JP2008163944A - Reforming system for partial co2 recovery type cycle plant - Google Patents

Reforming system for partial co2 recovery type cycle plant Download PDF

Info

Publication number
JP2008163944A
JP2008163944A JP2007333398A JP2007333398A JP2008163944A JP 2008163944 A JP2008163944 A JP 2008163944A JP 2007333398 A JP2007333398 A JP 2007333398A JP 2007333398 A JP2007333398 A JP 2007333398A JP 2008163944 A JP2008163944 A JP 2008163944A
Authority
JP
Japan
Prior art keywords
stream
fuel
steam
reformate
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007333398A
Other languages
Japanese (ja)
Inventor
Ke Liu
ケ・リュ
Michael John Bowman
マイケル・ジョン・ボウマン
Stephen Duane Sanborn
スティーブン・ドュエイン・サンボーン
Andrei T Evulet
アンドレイ・トリスタン・エヴュレット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2008163944A publication Critical patent/JP2008163944A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0833Heating by indirect heat exchange with hot fluids, other than combustion gases, product gases or non-combustive exothermic reaction product gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/84Energy production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the amount of carbon dioxide discharged to the atmosphere from a combined cycle plant. <P>SOLUTION: The plant is structured by including: a reforming device 12 structured to receive a fuel 18 such as a natural gas to generate a hydrogen-concentrated flow; a combustion system comprising a gas turbine 54 structured to burn the hydrogen-concentrated flow to generate power and an exhaust gas flow; and a heat recovery device 80 to recover heat from the exhaust gas flow to recycle and return the recovered heat to the reforming device. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、部分的CO回収式サイクルプラントのための改質システム及び方法に関する。 The present invention relates to a reforming system and method for a partial CO 2 capture cycle plant.

いわゆる温室効果ガスの1種である二酸化炭素(CO)は、炉及び発電所での化石燃料の燃焼中に生成する。近年の研究で、CO及びメタン(CH)や窒素酸化物(NO)のような他の温室効果ガスの排出が、気候変動に重大な影響を及ぼしかねないことが判明している。COその他の温室効果ガスの排出に少なくとも部分的に起因する気候変動の予想は、国際的な関心事となり、京都議定書などの国際協定に結びついている。 Carbon dioxide (CO 2 ), a so-called greenhouse gas, is produced during the burning of fossil fuels in furnaces and power plants. Recent research has shown that emissions of CO 2 and other greenhouse gases such as methane (CH 4 ) and nitrogen oxides (N 2 O) can have a significant impact on climate change. . Anticipation of climate change due, at least in part, to emissions of CO 2 and other greenhouse gases has become an international concern and has been linked to international agreements such as the Kyoto Protocol.

全国的及び国際的な関心事のため、電力生産者は、発電プラントで発生するCOレベルを減らすことを試みている。多くの最新発電プラントは、天然ガスで燃焼する複合サイクルプラント又は「NGCC」プラントである。これらのプラントは、石炭を燃焼させる発電プラントよりも格段に少量のCOしか発生しないが、常に厳しくなる排出基準を満たすのは依然として困難である。最近、ヨーロッパの政策立案者は、特定の発電所が年間に排出できるCOの最大割当量の作成を提案した。この割当量を超えるCO排出は、過剰量について「炭素税」を支払われなければならないと提案されている。実際、スウェーデンには、既に所々で炭素税がある。同様に、ノルウェー、フィンランド及びオランダでも、最近炭素税が制定されている。同様な炭素税の提案は、大気環境基準を厳しくすることに決めた米国のカリフォルニアその他の州で議論されている。 For national and international concern, power producers have attempted to reduce the CO 2 level generated by the power plant. Many modern power plants are combined cycle plants or “NGCC” plants that burn with natural gas. These plants produce significantly less CO 2 than power plants that burn coal, but it is still difficult to meet ever-stricter emission standards. Recently, European policymakers have proposed creating a maximum CO 2 quota that a particular power plant can emit annually. It is proposed that CO 2 emissions exceeding this quota must be paid a “carbon tax” for the excess. In fact, Sweden already has carbon taxes in places. Similarly, carbon taxes have recently been enacted in Norway, Finland and the Netherlands. Similar carbon tax proposals are being discussed in California and other states in the United States that have decided to tighten air quality standards.

既存の発電プラントは、水蒸気メタン改質(SMR)、自己熱交換式改質(ATR)及び触媒部分酸化(CPO)を利用して、天然ガス(NG)を、ガスタービン発生装置用の水素及び一酸化炭素からなる合成ガス又はリフォーメート、並びにアンモニア製造又は精製装置用の水素に転化することができる。リフォーメートの使用でNOの排出を減らすことができるが、天然ガス(NG)の改質反応、並びに発電に要する燃焼は、大量の二酸化炭素を発生しかねない。NG全体の改質に必要とされる改質装置は、非常に大規模で広大である必要があろう。さらに、SMR改質装置を使用した場合、改質装置の炉側を2600°Fもの高温で稼動する必要があろう。かかる温度では、SMR改質装置を高価な耐熱合金で作る必要がある。おそらく、さらに重大な障害は、かかる改質装置で発生した大量の二酸化炭素を回収することである。過剰CO排出を回収するには多量の燃料が必要とされるので、かかる大量の二酸化炭素の回収は費用がかかり、プラント全体の効率が下がる。このように、厳しさを増しつつあるCO排出基準を順守する能力を既存の発電プラントに与えるには、多大な資本投下が必要とされるであろう。
米国特許第6223519号明細書 米国特許出願公開第2006/0137246号明細書 米国特許出願公開第2005/0176831号明細書
Existing power plants utilize steam methane reforming (SMR), self heat exchange reforming (ATR) and catalytic partial oxidation (CPO) to convert natural gas (NG) to hydrogen for gas turbine generators and It can be converted to synthesis gas or reformate consisting of carbon monoxide and hydrogen for ammonia production or purification equipment. Although it is possible to reduce the NO x emissions in the use of reformate, reforming reaction of natural gas (NG), and combustion required for power generation, could generate a significant amount of carbon dioxide. The reformer required for reforming the entire NG will need to be very large and vast. Furthermore, if an SMR reformer is used, the furnace side of the reformer will need to operate at temperatures as high as 2600 ° F. At such temperatures, the SMR reformer must be made of an expensive heat resistant alloy. Perhaps a more serious obstacle is the recovery of large amounts of carbon dioxide generated in such reformers. Since a large amount of fuel is required to recover excess CO 2 emissions, the recovery of such a large amount of carbon dioxide is expensive and reduces the efficiency of the entire plant. Thus, it gives the ability to comply with CO 2 emission standards are becoming increasingly severe in existing power plants, would significant capital investment is required.
US Pat. No. 6,223,519 US Patent Application Publication No. 2006/0137246 US Patent Application Publication No. 2005/0176831

そこで、NGを転化させ、生成COの一部を回収するための安価な低温改質装置を利用することができる発電プラントに対するニーズが存在する。かかるシステムでは、低温で稼動し、効率を高めるためリサイクル流を使用し、プラントの年間割当量を超えて発生したCO排出だけを回収して高価な炭素税を避けることによって、資本及び運転費用が低減する。さらに、既存のNGCC発電プラントを改造してこのようなシステムを組み込むことができれば有益である。 Therefore, there is a need for a power plant that can convert an NG and use an inexpensive low-temperature reformer for recovering a part of the produced CO 2 . Such systems operate at low temperatures, use recycle streams to increase efficiency, and recover capital and operating costs by collecting only CO 2 emissions that exceed the annual quota of the plant and avoiding expensive carbon taxes. Is reduced. Furthermore, it would be beneficial if an existing NGCC power plant could be modified to incorporate such a system.

本願では、二酸化炭素を部分的に回収する天然ガス複合サイクルシステム並びにその稼働方法について開示する。一実施形態では、複合サイクルシステムは、約800℃未満の温度で稼動して、第1燃料と水蒸気とを含む混合燃料流を改質して第1リフォーメート流を生成するように構成されたプレ−水蒸気−メタン−改質装置を含む改質装置ユニット、第1リフォーメート流中の一酸化炭素を二酸化炭素に転化させて第2リフォーメート流を生成するように構成された水−ガス−転化反応器を含む転化反応ユニット、第2リフォーメート流から二酸化炭素を除去し、二酸化炭素流及び第3リフォーメート流を生成するように構成された二酸化炭素除去ユニットであって、第1燃料中に含まれる炭素の約50%未満を二酸化炭素として回収する二酸化炭素除去ユニット、第3リフォーメート流及び第2燃料の混合物を受け入れて電力及び排気ガス流を発生させるように構成されたガスタービンユニットであって、排気ガス流が混合燃料流を改質するための熱を供給するガスタービンユニット、及び排気ガス流を受け入れるように構成された水蒸気発生器ユニットであって、排気ガス流の熱を水流に伝達して冷却排気ガス流及び水蒸気タービンのための水蒸気及び混合燃料流を生成する水蒸気発生器ユニットを備える。   The present application discloses a natural gas combined cycle system that partially recovers carbon dioxide and an operation method thereof. In one embodiment, the combined cycle system is configured to operate at a temperature less than about 800 ° C. to reform a mixed fuel stream that includes a first fuel and steam to produce a first reformate stream. A reformer unit including a pre-steam-methane-reformer, water-gas configured to convert carbon monoxide in the first reformate stream to carbon dioxide to produce a second reformate stream A conversion reaction unit including a conversion reactor, a carbon dioxide removal unit configured to remove carbon dioxide from a second reformate stream to produce a carbon dioxide stream and a third reformate stream, wherein the carbon dioxide removal unit is in a first fuel. Accepts a mixture of carbon dioxide removal unit, third reformate stream and second fuel that recovers less than about 50% of the carbon contained in as carbon dioxide and generates electric power and exhaust gas stream A gas turbine unit configured to allow the exhaust gas stream to supply heat for reforming the mixed fuel stream, and a steam generator unit configured to receive the exhaust gas stream And a steam generator unit for transferring heat of the exhaust gas stream to the water stream to generate a cooled exhaust gas stream and steam and a mixed fuel stream for the steam turbine.

