JP2008164518A - Displacement measuring method and device - Google Patents

Displacement measuring method and device Download PDF

Info

Publication number
JP2008164518A
JP2008164518A JP2006356435A JP2006356435A JP2008164518A JP 2008164518 A JP2008164518 A JP 2008164518A JP 2006356435 A JP2006356435 A JP 2006356435A JP 2006356435 A JP2006356435 A JP 2006356435A JP 2008164518 A JP2008164518 A JP 2008164518A
Authority
JP
Japan
Prior art keywords
temperature
eddy current
output voltage
mold
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006356435A
Other languages
Japanese (ja)
Inventor
Hiroshi Ishikura
洋 石倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006356435A priority Critical patent/JP2008164518A/en
Publication of JP2008164518A publication Critical patent/JP2008164518A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a displacement measuring method and device for accurately measuring the displacement for the distance of a metal mold, even under measurement conditions that have large temperature changes. <P>SOLUTION: The displacement measuring method for measuring the displacement of the distance of the metal mold 2, having an opposite fixed type 20 and a movable type 21 installed has: an output voltage detection process for detecting output voltage based on eddy current induced on a part 14 to be measured, by arranging an eddy current sensor 13 to the movable type, providing the part 14 to be measured to the fixed type and inducing the eddy current on the part 14 to be measured by the eddy current sensor 13; a temperature detection process for detecting respective temperatures (T, t) of the eddy current sensor 13 and of the part 14 to be measured; and a distance measuring process for measuring the distance D of the fixed type 20 and of the movable type 21, from the output voltage detected by using an output voltage detecting part 10 and the temperatures (T, t) detected by a temperature detecting part 11. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、変位測定方法及び装置の技術に関し、より詳細には、対向する金型の距離の変位を測定する変位測定方法及び装置に関する。   The present invention relates to a technique of a displacement measuring method and apparatus, and more particularly to a displacement measuring method and apparatus for measuring a displacement of a distance between opposing molds.

従来、渦流センサを用いた変位測定方法として、渦流センサによって、対象物(被測定部)に高周波を付与して渦電流を誘起させ、被測定部に誘起された渦電流に基づく出力電圧を検出コイルによって検出し、検出コイルによって検出された出力電圧の変化から被測定部の変位を測定する方法が公知である。   Conventionally, as a displacement measurement method using an eddy current sensor, an eddy current sensor induces an eddy current by applying a high frequency to an object (measured part) and detects an output voltage based on the eddy current induced in the measured part. A method for detecting the displacement of the part to be measured from a change in the output voltage detected by the coil and detected by the detection coil is known.

このような変位測定方法に関し、渦流センサによる測定環境に応じて出力電圧の温度特性を補正等することで、変位測定の精度を向上させる方法が提案されている。
具体的には、特許文献1には、渦流センサの検出コイルに接続される変換器の内部或いは周辺部に温度センサを設け、その温度センサの検出温度に基づいて 、演算部にて変換器の温度特性を補正するようにした変位測定方法が開示されている(特許文献1参照)。
また、当該特許文献1には、渦流センサに複数の検出コイルを設け、その内一の検出コイルを渦流センサの温度測定用として、このコイル線の温度変化による抵抗変化を利用して温度計測及び温度補正を行うようにした変位測定方法が開示されている(特許文献1参照)。
特開2000−249506号公報
Regarding such a displacement measurement method, a method has been proposed in which the accuracy of displacement measurement is improved by correcting the temperature characteristics of the output voltage in accordance with the measurement environment by the eddy current sensor.
Specifically, in Patent Document 1, a temperature sensor is provided in or around the converter connected to the detection coil of the eddy current sensor, and based on the detected temperature of the temperature sensor, the calculation unit A displacement measurement method that corrects temperature characteristics is disclosed (see Patent Document 1).
Further, in Patent Document 1, a plurality of detection coils are provided in an eddy current sensor, and one of the detection coils is used for measuring the temperature of the eddy current sensor. A displacement measurement method that performs temperature correction is disclosed (see Patent Document 1).
JP 2000-249506 A

しかし、上述した特許文献1に開示される従来の変位測定方法では、周辺温度の温度変化に応じて変換器の温度センサの検出値から出力電圧と変位との関係を補正するものであったため、渦流センサ自身の温度を測定するものではなく、渦流センサの温度変化が大きい場合に変位測定の精度に劣るといった問題があった。   However, in the conventional displacement measuring method disclosed in Patent Document 1 described above, since the relationship between the output voltage and the displacement is corrected from the detected value of the temperature sensor of the converter according to the temperature change of the ambient temperature, There is a problem that the temperature of the eddy current sensor itself is not measured, and the accuracy of the displacement measurement is inferior when the temperature change of the eddy current sensor is large.

また、上述した特許文献1に開示されるように、渦流センサに複数の検出コイルを設け、その内一の検出コイルを渦流センサの温度測定用として用いる場合であっても、被測定部の温度変化が大きい場合に、正確な変位を測定することができないという問題があった。
すなわち、被測定部は、通常、温度変化によって透磁率及び導電率が変化し、その結果、誘起される渦電流の発生量が変化するという温度特性を有する。しかし、上述した従来の変位測定方法では、被測定部の温度を測定するものではなかったため、かかる被測定部の温度特性を出力電圧と変位との関係に反映させることができなかったのである。
Further, as disclosed in Patent Document 1 described above, even when a plurality of detection coils are provided in the eddy current sensor and one of the detection coils is used for measuring the temperature of the eddy current sensor, the temperature of the measured part When the change is large, there is a problem that an accurate displacement cannot be measured.
That is, the part to be measured usually has a temperature characteristic in which the permeability and conductivity change due to temperature change, and as a result, the amount of eddy current induced changes. However, the above-described conventional displacement measuring method does not measure the temperature of the measured part, and thus the temperature characteristic of the measured part cannot be reflected in the relationship between the output voltage and the displacement.

特に、ダイカスト用金型のように高温条件下で使用される金型は、その金型温度が常温〜約500度まで変化するため、熱膨張によって反り等が生じて対向する金型の距離(クリアランス)が変位してしまう場合があった。このような金型の距離の変位を測定する際に、上述したような従来の変位測定方法では、その測定精度に劣っていた。   In particular, a mold used under a high temperature condition such as a die casting mold has a mold temperature that changes from room temperature to about 500 degrees, so that warpage or the like occurs due to thermal expansion and the distance between opposing molds ( (Clearance) may be displaced. When measuring the displacement of such a mold distance, the conventional displacement measuring method as described above is inferior in measurement accuracy.

そこで、本発明では、変位測定方法及び装置に関し、前記従来の課題を解決するもので、温度変化の大きい測定条件下でも、金型の距離の変位を精度よく測定することができる変位測定方法及び装置を提供することを目的とする。   Accordingly, the present invention relates to a displacement measuring method and apparatus, which solves the above-mentioned conventional problems, and a displacement measuring method capable of accurately measuring the displacement of a mold distance even under measurement conditions with a large temperature change, and An object is to provide an apparatus.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。   The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.

すなわち、請求項1においては、対向する一対の金型間の距離の変位を測定する変位測定方法において、一方の金型に渦流センサを配置するとともに、他方の金型に被測定部を設けて、渦流センサにより該被測定部に渦電流を誘起し、該被測定部に誘起された渦電流に基づく出力電圧を検出する出力電圧検出工程と、前記渦流センサ及び被測定部のそれぞれの温度を検出する温度検出工程と、前記出力電圧検出工程にて検出された出力電圧、及び温度検出工程にて検出された検出温度から、金型の距離を測定する距離測定工程とを有するものである。   That is, according to claim 1, in the displacement measuring method for measuring the displacement of the distance between the pair of opposed molds, the eddy current sensor is arranged in one mold, and the measured part is provided in the other mold. An eddy current sensor for inducing an eddy current in the measured part and detecting an output voltage based on the eddy current induced in the measured part; and the respective temperatures of the eddy current sensor and the measured part A temperature detecting step for detecting, a distance measuring step for measuring the distance of the mold from the output voltage detected in the output voltage detecting step and the detected temperature detected in the temperature detecting step.

