JP2008163931A - Scroll type external combustion engine - Google Patents

Scroll type external combustion engine Download PDF

Info

Publication number
JP2008163931A
JP2008163931A JP2007022284A JP2007022284A JP2008163931A JP 2008163931 A JP2008163931 A JP 2008163931A JP 2007022284 A JP2007022284 A JP 2007022284A JP 2007022284 A JP2007022284 A JP 2007022284A JP 2008163931 A JP2008163931 A JP 2008163931A
Authority
JP
Japan
Prior art keywords
scroll
working fluid
external combustion
expansion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007022284A
Other languages
Japanese (ja)
Inventor
Fusao Terada
房夫 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TERATEKKU KK
Terra Tec Co Ltd
Original Assignee
TERATEKKU KK
Terra Tec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TERATEKKU KK, Terra Tec Co Ltd filed Critical TERATEKKU KK
Priority to JP2007022284A priority Critical patent/JP2008163931A/en
Publication of JP2008163931A publication Critical patent/JP2008163931A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To put into practical use a Stirling type external combustion engine of a rotational circulating flow mechanism system which operates at a high speed and is easily reduced in size. <P>SOLUTION: Two kinds of mechanisms, a scroll type compressor having a characteristic that is easily structurally adapted to a rotational mechanism, and an expansion machine which is made to reversely act with respect to the scroll type compressor with the compressor as a base are appropriately combined and coaxially coupled or coupled to different shafts, a thermal operating fluid is circulated in one direction, and a continuous, substantially Stirling cycle using a cooler, a heater, and an intermediate regenerative heat exchanger provided to each of the two mechanisms is established. Therefore, structures and configurations of each configuring element and a control method are adjusted and obtained, so that mutual movements in both mechanisms with compression and expansion at an equal temperature and an equal volume which are basics of a cycle are generated in the thermal operation fluid. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はスターリング機関を代表とする外燃機関の特長である高効率、燃料の多様性、静粛性および排気の清浄性等を簡略な構造で実用化し、従来の内燃機関等既存の機関で得られなかった利便性、省エネルギー性や環境調和性等を必要とするエネルギー機器応用分野全般に活用できる。同時に逆サイクルとしてヘリウム、水素や窒素などの自然作動媒体を用いれば環境性のすぐれた冷凍機分野にも転用できる。The present invention puts high efficiency, fuel diversity, quietness, exhaust cleanliness, etc., which are features of an external combustion engine typified by a Stirling engine, into practical use with a simple structure, and can be obtained with existing engines such as conventional internal combustion engines. It can be used in a wide range of energy equipment application fields that require convenience, energy saving and environmental harmony. At the same time, if a natural working medium such as helium, hydrogen or nitrogen is used as a reverse cycle, it can be diverted to the refrigerator field with excellent environmental performance.

外燃機関の代表であるスターリング機関は従来主流の内燃機関と異なり、上述のような優れた特性からその実用化が望まれてきた。近年特に自然エネルギーである太陽熱や、各種の廃熱等の中低温熱源の活用やカスケード利用等の複合化には最有力手段と期待されている。しかし外燃機関であるため外部との熱の授受や内部の熱交換の必要性、高圧作動流体使用などから機構全体が複雑でかつ重くなる傾向にあり耐久性や応答性にも改良の余地が多くかつコスト的にも高くつきやすく、競争力に欠けていた。この改善の策の一つとして従来の主流であったピストン型往復動流式でなく回転型循環動流式が検討されてきた。例えばヴァンケル型機構の使用であるが駆動部はクランク機構から回転機構に簡略化され機械損失の低減ははかられたが、流体作動機構の構造が複雑で特に高温部での摺動および等温での膨張や圧縮が困難なため実用化されていない。Unlike conventional mainstream internal combustion engines, Stirling engines, which are representative of external combustion engines, have been desired to be put to practical use because of the excellent characteristics described above. In recent years, it is expected to be the most powerful means for combining solar heat, which is a natural energy, and medium / low temperature heat sources such as various types of waste heat and cascade use. However, because it is an external combustion engine, the overall mechanism tends to be complicated and heavy due to the need for external heat transfer and internal heat exchange, the use of high-pressure working fluid, etc., and there is room for improvement in durability and responsiveness. It was expensive and expensive, and lacked competitiveness. As one of the measures for this improvement, a rotary circulation flow type has been studied instead of the piston type reciprocating flow type which has been the mainstream. For example, the Wankel type mechanism is used, but the drive unit has been simplified from the crank mechanism to the rotation mechanism, and the mechanical loss has been reduced. It has not been put into practical use because it is difficult to expand and compress.

