JP2008163395A - Copper material and its production method - Google Patents

Copper material and its production method Download PDF

Info

Publication number
JP2008163395A
JP2008163395A JP2006354574A JP2006354574A JP2008163395A JP 2008163395 A JP2008163395 A JP 2008163395A JP 2006354574 A JP2006354574 A JP 2006354574A JP 2006354574 A JP2006354574 A JP 2006354574A JP 2008163395 A JP2008163395 A JP 2008163395A
Authority
JP
Japan
Prior art keywords
copper
average particle
oxygen
conductivity
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006354574A
Other languages
Japanese (ja)
Inventor
Takuo Imanaga
拓男 今永
Hisashi Kawasaki
尚志 川嵜
Akiyoshi Kita
晃義 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006354574A priority Critical patent/JP2008163395A/en
Publication of JP2008163395A publication Critical patent/JP2008163395A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper material in which conductivity can be increased though inexpensive copper is used as the raw material, and the conductivity can be maintained even if welding or the like are performed. <P>SOLUTION: The copper material comprises oxygen of ≥200 ppm, and the balance copper with inevitable impurities, and in which oxygen is dispersed into a matrix as copper oxide having an average grain diameter of >2 μm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えばモータの巻き線などの導線、プリント配線基板用圧延箔、フラットケーブル用の銅箔等の導電性が求められる用途に好適な銅材料およびその製造方法に係り、特に、溶接等による接合を行っても導電性を低下させない技術に関する。   The present invention relates to a copper material suitable for applications requiring electrical conductivity, such as a conductive wire such as a motor winding, a rolled foil for a printed wiring board, and a copper foil for a flat cable, and a manufacturing method thereof, in particular, welding and the like. The present invention relates to a technique that does not lower the conductivity even when bonding is performed.

従来、導電性の高い銅材料としては酸素等の不純物の少ない無酸素銅が知られている。特許文献1では、酸素以外の不純物の濃度も極力低くした銅材料が提案されている。しかしながら、導電性を高めるために不純物濃度を低くすればする程銅材料の製造コストが上昇する。   Conventionally, oxygen-free copper with few impurities, such as oxygen, is known as a highly conductive copper material. Patent Document 1 proposes a copper material in which the concentration of impurities other than oxygen is as low as possible. However, the lower the impurity concentration is, the higher the manufacturing cost of the copper material is.

そこで、特許文献2では、無酸素銅を600℃付近で熱処理することにより、不純物を銅との化合物として金属組織中に微細に分散させ、不純物に起因する残留抵抗値を低減することが提案されている。また、特許文献3においても、無酸素銅を400〜700℃で焼鈍することにより、不純物を化合物として微細に分散させて導電性を高める技術が開示されている。   Therefore, Patent Document 2 proposes that oxygen-free copper is heat-treated at around 600 ° C. to finely disperse impurities in the metal structure as a compound with copper, thereby reducing the residual resistance value caused by the impurities. ing. Patent Document 3 also discloses a technique for improving conductivity by finely dispersing impurities as a compound by annealing oxygen-free copper at 400 to 700 ° C.

特開昭61−79753号公報(特許請求の範囲)JP-A 61-79753 (Claims) 特開平10−147850号公報(要約書)JP-A-10-147850 (abstract) 特開昭62−112763号公報(特許請求の範囲)JP 62-112763 A (Claims)

しかしながら、上記のように不純物を微細に分散させる技術では、例えば巻き線等の溶接やハンダ付けなどを行うと、接合部において電気抵抗が大幅に上昇することが判明した。また、不純物濃度の低い無酸素銅を用いるのでは、コスト的に不利であるという問題もある。   However, with the technique for finely dispersing impurities as described above, it has been found that, for example, when welding such as winding or soldering is performed, the electrical resistance is significantly increased at the joint. In addition, the use of oxygen-free copper having a low impurity concentration is disadvantageous in terms of cost.

したがって、本発明は、廉価な銅を原材料として用いながら導電性を高めることができ、しかも、溶接等を行っても高い導電性を維持することができる銅材料およびその製造方法を提供することを目的としている。   Therefore, the present invention provides a copper material that can increase conductivity while using inexpensive copper as a raw material, and that can maintain high conductivity even when welding or the like, and a method for manufacturing the copper material. It is aimed.

本発明者等は、銅材料を溶接することによって導電性が低下することの理由を調査したところ、熱処理によって銅酸化物として基地中に析出した酸素が、溶接によって基地中に再固溶していることが判明した。そこで、本発明者等は、熱処理によって酸素を粗大な銅酸化物として析出させることに思い至った。   The present inventors investigated the reason why the conductivity is lowered by welding the copper material, and oxygen precipitated in the matrix as a copper oxide by heat treatment was re-dissolved in the matrix by welding. Turned out to be. Accordingly, the present inventors have come up with the idea of precipitating oxygen as coarse copper oxide by heat treatment.

本発明の銅材料は、上記知見に基づいてなされたもので、200ppm以上の酸素を含有し、残部が銅と不可避不純物からなり、基地中に酸素が平均粒径が2μmを超える銅酸化物として分散していることを特徴としている。   The copper material of the present invention has been made based on the above knowledge, and contains 200 ppm or more of oxygen, the balance is made of copper and unavoidable impurities, and oxygen in the base is a copper oxide having an average particle size exceeding 2 μm. It is characterized by being distributed.