部分的に二酸化炭素を回収して発電する方法は、プレ−水蒸気−メタン−改質装置で第1燃料と水蒸気とを含む混合燃料流を改質して水素と一酸化炭素と水蒸気とを含む第1リフォーメート流を生成させ、水−ガス−転化反応器で水蒸気及び第1リフォーメート流中の一酸化炭素を二酸化炭素と水素とを含む第2リフォーメート流に転化させ、二酸化炭素除去ユニットで第2リフォーメート流から二酸化炭素を除去して二酸化炭素流及び第3リフォーメート流を生成させて、第1燃料中に含まれる炭素の約50%未満を二酸化炭素として回収し、ガスタービンユニットで第3リフォーメート流と第2燃料流との混合物を燃焼させて電力を発生させ、排気ガス流を生成させ、熱回収水蒸気発生器で排気ガス流中の熱を利用して水蒸気を発生させ、水蒸気で電力を発生させるとともに第1燃料との混合燃料流を生成させることを含む。   A method of generating electricity by partially recovering carbon dioxide includes hydrogen, carbon monoxide, and steam by reforming a mixed fuel stream including a first fuel and steam in a pre-steam-methane-reformer. A first reformate stream is generated, and in a water-gas-conversion reactor, water vapor and carbon monoxide in the first reformate stream are converted to a second reformate stream containing carbon dioxide and hydrogen, and a carbon dioxide removal unit And removing carbon dioxide from the second reformate stream to generate a carbon dioxide stream and a third reformate stream, and recovering less than about 50% of the carbon contained in the first fuel as carbon dioxide, a gas turbine unit To burn the mixture of the third reformate stream and the second fuel stream to generate electric power, to generate an exhaust gas stream, and to generate steam by using heat in the exhaust gas stream with a heat recovery steam generator. It comprises generating the mixed fuel stream to the first fuel with generating electric power with steam.

別の実施形態では、複合サイクルシステムは、熱回収水蒸気発生器を含む複合ユニットであって、熱回収水蒸気発生器が2以上のステージを含んでいて、第1ステージがプレ−水蒸気−メタン−改質装置を備えており、該プレ−水蒸気−メタン−改質装置が、約800℃未満の温度で稼動し、高温ガスタービン排気ガス流からの熱を利用して混合燃料流を改質して第1リフォーメート流を生成するように構成されており、第2ステージで、排気ガス流からの熱を利用して水蒸気を生成させる複合ユニット、第1リフォーメート流中の一酸化炭素を二酸化炭素に転化させて第2リフォーメート流を生成するように構成された、水−ガス−転化反応器を含む転化反応ユニット、第2リフォーメート流から二酸化炭素を除去て二酸化炭素流と第3リフォーメート流とを生成するように構成された二酸化炭素除去ユニットであって、第1燃料中に含まれる炭素の約50%未満を二酸化炭素として回収する二酸化炭素除去ユニット、及び第2燃料及び第3リフォーメート流を受け入れ、電力及び排気ガス流を発生するように構成されたガスタービンユニットを備える。   In another embodiment, the combined cycle system is a combined unit including a heat recovery steam generator, wherein the heat recovery steam generator includes two or more stages, and the first stage is pre-steam-methane-modified. The pre-steam-methane-reformer operates at a temperature of less than about 800 ° C. and utilizes the heat from the hot gas turbine exhaust gas stream to reform the mixed fuel stream. A composite unit configured to generate a first reformate stream and generating water vapor using heat from the exhaust gas stream in the second stage, and carbon monoxide in the first reformate stream to carbon dioxide A conversion reaction unit comprising a water-gas-conversion reactor configured to convert to a second reformate stream, removing carbon dioxide from the second reformate stream and removing the carbon dioxide stream and the third reformate stream. A carbon dioxide removal unit configured to generate a formate stream, wherein the carbon dioxide removal unit recovers less than about 50% of the carbon contained in the first fuel as carbon dioxide, and the second fuel and the third fuel. A gas turbine unit is provided that is configured to receive the reformate stream and generate a power and exhaust gas stream.

以下、図面を参照するが、図面では同様の要素には同様の符号を付した。   In the following, reference is made to the drawings, in which like elements are given like reference numerals.

本願では、プレ−水蒸気−メタン−改質装置(SMR)及び部分的CO回収ユニットを利用する複合サイクル発電システム及び方法について開示される。複合サイクルシステムは、熱回収を利用して、水蒸気の生成のためにガスタービン排気ガス中のエネルギーを回収することによって、Rankine(水蒸気タービン)とBrayton(ガスタービン)の熱力学的サイクルを組み合わせる。従来の改質装置を使用する従来技術の複合サイクルプラントと対比すると、本願で開示するシステム及び方法では、特定の許容範囲を超えるCO排出量の回収に天然ガスの(NG)の一部のみを改質するため低温プレ−SMRを用いるという利点がある。従来のSMRでは、メタンを水素に完全に転化させるには反応を高温、例えば1000℃超の温度で起こさなければならない。しかし、本願で開示するプレ−SMRでは、反応温度は、約550℃〜約800℃、具体的には約600℃〜約750℃、さらに具体的には650℃である。燃料流中の炭素の約50%未満を回収することが望まれるので、プレ−SMRで必要とされるのはメタンから水素及び一酸化炭素への70%以下の転化効率のみである。さらに、本願で開示するシステムは、プレ−SMRへ送り込まれるNG及び水蒸気を予熱するため、プレ−SMR及び水−ガス−転化(WGS)反応器から出るリフォーメートの熱の回収に再生式熱交換器を用いてシステム全体の効率を高める。また、プレ−SMRは、既存の熱回収水蒸気発生器(HRSG)を改造して組み込むことができ、分離したSMRユニットに伴う追加の資本コストもスペースも必要とせずに、本発明のシステムの利益を得ることができる。 The present application discloses a combined cycle power generation system and method that utilizes a pre-steam-methane-reformer (SMR) and a partial CO 2 capture unit. A combined cycle system utilizes heat recovery to combine Rankine (steam turbine) and Brayton (gas turbine) thermodynamic cycles by recovering energy in the gas turbine exhaust for steam generation. In contrast to prior art combined cycle plants that use conventional reformers, the systems and methods disclosed herein provide only a portion of natural gas (NG) for the recovery of CO 2 emissions that exceed a specified tolerance. There is an advantage that a low temperature pre-SMR is used to improve the temperature. In conventional SMR, the reaction must occur at a high temperature, for example, above 1000 ° C., to completely convert methane to hydrogen. However, in the pre-SMR disclosed herein, the reaction temperature is about 550 ° C to about 800 ° C, specifically about 600 ° C to about 750 ° C, more specifically 650 ° C. Since it is desired to recover less than about 50% of the carbon in the fuel stream, only a conversion efficiency of less than 70% from methane to hydrogen and carbon monoxide is required in pre-SMR. Further, the system disclosed herein regenerative heat exchange to recover the heat of reformate exiting the pre-SMR and water-gas-conversion (WGS) reactors to preheat NG and water vapor fed to the pre-SMR. To increase the efficiency of the entire system. The pre-SMR can also be retrofitted to an existing heat recovery steam generator (HRSG), without the additional capital cost and space associated with a separate SMR unit, and the benefits of the system of the present invention. Can be obtained.

本明細書で用いる用語は、説明のためのものであり、限定を目的としたものではない。本明細書に記載した構造及び機能の詳細は、限定的に解釈すべきではなく、特許請求の範囲の基礎として当業者が本発明を様々に利用できるように教示するための代表的な情報源である。さらに、本明細書で用いる「第1」、「第2」などの用語は、順序又は重要性を意味するものではなく、ある要素を、他のものから区別するために用いるものであり、単数形で記載したものであっても、量を限定するものではなく、そのものが1以上存在することを意味する。量について用いる修飾語「約」は、標記の数値を含むだけでなく、文脈に応じた意味を有する(例えば、特定の量の測定に付随する誤差を含む。)。さらに、特定の成分の量又は測定値に関する範囲はすべて、上下限を含むとともに、独立に結合できる。   The terminology used herein is for the purpose of description and is not intended to be limiting. The details of structure and function described herein should not be construed as limiting, but are representative sources for teaching those skilled in the art to use the present invention in various ways as a basis for the claims. It is. Furthermore, terms such as “first”, “second”, etc., as used herein do not imply order or importance, but are used to distinguish one element from another, Even if it is described in the form, it does not limit the amount, but means that one or more of them exist. The modifier "about" used for a quantity not only includes the indicated numerical value, but also has a contextual meaning (eg, includes errors associated with the measurement of a particular quantity). Further, all ranges relating to the amount or measurement of a particular component include upper and lower limits and can be combined independently.