従来の回転型循環流式機関の欠点であった回転機構部本体と流体作動システム両方の大幅な簡略化と高速回転によるコンパクト化のため最も適切な構造の一つであるスクロール式圧縮機構およびスクロール式膨張機構を組み合わせ、これに等温圧縮および等温膨張をさせる機構を付加しさらに相互の機構間の等温容積移動を得て略スターリングサイクル、あるいは等圧力移動を得て略外燃ブレイトンサイクルを生成し理想的な高効率外燃機関を実現し更に耐久性のあるシール及び潤滑方法、内部熱交換器の汚染劣化の抜本的防止等の諸課題を解決しようとする。Scroll compression mechanism and scroll, which is one of the most suitable structures for drastically simplifying both the rotating mechanism main body and the fluid operation system, which was a drawback of the conventional rotary type circulating flow engine, and making it compact by high-speed rotation Combined with an expansion mechanism, a mechanism for isothermal compression and isothermal expansion is added to this, and an isothermal volume transfer between the two mechanisms is obtained to obtain a substantially Stirling cycle or a substantially equal pressure movement to generate a substantially external combustion Brayton cycle. An ideal high-efficiency external combustion engine is achieved, and various problems such as a durable seal and lubrication method, drastic prevention of contamination deterioration of the internal heat exchanger, and the like are to be solved.

本発明は前述のようなスクロール式圧縮機構およびスクロール式膨張機構を組み合わせ、それぞれの旋回転動部の旋回転動を同軸又は同期するよう制御された別軸でそれぞれ結合し一対の駆動機構部として構成することを骨子とする。それぞれの構成要素中前者はスターリングサイクル、ブレイトンサイクルでは圧縮(スターリングサイクルで通称パワー)側部として、後者は膨張(同ディスプレーサー)側部として作用し、その封入された熱作動流体の圧力、容積、圧縮又は膨張比率、相互の位相差、流入および排出熱量や温度等諸元はあらかじめ選定設定され、場合により作動中にもこれらのいくつかを変化させて機関の出力を変動できるよう制御機能も設けられる。また、前記流体の作動システムも全体が循環流となることを基本に各部位は単純に機能分担され根本的に簡単化するとともに、連続的な作動が得られ、内部熱交換器である再生熱交換器内の流れは往復流でなく高温部と低温部が分離されながら相互の熱交換は行える対抗する一方向流となるように構成される。このため前者で圧縮された熱作動流体はその吐出口から高圧で吐出され連絡管を経て後者の吸入口からスターリングサイクルでは略等容積分吸入され膨張させられた後さらにその吐出口から低圧で吐出されて別の連絡管を経て前者の吸入口から略等容積分吸入され再び圧縮工程に戻り循環が一巡し、外燃ブレイトンサイクルでは圧縮機構および膨張機構相互間を連絡管によりそれぞれ連結され略等圧力で移動し同様循環が完結する。この際本機関の駆動用熱は外部の熱源から加熱器に加えられ、これをスターリングサイクル構成時にはスクロール膨張機構内部の熱作動流体に特に等温膨張状態となるように伝え、同様にスクロール圧縮機構では等温圧縮となるように冷却器から外部に放熱されるようにし、外燃ブレイトンサイクルにおいても前記2種の連絡管は互いに途中に設けられた再生熱交換器で熱交換されるように構成される。The present invention combines the scroll type compression mechanism and the scroll type expansion mechanism as described above, and couples them with different axes controlled to be coaxial or synchronized with each other. The main point is to compose. In each component, the former acts as a compression (commonly called power) side in the Stirling cycle and Brayton cycle, and the latter acts as an expansion (the same displacer) side, and the pressure and volume of the enclosed thermal working fluid. Specifications such as compression or expansion ratio, mutual phase difference, inflow and exhaust heat quantity and temperature are selected and set in advance, and in some cases, some of these can be changed during operation to control the engine output. Provided. In addition, based on the fact that the fluid operation system as a whole is a circulating flow, each part is simply function-shared and radically simplified, and continuous operation is obtained, and the regenerative heat that is an internal heat exchanger is obtained. The flow in the exchanger is not a reciprocating flow, but is configured to be a unidirectional flow that can exchange heat with each other while the high temperature portion and the low temperature portion are separated. For this reason, the thermal working fluid compressed in the former is discharged from the discharge port at a high pressure, and is sucked and expanded by a substantially equal volume in the Stirling cycle from the latter suction port through the connecting pipe, and further discharged from the discharge port at a low pressure. In the external combustion Brayton cycle, the compression mechanism and the expansion mechanism are connected to each other by a communication pipe, and the circulation is completed. It moves with pressure and completes the circulation as well. At this time, the driving heat of this engine is applied to the heater from an external heat source, and this is transmitted to the thermal working fluid inside the scroll expansion mechanism so as to be in an especially isothermal expansion state in the Stirling cycle configuration. In order to achieve isothermal compression, heat is radiated from the cooler to the outside, and in the external combustion Brayton cycle, the two types of connecting pipes are configured to exchange heat with each other through a regenerative heat exchanger provided in the middle. .