請求項2においては、前記距離測定工程では、予め、渦流センサ及び被測定部の温度ごとの出力電圧と金型の距離との関係を基準値として求め、前記出力電圧検出工程にて検出された出力電圧、及び温度検出工程にて検出された検出温度の実測値と前記基準値とを対比して金型の距離を求めるものである。   In claim 2, in the distance measuring step, the relationship between the output voltage for each temperature of the eddy current sensor and the measured part and the distance of the mold is obtained as a reference value in advance and detected in the output voltage detecting step. The distance between the molds is obtained by comparing the measured value of the output voltage and the detected temperature detected in the temperature detecting step with the reference value.

請求項3においては、前記温度検出工程では、前記渦流センサを構成する検出コイル又は検出コイルの近傍位置の温度を検出するものである。   According to a third aspect of the present invention, in the temperature detection step, the temperature of the detection coil constituting the eddy current sensor or a position near the detection coil is detected.

請求項4においては、前記被測定部は、非磁性体より形成されるものである。   According to a fourth aspect of the present invention, the portion to be measured is formed of a nonmagnetic material.

請求項5においては、対向する一対の金型間の距離の変位を測定する変位測定装置において、一方の金型に渦流センサが配置されるとともに、他方の金型に被測定部が設けられ、渦流センサにより被測定部に渦電流を誘起し、該被測定部に誘起された渦電流に基づく出力電圧を検出する出力電圧検出部と、前記渦流センサ及び被測定部のそれぞれの温度を検出する温度検出部と、前記出力電圧検出部にて検出された出力電圧、及び温度検出部にて検出された検出温度から、金型の距離を測定する距離測定部とを有するものである。   In claim 5, in the displacement measuring device for measuring the displacement of the distance between the pair of opposed molds, the eddy current sensor is arranged in one mold, and the measurement target is provided in the other mold, An eddy current sensor induces an eddy current in the measured part, an output voltage detecting part for detecting an output voltage based on the eddy current induced in the measured part, and a temperature of each of the eddy current sensor and the measured part are detected. A temperature detection unit, and a distance measurement unit that measures the distance of the mold from the output voltage detected by the output voltage detection unit and the detected temperature detected by the temperature detection unit.

請求項6においては、前記距離測定部は、予め、渦流センサ及び被測定部の温度ごとの出力電圧と金型の距離との関係を基準値として求め、前記出力電圧検出部にて検出された出力電圧、及び温度検出部にて検出された検出温度の実測値と前記基準値とを対比して金型の距離を求めるものである。   In the present invention, the distance measuring unit obtains in advance a relationship between the output voltage for each temperature of the eddy current sensor and the measured part and the distance of the mold as a reference value, and is detected by the output voltage detecting unit. The distance of the mold is obtained by comparing the measured value of the detected temperature detected by the output voltage and the temperature detecting unit with the reference value.

請求項7においては、前記温度検出部は、前記渦流センサを構成する検出コイルの近傍位置に設けられる温度センサを有するものである。   According to a seventh aspect of the present invention, the temperature detection unit includes a temperature sensor provided in the vicinity of a detection coil that constitutes the eddy current sensor.

請求項8においては、前記被測定部は、非磁性体より形成されるものである。   In an eighth aspect of the present invention, the portion to be measured is formed of a nonmagnetic material.

本発明の効果として、以下に示すような効果を奏する。   As effects of the present invention, the following effects can be obtained.

請求項1に示す構成としたので、渦流センサにて出力電圧を検出することに加えて、渦流センサ及び被測定部の温度を検出して、渦流センサにより検出される出力電圧を渦流センサ及び被測定部の温度に基づいて補正するものであるため、温度変化の大きい測定条件下でも、金型の距離変位を精度よく測定することができる。   Since the output voltage is detected by the eddy current sensor, the temperature of the eddy current sensor and the part to be measured is detected, and the output voltage detected by the eddy current sensor is used to detect the output voltage. Since the correction is performed based on the temperature of the measurement unit, the distance displacement of the mold can be accurately measured even under measurement conditions with a large temperature change.

請求項2に示す構成としたので、距離の測定が容易であり、また、細かな測定条件の変化に応じて複数の基準値を用いることで、変位測定の精度をより向上できる。   Since it is the structure shown in Claim 2, the measurement of distance is easy, and the precision of a displacement measurement can be improved more by using a some reference value according to the change of a fine measurement condition.

請求項3に示す構成としたので、渦流センサの温度変化を直接的に精度よく測定することができる。   Since it is set as the structure shown in Claim 3, the temperature change of an eddy current sensor can be measured directly and accurately.

請求項4に示す構成としたので、被測定部の温度が上昇しても、非磁性体の比透磁率がほぼ1のため、その温度変化を無視することができ、距離変位の測定精度をより向上できる。   Since the configuration shown in claim 4 is adopted, even if the temperature of the measured part rises, the relative permeability of the non-magnetic material is almost 1, so the temperature change can be ignored, and the measurement accuracy of the distance displacement can be improved. It can be improved.

請求項5に示す構成としたので、渦流センサにて出力電圧を検出することに加えて、渦流センサ及び被測定部の温度を検出して、渦流センサにより検出される出力電圧を渦流センサ及び被測定部の温度に基づいて補正するものであるため、温度変化の大きい測定条件下でも、金型の距離変位を精度よく測定することができる。   In addition to detecting the output voltage by the eddy current sensor, the temperature of the eddy current sensor and the measured part is detected, and the output voltage detected by the eddy current sensor is used to detect the output voltage. Since the correction is performed based on the temperature of the measurement unit, the distance displacement of the mold can be accurately measured even under measurement conditions with a large temperature change.

請求項6に示す構成としたので、距離の測定が容易であり、また、細かな測定条件の変化に応じて複数の基準値を用いることで、変位測定の精度をより向上できる。   Since the configuration described in claim 6 is adopted, the distance can be easily measured, and the accuracy of the displacement measurement can be further improved by using a plurality of reference values according to fine changes in measurement conditions.

請求項7に示す構成としたので、渦流センサの温度変化を直接的に精度よく測定することができる。   Since it was set as the structure shown in Claim 7, the temperature change of an eddy current sensor can be measured directly and accurately.

請求項8に示す構成としたので、被測定部の温度が上昇しても、非磁性体の比透磁率がほぼ1のため、その温度変化を無視することができ、距離変位の測定精度をより向上できる。   With the configuration shown in claim 8, even if the temperature of the measured part rises, since the relative permeability of the non-magnetic material is almost 1, the temperature change can be ignored, and the measurement accuracy of the distance displacement can be increased. It can be improved.

次に、発明を実施するための最良の形態を説明する。
図1は本発明の出力電圧検出部及び温度検出部が配置された金型の断面図、図2は変位測定装置の全体的な構成を示した機能ブロック図、図3は図1の金型の一部拡大断面図、図4は渦流センサの斜視図、図5は本実施例の距離変位測定方法を示したフローチャート、図6は演算テーブルの内容を示した図、図7は別実施例の出力電圧検出部及び温度検出部が配置された金型の断面図、図8は別実施例の出力電圧検出部及び温度検出部が配置された金型の断面図、図9は別実施例の出力電圧検出部及び温度検出部が配置された金型の断面図である。
Next, the best mode for carrying out the invention will be described.
1 is a cross-sectional view of a mold in which an output voltage detection unit and a temperature detection unit of the present invention are arranged, FIG. 2 is a functional block diagram showing the overall configuration of a displacement measuring device, and FIG. 3 is a mold of FIG. FIG. 4 is a perspective view of the eddy current sensor, FIG. 5 is a flowchart showing the distance displacement measuring method of this embodiment, FIG. 6 is a diagram showing the contents of the calculation table, and FIG. 7 is another embodiment. FIG. 8 is a cross-sectional view of a mold in which the output voltage detection unit and the temperature detection unit are arranged, FIG. 8 is a cross-sectional view of a mold in which the output voltage detection unit and the temperature detection unit of another embodiment are arranged, and FIG. 9 is another embodiment. It is sectional drawing of the metal mold | die with which the output voltage detection part and temperature detection part of this are arrange | positioned.