図1は、発電してCO排出を回収するための例示的なNGCC発電システム10を表す。発電システム10は、プレ−SMR14を有する改質装置ユニット12及び熱交換器16を備える。改質装置ユニット12は、第1燃料18と水蒸気20を混合燃料流22として受け入れて、一酸化炭素、水素、未転化燃料及び水蒸気からなる第1リフォーメート流24を生成する。熱交換器16は、第1リフォーメート流24からの熱を混合燃料流22に伝達し、冷却第1リフォーメート流26と加熱混合燃料流28とを生成する。発電システム10は、転化反応ユニット30をさらに備える。冷却第1リフォーメート流26は、転化反応ユニット30に送られ、第1リフォーメート流26中の一酸化炭素(CO)と水蒸気はWGS反応器32で二酸化炭素と水素に転化される。第2リフォーメート流34はWGS反応器を出て熱交換器36に入る。熱交換器36は、第2リフォーメート流34から熱を第1燃料18に伝達して、冷却第2リフォーメート流38と加熱第1燃料18とを生成する。冷却第2リフォーメート流38はCO除去ユニット40に送られる。CO除去ユニット40はアミン吸収塔42と再生塔44とを備えていて、冷却第2リフォーメート流28から二酸化炭素を除去して、二酸化炭素流46と、水素、一酸化炭素及び未転化燃料を含む第3リフォーメート流48とを生成する。 FIG. 1 represents an exemplary NGCC power generation system 10 for generating power and recovering CO 2 emissions. The power generation system 10 includes a reformer unit 12 having a pre-SMR 14 and a heat exchanger 16. The reformer unit 12 receives the first fuel 18 and the steam 20 as a mixed fuel stream 22 and produces a first reformate stream 24 composed of carbon monoxide, hydrogen, unconverted fuel, and steam. The heat exchanger 16 transfers heat from the first reformate stream 24 to the mixed fuel stream 22 to produce a cooled first reformate stream 26 and a heated mixed fuel stream 28. The power generation system 10 further includes a conversion reaction unit 30. The cooled first reformate stream 26 is sent to the conversion reaction unit 30 where carbon monoxide (CO) and water vapor in the first reformate stream 26 are converted to carbon dioxide and hydrogen in the WGS reactor 32. Second reformate stream 34 exits the WGS reactor and enters heat exchanger 36. The heat exchanger 36 transfers heat from the second reformate stream 34 to the first fuel 18 to produce a cooled second reformate stream 38 and a heated first fuel 18. The cooled second reformate stream 38 is sent to the CO 2 removal unit 40. The CO 2 removal unit 40 includes an amine absorption tower 42 and a regeneration tower 44, which removes carbon dioxide from the cooled second reformate stream 28 to produce a carbon dioxide stream 46, hydrogen, carbon monoxide and unconverted fuel. And a third reformate stream 48 containing.

第3リフォーメート流48は、第2燃料50と混合され、水素濃縮燃料流52を形成し、これは、ガスタービンユニット54に送られる。適宜、第3リフォーメート流48の一部58を水素化脱硫(HDS)ユニット(60)に送って、第1燃料18のHDS処理に必要とされる水素を供給してもよい。ガスタービンユニット54は、圧縮機62、燃焼器64、ガスタービン66及び発電機68を備える。酸化剤70は、水素濃縮燃料流52と混合する前に圧縮機62で圧縮される。圧縮された酸化剤72と水素濃縮燃料流52は、燃焼器64で燃焼され、熱エネルギーと高温圧縮燃焼排気ガス混合物74を発生し、ガスタービン66に送られる。圧縮燃焼排ガス混合物74は膨張してタービンを駆動した後、水蒸気発生器ユニット78に排気ガス流76として排出される。ガスタービン排気ガス流76の一部(77)はプレ−SMR14に分流され、混合燃料流28を改質するための熱を供給する。膨張高圧混合ガスによるタービンの回転は、当業者に周知の方法で発電機68で電力に変換される。   The third reformate stream 48 is mixed with the second fuel 50 to form a hydrogen enriched fuel stream 52 that is sent to the gas turbine unit 54. Optionally, a portion 58 of the third reformate stream 48 may be sent to a hydrodesulfurization (HDS) unit (60) to supply the hydrogen required for HDS processing of the first fuel 18. The gas turbine unit 54 includes a compressor 62, a combustor 64, a gas turbine 66, and a generator 68. The oxidant 70 is compressed by the compressor 62 before being mixed with the hydrogen enriched fuel stream 52. The compressed oxidant 72 and hydrogen enriched fuel stream 52 are combusted in a combustor 64 to generate thermal energy and a hot compressed combustion exhaust gas mixture 74 that is sent to a gas turbine 66. The compressed combustion exhaust gas mixture 74 expands to drive the turbine and is then discharged to the steam generator unit 78 as an exhaust gas stream 76. A portion (77) of the gas turbine exhaust gas stream 76 is diverted to the pre-SMR 14 to provide heat to reform the mixed fuel stream 28. The rotation of the turbine by the expanded high pressure gas mixture is converted to electrical power by the generator 68 in a manner well known to those skilled in the art.

水蒸気発生ユニット78は、HRSG80、水蒸気タービン84及び水蒸気発生器86を備える。排気ガス76からの熱を利用して水蒸気20を発生させるため、HRSG80は3つのステージ81、82及び83を有する。水蒸気20を第1燃料18と合流させて混合燃料流22を形成する。水蒸気20は、さらに、プレ−SMR14で改質反応を進行させるとともに、水蒸気タービン84及び水蒸気発生器86を介して発電するのにも使用される。水蒸気発生器ユニット78は、水蒸気タービン出口流90を凝縮して水流92を形成するための凝縮器88をさらに備えていてもよい。水流92は、水蒸気発生のためにHRSG80にリサイクルしてもよい。冷却排気ガス流94は環境に排出してもよい。   The steam generation unit 78 includes an HRSG 80, a steam turbine 84, and a steam generator 86. The HRSG 80 has three stages 81, 82, and 83 in order to generate the water vapor 20 using the heat from the exhaust gas 76. Steam 20 is combined with the first fuel 18 to form a mixed fuel stream 22. The steam 20 is further used to cause a reforming reaction in the pre-SMR 14 and to generate power via the steam turbine 84 and the steam generator 86. The steam generator unit 78 may further comprise a condenser 88 for condensing the steam turbine outlet stream 90 to form a water stream 92. The water stream 92 may be recycled to the HRSG 80 for steam generation. The cooled exhaust gas stream 94 may be discharged to the environment.

再度、改質装置ユニット12について説明すると、プレ−SMR14は従来の水蒸気改質法で第1燃料を改質するように構成されている。しかし、プレ−SMRは、既存のSMR改質装置よりも低温で燃料を改質する。従って、以下でさらに詳しく説明する通り、NG中のメタンは、合成ガス(水素及びCOを含む)に部分的にしか転化されない。燃料18は適当なガス又は液体を含むものであればよい。説明の便宜上、以下、第1燃料18をNGとして説明する。NGとは、主成分のメタンを、様々な量のエタン、プロパン、ブタンその他のガスと共に含む混合ガスをいう。典型的には、NGCCシステム10へのNG供給量の約5〜約50%をプレ−SMR14に供給できる。具体的には、NG供給物の約10〜約30%、さらに具体的には約20%がプレ−SMR14で転化される。天然ガスの主成分はメタン(CH)であり、これが2段階反応で水蒸気と反応して水素と二酸化炭素とを生成する。図1に示すような技術では、第1の反応はプレ−SMR14で起こり、以下の反応(1)でメタンが水蒸気と反応して水素と一酸化炭素を生成する。 The reformer unit 12 will be described again. The pre-SMR 14 is configured to reform the first fuel by the conventional steam reforming method. However, pre-SMR reforms fuel at a lower temperature than existing SMR reformers. Therefore, as described in more detail below, methane in NG is only partially converted to synthesis gas (including hydrogen and CO). The fuel 18 only needs to contain an appropriate gas or liquid. For convenience of explanation, the first fuel 18 will be described as NG hereinafter. NG refers to a mixed gas containing methane as a main component together with various amounts of ethane, propane, butane and other gases. Typically, about 5 to about 50% of the NG supply to the NGCC system 10 can be supplied to the pre-SMR 14. Specifically, about 10 to about 30%, more specifically about 20% of the NG feed is converted with pre-SMR14. The main component of natural gas is methane (CH 4 ), which reacts with water vapor in a two-stage reaction to produce hydrogen and carbon dioxide. In the technique as shown in FIG. 1, the first reaction occurs in pre-SMR14, and methane reacts with water vapor in the following reaction (1) to generate hydrogen and carbon monoxide.

CH+HO ⇔ CO+3HΔH 298=+251kJmol−1 (1)
水蒸気改質反応(1)は吸熱性である。そのため、水蒸気改質プロセスはエネルギー集約的であり、改質プロセス全体にかなりの熱が必要とされる。上述の通り、プレ−SMR14は、約500℃〜約800℃、具体的には約600℃〜約700℃、さらに具体的には650℃の反応温度で稼動する。第1燃料18中の炭素の約50%未満を回収することが望まれるので、プレ−SMR14ではメタンからの水素及び一酸化炭素への約70%以下の転化効率しか必要とされない。そのため、プレ−SMRは低温で稼動させることができ、稼動コスト及び高価な耐熱合金がが不要であるので資本コストを削減できる。プレ−SMR14は、吸熱反応(1)の熱を高温ガスタービン排気ガス流からSMR触媒へと伝達するための多数の管を備えていてもよい。加熱混合燃料流28は、水蒸気改質用触媒を通して、水素、CO、CO、未転化燃料及び水蒸気の混合物を含む第1リフォーメート流24へと転化される。次いで、ガスタービン排気ガス流の冷却部分77は、大気に排出する準備のために排気筒へ送ることができる。プレ−SMR触媒は、当業者に公知の従来のSMR触媒、例えばニッケル系触媒などでよい。適宜、改質装置ユニット12は、第1燃料18に水蒸気20を混合するために好適な供給原料サチュレータ回路をさらに備えていてもよい。
CH 4 + H 2 O⇔CO + 3H 2 ΔH o 298 = + 251 kJmol −1 (1)
The steam reforming reaction (1) is endothermic. As such, the steam reforming process is energy intensive and requires significant heat throughout the reforming process. As described above, the pre-SMR 14 operates at a reaction temperature of about 500 ° C. to about 800 ° C., specifically about 600 ° C. to about 700 ° C., more specifically 650 ° C. Since it is desired to recover less than about 50% of the carbon in the first fuel 18, the pre-SMR 14 requires less than about 70% conversion efficiency from methane to hydrogen and carbon monoxide. Therefore, the pre-SMR can be operated at a low temperature, and the capital cost can be reduced since the operation cost and the expensive heat-resistant alloy are unnecessary. The pre-SMR 14 may comprise a number of tubes for transferring the heat of the endothermic reaction (1) from the hot gas turbine exhaust gas stream to the SMR catalyst. The heated mixed fuel stream 28 is converted through a steam reforming catalyst into a first reformate stream 24 comprising a mixture of hydrogen, CO, CO 2 , unconverted fuel and steam. The cooling portion 77 of the gas turbine exhaust gas stream can then be sent to the exhaust stack in preparation for venting to the atmosphere. The pre-SMR catalyst may be a conventional SMR catalyst known to those skilled in the art, such as a nickel-based catalyst. Optionally, the reformer unit 12 may further include a feedstock saturator circuit suitable for mixing the first fuel 18 with the water vapor 20.