本発明は前述のような手段を用いることにより従来の課題を解決できる。具体的には本案の根幹をなす駆動部の構造体は既に冷凍空調用圧縮機では回転式(ロータリー式)圧縮機の一種で通称「スクロール圧縮機」として普及しているものにその基本構造を負っており、その簡易性に基づく生産性の良さや低コスト性は同様に期待できる。これを基本に逆(従来の吐出口から高圧作動流体を入れ膨張させ低圧に減圧し従来の吸入口から吐出)に作動させて作動流体を膨張させる膨張機構(通称エキスパンダー)も近時研究開発されつつある。本発明によればこの既存の圧縮機構と膨張機構に後述の諸機構を付加させ連結軸で一体的に連結し、さらに内部の熱作動流体を外部から冷却もしくは加熱する別の機構を設けて熱作動サイクルを生成させ外燃機関として作用させることができる。その代表であるスターリングサイクル式機関においては作動流体が一方向流の単純な循環流となるため、従来の往復流型に比べて前項で述べたように構成要素が大幅に簡略化され特に回転式機構の利点とあいまって小型軽量化、高速回転化、コスト低減等により実用化が可能となり、高効率で燃料や熱源の多様なことや静粛で排気の清浄なことなどから省エネルギーで環境にやさしい製品の実用化が可能となる。特に前述のような中低温度熱源には活用が大きく期待される。The present invention can solve the conventional problems by using the above-described means. Specifically, the basic structure of the structure of the drive unit that forms the basis of this proposal is the one that is already a popular type of rotary (rotary) compressor in the refrigeration and air-conditioning compressor, commonly known as the “scroll compressor”. Good productivity and low cost based on the simplicity can be expected as well. Based on this, an expansion mechanism (commonly known as an expander) has recently been researched and developed to expand the working fluid by operating in reverse (expanding high pressure working fluid from the conventional discharge port, expanding it, reducing pressure to low pressure and discharging from the conventional suction port). It's getting on. According to the present invention, various mechanisms to be described later are added to the existing compression mechanism and the expansion mechanism and are integrally connected by a connecting shaft, and another mechanism for cooling or heating the internal thermal working fluid from the outside is provided. An operating cycle can be generated to act as an external combustion engine. In the typical Stirling cycle type engine, the working fluid is a simple circulating flow of one-way flow, so the components are greatly simplified compared to the conventional reciprocating flow type as described in the previous section, especially the rotary type. Combined with the advantages of the mechanism, it can be put into practical use by reducing the size and weight, rotating at a high speed, reducing costs, etc., and it is highly efficient, diverse in fuel and heat source, quiet and clean exhaust, etc. Can be put to practical use. In particular, it is expected to be used for medium and low temperature heat sources as described above.

前述のごときスクロール式圧縮機構と同膨張機構を連結してなる駆動機構ならびにこれらの制御機構および発電、電動機構等を略一体的に構成し、あわせて加熱器、冷却器および再生熱交換器ならびに全体を連結する作動流体の通路等を設けてなる形態。A drive mechanism formed by connecting the scroll-type compression mechanism and the expansion mechanism as described above, and a control mechanism, a power generation and an electric mechanism, and the like are substantially integrated, and a heater, a cooler, a regenerative heat exchanger, and A form in which a working fluid passage and the like are provided to connect the whole.