図1及び図2に示すように、本実施例の変位測定装置1は、対向する一対の金型(固定型20及び可動型21)を有する金型2の距離Dの変位を測定する装置であって、具体的には、渦流センサ13により被測定部14に渦電流を誘起させ、被測定部14に誘起された渦電流に基づく出力電圧を検出する出力電圧検出部10と、渦流センサ13及び被測定部14のそれぞれの温度T・tを検出する温度検出部11と、出力電圧検出部10にて検出された出力電圧、及び温度検出部11にて検出された温度T・tから、固定型20と可動型21との距離Dを測定する距離測定部12等とで構成されている。   As shown in FIGS. 1 and 2, the displacement measuring apparatus 1 of the present embodiment is an apparatus that measures the displacement at a distance D of a mold 2 having a pair of opposed molds (a fixed mold 20 and a movable mold 21). Specifically, the eddy current sensor 13 induces an eddy current in the measured part 14 and detects an output voltage based on the eddy current induced in the measured part 14, and the eddy current sensor 13. And the temperature detector 11 for detecting the temperature T · t of each of the measured parts 14, the output voltage detected by the output voltage detector 10, and the temperature T · t detected by the temperature detector 11, A distance measuring unit 12 that measures a distance D between the fixed mold 20 and the movable mold 21 is formed.

まず、本実施例で用いられる金型2について、以下に概説する。
図1に示すように、本実施例で用いられる金型2は、ダイカスト鋳造法によりアルミニウム合金製の鋳造品を鋳造するダイカスト用金型であって、固定型20と、固定型20に対して直線方向に移動可能(図1における矢印方向)に配置された可動型21とが設けられている。ただし、可動型21の移動方向は、特に限定されず、例えば、固定型20に対して垂直面20a・21aの離間を保った状態で水平方向に移動可能に配置されてもよい。
First, the mold 2 used in this embodiment will be outlined below.
As shown in FIG. 1, a mold 2 used in this embodiment is a die casting mold for casting a cast product made of an aluminum alloy by a die casting method. A movable mold 21 is provided that is movable in the linear direction (in the direction of the arrow in FIG. 1). However, the moving direction of the movable mold 21 is not particularly limited. For example, the movable mold 21 may be arranged so as to be movable in the horizontal direction while keeping the vertical surfaces 20 a and 21 a away from the fixed mold 20.

固定型20及び可動型21は、固定型20の垂直面20aと、可動型21の垂直面21aとが略平行に対向され、かつ所定距離(距離D)だけ離れた状態で配置(停止)される。なお、以下の実施例において、「距離D」とは、固定型20と可動型21と離間、すなわち固定型20の垂直面20aと可動型21の垂直面21aとの距離をいうものとする。   The fixed mold 20 and the movable mold 21 are disposed (stopped) in a state in which the vertical surface 20a of the fixed mold 20 and the vertical surface 21a of the movable mold 21 face each other substantially in parallel and are separated by a predetermined distance (distance D). The In the following embodiments, “distance D” refers to the distance between the fixed mold 20 and the movable mold 21, that is, the distance between the vertical surface 20 a of the fixed mold 20 and the vertical surface 21 a of the movable mold 21.

金型2が型開きされた状態では、固定型20に対して可動型21が離間されて停止される。型締めが開始されると、可動型21は、固定型20に対してそれぞれの垂直面20a・21aが略平行に対向する状態を保持したままで、直線方向(固定型20との距離が近づく方向)に相対移動される。そして、固定型20と可動型21とが距離Dとなる状態で停止されて、型締めが完了される。なお、固定型20と可動型21との間にはキャビティ(図略)が構成されており、このキャビティ内に溶湯が注湯され、溶湯が凝固することで鋳造品が鋳造される。   In a state where the mold 2 is opened, the movable mold 21 is separated from the fixed mold 20 and stopped. When the mold clamping is started, the movable mold 21 keeps the state in which the vertical surfaces 20a and 21a face the parallel mold 20 substantially in parallel with each other in the straight direction (the distance from the fixed mold 20 approaches). Direction). Then, the fixed mold 20 and the movable mold 21 are stopped in a state where the distance D is reached, and the mold clamping is completed. A cavity (not shown) is formed between the fixed mold 20 and the movable mold 21, and the molten metal is poured into the cavity, and the molten metal solidifies to cast a cast product.

次に、変位測定装置1の出力電圧検出部10について、以下に説明する。
図1乃至図4に示すように、出力電圧検出部10は、可動型21に配置された渦流センサ13及び、固定型20に別途配置された被測定部14等とで構成されている。
Next, the output voltage detection unit 10 of the displacement measuring apparatus 1 will be described below.
As shown in FIGS. 1 to 4, the output voltage detection unit 10 includes an eddy current sensor 13 disposed on the movable mold 21, a measured part 14 disposed separately on the fixed mold 20, and the like.

渦流センサ13は、渦流プローブとして構成されており、具体的には、渦電流を被測定部14に誘導し、渦電流に基づく出力電圧を検出する検出手段としての検出コイル13aや、その他、所定値の電流を供給する図示せぬ発振回路(図略)や、検出コイル13aからの信号を受信する図示せぬ検出回路(図略)等とで構成されている。
検出コイル13aは、空芯状に形成されており、その他発信回路等と共に断面略円形の筒状に形成されたプローブ筐体13b内に収納されている。なお、プローブ筐体13bには、後述する温度センサ15が検出コイル13aの略軸中心位置に設けられている。
The eddy current sensor 13 is configured as an eddy current probe. Specifically, the eddy current sensor 13 induces an eddy current to the measured part 14 and detects an output voltage based on the eddy current. The circuit includes an oscillation circuit (not shown) for supplying a current of value (not shown), a detection circuit (not shown) for receiving a signal from the detection coil 13a, and the like.
The detection coil 13a is formed in an air core shape, and is housed in a probe housing 13b formed in a cylindrical shape having a substantially circular cross section together with other transmission circuits and the like. The probe housing 13b is provided with a temperature sensor 15 described later at a substantially axial center position of the detection coil 13a.

本実施例の渦流センサ13は、金型2を構成する一方の金型である可動型21に配置されている。具体的には、渦流センサ13は、可動型21の垂直面21aに開口するように穿設された挿入孔21bに挿入されており、挿入孔21bに挿入された状態で、ボルト22によって位置決め固定される。特に、本実施例では、渦流センサ13は、プローブ筐体13bの先端面13cが垂直面21aと略同一平面上に位置するように位置決めして固定される。   The eddy current sensor 13 of the present embodiment is disposed in a movable mold 21 that is one mold constituting the mold 2. Specifically, the eddy current sensor 13 is inserted into an insertion hole 21b formed so as to open in the vertical surface 21a of the movable die 21, and is positioned and fixed by a bolt 22 in a state of being inserted into the insertion hole 21b. Is done. In particular, in the present embodiment, the eddy current sensor 13 is positioned and fixed so that the distal end surface 13c of the probe housing 13b is positioned substantially on the same plane as the vertical surface 21a.

プローブ筐体13bの外周部には、セラミック等からなる絶縁体層13dが被覆されている(図4参照)。渦流センサ13が挿入孔21bに固定された状態で、プローブ筐体13bの外周部と挿入孔21bの内壁とが絶縁体層13dより離隔される。このように、本実施例の渦流センサ13は、絶縁体層13dによって可動型21(挿入孔21bの内壁)と離隔され、可動型21(挿入孔21bの内壁)に直接当接しないように配置されるため、金型2(可動型21)による磁場の影響を低減して、出力電圧検出部10における出力電圧の検出精度が向上されている。   The outer periphery of the probe housing 13b is covered with an insulating layer 13d made of ceramic or the like (see FIG. 4). In a state where the eddy current sensor 13 is fixed to the insertion hole 21b, the outer peripheral portion of the probe housing 13b and the inner wall of the insertion hole 21b are separated from the insulator layer 13d. Thus, the eddy current sensor 13 of the present embodiment is separated from the movable mold 21 (the inner wall of the insertion hole 21b) by the insulator layer 13d, and is arranged so as not to directly contact the movable mold 21 (the inner wall of the insertion hole 21b). Therefore, the influence of the magnetic field by the mold 2 (movable mold 21) is reduced, and the output voltage detection accuracy in the output voltage detector 10 is improved.

被測定部14は、断面略円形の筒状に形成され、金型2を構成する他方の金型である固定型20に配置されている。具体的には、被測定部14は、固定型20の垂直面20aに開口するように穿設された挿入孔20bに挿入されており、挿入孔20bに挿入された状態で、ボルト23によって位置決め固定される。本実施例では、被測定部14は、上述した渦流センサ13と対向する位置に配置される。また、この被測定部14も、渦流センサ13と同様に、先端面14cが垂直面20aと略同一平面上に位置するように位置決めして固定される。なお、被測定部14の内部には、後述する温度センサ16が設けられている。   The part 14 to be measured is formed in a cylindrical shape having a substantially circular cross section, and is disposed in a fixed mold 20 that is the other mold constituting the mold 2. Specifically, the part 14 to be measured is inserted into an insertion hole 20b formed so as to open in the vertical surface 20a of the fixed mold 20, and is positioned by the bolt 23 while being inserted into the insertion hole 20b. Fixed. In the present embodiment, the measured part 14 is disposed at a position facing the eddy current sensor 13 described above. Further, similarly to the eddy current sensor 13, the measured portion 14 is also positioned and fixed so that the front end surface 14c is positioned on substantially the same plane as the vertical surface 20a. Note that a temperature sensor 16 to be described later is provided inside the measured part 14.