第1リフォーメート流24を適宜熱交換器16で冷却した後、冷却第1リフォーメート流26は転化反応ユニット30に入る。水蒸気改質プロセスの第2反応がWGS反応器32中で起こり、冷却第1リフォーメート流26の中のCO及び水蒸気は以下の反応(2)でCOと水素に転化される。 After the first reformate stream 24 is appropriately cooled by the heat exchanger 16, the cooled first reformate stream 26 enters the conversion reaction unit 30. The second reaction of the steam reforming process takes place in the WGS reactor 32 and the CO and steam in the cooled first reformate stream 26 are converted to CO 2 and hydrogen in the following reaction (2).

CO+HO ⇔ CO+H ΔH=−41.16kJ/mol (2)
シフト反応(2)は穏やかに発熱し、転化触媒の存在下で起こる。従って、第1リフォーメート流26は、反応の進行に伴って触媒層を横切る温度が上昇する。転化触媒としては、高温転化触媒(HTS)又は低温転化触媒(LTS)又はHTSとLTS触媒との組合せが挙げられる。WGS反応器32における反応温度は200℃〜約600℃である。ただし、低温に維持すると反応(2)が右にずれて、水素とCOの発生量が増し、水蒸気とCOの生成量が減る。したがって、WGS反応器は約300℃〜約400℃の温度域、さらに具体的には約350℃で稼動できる。第1リフォーメート流26のCO及び水素への転化は、第2リフォーメート流34を生じる。さらに、改質装置ユニット12及び転化反応ユニット30は、(図1に示すように)装置の別個の部分でもよいし、プレ−SMR14及びWGS反応器32の両方を含む装置の単一部分でもよい。
CO + H 2 O⇔CO 2 + H 2 ΔH = −41.16 kJ / mol (2)
Shift reaction (2) is mildly exothermic and takes place in the presence of a conversion catalyst. Accordingly, the temperature of the first reformate stream 26 across the catalyst layer increases as the reaction proceeds. Conversion catalysts include high temperature conversion catalyst (HTS), low temperature conversion catalyst (LTS), or a combination of HTS and LTS catalyst. The reaction temperature in the WGS reactor 32 is 200 ° C. to about 600 ° C. However, if maintained at a low temperature, the reaction (2) shifts to the right, the generation amounts of hydrogen and CO 2 increase, and the generation amounts of water vapor and CO decrease. Thus, the WGS reactor can be operated in a temperature range of about 300 ° C. to about 400 ° C., more specifically about 350 ° C. Conversion of the first reformate stream 26 to CO 2 and hydrogen results in a second reformate stream 34. Further, the reformer unit 12 and the conversion reaction unit 30 may be separate parts of the apparatus (as shown in FIG. 1) or a single part of the apparatus that includes both the pre-SMR 14 and the WGS reactor 32.

二酸化炭素除去ユニット40は、アミン吸収塔42及び再生塔44を備えていてもよい。第2リフォーメート流34は、アミンを用いたCOの化学吸収を促進するため熱交換器36で適当な温度に冷却してもよい。この技術は、比較的に低温でCOを吸収でき、リッチソルベントの昇温によって容易に再生できるアルカノールアミン溶媒に基づく。この技術で使用される溶媒としては、例えばトリエタノールアミン、モノエタノールアミン、ジエタノールアミン、ジイソプロパノールアミン、ジグリコールアミン、メチルジエタノールアミンなどが挙げられる。上述の通り、回収COは、第1燃料18中の炭素の約50%未満とし得る。年間CO排出割当量を超える排出量についてのペナルティ税を避けるのに十分なCOが回収される。しかし、完全なCO回収を有する従来技術のシステムに比べて、本発明のシステムでは、資本投下及び運転費用が低減し、エネルギー効率は増す。こうして生成・回収したCO流46は、所望の場所に容易に輸送できる。例えば、COは、貯蔵(隔離)に適した地下構造物或いは原油増進回収法(EOR)のため油田に注入できる場所、或いは製造プロセスに使用される場所に輸送すればよい。 The carbon dioxide removal unit 40 may include an amine absorption tower 42 and a regeneration tower 44. The second reformate stream 34 may be cooled to a suitable temperature by a heat exchanger 36 to promote chemical absorption of CO 2 using amines. This technique is based on alkanolamine solvents that can absorb CO 2 at relatively low temperatures and can be easily regenerated by increasing the temperature of the rich solvent. Examples of the solvent used in this technique include triethanolamine, monoethanolamine, diethanolamine, diisopropanolamine, diglycolamine, and methyldiethanolamine. As described above, the recovered CO 2 may be less than about 50% of the carbon in the first fuel 18. Sufficient CO 2 is recovered to avoid penalties for emissions that exceed the annual CO 2 emission quota. However, compared to prior art systems with complete CO 2 capture, the system of the present invention reduces capital investment and operating costs and increases energy efficiency. The CO 2 stream 46 thus produced and recovered can be easily transported to a desired location. For example, CO 2 may be transported to an underground structure suitable for storage (sequestration) or to a location where it can be injected into an oil field for enhanced oil recovery (EOR) or used in a manufacturing process.

二酸化炭素除去ユニット40からの残存流は、主に水素、CO、未利用燃料及び水を含む第3リフォーメート流48である。この流れは、燃焼のためガスタービンユニット54に送られる。適宜、この流れの一部58をHDSユニット60に送ってもよい。HDSユニット60で、第1燃料18に含まれる硫黄は、HDSユニット60の脱硫カラムの水添脱硫器によって硫化水素に転化される。硫化水素は次いでHDSユニット60の脱硫カラム下流の硫黄吸収器又は吸着ユニットで吸着・除去される。硫黄は、プレ−ストリーム改質触媒を被毒しかねないので、第1燃料18から硫黄を除去するのが有利である。HDSプロセスに必要とされる水素は、独立した水素源の流れを必要とせず、第3リフォーメート流48の一部58を分流することによって、閉ループサイクルで供給される。HDSユニット60は、約200℃〜約400℃、具体的には約250℃〜約350℃の温度で稼動できる。HDSプロセスで用いる触媒は、既存のHDS触媒、例えばSud Chemie社又はHaldor Topsoe社から市販のもの、例えばコバルト及びモリブデンの硫化物、或いはニッケル及びモリブデンでよい。   The remaining stream from the carbon dioxide removal unit 40 is a third reformate stream 48 that mainly contains hydrogen, CO, unused fuel and water. This stream is sent to the gas turbine unit 54 for combustion. A part 58 of this flow may be sent to the HDS unit 60 as appropriate. In the HDS unit 60, sulfur contained in the first fuel 18 is converted into hydrogen sulfide by the hydrodesulfurizer of the desulfurization column of the HDS unit 60. The hydrogen sulfide is then adsorbed and removed by a sulfur absorber or adsorption unit downstream of the HDS unit 60 desulfurization column. Because sulfur can poison the pre-stream reforming catalyst, it is advantageous to remove sulfur from the first fuel 18. The hydrogen required for the HDS process is supplied in a closed loop cycle by diverting a portion 58 of the third reformate stream 48 without requiring a separate hydrogen source stream. The HDS unit 60 can operate at a temperature of about 200 ° C. to about 400 ° C., specifically about 250 ° C. to about 350 ° C. The catalyst used in the HDS process may be an existing HDS catalyst, such as those commercially available from Sud Chemie or Haldor Topsoe, such as cobalt and molybdenum sulfides, or nickel and molybdenum.

第3リフォーメート流48と第2燃料50は、ガスタービンユニット54に入る前に、混合されて水素濃縮燃料流52を形成する。第2燃料は、発電システム10に送られた燃料、すなわちNGの残りを含む。典型的に、NGCCシステム10へのNG供給物の約50〜約95%はガスタービンユニット54の燃料として消費し得る。特にNG供給物の約70〜約90%、さらに具体的に約80%が燃焼器64で消費され、複合サイクルプラントの全COの約10%を回収できる。水素濃縮燃料流52は燃焼器64に噴射されて、圧縮酸化剤72の存在下で燃焼し、高温圧縮燃焼排ガス混合物74を生ずる。水素濃縮燃料は、第2燃料50単独の使用に比べて、燃焼器64内での火炎安定性を拡げ、燃焼はより希薄(リーン)であり、火炎温度を低くできる。この結果、燃焼器64中の低い火炎温度により、燃焼器排気ガスの窒素酸化物排出量は低減する。また、燃焼器は、第2燃料50だけを用いる燃焼器に比べて、さらにターンダウンできる能力をもつ。さらに、天然ガスに水素を添加することによって、発電と同時に低い排出を維持するための燃焼器の動作可能ウインドウが拡大する。高温圧縮混合ガス74は燃焼器64を出て、ガスタービン66を通り、そこで高温圧縮混合ガス74が部分的に冷却及び膨張して機械力を発生する。機械力は発電装置68で電力に変換される。膨張して部分的に冷却された排気ガス76はガスタービン66を出て、水蒸気発生器ユニット78に入る。 The third reformate stream 48 and the second fuel 50 are mixed to form a hydrogen enriched fuel stream 52 before entering the gas turbine unit 54. The second fuel includes the fuel sent to the power generation system 10, that is, the remainder of NG. Typically, about 50 to about 95% of the NG supply to the NGCC system 10 may be consumed as fuel for the gas turbine unit 54. In particular, about 70 to about 90%, more specifically about 80%, of the NG feed is consumed by the combustor 64, and about 10% of the total CO 2 of the combined cycle plant can be recovered. The hydrogen enriched fuel stream 52 is injected into the combustor 64 and combusts in the presence of the compressed oxidant 72 to produce a hot compressed flue gas mixture 74. Compared with the use of the second fuel 50 alone, the hydrogen-enriched fuel expands the flame stability in the combustor 64, and the combustion is leaner, and the flame temperature can be lowered. As a result, the low flame temperature in the combustor 64 reduces the nitrogen oxide emissions of the combustor exhaust gas. Further, the combustor has the ability to be further turned down as compared with the combustor using only the second fuel 50. Furthermore, adding hydrogen to natural gas expands the combustor operable window to maintain low emissions simultaneously with power generation. The hot compressed gas mixture 74 exits the combustor 64 and passes through a gas turbine 66 where the hot compressed gas mixture 74 is partially cooled and expanded to generate mechanical force. The mechanical force is converted into electric power by the power generation device 68. The expanded and partially cooled exhaust gas 76 exits the gas turbine 66 and enters the steam generator unit 78.