以下、本発明を主にスターリングサイクルによる外燃機関を例に図1の基本構成およびシステム図、図2のスクロール駆動機構部中の固定スクロール部上面断面図(図3でのAA矢視方向)、図3の固定スクロール部側面断面図(図2での渦形状部に沿った展開方向の部分図)に基づいて説明する。(1)圧縮側スクロールは(3)冷却器とともに内部の熱作動流体を冷却圧縮し(2)膨張側スクロールは(4)加熱器とともに同流体を加熱膨張させる。このため熱作動流体は図1の2重線矢印のように(1)圧縮側スクロールの(11)圧縮側吐出口から低温中圧で(6)低温側連絡管に吐出され途中(5)再生熱交換器で加熱され高温高圧となり(21)膨張側吸入口から(2)膨張側スクロールに吸入され、これで膨張後(22)膨張側吐出口から高温中圧で吐出され再び(5)再生熱交換器を通過して低温低圧となり(12)圧縮側吸入口から(1)圧縮側スクロールに吸入されて循環流を完結する。この循環流において(5)再生熱交換器はそれぞれの吐出作動流体の持つ冷熱、温熱を対抗して流れる同作動流体がそれぞれ吸入されるときの予冷却、予加熱として熱回収し、それぞれ熱サイクル上の等容積冷却、等容積加熱が行われるよう設けられる。その構造例としてプレート型顕熱交換器や2重管型熱交換器が一般的に都合よく、往復の熱作動流体を対向流となるように流し必要に応じて一部蓄熱が可能なように構成される。従来の往復動流型のスターリングサイクルでの再生熱交換器ではいったん蓄熱し往復する熱作動流体と熱の授受を主機能としており、その構造が細管や網の組み合わせで複雑なうえ、潤滑剤や内部発生ごみによる目詰まりおよび圧力損失の増大等で信頼性に欠けていた。本方式によれば全体の流れが連続的な一方向循環流で単純になり上記の問題は無くなり、かつ効率の向上も期待できる。また(3)冷却器および(4)加熱器は後述のスクロール構造と原則的に一体で熱サイクル上の略等温圧縮および略等温膨張を行うように設けられる。なお、上記熱作動流体が等容積で圧縮機と膨張機の間を移動するためには両者の高温側および低温側で熱作動流体の吐出容積と吸入容積がほぼ一致することが必要で、そのために両者の圧縮比率と膨張比率の逆数がほぼ等しく、次にその吐出および吸入どうしの容積もそれぞれほぼ同一で相互の軸回転数も同一とし両者の回転スクロールの位相も相互の特性にあわせて調整する。1 is an example of an external combustion engine using a Stirling cycle as an example. FIG. 1 is a basic configuration and system diagram, and FIG. 2 is a top cross-sectional view of a fixed scroll portion in a scroll drive mechanism (in the direction of arrow AA in FIG. 3 will be described based on a side cross-sectional view of the fixed scroll portion in FIG. 3 (partial view in the developing direction along the vortex shape portion in FIG. 2). (1) The compression side scroll (3) cools and compresses the internal thermal working fluid together with the cooler, and (2) the expansion side scroll (4) heats and expands the fluid together with the heater. Therefore, as shown by the double line arrows in FIG. 1, (1) the compression side scroll (11) the compression side discharge port is discharged from the compression side discharge port at a low temperature and medium pressure (6) is discharged to the low temperature side connecting pipe (5) regeneration Heated by a heat exchanger to become high temperature and high pressure (21) From the expansion side suction port, (2) Inhaled by the expansion side scroll, and after expansion, (22) Discharged from the expansion side discharge port at high temperature and medium pressure again (5) Regeneration It passes through the heat exchanger and becomes a low temperature and low pressure (12) from the compression side suction port (1) is sucked into the compression side scroll to complete the circulation flow. In this circulating flow, (5) the regenerative heat exchanger recovers heat as pre-cooling and pre-heating when the working fluid that flows against the cold and warm of each discharged working fluid is sucked, and each heat cycle. It is provided to perform the above equal volume cooling and equal volume heating. As a structural example, a plate-type sensible heat exchanger or a double-pipe heat exchanger is generally convenient, and a reciprocating thermal working fluid is allowed to flow in an opposing flow so that partial heat storage is possible as necessary. Composed. Conventional regenerative heat exchangers in the reciprocating flow type Stirling cycle mainly store heat and transfer heat to and from the reciprocating heat working fluid, and the structure is complicated by the combination of thin tubes and nets. It was unreliable due to clogging caused by internally generated dust and increased pressure loss. According to this method, the entire flow is simplified by a continuous unidirectional circulation flow, the above-mentioned problems are eliminated, and an improvement in efficiency can be expected. In addition, (3) the cooler and (4) the heater are provided so as to be integrated with a scroll structure to be described later and to perform substantially isothermal compression and substantially isothermal expansion on the thermal cycle. In order for the thermal working fluid to move between the compressor and the expander with the same volume, it is necessary that the discharge volume and the suction volume of the thermal working fluid substantially coincide with each other on the high temperature side and the low temperature side. The reciprocals of the compression ratio and expansion ratio of the two are almost equal, the volumes of the discharge and suction are almost the same, the mutual shaft rotation speed is also the same, and the phase of both rotary scrolls is also adjusted according to the mutual characteristics To do.

上述の圧縮側および膨張側スクロールの機構は一般に、いずれも固定されたスクロールとこれに相対して同軸上で所定の偏心旋回転動をしそれぞれに設けられたインヴォリュートもしくはこれと同様形状の渦巻状の歯面(スクロール)がかみ合い相互に形成する内部空間の容積が連続的に縮小もしくは拡大する作用を電動機等の動力で行わせ、内部の作動流体を圧縮もしくは膨張させるように構成されている。本発明ではこの旋回転スクロール部は相互に駆動軸(図1では破線で示す)を有し(9)制御機構を介して互いに結合され(8)電動発電機も同様に連結される。(9)制御機構は前述のように圧縮機と膨張機の相互回転数や軸出力あるいは相互の位相等を調整するための歯車やプーリーおよびベルト機構等の回転数調整機構よりなるが、両者に調整の必要がない場合にはこれを省略して1軸で両者を直結してもよい。フライホイール等慣性装置が必要な場合はこの(9)制御装置に包含することもできる。なお、(8)電動発電機は始動時に電動機として作動し軸出力が自力運転できる程度に発生した時点で発電機として作動する装置でこれの電気制御回路(図示せず)と一体で設けられるが、場合によりそれぞれ別体で設けてもよい。また、発電以外に軸出力として軸動力を取り出すことももちろん可能(図示せず)である。The compression side and expansion side scroll mechanisms described above generally have a fixed scroll and an involute or a similar shape to each of the fixed scroll and a predetermined eccentric rotation on the same axis. The volume of the internal space formed by the spiral tooth surfaces (scrolls) meshing with each other is continuously reduced or expanded by the power of an electric motor or the like, and the internal working fluid is compressed or expanded. Yes. In the present invention, the rotary scroll parts have drive shafts (shown by broken lines in FIG. 1), (9) are coupled to each other via a control mechanism, and (8) the motor generator is similarly coupled. (9) As described above, the control mechanism is composed of a speed adjusting mechanism such as a gear, a pulley and a belt mechanism for adjusting the mutual rotational speed, shaft output or mutual phase of the compressor and the expander. When there is no need for adjustment, this may be omitted and the two may be directly connected with one axis. If an inertial device such as a flywheel is required, it can be included in this (9) control device. (8) The motor generator is a device that operates as a motor at the time of starting and operates as a generator when the shaft output is generated to such an extent that it can be operated by itself, and is provided integrally with an electric control circuit (not shown). In some cases, they may be provided separately. Of course, shaft power can be taken out as shaft output in addition to power generation (not shown).