本実施例の被測定部14は、銅合金や、アルミニウム合金や、ステンレス鋼等の非磁性体より形成される。特に、非磁性体の素材としては、熱膨張係数が金型素材(鋼材)と近く、導電率の高いもの(例えば、銅など)が好ましく用いられる。このように、被測定部14が非磁性体より形成されることで、被測定部14の温度が上昇しても、非磁性体の比透磁率はほぼ1のため、その温度変化を無視することができる。被測定部14において、非磁性体の替わりに鉄等の強磁性体より形成した場合には、被測定部14の温度が上昇すると比透磁率が複雑に変化してしまうため、距離測定部12における出力電圧の温度補正の誤差が大きくなり、好ましくない。   The part under measurement 14 of the present embodiment is formed of a nonmagnetic material such as a copper alloy, an aluminum alloy, or stainless steel. In particular, as a non-magnetic material, a material having a thermal expansion coefficient close to that of a mold material (steel material) and high conductivity (for example, copper) is preferably used. As described above, since the measured portion 14 is formed of a non-magnetic material, even if the temperature of the measured portion 14 rises, the relative magnetic permeability of the non-magnetic material is almost 1, so the temperature change is ignored. be able to. When the measured portion 14 is formed of a ferromagnetic material such as iron instead of a non-magnetic material, the relative permeability changes in a complicated manner when the temperature of the measured portion 14 rises. An error in temperature correction of the output voltage at the time increases, which is not preferable.

出力電圧検出部10では、まず、渦流センサ13の検出コイル13aに電流が供給されると、印加磁界(磁束)が発生される。かかる状態で、渦流センサ13の磁界中に被測定部14が進入すると、被測定部14にこの磁界を打ち消す方向に渦電流が誘起され、この渦電流に基づく電圧(出力電圧)が渦流センサ13の検出コイル13aによって検出される。本実施例では、渦流センサ13及び被測定部14は、固定型20及び可動型21の対抗する垂直面20a・21aにそれぞれ設けられており、渦流センサ13が可動型21に連動して移動され、渦流センサ13の磁界中に被測定部14が進入する際に、被測定部14に渦電流が誘起され、この渦電流に基づく出力電圧が渦流センサ13にて検出される。   In the output voltage detection unit 10, first, when a current is supplied to the detection coil 13a of the eddy current sensor 13, an applied magnetic field (magnetic flux) is generated. In this state, when the measured part 14 enters the magnetic field of the eddy current sensor 13, an eddy current is induced in the measured part 14 in a direction to cancel the magnetic field, and a voltage (output voltage) based on this eddy current is generated. Is detected by the detection coil 13a. In this embodiment, the eddy current sensor 13 and the measured part 14 are respectively provided on the vertical surfaces 20 a and 21 a facing the fixed mold 20 and the movable mold 21, and the eddy current sensor 13 is moved in conjunction with the movable mold 21. When the measured part 14 enters the magnetic field of the eddy current sensor 13, an eddy current is induced in the measured part 14, and an output voltage based on this eddy current is detected by the eddy current sensor 13.

なお、本実施例の出力電圧検出部10は、被測定部14が固定型20に、渦流センサ13が可動型21にそれぞれ設けられているが、例えば、固定型20に渦流センサ13を、可動型21に被測定部14をそれぞれ設けるような構成としてもよい。   In the output voltage detection unit 10 of this embodiment, the measured part 14 is provided in the fixed mold 20 and the eddy current sensor 13 is provided in the movable mold 21. For example, the eddy current sensor 13 is movable in the fixed mold 20. It is good also as a structure which provides the to-be-measured part 14 in the type | mold 21 respectively.

次に、変位測定装置1の温度検出部11について、以下に説明する。
図1乃至図3に示すように、温度検出部11は、渦流センサ13の温度Tを検出するための温度センサ15と、被測定部14の温度tを検出する温度センサ16等とで構成されている。
Next, the temperature detection unit 11 of the displacement measuring apparatus 1 will be described below.
As shown in FIGS. 1 to 3, the temperature detection unit 11 includes a temperature sensor 15 for detecting the temperature T of the eddy current sensor 13, a temperature sensor 16 for detecting the temperature t of the measurement target 14, and the like. ing.

温度センサ15は、上述した渦流センサ13のプローブ筐体13b内に収納されており、具体的には、プローブ筐体13bの内部であって、検出コイル13aの軸中心部に位置するようにして配置される(図4参照)。このように、渦流センサ13内であって検出コイル13aの近傍位置に温度センサ15が配置されることで、渦流センサ13の温度Tの変化を直接的に精度よく測定することができる。
一方、温度センサ16は、上述した被測定部14の内部に埋設されており、具体的には、被測定部14に穿設された図示せぬ埋設孔に挿入された状態で固定される。このように、被測定部14の内部に温度センサ16が設けられることで、被測定部14の温度tの変化を直接的に測定することができる。ただし、この温度センサ16の取付構造はこれに限定されない(例えば、図8及び図9参照)。
本実施例の温度センサ15・16としては、例えば、熱電対等が用いられる。
The temperature sensor 15 is housed in the probe housing 13b of the eddy current sensor 13 described above, and specifically, is located inside the probe housing 13b and at the center of the axis of the detection coil 13a. Is arranged (see FIG. 4). As described above, the temperature sensor 15 is arranged in the eddy current sensor 13 and in the vicinity of the detection coil 13a, so that the change in the temperature T of the eddy current sensor 13 can be directly and accurately measured.
On the other hand, the temperature sensor 16 is embedded in the measured portion 14 described above, and specifically, is fixed in a state of being inserted into a buried hole (not shown) formed in the measured portion 14. In this way, by providing the temperature sensor 16 inside the measured part 14, the change in the temperature t of the measured part 14 can be directly measured. However, the attachment structure of this temperature sensor 16 is not limited to this (for example, refer FIG.8 and FIG.9).
As the temperature sensors 15 and 16 of this embodiment, for example, a thermocouple or the like is used.

次に、本実施例の変位測定装置1の距離測定部12について、以下に説明する。
図2に示すように、距離測定部12は、各種処理が実行されるCPU33と、各種処理プログラム等が格納されるメモリ34と、CPU33に対する操作入力手段としての入力部35と、CRT若しくは液晶ディスプレイなどで構成される表示部36と、外部機器との出力インターフェースとしての出力部37等とにより構成されている。
Next, the distance measuring unit 12 of the displacement measuring apparatus 1 of the present embodiment will be described below.
As shown in FIG. 2, the distance measuring unit 12 includes a CPU 33 for executing various processes, a memory 34 for storing various processing programs, an input unit 35 as an operation input means for the CPU 33, a CRT or a liquid crystal display. And the like, and an output unit 37 as an output interface with an external device.

本実施例の距離測定部12では、出力電圧及び温度T・tから固定型20と可動型21との距離Dを測定するものであって、具体的には、予め、渦流センサ13及び被測定部14の温度T・tごとの出力電圧と金型2の距離Dの関係が基準値として求められ、この基準値が演算テーブルCに格納されている。そして、出力電圧検出部10にて検出された出力電圧の実測値と、温度検出部11にて検出された検出温度T・tの実測値とが、演算テーブルCに格納された基準値と対比されることで、金型2の距離D(実測値)が求められる。   The distance measuring unit 12 of this embodiment measures the distance D between the fixed mold 20 and the movable mold 21 from the output voltage and the temperature T · t. Specifically, the distance measuring section 12 previously measures the eddy current sensor 13 and the measured object. The relationship between the output voltage for each temperature T · t of the unit 14 and the distance D of the mold 2 is obtained as a reference value, and this reference value is stored in the calculation table C. The measured value of the output voltage detected by the output voltage detector 10 and the measured value of the detected temperature T · t detected by the temperature detector 11 are compared with the reference value stored in the calculation table C. Thus, the distance D (actual value) of the mold 2 is obtained.