水蒸気発生器ユニット78はHRSG80を備えており、排気ガス76から廃熱を回収して水蒸気20を発生させる。HRSG80は排気ガス76を冷却し、水蒸気20を生成するための3つのステージ81、82及び83を有する。水蒸気20の一部は水蒸気タービン84に送られ、そこで水蒸気20が膨張及び冷却して機械力を発生する。この機械力は発電装置86で電力に変換される。膨張して冷却された水蒸気はタービン84を出て、凝縮器88でさらに冷却・凝縮して、HRSG80に導入される水流92を形成する。次いで冷却排気ガス94は、大気中に排出のために排気筒に送られる。上述の通り、水蒸気20の残りは第1燃料18と合流して混合燃料流22を形成し、次いでプレ−SMR14へ送られる。プレ−SMR14に水蒸気20の残りを送ると、好都合なことに、リフォーメーション反応の進行に必要な水蒸気を供給するための追加の水蒸気発生器をシステム10が有している必要がなくなる。   The steam generator unit 78 includes an HRSG 80 and recovers waste heat from the exhaust gas 76 to generate steam 20. The HRSG 80 has three stages 81, 82 and 83 for cooling the exhaust gas 76 and generating the water vapor 20. A portion of the steam 20 is sent to the steam turbine 84 where the steam 20 expands and cools to generate mechanical force. This mechanical force is converted into electric power by the power generator 86. The expanded and cooled water vapor exits the turbine 84 and further cools and condenses in the condenser 88 to form a water stream 92 that is introduced into the HRSG 80. The cooled exhaust gas 94 is then sent to the exhaust stack for discharge into the atmosphere. As described above, the remainder of the water vapor 20 merges with the first fuel 18 to form a mixed fuel stream 22 that is then sent to the pre-SMR 14. Sending the remainder of the water vapor 20 to the pre-SMR 14 advantageously eliminates the need for the system 10 to have an additional water vapor generator to supply the water vapor necessary for the reforming reaction to proceed.

次いで図2を参照すると、第2の例示的な発電システム100を例示する。図1の第1の実施形態と共通の要素についての説明は省略した。   Referring now to FIG. 2, a second exemplary power generation system 100 is illustrated. A description of elements common to the first embodiment in FIG. 1 is omitted.

図2で、HRSG80の第1ステージ81(図1に示す)はプレ−SMR96である。図2の発電システム100は、水蒸気発生器ユニット78(図1)を改質装置ユニット12(図1)と組み合わせて複合ユニット98を形成する。HRSG80の第1ステージ96は、プレ−SMRとして機能するように改造される。HRSG80は、シェルチューブ型熱交換器とし得る。その場合、プレ−SMR触媒は、HRSG80の第1ステージのチューブ側(低温側)に充填できる。排気ガス76は、HRSG80の第1ステージ96のシェル側(高温側)に通せばよい。第1ステージ96は、約600℃〜約900℃の温度域で稼動するように構成される。予熱混合燃料流28は、第1の実施形態で説明した通り、第1ステージ96のチューブ内のプレ−SMR触媒を通過して燃料を改質し、第1リフォーメート流24を生成する。第1ステージ96のシェル側を流れる高温ガスタービン排気ガス76は、上述の通り、吸熱水蒸気改質反応(1)の進行に必要な熱を供給する。HRSG80の残りのステージ82及び83は、水92に排気ガス76中の熱の残りを伝達し、水蒸気20を生成する。適宜、熱を第1リフォーメート流24から混合燃料流22に伝達するための複合ユニット98の部分として、熱交換器16を備えていてもよい。   In FIG. 2, the first stage 81 (shown in FIG. 1) of the HRSG 80 is a pre-SMR 96. The power generation system 100 of FIG. 2 forms a composite unit 98 by combining the steam generator unit 78 (FIG. 1) with the reformer unit 12 (FIG. 1). The first stage 96 of the HRSG 80 is modified to function as a pre-SMR. The HRSG 80 may be a shell tube heat exchanger. In that case, the pre-SMR catalyst can be filled on the tube side (low temperature side) of the first stage of the HRSG 80. The exhaust gas 76 may be passed through the shell side (high temperature side) of the first stage 96 of the HRSG 80. The first stage 96 is configured to operate in a temperature range of about 600 ° C to about 900 ° C. As described in the first embodiment, the preheated mixed fuel stream 28 passes through the pre-SMR catalyst in the tube of the first stage 96 to reform the fuel and generate a first reformate stream 24. As described above, the high-temperature gas turbine exhaust gas 76 flowing on the shell side of the first stage 96 supplies heat necessary for the progress of the endothermic steam reforming reaction (1). The remaining stages 82 and 83 of the HRSG 80 transfer the remainder of the heat in the exhaust gas 76 to the water 92 and produce water vapor 20. Optionally, a heat exchanger 16 may be provided as part of the composite unit 98 for transferring heat from the first reformate stream 24 to the mixed fuel stream 22.

HRSG80の第1ステージ96をプレ−SMRに改造することによって、本発明の部分的CO回収式NGCC発電システムに要する資本費が減る。別個のプレ−SMRの建造コストが節約され、かかるユニットの設置に必要な空間も同様に節約される。さらに、大半の発電プラントがHRSGを含むので、これらのユニットがプレ−SMRステージを備えるように改造することができ、既存のNGCCプラントで本発明の部分的CO回収システムの低コストの利点を得るのに、既存の発電プラントの改造に必要な費用及び空間を削減できる。 By modifying the first stage 96 of the HRSG 80 to pre-SMR, the capital cost required for the partial CO 2 capture NGCC power generation system of the present invention is reduced. The cost of building a separate pre-SMR is saved, as well as the space required to install such a unit. In addition, since most power plants include HRSG, these units can be retrofitted to include a pre-SMR stage, providing the low cost benefits of the partial CO 2 capture system of the present invention in an existing NGCC plant. In addition, the cost and space required for retrofitting existing power plants can be reduced.

上述の通り、本発明のシステムで用いる燃料は好ましくはNGを含む。ただし、本システムでは、例えばバイオガス(主にメタンを含む)、LPガス(LPG)、ナフサ、ブタン、プロパン、ディーゼル、灯油、エタノール、メタノール、航空燃料、石炭誘導燃料、バイオ燃料、含酸素炭化水素原料及びこれらの混合物などのいかなる好適なガス又は液体も燃料として使用できるように構成してもよい。第1燃料18及び第2燃料50のいずれも、各々本明細書に記載したこれらの燃料の具体例から選択できる。一実施形態では、第1燃料18及び第2燃料50は同じである。本発明のシステムで用いる酸化剤70は、酸素を含むガス、例えば空気、酸素リッチ空気、低酸素空気、空気分離ユニット(ASU)からの酸素などを含むことができる。   As mentioned above, the fuel used in the system of the present invention preferably contains NG. However, in this system, for example, biogas (mainly including methane), LP gas (LPG), naphtha, butane, propane, diesel, kerosene, ethanol, methanol, aviation fuel, coal-derived fuel, biofuel, oxygenated carbonization Any suitable gas or liquid such as a hydrogen feed and mixtures thereof may be configured to be used as fuel. Each of the first fuel 18 and the second fuel 50 can be selected from the specific examples of these fuels described herein. In one embodiment, the first fuel 18 and the second fuel 50 are the same. The oxidant 70 used in the system of the present invention can include a gas containing oxygen, such as air, oxygen rich air, low oxygen air, oxygen from an air separation unit (ASU), and the like.

本明細書に記載したNGCC発電システムは、多くの利点を有する。部分的メタン転化用に構築された低温・低コストプレ−SMRユニットをシステムに組み込むことによって、メタンの完全転化用に構築された完全なSMR改質装置を用いるシステムに比べて、燃料コスト、資本コスト及びエネルギーコストを削減できる。同様に、資本及びエネルギーコストは、燃料流の全炭素含有量を回収するのとは対照的に、COの一部(炭素税を避けるのに必要な回収量)だけを回収することによって削減される。また、好適に配置された熱交換器の使用及びシステム全体のリサイクルループは全体的効率を向上させる。さらに、本発明の部分的CO回収式NGCCシステムは、既存のNGCC発電プラントを改造して組み込むことができ、排出量を低減して排出ペナルティ又は炭素税を回避することができる。本発明のシステムの低温での稼動及び小さいサイズは、これらが、大きな資本投下なしで、最小不動産しか有していない既存のプラントに組み込むことができることを意味している。 The NGCC power generation system described herein has many advantages. By incorporating a low temperature, low cost pre-SMR unit built for partial methane conversion into the system, fuel costs and capital costs compared to a system using a complete SMR reformer built for full methane conversion And energy costs can be reduced. Similarly, capital and energy costs are reduced by recovering only a portion of CO 2 (recovery necessary to avoid carbon tax) as opposed to recovering the total carbon content of the fuel stream. Is done. Also, the use of suitably arranged heat exchangers and the overall system recycle loop improves overall efficiency. Furthermore, the partial CO 2 capture NGCC system of the present invention can be retrofitted into an existing NGCC power plant to reduce emissions and avoid emission penalties or carbon taxes. The low temperature operation and small size of the system of the present invention means that they can be incorporated into existing plants that have minimal real estate without significant capital investment.