スターリング機関等外燃機関の入出力等性能の制御には一般に、封入熱作動流体(例えば水素、ヘリウム、窒素等)の圧力、外部との熱の授受量、内部での作動流体のバイパス量、往復動(レシプロ)式ではピストンストローク量等を変化させる方法があるがいずれも複雑な上、応答性が良くない。しかるに本方式のスクロール式のような回転(ロータリー)式では前述のように回転駆動部の相互の回転数を変化させ、圧縮および膨張それぞれの駆動機構内部の吐出および吸入容積の変化でバランスを変化させて出力の制御を簡略に応答性良く実現できる。In general, the input / output performance of an external combustion engine such as a Stirling engine is controlled by the pressure of the enclosed thermal working fluid (for example, hydrogen, helium, nitrogen, etc.), the amount of heat exchanged with the outside, the amount of bypass of the working fluid inside, In the reciprocating (reciprocating) type, there are methods of changing the piston stroke amount and the like, but all of them are complicated and the response is not good. However, in the rotary type such as the scroll type of this method, as described above, the rotational speed of the rotary drive unit is changed, and the balance is changed by changing the discharge and suction volumes inside the drive mechanism for compression and expansion, respectively. Thus, the output control can be realized simply and with good responsiveness.

スターリングサイクル機関が高効率を達成するためには等温圧縮および等温膨張が必要なことは既述したとおりであるが、既存のスクロール式の機構ではそのままでは断熱圧縮および断熱膨張となる。本発明はこの課題の解決のため図2および図3に示すようにそれぞれのスクロール機構の(10)固定スクロールの内側にそれぞれ冷却用および加熱用流体の流路を設け、あらかじめ別途設けられた(3)冷却器あるいは(4)加熱器からそれぞれ冷却あるいは加熱された熱媒となる作動流体を流入循環させて(10)固定スクロールを冷却あるいは加熱し、内部の熱作動流体をそれぞれ圧縮あるいは膨張の際に等温度になるようにする。これは(10)固定スクロールは、これと一対をなす旋回転スクロール(図示せず)と互いに転動して内部に生成される空間の連続的な変動で圧縮もしくは膨張の作用を生じるが、この際(13)固定スクロール側面および(14)固定スクロール上面が前記のように冷却あるいは加熱されこの結果内部で圧縮あるいは膨張する熱作動流体も作動中に常に冷却あるいは加熱されるためである。ここに熱媒となる作動流体は図3で2重線矢印のように前述のようにあらかじめ(3)冷却器あるいは(4)加熱器で冷却あるいは加熱された後(18)流入口より進入して(16)軸方向流路および(17)渦方向流路を経て(19)吐出口より排出される。また(14)固定スクロール上面と(20)固定スクロール基部の間には(15)内部支持壁を適宜設けこれは両者のスペーサと熱伝達用のフィンの機能を有し、同時に(17)渦方向流路をその内部に配設される。なお、(17)渦方向流路はスクロ−ルの軸方向と直角の平面内でその壁面方向に沿った方向で、(18)流入口(19)吐出口はそれぞれもっとも冷却あるいは加熱効果が得られる位置に設けられる。As described above, in order for the Stirling cycle engine to achieve high efficiency, isothermal compression and isothermal expansion are necessary. However, in an existing scroll type mechanism, adiabatic compression and adiabatic expansion are performed as they are. In order to solve this problem, the present invention provides cooling and heating fluid passages on the inside of the (10) fixed scroll of each scroll mechanism as shown in FIGS. 2 and 3, respectively. 3) The cooling fluid or (4) The working fluid that is the heat medium cooled or heated from the heater is introduced and circulated. (10) The fixed scroll is cooled or heated, and the internal thermal working fluid is compressed or expanded, respectively. Make it isothermal. This is because (10) the fixed scroll rolls together with a pair of rotating scrolls (not shown) and produces a compression or expansion action due to the continuous fluctuation of the space generated inside. This is because (13) the fixed scroll side surface and (14) the fixed scroll upper surface are cooled or heated as described above, and as a result, the thermal working fluid compressed or expanded inside is always cooled or heated during operation. Here, the working fluid serving as a heating medium is previously cooled (3) by the cooler or (4) the heater or heated by the heater as indicated by the double arrow in FIG. And (16) discharged from the discharge port via the axial flow path and (17) the vortex flow path. Further, (15) an internal support wall is appropriately provided between (14) the upper surface of the fixed scroll and (20) the base of the fixed scroll, and this has the functions of both spacers and fins for heat transfer. A flow path is disposed therein. In addition, (17) the vortex direction flow path is a direction along the wall surface direction in a plane perpendicular to the axial direction of the scroll, and (18) the inlet (19) and the outlet are most effective for cooling or heating. It is provided in the position.