距離測定部12は、出力電圧検出部10の渦流センサ13と、温度検出部11の温度センサ15・16とが、それぞれ配線30・31・32を介して接続されており、渦流センサ13に設けられた検出コイル13aからの信号、及び温度センサ15・16からの信号をそれぞれ受信可能に構成されている。   The distance measuring unit 12 includes the eddy current sensor 13 of the output voltage detecting unit 10 and the temperature sensors 15 and 16 of the temperature detecting unit 11 connected via wirings 30, 31, and 32, respectively. The signal from the detection coil 13a and the signals from the temperature sensors 15 and 16 can be received.

CPU33は、渦流センサ13(検出コイル13a)からの信号等が、図示せぬA/D変換回路によってデジタル化されて入力され、各種処理が実行されるように構成されている。具体的には、CPU33では、メモリ34に格納された演算テーブルCに基づいて、入力された出力電圧及び温度T・tから、固定型20と可動型21との距離Dが測定される。   The CPU 33 is configured such that signals from the eddy current sensor 13 (detection coil 13a) are digitized and input by an A / D conversion circuit (not shown), and various processes are executed. Specifically, the CPU 33 measures the distance D between the fixed mold 20 and the movable mold 21 from the input output voltage and temperature T · t based on the calculation table C stored in the memory 34.

メモリ34は、EEPROMのような不揮発性のメモリが用いられ、CPU33の処理に必要なプログラムや各種設定データの他、渦流センサ13及び被測定部14の温度T・tごとの出力電圧と距離Dとの関係を示す演算テーブルCが格納されている。この演算テーブルの詳細は、後述する(図6参照)。   The memory 34 is a non-volatile memory such as an EEPROM. In addition to programs and various setting data necessary for the processing of the CPU 33, the output voltage and distance D of the eddy current sensor 13 and the measured part 14 for each temperature T · t. Is stored. Details of this calculation table will be described later (see FIG. 6).

入力部35は、キーボード等の複数の操作キーを有する部材により構成され、上述した演算テーブルCの作成処理の開始を指定する操作や、測定処理の終了操作などが行われる。
表示部36では、上述したCPU33に入力された出力電圧波形の他に、演算テーブルCや距離D等の値が表示可能とされる。
また、出力部37では、演算テーブルCや距離D等の値が図示しせぬ外部機器に出力される。なお、出力部37には、アナログ変換後の検出距離を増幅するための増幅回路や、外部出力のためのインターフェース回路などが含まれる。
The input unit 35 is configured by a member having a plurality of operation keys such as a keyboard, and performs an operation for designating the start of the creation process of the calculation table C and an operation for ending the measurement process.
The display unit 36 can display values such as the calculation table C and the distance D in addition to the output voltage waveform input to the CPU 33 described above.
Further, the output unit 37 outputs values such as the calculation table C and the distance D to an external device (not shown). The output unit 37 includes an amplifier circuit for amplifying the detection distance after analog conversion, an interface circuit for external output, and the like.

次に、本実施例の変位測定装置1を用いた金型2の変位測定方法について、以下に詳述する。
図5及び図6に示すように、本実施例は、以上のように構成された変位測定装置1を用いて金型2の距離Dの変位を測定する方法であって、可動型21に渦流センサ13を配置するとともに、固定型20に被測定部14を設けて、被測定部14に渦流センサ13により渦電流を誘起して、被測定部14に誘起された渦電流に基づく出力電圧を検出する出力電圧検出工程と、渦流センサ13及び被測定部14のそれぞれの温度T・tを温度センサ15・16により検出する温度検出工程と、出力電圧検出工程にて検出された出力電圧、及び温度検出工程にて検出された検出温度T・tから、固定型20と可動型21との距離Dを測定する距離測定工程と、距離測定工程によって測定された距離Dの変位を算出する変位測定工程等とを有する。
Next, the displacement measuring method of the mold 2 using the displacement measuring apparatus 1 of the present embodiment will be described in detail below.
As shown in FIGS. 5 and 6, this embodiment is a method for measuring the displacement of the mold 2 at the distance D using the displacement measuring device 1 configured as described above. While the sensor 13 is arranged, the measurement part 14 is provided in the fixed mold 20, an eddy current is induced in the measurement part 14 by the eddy current sensor 13, and an output voltage based on the eddy current induced in the measurement part 14 is generated. An output voltage detecting step for detecting, a temperature detecting step for detecting the temperature T · t of each of the eddy current sensor 13 and the measured part 14 by the temperature sensors 15 and 16, an output voltage detected in the output voltage detecting step, and A distance measurement step for measuring the distance D between the fixed die 20 and the movable die 21 from the detected temperature T · t detected in the temperature detection step, and a displacement measurement for calculating the displacement of the distance D measured by the distance measurement step. Process.

出力電圧検出工程では、金型2の鋳造工程に連動して、渦流センサ13が可動型21に連動して移動されて渦流センサ13の磁界中に被測定部14が進入する際に、渦流センサ13にて被測定部14に渦電流が誘起され、渦流センサ13にて渦電流に基づく出力電圧が実測値として検出される(S100)。出力電圧検出部10にて検出された出力電圧は、実測値として距離測定部12に送られる。   In the output voltage detection process, the eddy current sensor 13 is moved in conjunction with the movable mold 21 in conjunction with the casting process of the mold 2 and the measured portion 14 enters the magnetic field of the eddy current sensor 13. In FIG. 13, an eddy current is induced in the measured portion 14, and the eddy current sensor 13 detects an output voltage based on the eddy current as an actual measurement value (S100). The output voltage detected by the output voltage detection unit 10 is sent to the distance measurement unit 12 as an actual measurement value.

温度検出工程では、出力電圧検出部10による出力電圧の検出(S100)と略同時に、温度検出部11にて、渦流センサ13の温度Tが温度センサ15によって実測値として検出され、被測定部14の温度tが温度センサ16によって実測値として検出される(S110)。温度検出部11にて検出された温度T・tは、実測値として距離測定部12に送られる。   In the temperature detection step, the temperature T of the eddy current sensor 13 is detected as an actual measurement value by the temperature sensor 15 at the temperature detection unit 11 substantially simultaneously with the detection of the output voltage by the output voltage detection unit 10 (S100). Is detected as an actual measurement value by the temperature sensor 16 (S110). The temperature T · t detected by the temperature detection unit 11 is sent to the distance measurement unit 12 as an actual measurement value.

距離測定工程では、まず、予め演算テーブルCが作成されて、メモリ34に記憶される。図6に演算テーブルCの一例を示す。
ここで、出力電圧検出部10(渦流センサ13)にて検出される出力電圧は、渦流センサ13と被測定部14との相対距離が近づくにつれ渦電流が大きくなって発振の振幅が小さくなるという特性を有している(減衰特性)。そして、本実施例では、渦流センサ13及び被測定部14は、上述したように固定型20及び可動型21の対抗する垂直面20a・21aにそれぞれ設けられているため、渦流センサ13と被測定部14との距離は、固定型20と可動型21との距離Dと略同じである。つまり、このような減衰特性より、固定型20と可動型21との距離Dが近づくにつれて出力電圧は減少していくという特定を有している。
また、出力電圧検出部10(渦流センサ13)にて検出される出力電圧は、渦流センサ13の温度Tや被測定部14の温度tの変化によって増減するという特性を有している(温度特性)。
In the distance measuring step, first, a calculation table C is created in advance and stored in the memory 34. FIG. 6 shows an example of the calculation table C.
Here, the output voltage detected by the output voltage detector 10 (eddy current sensor 13) is that the eddy current increases and the oscillation amplitude decreases as the relative distance between the eddy current sensor 13 and the measured part 14 approaches. It has characteristics (attenuation characteristics). In the present embodiment, the eddy current sensor 13 and the measured part 14 are provided on the vertical surfaces 20a and 21a facing the fixed mold 20 and the movable mold 21 as described above. The distance to the portion 14 is substantially the same as the distance D between the fixed mold 20 and the movable mold 21. That is, from such attenuation characteristics, the output voltage decreases as the distance D between the fixed mold 20 and the movable mold 21 decreases.
In addition, the output voltage detected by the output voltage detection unit 10 (eddy current sensor 13) has a characteristic of increasing or decreasing depending on changes in the temperature T of the eddy current sensor 13 or the temperature t of the measured part 14 (temperature characteristics). ).