本発明を例示的な実施形態に関して説明してきたが、本発明の範囲から逸脱することなしに様々な変更が多分なされるであろうし、均等物でこの要素を置換し得ることは、当業者によって理解されるであろう。さらに、多くの改変が、本発明の必須の範囲を逸脱することなく、発明の教示に特定の状況又は材料を適応させるように行うことができる。従って、本発明は、本発明を実施するために考えられる最良の形態として本発明の特定の実施形態に限定されず、付属する特許請求の範囲に入るすべての実施形態を含むであろうということが意図されている。   Although the present invention has been described in terms of exemplary embodiments, it will be appreciated by those skilled in the art that various changes may be made without departing from the scope of the present invention, and equivalent elements may be substituted. Will be understood. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope of the invention. Accordingly, the invention is not limited to the specific embodiments of the invention as the best mode contemplated for carrying out the invention, but will include all embodiments that fall within the scope of the appended claims. Is intended.

例示的な部分的CO回収式複合サイクル発電システムの概略図。1 is a schematic diagram of an exemplary partial CO 2 capture combined cycle power generation system. FIG. 別の例示的な部分的CO回収式複合サイクル発電システムの概略図。FIG. 3 is a schematic diagram of another exemplary partial CO 2 capture combined cycle power generation system.

符号の説明Explanation of symbols

10 NGCC発電システム
12 改質装置ユニット
14 プレ−水蒸気−メタン改質装置
16 熱交換器
18 第1燃料
20 水蒸気
22 混合燃料流
24 第1リフォーメート流
26 冷却第1リフォーメート流
28 加熱混合燃料流
30 転化反応ユニット
32 水−ガス−転化反応器
34 第2リフォーメート流
36 熱交換器
38 冷却第2リフォーメート流
40 二酸化炭素除去ユニット
42 アミン吸収塔
44 再生塔
48 第3リフォーメート流
50 第2燃料
52 水素濃縮燃料流
54 ガスタービンユニット
58 部分
60 水素化脱硫ユニット
62 圧縮機
64 燃焼器
66 ガスタービン
68 発電装置
70 酸化剤
72 圧縮酸化剤
74 排気ガス混合物
76 ガスタービン排気ガス流
77 部分
78 水蒸気発生器ユニット
80 熱回収水蒸気発生器
81 第1ステージ
82 第2ステージ
83 第3ステージ
84 水蒸気タービン
86 水蒸気発生器
88 凝縮器
90 水蒸気タービン排出流
92 水流
94 冷却排気ガス流
96 プレ−水蒸気−メタン−改質装置
98 複合ユニット
100 複合サイクル発電システム
DESCRIPTION OF SYMBOLS 10 NGCC power generation system 12 Reformer unit 14 Pre-steam-methane reformer 16 Heat exchanger 18 First fuel 20 Steam 22 Mixed fuel stream 24 First reformate stream 26 Cooling first reformate stream 28 Heated mixed fuel stream 30 Conversion reaction unit 32 Water-gas-conversion reactor 34 Second reformate stream 36 Heat exchanger 38 Cooled second reformate stream 40 Carbon dioxide removal unit 42 Amine absorption tower 44 Regeneration tower 48 Third reformate stream 50 Second Fuel 52 Hydrogen-enriched fuel stream 54 Gas turbine unit 58 Part 60 Hydrodesulfurization unit 62 Compressor 64 Combustor 66 Gas turbine 68 Power generator 70 Oxidant 72 Compressed oxidant 74 Exhaust gas mixture 76 Gas turbine exhaust gas stream 77 Part 78 Steam Generator unit 80 Heat recovery Steam generator 81 First stage 82 Second stage 83 Third stage 84 Steam turbine 86 Steam generator 88 Condenser 90 Steam turbine exhaust stream 92 Water stream 94 Cooling exhaust gas stream 96 Pre-steam-methane-reformer 98 Combined unit 100 Combined cycle power generation system

Claims (10)

複合サイクルシステム(10,100)であって、
約800℃未満の温度で稼動して、第1燃料(18)と水蒸気(20)とを含む混合燃料流(22)を改質して第1リフォーメート流(24)を生成するように構成されたプレ−水蒸気−メタン−改質装置(14,96)を備える改質装置ユニット(12)、
第1リフォーメート流中の一酸化炭素を二酸化炭素に転化させて第2リフォーメート流(34)を生成するように構成された水−ガス−転化反応器(32)を備える転化反応ユニット(30)、
第2リフォーメート流から二酸化炭素を除去して二酸化炭素流(46)と第3リフォーメート流(48)とを生成するように構成された二酸化炭素除去ユニット(40)であって、第1燃料中に含まれる炭素の約50%未満を二酸化炭素として回収する二酸化炭素除去ユニット(40)、
第3リフォーメートと第2燃料(50)との混合物を受け入れて電力及び排気ガス流(74)を発生するように構成されたガスタービンユニット(54)であって、排気ガス流が混合燃料流を改質するための熱を供給するガスタービンユニット(54)、及び
排気ガス流を受け入れるように構成された水蒸気発生器ユニット(78)であって、排気ガス流の熱を水流(92)に伝達して冷却排気ガス流(94)及び水蒸気タービンのための水蒸気(84)及び混合燃料流を生成する水蒸気発生器ユニット(78)
を備える複合サイクルシステム(10,100)。
A combined cycle system (10,100),
Operated at a temperature less than about 800 ° C. and configured to reform a mixed fuel stream (22) comprising a first fuel (18) and water vapor (20) to produce a first reformate stream (24). Reformer unit (12) comprising an improved pre-steam-methane-reformer (14, 96),
A conversion reaction unit (30) comprising a water-gas conversion reactor (32) configured to convert carbon monoxide in the first reformate stream to carbon dioxide to produce a second reformate stream (34). ),
A carbon dioxide removal unit (40) configured to remove carbon dioxide from a second reformate stream to produce a carbon dioxide stream (46) and a third reformate stream (48), the first fuel A carbon dioxide removal unit (40) for recovering less than about 50% of the carbon contained therein as carbon dioxide,
A gas turbine unit (54) configured to receive a mixture of a third reformate and a second fuel (50) to generate electric power and an exhaust gas stream (74), wherein the exhaust gas stream is a mixed fuel stream. A gas turbine unit (54) for supplying heat for reforming the steam, and a steam generator unit (78) configured to receive an exhaust gas stream, wherein the heat of the exhaust gas stream is converted to a water stream (92) A steam generator unit (78) that communicates to produce a cooled exhaust gas stream (94) and a steam (84) and mixed fuel stream for the steam turbine
A combined cycle system (10,100) comprising:
水蒸気発生器ユニット(78)が、2以上のステージ(81,82)を含む熱回収水蒸気発生器(80)を備えていて、1つのステージ(81)がプレ−水蒸気−メタン−改質装置(96)を備えており、該プレ−水蒸気−メタン−改質装置で、排気ガス流からの熱を利用して混合燃料流を改質する、請求項1記載の複合サイクルシステム。 The steam generator unit (78) includes a heat recovery steam generator (80) including two or more stages (81, 82), and one stage (81) is a pre-steam-methane-reformer ( 96), wherein the pre-steam-methane-reformer utilizes the heat from the exhaust gas stream to reform the mixed fuel stream. 改質装置ユニットが、第1リフォーメート流及び混合燃料流を受け入れるように構成された熱交換器(16)であって、第1リフォーメート流からの熱を混合流に伝達して冷却第1リフォーメート流(26)と加熱混合燃料流(28)とを生成し、加熱混合燃料流をプレ−水蒸気−メタン−改質装置に送る熱交換器(16)をさらに備える、請求項1記載の複合サイクルシステム。 A reformer unit is a heat exchanger (16) configured to receive a first reformate stream and a mixed fuel stream, wherein the reformer unit transfers heat from the first reformate stream to the mixed stream for cooling first. The heat exchanger (16) of claim 1, further comprising a heat exchanger (16) for generating a reformate stream (26) and a heated mixed fuel stream (28) and sending the heated mixed fuel stream to a pre-steam-methane-reformer. Combined cycle system. 転化反応ユニット(30)が、第2リフォーメート流及び第1燃料を受け入れるように構成された熱交換器(36)であって、第2リフォーメート流からの熱を第1燃料に伝達して冷却第2リフォーメート流(38)と加熱第1燃料とを生成する熱交換器(36)をさらに備える、請求項1記載の複合サイクルシステム。 A conversion reaction unit (30) is a heat exchanger (36) configured to receive the second reformate stream and the first fuel, transferring heat from the second reformate stream to the first fuel. The combined cycle system of any preceding claim, further comprising a heat exchanger (36) that produces a cooled second reformate stream (38) and a heated first fuel. 当該複合サイクルシステムが、第1燃料(18)を受け入れるように構成された水素化脱硫ユニット(60)をさらに備えており、第3リフォーメート流(48)の一部を第1燃料(18)と合流させて水素化脱硫ユニット(60)に送る、請求項4記載の複合サイクルシステム。 The combined cycle system further comprises a hydrodesulfurization unit (60) configured to receive the first fuel (18), wherein a portion of the third reformate stream (48) is part of the first fuel (18). The combined cycle system according to claim 4, wherein the combined cycle system is fed to the hydrodesulfurization unit (60). 改質ユニット(12)が約70%以下のメタン転化率を有する、請求項1記載の複合サイクルシステム。 The combined cycle system of claim 1, wherein the reforming unit (12) has a methane conversion of about 70% or less. 部分的に二酸化炭素を回収して発電する方法であって、
プレ−水蒸気−メタン−改質装置(14,96)で、約800℃未満の温度で、第1燃料(18)と水蒸気(20)とを含む混合燃料流(22)を改質して水素と一酸化炭素と水蒸気とを含む第1リフォーメート流(24)を生成させ、
水−ガス転化反応器(32)で、水蒸気及び第1リフォーメート流中の一酸化炭素を、二酸化炭素と水素とを含む第2リフォーメート流(34)に転化させ、
二酸化炭素除去ユニット(40)で、第2リフォーメート流から二酸化炭素を除去して二酸化炭素流(46)と第3リフォーメート流(48)とを生成させ、第1燃料中に含まれる炭素の約50%未満を二酸化炭素除去ユニットで二酸化炭素として回収し、
ガスタービンユニット(54)で、第3リフォーメート流と第2燃料流(50)との混合物を燃焼させて電力を発生させ、排気ガス流(76)を生成させ、
熱回収水蒸気発生器(80)で、排気ガス流中の熱を利用して水蒸気を発生させ、水蒸気で電力を発生させるとともに第1燃料(18)との混合燃料流(22)を生成させる
ことを含んでなる方法。
A method for generating electricity by partially recovering carbon dioxide,
A pre-steam-methane-reformer (14,96) reforms the mixed fuel stream (22) containing the first fuel (18) and steam (20) at a temperature below about 800 ° C. to produce hydrogen. Producing a first reformate stream (24) comprising carbon monoxide and water vapor;
In a water-gas conversion reactor (32), steam and carbon monoxide in the first reformate stream are converted to a second reformate stream (34) comprising carbon dioxide and hydrogen;
In the carbon dioxide removal unit (40), carbon dioxide is removed from the second reformate stream to generate a carbon dioxide stream (46) and a third reformate stream (48), and the carbon contained in the first fuel Less than about 50% is recovered as carbon dioxide in the carbon dioxide removal unit,
In the gas turbine unit (54), a mixture of the third reformate stream and the second fuel stream (50) is burned to generate electric power, and an exhaust gas stream (76) is generated.
A heat recovery steam generator (80) generates steam using heat in the exhaust gas stream to generate electric power with the steam and generate a mixed fuel stream (22) with the first fuel (18). Comprising a method.
改質が、熱回収水蒸気発生器(80)でも行われ、熱回収水蒸気発生器が2以上のステージ(81,82)を含んでいて、1つのステージ(81)がプレ−水蒸気−メタン−改質装置(96)を備えており、該プレ−水蒸気−メタン−改質装置で、排気ガス流からの熱を利用して混合燃料流(22)を改質して第1リフォーメート流(24)を生成させる、請求項7記載の方法。 The reforming is also performed in the heat recovery steam generator (80), the heat recovery steam generator includes two or more stages (81, 82), and one stage (81) is pre-steam-methane-modified. And the first reformate stream (24) using the pre-steam-methane-reformer to reform the mixed fuel stream (22) using heat from the exhaust gas stream. ) Is generated. 熱交換器で、熱を第1リフォーメート流から混合燃料流に伝達して、冷却第1リフォーメート流と前加熱混合燃料流とを生成し、加熱混合燃料流をプレ−水蒸気−メタン−改質装置に送る、請求項7記載の方法。 In the heat exchanger, heat is transferred from the first reformate stream to the mixed fuel stream to produce a cooled first reformate stream and a preheated mixed fuel stream, and the heated mixed fuel stream is pre-steam-methane-modified. The method of claim 7, wherein the method is sent to a quality device. 熱交換器で、熱を第2リフォーメート流から第1燃料に伝達して、冷却第2リフォーメート流と加熱第1燃料とを生成する、請求項7記載の方法。 8. The method of claim 7, wherein heat is transferred from the second reformate stream to the first fuel in a heat exchanger to produce a cooled second reformate stream and a heated first fuel.
JP2007333398A 2007-01-03 2007-12-26 Reforming system for partial co2 recovery type cycle plant Withdrawn JP2008163944A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/648,925 US20080155984A1 (en) 2007-01-03 2007-01-03 Reforming system for combined cycle plant with partial CO2 capture