実用的には以上の機能を有する(1)スクロール圧縮機と(2)スクロール膨張機の機構部分および両者の駆動軸部およびその(9)制御機構、これに連結する(8)電動発電等を一体的に一個の密封式外殻容器(図示せず)に収納して用いることは大いに有用で便利である。この場合耐圧力や熱作動流体、熱媒用流体や必要に応じて用いる潤滑剤等の外部への漏洩も防止容易となる。原則的にこの容器の外部に設けられる(3)冷却器、(4)加熱器、(5)再生熱交換器あるいは(6)低温側連絡管、(7)高温側連絡管および電気回路(図示せず)等とはこの容器に貫通して設けられる配管や電気ターミナルを通して連結され、全体として安全、コンパクトで取り扱い容易な製品化が期待できる。Practically having the above functions (1) Scroll compressor and (2) Mechanism part of scroll expander, both drive shafts and (9) Control mechanism, (8) Motor generator etc. connected to this It is very useful and convenient to store and use it integrally in one sealed outer shell container (not shown). In this case, leakage to the outside of the pressure resistance, the thermal working fluid, the fluid for the heat medium, the lubricant used as necessary, and the like can be easily prevented. (3) Cooler, (4) Heater, (5) Regenerative heat exchanger or (6) Low-temperature side connecting pipe, (7) High-temperature side connecting pipe and electric circuit (Fig. (Not shown) and the like are connected through a pipe or an electric terminal penetrating through the container, and a product that is safe, compact and easy to handle as a whole can be expected.

以上に述べたスターリングサイクル式外燃機関用スクロール式圧縮機構および同膨張機構は一部の仕様諸元を変更することで原則的に他の方式の外燃機関に適用できる。たとえば両機構の相互回転数および必要に応じて圧力調整弁等の機構の付加等で等容積移動でなく結果的に等圧力移動となるようにし、さらに(1)圧縮側スクロールおよび(2)膨張側スクロールのそれぞれ(12)圧縮側吸入口および(21)膨張側吸入口に(30)予冷却器および(40)予加熱器を設けて略外燃式ブレイトン機関が得られる。また、膨張機構だけをランキンサイクルの膨張機構に適用すれば略等温膨張機構となり膨張機への流入温度の低減が図れより低温駆動の機関が可能となる。なお、以上の各機関構成を用いて電動機あるいは原動機などで駆動する逆サイクルでは冷凍効果が生じることは周知のとおりでありこのとき、(4)加熱器または(40)予加熱器は吸熱冷却器として作用し外部より熱を吸収することで相手を冷却でき、(3)冷却器または(30)予冷却器は放熱加熱器として作用し外部に熱を放熱し相手を加熱する。熱作動流体の選定により超低温の生成も可能で本方式ではより高効率化、小型化可能となる。The scroll compression mechanism and expansion mechanism for the Stirling cycle type external combustion engine described above can be applied to other types of external combustion engines in principle by changing some specifications. For example, the mutual rotation speed of both mechanisms and, if necessary, a mechanism such as a pressure regulating valve is added so as to result in equal pressure movement instead of equal volume movement, and (1) compression side scroll and (2) expansion A (30) precooler and (40) preheater are provided at the (12) compression side suction port and (21) expansion side suction port, respectively, of the side scroll to obtain a substantially external combustion type Brayton engine. Further, if only the expansion mechanism is applied to the expansion mechanism of the Rankine cycle, it becomes a substantially isothermal expansion mechanism, so that the temperature flowing into the expander can be reduced and a low-temperature driven engine becomes possible. It is well known that a refrigeration effect is produced in a reverse cycle driven by an electric motor or a prime mover using the above engine configurations. At this time, the (4) heater or (40) preheater is an endothermic cooler. The other party can be cooled by absorbing heat from outside and acting as (3) The cooler or (30) precooler acts as a heat dissipation heater to dissipate heat to the outside and heat the other party. Ultra-low temperature can be generated by selecting the thermal working fluid, and this method can achieve higher efficiency and smaller size.

以上説明したように、本発明によれば比較的簡単な構造で実用性の高い高性能なスクロール式外燃機関が可能となり多くの技術分野への活用が可能となる。As described above, according to the present invention, a high-performance scroll-type external combustion engine having a relatively simple structure and high practicality is possible, and can be used in many technical fields.

基本構成およびシステム図Basic configuration and system diagram 固定スクロール部上面断面図Top view of fixed scroll section 固定スクロール部側面断面図Side view of fixed scroll