本実施例では、まず、被測定部14の温度tを一定にして、渦流センサ13の温度Tを変えながら(T1・T2・T3・・・)、出力電圧と距離Dの関係が測定され、それぞれの値が基準値として演算テーブルC1・C2・・・に格納される。次いで、渦流センサ13の温度Tを一定にして、被測定部14の温度tを変えながら(t1・t2・t3・・・)、出力電圧と距離Dの関係が測定され、基準値として各演算テーブルC1・C2・・・に格納される。このように、本実施例の演算テーブルCは、複数の演算テーブルC1・C2・・・に分けられて格納される。   In this embodiment, first, the relationship between the output voltage and the distance D is measured while keeping the temperature t of the measured part 14 constant and changing the temperature T of the eddy current sensor 13 (T1, T2, T3...) Each value is stored as a reference value in the calculation tables C1, C2,. Next, while maintaining the temperature T of the eddy current sensor 13 and changing the temperature t of the measured part 14 (t1, t2, t3...), The relationship between the output voltage and the distance D is measured, and each calculation is performed as a reference value. It is stored in the tables C1, C2,. Thus, the calculation table C of the present embodiment is divided into a plurality of calculation tables C1, C2,.

なお、演算テーブルCは、上述した構成に限定されず、また、渦流センサ13の検出コイル13aの形状、印加する電圧の周波数、被測定部14までの距離、被測定部の素材(比透磁率や導電率)等によって変化するため、渦流センサ13の設置環境や計測の目的に応じて適宜再作成されて、メモリ34に上書きして格納される。   The calculation table C is not limited to the configuration described above, and the shape of the detection coil 13a of the eddy current sensor 13, the frequency of the voltage to be applied, the distance to the measurement target 14, the material of the measurement target (relative magnetic permeability). Therefore, it is appropriately recreated according to the installation environment of the eddy current sensor 13 and the purpose of measurement, and is overwritten and stored in the memory 34.

そして、距離測定工程では、距離測定部12に入力された実測値としての出力電圧及び温度T・tが、演算テーブルCと対比され(S120)、具体的には、演算テーブルCに格納された基準値としての各温度T・tのごとの出力電圧と距離Dとの関係と対比されて、実測値としての距離Dが測定される(S130)。測定された距離Dは、それぞれメモリ34に格納される。   In the distance measurement step, the output voltage and temperature T · t as actual measurement values input to the distance measurement unit 12 are compared with the calculation table C (S120), and specifically stored in the calculation table C. The distance D as the actual measurement value is measured by comparing with the relationship between the output voltage and the distance D for each temperature T · t as the reference value (S130). The measured distances D are stored in the memory 34, respectively.

変位測定工程では、上記距離測定工程で測定された距離Dに基づいて、所定時間(又は回数)当たりの測定距離が対比されて、離間Dの変位が求められる(S140)。なお、この変位測定工程では、測定された距離Dが所定の基準値の範囲内にあるか否かが判定されて、出力部37より出力されるように構成されてもよい。   In the displacement measuring step, the measured distance per predetermined time (or number of times) is compared based on the distance D measured in the distance measuring step, and the displacement of the separation D is obtained (S140). In this displacement measuring step, it may be configured such that it is determined whether or not the measured distance D is within a predetermined reference value range and output from the output unit 37.

以上のようにして金型2の距離Dの変位を測定することで、ダイカスト鋳造で用いられる金型2のように温度変化の大きい測定条件下でも、金型2の距離Dの変位を精度よく測定することができる。すなわち、本実施例の金型2は、鋳造工程(鋳込み)が繰り返されることで、金型2(固定型20及び可動型21)の温度が上昇する。そして、金型2の温度上昇に伴って、渦流センサ13及び被測定部14の温度も上昇する。このような場合であっても、本実施例の測定方法によれば、渦流センサ13にて出力電圧を検出することに加えて、渦流センサ13及び被測定部14の温度T・tを検出し、渦流センサ13により検出される出力電を渦流センサ13及び被測定部14の温度T・tに基づいて補正するものであるため、渦流センサ13及び被測定部14の測定環境(温度)が変化しても、金型2の距離変位を精度よく測定することができるのである。   By measuring the displacement of the mold 2 by the distance D as described above, the displacement of the mold 2 by the distance D can be accurately measured even under measurement conditions having a large temperature change like the mold 2 used in die casting. Can be measured. That is, in the mold 2 of the present embodiment, the temperature of the mold 2 (the fixed mold 20 and the movable mold 21) is increased by repeating the casting process (casting). And with the temperature rise of the metal mold | die 2, the temperature of the eddy current sensor 13 and the to-be-measured part 14 also rises. Even in such a case, according to the measuring method of the present embodiment, in addition to detecting the output voltage by the eddy current sensor 13, the temperature T · t of the eddy current sensor 13 and the measured part 14 is detected. Since the output electricity detected by the eddy current sensor 13 is corrected based on the temperature T · t of the eddy current sensor 13 and the measured part 14, the measurement environment (temperature) of the eddy current sensor 13 and the measured part 14 changes. Even so, the distance displacement of the mold 2 can be accurately measured.

また、本実施例の測定方法によれば、固定型20に配置された被測定部14に対して、可動型21に配置された渦流センサ13によって渦電流を誘起させて、渦流センサ13と被測定部14との距離Dを測定するため、金型2を用いた鋳造作業中に、金型2(固定型20及び可動型21)の距離D(の変位)をリアルタイムで測定することができる。   Further, according to the measurement method of the present embodiment, an eddy current is induced by the eddy current sensor 13 disposed in the movable mold 21 with respect to the measured part 14 disposed in the fixed mold 20, so In order to measure the distance D to the measuring unit 14, during the casting operation using the mold 2, the distance D (displacement) of the mold 2 (the fixed mold 20 and the movable mold 21) can be measured in real time. .

特に、本実施例の測定方法によれば、距離測定工程において、予め、渦流センサ13及び被測定部14の温度T・tごとの出力電圧と金型2の距離Dとの関係を基準値として求め、出力電圧検出工程にて検出された出力電圧、及び温度検出工程にて検出された温度T・tの実測値と基準値とを対比して金型2の距離Dを求めるものであるため、距離Dの測定が容易であり、また、細かな測定条件の変化に応じて複数の基準値を用いることで、変位測定の精度をより向上できる。   In particular, according to the measurement method of the present embodiment, in the distance measurement step, the relationship between the output voltage for each temperature T · t of the eddy current sensor 13 and the measured part 14 and the distance D of the mold 2 is used as a reference value in advance. The distance D of the mold 2 is obtained by comparing the measured value of the output voltage detected in the output voltage detection process and the actual value of the temperature T · t detected in the temperature detection process with the reference value. The distance D can be easily measured, and the accuracy of the displacement measurement can be further improved by using a plurality of reference values according to fine changes in measurement conditions.

なお、金型2の変位測定方法及び変位測定装置1の構成としては、上述した実施例に限定されない。以下に示す実施例において、上述した実施例と同一の符号を用いた部材は略同一の構成・機能を有するものであって、詳細な説明は省略する。   In addition, as a structure of the displacement measuring method of the metal mold | die 2, and the displacement measuring apparatus 1, it is not limited to the Example mentioned above. In the following embodiments, members using the same reference numerals as those in the above-described embodiments have substantially the same configuration and function, and detailed description thereof will be omitted.

上述した実施例の変位測定装置1では、出力電圧検出部10の被測定部14は、固定型20に穿設された挿入孔20bに挿入されて配置されているが(図1等参照)、被測定部14の取り付け構造としては、これに限定されない。
例えば、図7に示す実施例のように、固定型20の垂直面20aに凹設された凹部20cに被測定部14を焼きばめにより固定して取り付けてもよい。かかる実施例の場合、固定型20には、別途小径孔20dが穿設されて、温度センサ16の配線32が小径孔20d内に配置される。
本実施例の被測定部14としては、金型材よりも熱膨張が大きい素材(例えば、銅やアルミなど)が好ましく用いられる。
In the displacement measuring apparatus 1 according to the above-described embodiment, the measured portion 14 of the output voltage detecting unit 10 is inserted into the insertion hole 20b formed in the fixed mold 20 (see FIG. 1 and the like). The mounting structure of the measured part 14 is not limited to this.
For example, as shown in the embodiment shown in FIG. 7, the portion to be measured 14 may be fixed and attached to the concave portion 20 c provided in the vertical surface 20 a of the fixed mold 20 by shrink fitting. In this embodiment, the fixed die 20 is separately provided with a small diameter hole 20d, and the wiring 32 of the temperature sensor 16 is disposed in the small diameter hole 20d.
As the part to be measured 14 of the present embodiment, a material (for example, copper or aluminum) having a larger thermal expansion than the mold material is preferably used.

