージ電流Iを接地側に流す際の、鋼管33、導体34及び充填材40によって構成される本発明の第1の実施形態に係る接地電極1の単位長さ当たりの等価回路を示した回路図である。 本発明の実施の形態に係る接地電極1が周囲の建物55に及ぼす影響を説明する図であり、図6(a)は、接地電極1とその周囲にある建物55等の位置関係を説明する説明図である。図6(b)は、雷サージ電流Iが接地電極1から大地15に流された場合における雷サージ電圧の値(縦軸)と、流した地点からの位置(横軸)との関係を示すグラフである。 本発明の実施の形態に係る接地電極1が周囲の人間70、71に及ぼす影響を説明する図であり、図7(a)は、接触電極1と接地電極1の周囲にいる人間70、71等の位置関係を説明する説明図である。図7(b)は、雷サージ電流Iが接地電極1から大地15に流された場合における雷サージ電圧の値(縦軸)と、流した地点からの位置(横軸)との関係を示すグラフである。 本発明の第2の実施形態に係る、接地電極1を複数有する接地電極群2の鉛直方向の断面図である。 本発明の第3の実施形態に係る、いずれも管軸方向を水平にして配置された接地電極1を4つ有する接地電極群2の水平方向の断面図である。 本発明の第4の実施形態に係る、落雷7による雷サージ電流を接地側に流す避雷装置10と一体型の同軸形状に形成された接地電極1の構成を示す構成図である。 同軸ケーブル95の模式的な斜視図である。 4種類のコンダクタンスGの各値について、3種類の周波数fの電流が導体34を流れる際の単位長さ当たりの減衰率D(dB)を各々試算した結果を示したものである。 4種類のコンダクタンスGの各値に、G=0(σ=0)の値を加えた5種類のコンダクタンスGの各値について、3種類の周波数f=10、10、10(Hz)の交流電流が導体34を流れる際の接地電極1の特性インピーダンスZを上式(4)を用いて各々試算した結果を示したものである。
符号の説明
1 接地電極
2 接地電極群
5 建物
7 落雷
10 避雷突針
13、60 導線
15 大地
17 接地部
20 等電位ボンディング導体
25、65 電子機器
26 金属管
33 鋼管
34 導体
35 固定装置
40 充填材
45 導電体
46 誘電体
47 磁性体
51 整合器
55 他の建物
67 外部電源
70 歩行者
71 接触者
80 空間
85 立設型避雷針
86 突針
91 内部導体
92 外部導体
95 同軸ケーブル
A1、A2、B1、B2 等価回路の点
a 外径
b 内径
C キャパシタンス
D 他の建物55の位置
G コンダクタンス
I 雷サージ電流(全体)
雷サージ電流の低周波電流成分
雷サージ電流の高周波電流成分
L インダクタンス
L0 接触者71の位置
L1、L2 歩行者の足の位置
O 座標の原点
R 抵抗
D0 従来公知の接地電極の場合の地点Dの雷サージ電圧の値
D1 本発明の接地電極の場合の地点Dの雷サージ電圧の値
E0 従来公知の接地電極の場合の雷サージ電圧の初期値
E1 本発明の接地電極の場合の雷サージ電圧の初期値
S0 従来公知の接地電極の場合の歩幅電圧
S1 本発明の接地電極の場合の歩幅電圧
T0 従来公知の接地電極の場合の接触電圧
T1 本発明の接地電極の場合の接触電圧
W 壁の位置
X−X 断面線

Claims (13)