Publications (1)

Publication Number Publication Date
JP2008163944A true JP2008163944A (en) 2008-07-17

Family

ID=39582015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007333398A Withdrawn JP2008163944A (en) 2007-01-03 2007-12-26 Reforming system for partial co2 recovery type cycle plant

Country Status (4)

Country Link
US (1) US20080155984A1 (en)
JP (1) JP2008163944A (en)
KR (1) KR20080064085A (en)
CN (1) CN101274746A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011207755A (en) * 2010-03-30 2011-10-20 General Electric Co <Ge> Fluid cooled reformer and method for cooling reformer
US8621841B2 (en) 2009-11-10 2014-01-07 Hitachi, Ltd. Gasification power generation system provided with carbon dioxide separation and recovery device
JP2014125923A (en) * 2012-12-26 2014-07-07 Hitachi Ltd Engine combined system
JP2020125702A (en) * 2019-02-04 2020-08-20 株式会社日立製作所 Cogeneration system

Families Citing this family (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7024800B2 (en) * 2004-07-19 2006-04-11 Earthrenew, Inc. Process and system for drying and heat treating materials
US7685737B2 (en) 2004-07-19 2010-03-30 Earthrenew, Inc. Process and system for drying and heat treating materials
US7610692B2 (en) 2006-01-18 2009-11-03 Earthrenew, Inc. Systems for prevention of HAP emissions and for efficient drying/dehydration processes
WO2009121008A2 (en) 2008-03-28 2009-10-01 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
CA2715186C (en) 2008-03-28 2016-09-06 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
CN102177326B (en) 2008-10-14 2014-05-07 埃克森美孚上游研究公司 Methods and systems for controlling the products of combustion
US20100107592A1 (en) * 2008-11-04 2010-05-06 General Electric Company System and method for reducing corrosion in a gas turbine system
ES2554610T3 (en) * 2009-04-17 2015-12-22 Gtl Petrol Llc Power generation from natural gas with carbon dioxide capture
US8182771B2 (en) * 2009-04-22 2012-05-22 General Electric Company Method and apparatus for substitute natural gas generation
US20100284892A1 (en) * 2009-05-06 2010-11-11 American Air Liquide, Inc. Process For The Purification Of A Carbon Dioxide Stream With Heating Value And Use Of This Process In Hydrogen Producing Processes
CN102459850B (en) 2009-06-05 2015-05-20 埃克森美孚上游研究公司 Combustor systems and methods for using same
CA2769955C (en) * 2009-09-01 2017-08-15 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
DE102009043499A1 (en) * 2009-09-30 2011-03-31 Uhde Gmbh Method of operating an IGCC power plant process with integrated CO2 separation
EA023673B1 (en) 2009-11-12 2016-06-30 Эксонмобил Апстрим Рисерч Компани Low emission power generation and hydrocarbon recovery system and method
US8850826B2 (en) * 2009-11-20 2014-10-07 Egt Enterprises, Inc. Carbon capture with power generation
GB0922410D0 (en) 2009-12-22 2010-02-03 Johnson Matthey Plc Conversion of hydrocarbons to carbon dioxide and electrical power
GB0922411D0 (en) * 2009-12-22 2010-02-03 Johnson Matthey Plc Conversion of hydrocarbons to carbon dioxide and electrical power
MY160833A (en) 2010-07-02 2017-03-31 Exxonmobil Upstream Res Co Stoichiometric combustion of enriched air with exhaust gas recirculation
AU2011271633B2 (en) 2010-07-02 2015-06-11 Exxonmobil Upstream Research Company Low emission triple-cycle power generation systems and methods
TWI593878B (en) 2010-07-02 2017-08-01 艾克頌美孚上游研究公司 Systems and methods for controlling combustion of a fuel
CA2801499C (en) 2010-07-02 2017-01-03 Exxonmobil Upstream Research Company Low emission power generation systems and methods
MX341981B (en) 2010-07-02 2016-09-08 Exxonmobil Upstream Res Company * Stoichiometric combustion with exhaust gas recirculation and direct contact cooler.
US9399950B2 (en) 2010-08-06 2016-07-26 Exxonmobil Upstream Research Company Systems and methods for exhaust gas extraction
CN105736150B (en) 2010-08-06 2018-03-06 埃克森美孚上游研究公司 Optimize the system and method for stoichiometric(al) combustion
US9062690B2 (en) 2010-11-30 2015-06-23 General Electric Company Carbon dioxide compression systems
TWI593872B (en) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 Integrated system and methods of generating power
TWI564474B (en) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 Integrated systems for controlling stoichiometric combustion in turbine systems and methods of generating power using the same
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
US20130036748A1 (en) * 2011-08-08 2013-02-14 Michael J. Lewis System and method for producing carbon dioxide for use in hydrocarbon recovery
CN104428490B (en) 2011-12-20 2018-06-05 埃克森美孚上游研究公司 The coal bed methane production of raising
EP2626532A1 (en) * 2012-02-07 2013-08-14 Siemens Aktiengesellschaft Method for operating a gas turbine
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
US9470145B2 (en) * 2012-10-15 2016-10-18 General Electric Company System and method for heating fuel in a combined cycle gas turbine
US9435258B2 (en) 2012-10-15 2016-09-06 General Electric Company System and method for heating combustor fuel
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US10161312B2 (en) 2012-11-02 2018-12-25 General Electric Company System and method for diffusion combustion with fuel-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
TW201502356A (en) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co Reducing oxygen in a gas turbine exhaust
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
WO2014133406A1 (en) 2013-02-28 2014-09-04 General Electric Company System and method for a turbine combustor
AU2014226413B2 (en) 2013-03-08 2016-04-28 Exxonmobil Upstream Research Company Power generation and methane recovery from methane hydrates
TW201500635A (en) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co Processing exhaust for use in enhanced oil recovery
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
TWI654368B (en) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 System, method and media for controlling exhaust gas flow in an exhaust gas recirculation gas turbine system
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
DE102013212871A1 (en) * 2013-07-02 2015-01-08 Siemens Aktiengesellschaft Thermal engineering of power plant, steam reformer and thermal water treatment
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
WO2015051150A1 (en) 2013-10-02 2015-04-09 Pilot Energy Solutions, Llc Catalytic reactor for converting contaminants in a displacement fluid and generating energy
RU2561755C2 (en) * 2013-11-07 2015-09-10 Открытое акционерное общество "Газпром" Operating method and system of gas-turbine plant
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
CA2937948C (en) 2014-01-31 2019-10-01 Fuelcell Energy, Inc. Reformer-electrolyzer-purifier (rep) assembly for hydrogen production, systems incorporation same and method of producing hydrogen
EP3586941B1 (en) * 2014-04-16 2021-08-25 Saudi Arabian Oil Company Improved sulfur recovery process and apparatus for treating low to medium mole percent hydrogen sulfide gas feeds with btex in a claus unit
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
CN104609368B (en) * 2015-01-30 2016-06-22 山东益丰生化环保股份有限公司 A kind of petroleum refinery is resolved the method that exhaust gas conversion becomes process for making hydrogen unstripped gas
CN104609369B (en) * 2015-01-30 2015-11-18 山东益丰生化环保股份有限公司 A kind ofly petroleum refinery is resolved the method that exhaust gas conversion becomes process for making hydrogen unstripped gas