このような構成とすることで、例えば、金型2の構造によって上述した挿入孔20b(図2参照)を穿設することができない場合であっても、被測定部14や温度センサ16等を配置することができる。   By adopting such a configuration, for example, even if the insertion hole 20b (see FIG. 2) described above cannot be drilled due to the structure of the mold 2, the measured portion 14, the temperature sensor 16, and the like can be provided. Can be arranged.

また、上述した実施例の変位測定装置1では、出力電圧検出部10として、固定型20に別部材としての被測定部14が設けられるが(図1等参照)、必ずしも別部材としての被測定部14を設ける必要はなく、例えば、金型2の一部(固定型20の一部)を被測定部として用いてもよい。
例えば、図8に示す実施例にように、固定型20の垂直面20a近傍の所定領域を被測定部として、渦流センサ13により渦電流が固定型20に直接誘起されるように構成されてもよい。すなわち、この固定型20の所定領域が、上述した実施例の被測定部14(図1等参照)に相当する。そして、渦流センサ13(検出コイル13a)により、固定型20の所定領域に誘起された渦電流に基づく出力電圧が検出される。
本実施例の場合、温度センサ16は、固定型20に穿設された小径孔20dを介して、固定型20の垂直面20aの表面近傍位置に配置される。そして、温度センサ16により、渦電流が誘起される固定型20の所定領域の温度tが検出される。
Moreover, in the displacement measuring apparatus 1 of the Example mentioned above, although the to-be-measured part 14 as another member is provided in the fixed mold | type 20 as the output voltage detection part 10 (refer FIG. 1 etc.), it is not necessarily measured as another member. The part 14 does not need to be provided. For example, a part of the mold 2 (a part of the fixed mold 20) may be used as the part to be measured.
For example, as shown in the embodiment shown in FIG. 8, the eddy current may be directly induced in the fixed mold 20 by the eddy current sensor 13 with a predetermined region in the vicinity of the vertical surface 20 a of the fixed mold 20 being measured. Good. That is, the predetermined area of the fixed mold 20 corresponds to the measurement target portion 14 (see FIG. 1 and the like) of the above-described embodiment. The eddy current sensor 13 (detection coil 13a) detects an output voltage based on an eddy current induced in a predetermined region of the fixed mold 20.
In the case of the present embodiment, the temperature sensor 16 is disposed in the vicinity of the surface of the vertical surface 20 a of the fixed mold 20 through the small diameter hole 20 d drilled in the fixed mold 20. The temperature sensor 16 detects the temperature t of a predetermined region of the fixed mold 20 where eddy current is induced.

このような構成とすることで、金型2の構造によっては、上述した別部材として被測定部14を設けることができない場合であっても、固定型20の所定領域を渦流センサ13の対象物とすることで、固定型20と可動型21との距離Dを測定することができる。   By adopting such a configuration, depending on the structure of the mold 2, even if the measured part 14 cannot be provided as the above-described separate member, the predetermined region of the fixed mold 20 is the target of the eddy current sensor 13. By doing so, the distance D between the fixed mold 20 and the movable mold 21 can be measured.

また、上述した実施例の変位測定装置1では、温度検出部11として、渦流センサ13及び被測定部14に温度センサ15・16がそれぞれ設けられているが(図1等参照)、温度検出部11の構成は、これに限定されない。
例えば、図9に示す実施例のように、金型2(固定型20及び可動型21)の外側位置に放射温度計115・116が設けられ、各放射温度計115・116によって、渦流センサ13の先端面13c、及び(被測定部としての)固定型20の垂直面20aの表面温度が検出されるように構成されてもよい。
本実施例の場合には、渦流センサ13の先端面13cや固定型20の垂直面20aは黒体とされるのが好ましい。また、放射温度計115・116の替わりに赤外線サーモグラフィを用いてもよい。
Moreover, in the displacement measuring apparatus 1 of the Example mentioned above, although the temperature sensor 15 * 16 is each provided in the eddy current sensor 13 and the to-be-measured part 14 as the temperature detection part 11 (refer FIG. 1 etc.), a temperature detection part The configuration of 11 is not limited to this.
For example, as in the embodiment shown in FIG. 9, radiation thermometers 115 and 116 are provided at outer positions of the mold 2 (the fixed mold 20 and the movable mold 21). The surface temperature of the front end surface 13c and the vertical surface 20a of the fixed mold 20 (as the part to be measured) may be detected.
In the case of the present embodiment, it is preferable that the tip surface 13c of the eddy current sensor 13 and the vertical surface 20a of the fixed mold 20 are black bodies. An infrared thermography may be used in place of the radiation thermometers 115 and 116.

このような構成とすることで、金型2の構造によっては、上述した温度センサ15・16を設けることができない場合であっても、渦流センサ13及び(被測定部としての)固定型20の温度T・tを検出することができ、渦流センサ13により検出される出力電圧の温度特性を補正して、金型2の距離変位を測定することができる。   By adopting such a configuration, depending on the structure of the mold 2, even if the temperature sensors 15 and 16 described above cannot be provided, the eddy current sensor 13 and the fixed mold 20 (as the part to be measured) can be provided. The temperature T · t can be detected, the temperature characteristics of the output voltage detected by the eddy current sensor 13 can be corrected, and the distance displacement of the mold 2 can be measured.

以上の実施例において、変位測定装置1により測定される金型の種類としては、ダイカスト用の金型2に限定されず、射出成形用金型等、高温条件下で用いられて温度変化の大きい金型を用いることができる。   In the above embodiment, the type of the mold measured by the displacement measuring device 1 is not limited to the die casting mold 2 and is used under high temperature conditions such as an injection molding mold and has a large temperature change. A mold can be used.

本発明の出力電圧検出部及び温度検出部が配置された金型の断面図。Sectional drawing of the metal mold | die with which the output voltage detection part and temperature detection part of this invention are arrange | positioned. 変位測定装置の全体的な構成を示した機能ブロック図。The functional block diagram which showed the whole structure of the displacement measuring device. 図1の金型の一部拡大断面図。The partial expanded sectional view of the metal mold | die of FIG. 渦流センサの斜視図。The perspective view of an eddy current sensor. 本実施例の距離変位測定方法を示したフローチャート。The flowchart which showed the distance displacement measuring method of a present Example. 演算テーブルの内容を示した図。The figure which showed the content of the calculation table. 別実施例の出力電圧検出部及び温度検出部が配置された金型の断面図。Sectional drawing of the metal mold | die with which the output voltage detection part and temperature detection part of another Example are arrange | positioned. 別実施例の出力電圧検出部及び温度検出部が配置された金型の断面図。Sectional drawing of the metal mold | die with which the output voltage detection part and temperature detection part of another Example are arrange | positioned. 別実施例の出力電圧検出部及び温度検出部が配置された金型の断面図。Sectional drawing of the metal mold | die with which the output voltage detection part and temperature detection part of another Example are arrange | positioned.