  1. 落雷による雷サージ電流を大地に流す接地電極であって、
    少なくとも一部分が大地に埋設された管状導体と、
    前記管状導体内に同軸配置された内部導体と、
    前記管状導体と前記内部導体の間に充填された、高周波成分に対する導電性を有する充填材と、を有し、
    前記落雷による雷サージ電流が分流され、その低周波成分が主として前記内部導体を流れ、且つその高周波成分が主として前記管状導体及び前記充填材を流れることを特徴とする、接地電極。
  2. 前記充填材は、抵抗体、誘電体及び磁性体より成る群から選択した1以上の材料を含有することを特徴とする、請求項1に記載の接地電極。
  3. 前記管状導体と前記内部導体が、同軸系の特性インピーダンスにより終端された後に接地されていることを特徴とする、請求項1又は2に記載の接地電極。
  4. 落雷による雷サージ電流を接地側に流す避雷装置に接続されていることを特徴とする、請求項1〜3のいずれかに記載の接地電極。
  5. 前記避雷装置と一体型の同軸形状に形成されていることを特徴とする、請求項4に記載の接地電極。
  6. 前記管状導体は、軸方向を鉛直方向にして埋設されていることを特徴とする、請求項1〜5のいずれかに記載の接地電極。
  7. 前記管状導体は、軸方向を水平方向にして埋設されていることを特徴とする、請求項1〜6のいずれかに記載の接地電極。
  8. 前記管状導体と前記内部導体は、等電位ボンディング導体に接続されていることを特徴とする、請求項1〜7のいずれかに記載の接地電極。
  9. 請求項1〜8のいずれかに記載の接地電極を複数有することを特徴とする、接地電極群。
  10. 落雷による雷サージ電流を大地に流す際に雷サージ電圧を低減する方法であって、
    第1の電流路をその一端が大地の中に配置されるように設けると共に、前記雷サージ電流の高周波成分に対するインピーダンスが前記第1の電流路よりも低い第2の電流路を設け、
    前記雷サージ電流の低周波成分が主として第1の電流路に流れ、且つ高周波成分が主として第2の電流路に流れるように、雷サージ電流を周波成分に応じて分流させることにより前記第1の電流路の雷サージ電圧を低減することを特徴とする、雷サージ電圧の低減方法。
  11. 前記第1の電流路は、内部導体で構成され、
    前記第2の電流路は、前記内部導体の外周を被覆するように同軸配置した管状導体と、前記管状導体及び前記内部導体の間に充填された、導電性を有する充填材とで構成されていることを特徴とする、請求項10に記載の雷サージ電圧の低減方法。
  12. 前記充填材は、抵抗体、誘電体及び磁性体より成る群から選択した1以上の材料を含有することを特徴とする、請求項11に記載の雷サージ電圧の低減方法。
  13. 前記同軸配置した管状導体の外周に外皮を設けることを特徴とする、請求項11又は12に記載の雷サージ電圧の低減方法。
JP2006354186A 2006-08-30 2006-12-28 接地電極、接地電極群及び雷サージ電圧の低減方法 Pending JP2008166104A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006354186A JP2008166104A (ja) 2006-12-28 2006-12-28 接地電極、接地電極群及び雷サージ電圧の低減方法
CN2007800320188A CN101513133B (zh) 2006-08-30 2007-08-29 避雷装置、接地电极以及雷电浪涌电压的降低方法
PCT/JP2007/067245 WO2008026766A1 (fr) 2006-08-30 2007-08-29 Parafoudre, électrode de masse et procédé de réduction de surtension de foudre
TW096132252A TWI369696B (en) 2006-08-30 2007-08-30 Lightning arrester, grounding electrode and method for reducing lightning surge voltage
HK10100520.7A HK1133524A1 (en) 2006-08-30 2010-01-18 Lightning arrestor, ground electrode, and method for reducing lightning surge voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006354186A JP2008166104A (ja) 2006-12-28 2006-12-28 接地電極、接地電極群及び雷サージ電圧の低減方法

Publications (1)

Publication Number Publication Date
JP2008166104A true JP2008166104A (ja) 2008-07-17

Family

ID=39695295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006354186A Pending JP2008166104A (ja) 2006-08-30 2006-12-28 接地電極、接地電極群及び雷サージ電圧の低減方法

Country Status (1)