符号の説明Explanation of symbols

(1)圧縮側スクロール
(2)膨張側スクロール
(3)冷却器
(4)加熱器
(5)再生熱交換器
(6)低温接続管
(7)高温側熱交換器
(8)電動発電機
(9)制御機構
(10)固定スクロール
(11)圧縮側吐出口
(12)圧縮側吸入口
(13)固定スクロール側面
(14)固定スクロール上面
(15)内部支持壁
(16)軸方向流路
(17)渦方向流路
(18)流入口
(19)吐出口
(20)固定スクロール基部
(21)膨張側吸入口
(22)膨張側吐出口
(30)予冷却器
(40)予加熱器
(1) Compression side scroll (2) Expansion side scroll (3) Cooler (4) Heater (5) Regenerative heat exchanger (6) Low temperature connection pipe (7) High temperature side heat exchanger (8) Motor generator ( 9) Control mechanism (10) Fixed scroll (11) Compression side discharge port (12) Compression side suction port (13) Fixed scroll side surface (14) Fixed scroll upper surface (15) Internal support wall (16) Axial flow path (17 ) Vortex flow path (18) Inlet (19) Discharge port (20) Fixed scroll base (21) Expansion side suction port (22) Expansion side discharge port (30) Precooler (40) Preheater

Claims (8)

スクロール式圧縮機とスクロール式膨張機それぞれの旋回転可動部の旋回転動を同軸もしくは同期するよう制御された別軸でそれぞれ結合し、前者で圧縮された熱作動流体をその吐出口から吐出し連絡管を経て後者がその吸入口から吸入し膨張させ、その後さらにその吐出口から吐出して別の連絡管を経て前者の吸入口から吸入させて循環させ、その際前者は冷却器で予冷却および(もしくは)圧縮工程途中冷却され、後者は加熱器で予加熱および(もしくは)膨張工程途中加熱されるようにし、同時に前述の2種の連絡管が互いに途中に設けられた再生熱交換器で熱交換できるようにし、これにより略スターリングサイクルもしくは略外燃ブレイトンサイクルを構成し軸出力を生じる外燃機関として作動する構造を有すること。The rotary motion of each of the scroll compressor and scroll expander is coupled by a separate shaft controlled to be coaxial or synchronized, and the thermal working fluid compressed in the former is discharged from its discharge port. The latter is sucked from the suction port through the connecting pipe and expanded, and then discharged from the discharge port and sucked from the former suction port through another connecting pipe to be circulated. In this case, the former is precooled by a cooler. And / or is cooled during the compression process, and the latter is preheated by a heater and / or heated during the expansion process, and at the same time, a regenerative heat exchanger in which the above-mentioned two types of connecting pipes are provided in the middle of each other. It must be able to exchange heat, thereby constituting a substantially Stirling cycle or a substantially external combustion Brayton cycle, and having a structure that operates as an external combustion engine that generates shaft output. 請求項1の外燃機関において、スクロール式圧縮機の圧縮容積比とスクロール式膨張機の膨張容積比の逆数を略等しく設定すること。2. The external combustion engine according to claim 1, wherein the reciprocal of the compression volume ratio of the scroll compressor and the expansion volume ratio of the scroll expander is set to be substantially equal. 請求項1の外燃機関において、スクロール式圧縮機の熱作動流体吐出容積と圧縮後吐出された同作動流体が流入するスクロール式膨張機の同流体吸入容積が略一致し、かつ後者の同流体吐出容積と膨張後吐出された同作動流体が流入する前者の同流体吸入容積が同様略一致するように両者の回転速度や位相が同調するように制御し略スターリングサイクルを構成する構造を有すること。2. The external combustion engine according to claim 1, wherein the heat working fluid discharge volume of the scroll compressor substantially coincides with the fluid suction volume of the scroll expander into which the working fluid discharged after compression flows, and the latter same fluid. It has a structure that constitutes a substantially Stirling cycle by controlling the rotational speed and phase of the two so that the discharge volume and the former same fluid suction volume into which the same working fluid discharged after expansion flows substantially coincide with each other. . 請求項1の外燃機関において、スクロール式圧縮機で圧縮後吐出された熱作動流体の圧力とそれが流入するスクロール式膨張機の同流体吸入圧力が略一致し、かつ後者の膨張機で膨張後吐出された同作動流体の圧力とそれが流入する前者の同流体吸入圧力が同様略一致するように両者の回転速度や位相が同調するように制御し略外燃ブレイトンサイクルを構成する構造を有すること。2. The external combustion engine according to claim 1, wherein the pressure of the thermal working fluid discharged after compression by the scroll compressor substantially coincides with the fluid suction pressure of the scroll expander into which it flows, and the latter expander expands. A structure that constitutes a substantially external combustion Brayton cycle by controlling the rotational speed and phase of both to be synchronized so that the pressure of the working fluid discharged later and the suction pressure of the same fluid flowing into the former substantially coincide with each other. Having. スクロール式圧縮機およびスクロール式膨張機の機構において固定側スクロール内部にそれぞれ冷却用作動流体および加熱用作動流体が流入循環するような流路を軸方向およびこれと直角な平面内に設け、冷却器および加熱器と接続してこれらによりそれぞれ冷却あるいは加熱された作動流体の循環によりそれぞれの固定スクロール部を冷却あるいは加熱し、結果的に両スクロール機構および内部の熱作動流体を冷却あるいは加熱してそれぞれ略等温冷却あるいは略等温膨張を得る機構を有すること。In the mechanism of the scroll compressor and scroll expander, a flow path is provided in the axial direction and in a plane perpendicular to the axial direction so that the cooling working fluid and the heating working fluid flow into and circulate inside the fixed scroll, respectively. The fixed scroll portion is cooled or heated by circulating the working fluid cooled or heated by connecting to the heater, and as a result, both scroll mechanisms and the internal thermal working fluid are cooled or heated, respectively. It has a mechanism to obtain approximately isothermal cooling or approximately isothermal expansion. 請求項5の機構おいて軸方向と直角な平面内の作動流体の流れを熱作動流体のスクロール機構内流れ方向に沿ってほぼ同方向の流れになるように配設すること。6. A mechanism according to claim 5, wherein the flow of the working fluid in a plane perpendicular to the axial direction is arranged to flow in substantially the same direction along the flow direction of the thermal working fluid in the scroll mechanism. 既述のスクロール式圧縮機とスクロール式膨張機の機構部分および両者の駆動軸部およびその制御機構部、これに連結する電動機もしくは発電機(兼用も含む)等を一体的に一個の密封式外殻容器内に収納する構造とすること。The above-described scroll compressor and scroll expander mechanism, the drive shaft of both and the control mechanism, and the motor or generator (including both) connected to this are integrally sealed outside. It shall be structured to be stored in the shell container. 前項までの外燃機関構成を用い逆サイクルとして電動機や原動機などの動力で駆動させ冷凍サイクルを生成すること。The refrigeration cycle is generated by driving with the power of an electric motor or prime mover as a reverse cycle using the external combustion engine configuration up to the previous section.
JP2007022284A 2007-01-03 2007-01-03 Scroll type external combustion engine Pending JP2008163931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007022284A JP2008163931A (en) 2007-01-03 2007-01-03 Scroll type external combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007022284A JP2008163931A (en) 2007-01-03 2007-01-03 Scroll type external combustion engine