符号の説明Explanation of symbols

1 変位測定装置
2 金型
10 出力電圧検出部
11 温度検出部
12 距離測定部
13 渦流センサ
13a 検出コイル
14 被測定部
15 温度センサ
16 温度センサ
20 固定型(一方の金型)
21 可動型(他方の金型)
D 距離
T 温度
t 温度
DESCRIPTION OF SYMBOLS 1 Displacement measuring apparatus 2 Mold 10 Output voltage detection part 11 Temperature detection part 12 Distance measurement part 13 Eddy current sensor 13a Detection coil 14 Measured part 15 Temperature sensor 16 Temperature sensor 20 Fixed mold (one mold)
21 Movable mold (the other mold)
D distance T temperature t temperature

Claims (8)

対向する一対の金型間の距離の変位を測定する変位測定方法において、
一方の金型に渦流センサを配置するとともに、他方の金型に被測定部を設けて、渦流センサにより該被測定部に渦電流を誘起し、該被測定部に誘起された渦電流に基づく出力電圧を検出する出力電圧検出工程と、
前記渦流センサ及び被測定部のそれぞれの温度を検出する温度検出工程と、
前記出力電圧検出工程にて検出された出力電圧、及び温度検出工程にて検出された検出温度から、金型の距離を測定する距離測定工程とを有することを特徴とする変位測定方法。
In a displacement measuring method for measuring a displacement of a distance between a pair of opposed molds,
An eddy current sensor is arranged in one mold, and a measured part is provided in the other mold, and an eddy current is induced in the measured part by the eddy current sensor, and based on the eddy current induced in the measured part. An output voltage detection step for detecting the output voltage;
A temperature detection step of detecting the temperature of each of the eddy current sensor and the part to be measured;
A displacement measuring method comprising: a distance measuring step of measuring a distance of the mold from the output voltage detected in the output voltage detecting step and the detected temperature detected in the temperature detecting step.
前記距離測定工程では、予め、渦流センサ及び被測定部の温度ごとの出力電圧と金型の距離との関係を基準値として求め、前記出力電圧検出工程にて検出された出力電圧、及び温度検出工程にて検出された検出温度の実測値と前記基準値とを対比して金型の距離を求めることを特徴とする請求項1に記載の変位測定方法。   In the distance measuring step, the relationship between the output voltage for each temperature of the eddy current sensor and the measured part and the distance of the mold is obtained as a reference value in advance, the output voltage detected in the output voltage detecting step, and the temperature detection The displacement measuring method according to claim 1, wherein the distance of the mold is obtained by comparing the measured value of the detected temperature detected in the process with the reference value. 前記温度検出工程では、前記渦流センサを構成する検出コイル又は検出コイルの近傍位置の温度を検出することを特徴とする請求項1又は請求項2に記載の変位測定方法。   The displacement measuring method according to claim 1 or 2, wherein, in the temperature detecting step, the temperature of a detection coil constituting the eddy current sensor or a position near the detection coil is detected. 前記被測定部は、非磁性体より形成されることを特徴とする請求項1乃至請求項3のいずれか一項に記載の変位測定方法。   The displacement measuring method according to claim 1, wherein the portion to be measured is made of a non-magnetic material. 対向する一対の金型間の距離の変位を測定する変位測定装置において、
一方の金型に渦流センサが配置されるとともに、他方の金型に被測定部が設けられ、渦流センサにより被測定部に渦電流を誘起し、該被測定部に誘起された渦電流に基づく出力電圧を検出する出力電圧検出部と、
前記渦流センサ及び被測定部のそれぞれの温度を検出する温度検出部と、
前記出力電圧検出部にて検出された出力電圧、及び温度検出部にて検出された検出温度から、金型の距離を測定する距離測定部とを有することを特徴とする変位測定装置。
In a displacement measuring device that measures the displacement of the distance between a pair of opposed molds,
An eddy current sensor is arranged in one mold, and a measured part is provided in the other mold, and an eddy current is induced in the measured part by the eddy current sensor, and based on the eddy current induced in the measured part. An output voltage detector for detecting the output voltage;
A temperature detector for detecting the temperature of each of the eddy current sensor and the part to be measured;
A displacement measuring apparatus comprising: a distance measuring unit that measures a distance of the mold from the output voltage detected by the output voltage detecting unit and the detected temperature detected by the temperature detecting unit.
前記距離測定部は、予め、渦流センサ及び被測定部の温度ごとの出力電圧と金型の距離との関係を基準値として求め、前記出力電圧検出部にて検出された出力電圧、及び温度検出部にて検出された検出温度の実測値と前記基準値とを対比して金型の距離を求めることを特徴とする請求項5に記載の変位測定装置。   The distance measuring unit obtains in advance a relationship between the output voltage for each temperature of the eddy current sensor and the measured part and the distance of the mold as a reference value, the output voltage detected by the output voltage detecting unit, and the temperature detection The displacement measuring apparatus according to claim 5, wherein the distance of the mold is obtained by comparing the measured value of the detected temperature detected by the section with the reference value. 前記温度検出部は、前記渦流センサを構成する検出コイルの近傍位置に設けられる温度センサを有することを特徴とする請求項5又は請求項6に記載の変位測定装置。   The displacement measuring device according to claim 5, wherein the temperature detection unit includes a temperature sensor provided in a position near a detection coil constituting the eddy current sensor. 前記被測定部は、非磁性体より形成されることを特徴とする請求項5乃至請求項7のいずれか一項に記載の変位測定装置。   The displacement measuring apparatus according to claim 5, wherein the part to be measured is made of a non-magnetic material.
JP2006356435A 2006-12-28 2006-12-28 Displacement measuring method and device Withdrawn JP2008164518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006356435A JP2008164518A (en) 2006-12-28 2006-12-28 Displacement measuring method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006356435A JP2008164518A (en) 2006-12-28 2006-12-28 Displacement measuring method and device

Publications (1)

Publication Number Publication Date
JP2008164518A true JP2008164518A (en) 2008-07-17

Family

ID=39694213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006356435A Withdrawn JP2008164518A (en) 2006-12-28 2006-12-28 Displacement measuring method and device

Country Status (1)

Country Link
JP (1) JP2008164518A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105953715A (en) * 2016-06-02 2016-09-21 中国人民解放军海军工程大学 Intelligent bus eddy current displacement sensor with integrated structure
JP2020063963A (en) * 2018-10-16 2020-04-23 ナブテスコ株式会社 Displacement sensor
WO2022130898A1 (en) * 2020-12-14 2022-06-23 株式会社荏原製作所 Eddy current sensor and eddy current sensor signal processing device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105953715A (en) * 2016-06-02 2016-09-21 中国人民解放军海军工程大学 Intelligent bus eddy current displacement sensor with integrated structure
JP2020063963A (en) * 2018-10-16 2020-04-23 ナブテスコ株式会社 Displacement sensor
CN111059994A (en) * 2018-10-16 2020-04-24 纳博特斯克有限公司 Displacement sensor
KR20200042864A (en) * 2018-10-16 2020-04-24 나부테스코 가부시키가이샤 Displacement sensor
KR102275562B1 (en) * 2018-10-16 2021-07-09 나부테스코 가부시키가이샤 Displacement sensor
CN111059994B (en) * 2018-10-16 2023-03-03 纳博特斯克有限公司 Displacement sensor
JP7260871B2 (en) 2018-10-16 2023-04-19 ナブテスコ株式会社 Displacement sensor
WO2022130898A1 (en) * 2020-12-14 2022-06-23 株式会社荏原製作所 Eddy current sensor and eddy current sensor signal processing device

Similar Documents

Publication Publication Date Title
JP4044880B2 (en) Non-contact angle measuring device
JP6377817B2 (en) Non-contact magnetic linear position sensor
JP2010164306A (en) Method and device for hardened depth
JPH0275920A (en) Temperature measuring device for material built into sealed equipment
US20080175303A1 (en) Thermocouple Assembly And Method Of Use
TWI396833B (en) Apparatus for determination of an interface of a slag layer
JP2006192473A (en) Method for measuring level of molten steel in casting mold of continuous casting facility
JP2008164518A (en) Displacement measuring method and device
JP4879518B2 (en) Measurement test method for machining depth using eddy current and measurement test apparatus using the same
CN106959170B (en) For measuring the sensing element of material internal temperature and based on the temperature sensor of the sensing element
KR20110040903A (en) Method for thermally compensating a gaging device and thermally compensated gaging station
JP3717753B2 (en) Magnetic sensor sensitivity calibration device
JP5793879B2 (en) Method for measuring moisture content inside hermetic package and method for measuring leak rate of hermetic package
US20190178620A1 (en) Method and device for measuring the thickness of non-magnetisable layers on a magnetisable base material
JP2017078640A (en) Film thickness measuring device
JP2909922B2 (en) Temperature compensation method for thermomechanical analysis
JPH0850004A (en) Method for measuring position of magnet
JP2011177724A (en) Eddy-current-type molten metal level detector
JP7424763B2 (en) Temperature sensors and temperature measurement systems
EP1943477A1 (en) Device for non-destructively examining an object
KR100462386B1 (en) Coefficient Of Heat Expansion Of Non-magnetic Substance Measuring Device In Accordance With The Magnetic Field Change
JP2002028836A5 (en)
JP2010223913A (en) Noncontact position sensor
KR100308974B1 (en) Heat flux measure sensor
JPH03291531A (en) Calibrating method for eddy current type molten metal level gauge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090416

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110322