Country Link
JP (1) JP2008166104A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100978615B1 (ko) 2009-12-10 2010-08-27 안희석 낙뢰 보호를 위한 통신기기 설치용 폴대
KR101208457B1 (ko) 2012-09-26 2012-12-05 선광엘티아이(주) 내부 자기방전할 수 있는 접지봉
JP5168680B1 (ja) * 2012-06-26 2013-03-21 正弘 五十嵐 シールド接地線
JP2013540334A (ja) * 2010-10-11 2013-10-31 オムニ エルピーエス. カンパニー リミテッド 2層分布定数回路を基盤にした炭素接地電極モジュールの長さ算定装置及び方法
JP2017033772A (ja) * 2015-07-31 2017-02-09 株式会社関電工 接地装置
JP2017034859A (ja) * 2015-07-31 2017-02-09 株式会社関電工 接地装置
JP6226283B1 (ja) * 2016-07-15 2017-11-08 正弘 五十嵐 接地電極のサージインピーダンス低減法
CN115209716A (zh) * 2022-07-12 2022-10-18 福建省特种设备检验研究院 高层建筑物电梯机房雷电防护方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252900A (ja) * 1985-08-30 1987-03-07 関西電力株式会社 低インピ−ダンス接地避雷針
JPH06204011A (ja) * 1992-12-25 1994-07-22 Ngk Insulators Ltd 避雷装置
JPH08273715A (ja) * 1995-03-30 1996-10-18 Com Denshi Kaihatsu Kk 接地電極および地表電流収集装置
JP2008059870A (ja) * 2006-08-30 2008-03-13 Nippon Steel Corp 避雷装置、避雷機能を有する構造柱及び雷サージ電圧の低減方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252900A (ja) * 1985-08-30 1987-03-07 関西電力株式会社 低インピ−ダンス接地避雷針
JPH06204011A (ja) * 1992-12-25 1994-07-22 Ngk Insulators Ltd 避雷装置
JPH08273715A (ja) * 1995-03-30 1996-10-18 Com Denshi Kaihatsu Kk 接地電極および地表電流収集装置
JP2008059870A (ja) * 2006-08-30 2008-03-13 Nippon Steel Corp 避雷装置、避雷機能を有する構造柱及び雷サージ電圧の低減方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100978615B1 (ko) 2009-12-10 2010-08-27 안희석 낙뢰 보호를 위한 통신기기 설치용 폴대
JP2013540334A (ja) * 2010-10-11 2013-10-31 オムニ エルピーエス. カンパニー リミテッド 2層分布定数回路を基盤にした炭素接地電極モジュールの長さ算定装置及び方法
JP5168680B1 (ja) * 2012-06-26 2013-03-21 正弘 五十嵐 シールド接地線
KR101208457B1 (ko) 2012-09-26 2012-12-05 선광엘티아이(주) 내부 자기방전할 수 있는 접지봉
JP2017033772A (ja) * 2015-07-31 2017-02-09 株式会社関電工 接地装置
JP2017034859A (ja) * 2015-07-31 2017-02-09 株式会社関電工 接地装置
JP6226283B1 (ja) * 2016-07-15 2017-11-08 正弘 五十嵐 接地電極のサージインピーダンス低減法
CN115209716A (zh) * 2022-07-12 2022-10-18 福建省特种设备检验研究院 高层建筑物电梯机房雷电防护方法

Similar Documents

Publication Publication Date Title
JP4709715B2 (ja) 避雷装置、避雷機能を有する構造柱及び雷サージ電圧の低減方法
JP2008166104A (ja) 接地電極、接地電極群及び雷サージ電圧の低減方法
WO2008026766A1 (fr) Parafoudre, électrode de masse et procédé de réduction de surtension de foudre
Durham et al. Lightning, grounding and protection for control systems
KR100680644B1 (ko) 뇌 보호 트라이앵글 공법을 채용한 건물의 개선된 피뢰시스템
RU2312441C2 (ru) Линия электропередачи
JP4362812B2 (ja) 接地体
KR101034870B1 (ko) 서지 방전용 접지장치
Patel Effect of lightning on building and its protection measures
JP4099785B1 (ja) 避雷用多層シールド電線
JPH0315317B2 (ja)
JP6450293B2 (ja) 電気設備の接地構造
KR102072303B1 (ko) 다층 구조 독립 접지 시스템 및 접지 방법
JP4054700B2 (ja) 建物における雷障害の低減装置
JPH11176591A (ja) 電気施設の防雷方法
JPH0831668A (ja) 耐雷変圧器による耐雷方法
JPH10112397A (ja) 避雷装置
JP2004111328A (ja) 空中電荷中和装置
JPH11121058A (ja) 接地装置及び通信局舎における接地方法
JP2014007136A (ja) シールド接地線
Durham et al. Lightning, grounding, and protection for control and communications systems: Re-evaluated
Haryono et al. Analysis of response of a guyed FM radio broadcasting tower subjected to a lightning strike
JP7457301B2 (ja) 電気施設の防雷方法
KR100353695B1 (ko) 접지박스
JP4359002B2 (ja) 建造物の避雷構造

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110809