US9937484B2 (en) 2015-01-30 2018-04-10 Battelle Memorial Institute Reactor, CO2 sorbent system, and process of making H2 with simultaneous CO2 sorption
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
CN108604695B (en) 2015-11-16 2021-09-17 燃料电池能有限公司 Energy storage with engine REP
WO2017087405A1 (en) 2015-11-16 2017-05-26 Fuelcell Energy, Inc. System for capturing co2 from a fuel cell
KR102143861B1 (en) 2015-11-17 2020-08-12 퓨얼 셀 에너지, 인크 Fuel cell system with improved CO2 capture
CA3107519C (en) 2015-11-17 2023-01-31 Fuelcell Energy Inc. Hydrogen and carbon monoxide generation using an rep with partial oxidation
WO2017184703A1 (en) 2016-04-21 2017-10-26 Fuelcell Energy, Inc. Fluidized catalytic cracking unit system with integrated reformer-electrolyzer-purifier
CA3022543A1 (en) * 2016-04-29 2017-11-02 Fuelcell Energy, Inc. Carbon dioxide capturing steam methane reformer
US10897055B2 (en) 2017-11-16 2021-01-19 Fuelcell Energy, Inc. Load following power generation and power storage using REP and PEM technology
CN108979770B (en) * 2018-08-27 2023-07-11 中国华能集团有限公司 Integrated coal gasification combined cycle power generation system and method using supercritical carbon dioxide as working medium
US11495806B2 (en) 2019-02-04 2022-11-08 Fuelcell Energy, Inc. Ultra high efficiency fuel cell power generation system
GB2581385B (en) * 2019-02-15 2021-08-04 Amtech As Gas turbine fuel and gas turbine system
NO345216B1 (en) * 2019-08-28 2020-11-09 Zeg Power As Hydrogen-fuelled gas turbine power system and method for its operation
US11161076B1 (en) * 2020-08-26 2021-11-02 Next Carbon Solutions, Llc Devices, systems, facilities, and processes of liquid natural gas processing for power generation
EP4244182A1 (en) 2020-11-13 2023-09-20 Technip Energies France A process for producing a hydrogen-comprising product gas from a hydrocarbon
US20220290862A1 (en) * 2021-03-11 2022-09-15 General Electric Company Fuel mixer
US11679977B2 (en) * 2021-09-22 2023-06-20 Saudi Arabian Oil Company Integration of power generation with methane reforming
US11719441B2 (en) 2022-01-04 2023-08-08 General Electric Company Systems and methods for providing output products to a combustion chamber of a gas turbine engine
US11933216B2 (en) 2022-01-04 2024-03-19 General Electric Company Systems and methods for providing output products to a combustion chamber of a gas turbine engine
US11794912B2 (en) 2022-01-04 2023-10-24 General Electric Company Systems and methods for reducing emissions with a fuel cell
US11970282B2 (en) 2022-01-05 2024-04-30 General Electric Company Aircraft thrust management with a fuel cell
US11804607B2 (en) 2022-01-21 2023-10-31 General Electric Company Cooling of a fuel cell assembly
KR102538689B1 (en) * 2022-02-15 2023-05-30 두산에너빌리티 주식회사 Combined power plant and operating method of the same
US11967743B2 (en) 2022-02-21 2024-04-23 General Electric Company Modular fuel cell assembly
US11817700B1 (en) 2022-07-20 2023-11-14 General Electric Company Decentralized electrical power allocation system
US11859820B1 (en) 2022-11-10 2024-01-02 General Electric Company Gas turbine combustion section having an integrated fuel cell assembly
US11923586B1 (en) 2022-11-10 2024-03-05 General Electric Company Gas turbine combustion section having an integrated fuel cell assembly

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5496859A (en) * 1995-01-28 1996-03-05 Texaco Inc. Gasification process combined with steam methane reforming to produce syngas suitable for methanol production
US6223519B1 (en) * 1999-02-11 2001-05-01 Bp Amoco Corporation Method of generating power using an advanced thermal recuperation cycle
US20030039601A1 (en) * 2001-08-10 2003-02-27 Halvorson Thomas Gilbert Oxygen ion transport membrane apparatus and process for use in syngas production
DE10253930A1 (en) * 2002-11-19 2004-06-09 Umicore Ag & Co.Kg Process for producing a hydrogen-containing fuel gas for fuel cells and device therefor
US7707837B2 (en) * 2004-01-09 2010-05-04 Hitachi, Ltd. Steam reforming system
FR2879213B1 (en) * 2004-12-15 2007-11-09 Inst Francais Du Petrole CONNECTION OF HYDROCONVERSION AND STEAM REFORMING PROCESSES TO OPTIMIZE HYDROGEN PRODUCTION ON PRODUCTION FIELDS
US7569085B2 (en) * 2004-12-27 2009-08-04 General Electric Company System and method for hydrogen production
US7634915B2 (en) * 2005-12-13 2009-12-22 General Electric Company Systems and methods for power generation and hydrogen production with carbon dioxide isolation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8621841B2 (en) 2009-11-10 2014-01-07 Hitachi, Ltd. Gasification power generation system provided with carbon dioxide separation and recovery device
JP2011207755A (en) * 2010-03-30 2011-10-20 General Electric Co <Ge> Fluid cooled reformer and method for cooling reformer
JP2014125923A (en) * 2012-12-26 2014-07-07 Hitachi Ltd Engine combined system
JP2020125702A (en) * 2019-02-04 2020-08-20 株式会社日立製作所 Cogeneration system
JP7033094B2 (en) 2019-02-04 2022-03-09 株式会社日立製作所 Cogeneration system
US11506115B2 (en) 2019-02-04 2022-11-22 Hitachi, Ltd. Cogeneration system

Also Published As

Publication number Publication date
KR20080064085A (en) 2008-07-08
US20080155984A1 (en) 2008-07-03
CN101274746A (en) 2008-10-01

Similar Documents

Publication Publication Date Title
JP2008163944A (en) Reforming system for partial co2 recovery type cycle plant
US7634915B2 (en) Systems and methods for power generation and hydrogen production with carbon dioxide isolation
Jansen et al. Pre-combustion CO2 capture
CA2718803C (en) Low emission power generation and hydrocarbon recovery systems and methods
AU2010334599B2 (en) Conversion of hydrocarbons to carbon dioxide and electrical power
US7802434B2 (en) Systems and processes for reducing NOx emissions
US7266940B2 (en) Systems and methods for power generation with carbon dioxide isolation
CN107021454B (en) Method for producing hydrogen
EP1582502A1 (en) System and method for co-production of hydrogen and electrical energy
JP2007254270A (en) Method of treating gaseous mixture comprising hydrogen and carbon dioxide
JP2009085210A (en) Polygeneration system
WO2011022167A1 (en) Apparatus, systems, and processes for producing syngas and products therefrom
Eide et al. Precombustion decarbonisation processes
JP2007302553A (en) Method for simultaneous production of hydrogen rich gas and electric power by steam reforming of hydrocarbon fraction through heat supply by on-site hydrogen combustion
JP2019512062A (en) System and method for power production including methane production
Andersen et al. Gas turbine combined cycle with CO2-capture using auto-thermal reforming of natural gas
US20070130831A1 (en) System and method for co-production of hydrogen and electrical energy
US20100199682A1 (en) Process for the production of hydrogen with total recovery of co2 and reduction of unconverted methane
JP2012131873A (en) Co shift conversion system and method, and coal gasification power plant
Wei et al. Integration of H2/syngas production technologies with future energy systems
EP4367058A1 (en) Process for producing hydrogen product having reduced carbon intensity
Varatharajan et al. systems and processes for reducing NOx emissions
Broutin Pre-combustion CO2 capture
Broutin 5.1 PRINCIPLES AND STAKES
Martínez Berges et al. Process design of a hydrogen production plant from natural gas with CO2 capture based on a novel Ca/Cu chemical loop

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101221

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101221

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20120306

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120403