Publications (1)

Publication Number Publication Date
JP2008163931A true JP2008163931A (en) 2008-07-17

Family

ID=39693706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007022284A Pending JP2008163931A (en) 2007-01-03 2007-01-03 Scroll type external combustion engine

Country Status (1)

Country Link
JP (1) JP2008163931A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035891A1 (en) * 2008-09-24 2010-04-01 サンデン株式会社 Fluid machine
JP2014037777A (en) * 2012-08-10 2014-02-27 Hino Motors Ltd Brayton cycle engine
WO2016186572A1 (en) * 2015-05-19 2016-11-24 Lien Chiow Tan Ambient heat engine
JP2020148192A (en) * 2019-03-15 2020-09-17 富士電機株式会社 Scroll steam expansion system
JP2020529550A (en) * 2017-08-09 2020-10-08 カプリコーン パワー ピーティーイー リミテッド Efficient heat recovery engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035891A1 (en) * 2008-09-24 2010-04-01 サンデン株式会社 Fluid machine
JP2010077827A (en) * 2008-09-24 2010-04-08 Sanden Corp Fluid machine
JP2014037777A (en) * 2012-08-10 2014-02-27 Hino Motors Ltd Brayton cycle engine
WO2016186572A1 (en) * 2015-05-19 2016-11-24 Lien Chiow Tan Ambient heat engine
JP2020529550A (en) * 2017-08-09 2020-10-08 カプリコーン パワー ピーティーイー リミテッド Efficient heat recovery engine
JP2020148192A (en) * 2019-03-15 2020-09-17 富士電機株式会社 Scroll steam expansion system
JP7298215B2 (en) 2019-03-15 2023-06-27 富士電機株式会社 Scroll steam expansion system

Similar Documents

Publication Publication Date Title
US7284372B2 (en) Method and apparatus for converting thermal energy to mechanical energy
US7124585B2 (en) Scroll-type expander having heating structure and scroll-type heat exchange system employing the expander
US4753073A (en) Stirling cycle rotary engine
US3830059A (en) Heat engine
CA2765439C (en) Heat exchanger and associated method employing a stirling engine
JP2008163931A (en) Scroll type external combustion engine
WO2021151109A1 (en) Liquid flooded closed cycle
JP2008038879A (en) Rotary-type stirling engine
JP2009270559A (en) Rotary type external combustion engine
KR100454814B1 (en) Scroll-type heat exchange system applicable to stirling engine or refrigerator
KR100849506B1 (en) Scroll-type stirling cycle engine
US20080098751A1 (en) Stirling system and freezer system using the same
JP4997462B2 (en) Stirling regenerative external combustion system and refrigerator system using the same
CN108699998B (en) Rotary Stirling cycle apparatus and method
Kim et al. A new Ericsson cycle comprising a scroll expander and a scroll compressor for power and refrigeration applications
JP2007192443A (en) Pulse tube type heat storage engine
TW202123583A (en) Mechanical device and operating method thereof
JP2011137432A (en) External combustion engine having lubricating oil circuit
JP2006183649A (en) Rotary type stirling engine
JPH0116327B2 (en)
TW202323657A (en) Thermodynamic cycle
JPS5857627B2 (en) Kaitengata Starling Kikan
RU1795237C (en) Heat-utilizing cryogenic rotary gas machine
JPH067026B2 (en) Air conditioner
JP2000314347A (en) External combustion engine.heat pump with heat transfer promoted by forced flow