本発明の銅材料は、酸素を微細な銅酸化物ではなくて粗大な銅酸化物として析出させていることが特徴である。微細な銅酸化物では、全銅酸化物の比表面積が大きいため、溶接等による加熱で再固溶温度域に達すると、銅酸化物から拡散した酸素が基地中にくまなく固溶して導電性が低下する。これに対して、銅酸化物が粗大な場合には、全銅酸化物の比表面積が小さいため、再固溶温度域においても酸素の溶解速度が遅くなり、酸素の拡散が銅酸化物の周囲にとどまる。したがって、基地の大部分は純銅に等しい状態が維持され、高い導電性が維持される。   The copper material of the present invention is characterized in that oxygen is precipitated not as fine copper oxide but as coarse copper oxide. In fine copper oxide, the total surface area of all copper oxide is large, so when it reaches the re-solution temperature range by heating by welding, etc., oxygen diffused from the copper oxide dissolves all over the base and becomes conductive. Sex is reduced. On the other hand, when the copper oxide is coarse, the specific surface area of the total copper oxide is small, so the oxygen dissolution rate is slow even in the re-solution temperature range, and the diffusion of oxygen is around the copper oxide. Stay on. Therefore, most of the base is maintained in a state equivalent to pure copper, and high conductivity is maintained.

また、銅材料を加熱および加圧して拡散接合するような場合には、銅材料の加熱が再固溶温度以下であることがある。このような場合には、銅材料の接合部の密着性が接合部の導電性に多大な影響を与える。この点、本発明では、銅酸化物が粗大であるため加圧時の変形抵抗が小さく銅材料の密着性が向上する。このため、原子の拡散が容易となり、接合部の導電性が向上するとともに、通常の材料よりも低い温度で拡散接合を実現することができる。   In the case where diffusion bonding is performed by heating and pressurizing a copper material, the heating of the copper material may be below the re-solution temperature. In such a case, the adhesiveness of the joint part of the copper material greatly affects the conductivity of the joint part. In this regard, in the present invention, since the copper oxide is coarse, the deformation resistance at the time of pressurization is small, and the adhesion of the copper material is improved. For this reason, the diffusion of atoms is facilitated, the conductivity of the joint is improved, and diffusion bonding can be realized at a temperature lower than that of a normal material.

ここで、本発明者等の検討の結果、上記のような作用効果を得るほどに銅酸化物が粗大と言えるためには、銅酸化物の平均粒径は2μmを超えている必要があることが判明している。そして、そのような粗大な銅酸化物を析出させることにより、タフピッチ銅や電気銅などのように酸素濃度の高い銅であっても導電性が向上することが確認されている。本発明は、酸素濃度が200ppm以上の銅材料を対象とし、そのような酸素濃度により平均粒径が2μmを超える銅酸化物が析出する。なお、酸素濃度があまりに高い場合には、粗大な酸化物がくまなく分散する結果、酸素の基地への再固溶による導電性の低下が生じる。そのような理由から、酸素濃度は500ppm以下とすることが望ましい。   Here, as a result of the study by the present inventors, the average particle size of the copper oxide needs to exceed 2 μm in order to say that the copper oxide is coarse enough to obtain the above effects. Is known. And it has been confirmed that by depositing such a coarse copper oxide, the conductivity is improved even with copper having a high oxygen concentration such as tough pitch copper or electrolytic copper. The present invention is directed to a copper material having an oxygen concentration of 200 ppm or more, and a copper oxide having an average particle size exceeding 2 μm is precipitated by such an oxygen concentration. If the oxygen concentration is too high, coarse oxides are dispersed throughout, resulting in a decrease in conductivity due to re-dissolution of oxygen into the base. For such a reason, the oxygen concentration is desirably 500 ppm or less.

本発明において「平均粒径」は次の方法により測定する。先ず、焼鈍後の銅材料を鏡面研磨し、エッチングを行った後、走査電子顕微鏡により析出物(銅酸化物)を観察する。この場合、粒径の測定誤差を少なくするために、4000〜15000倍程度の倍率で写真を撮影して粒径の計測を定量的に行う。   In the present invention, the “average particle diameter” is measured by the following method. First, the annealed copper material is mirror-polished and etched, and then the precipitate (copper oxide) is observed with a scanning electron microscope. In this case, in order to reduce the measurement error of the particle diameter, a photograph is taken at a magnification of about 4000 to 15000 times to measure the particle diameter quantitatively.

粒径の計測は、観察された析出物の最大長さ(長径)と、長径と直交する方向での最大長さ(短径)を測定し、その平均値を粒径とする。統計的な信頼性を高めるために、50個程度の粒子情報があられるまで上記計測を繰り返し、計測値の平均値を平均粒径とする。   For the measurement of the particle size, the maximum length (major axis) of the observed precipitate and the maximum length (minor axis) in the direction orthogonal to the major axis are measured, and the average value is taken as the particle size. In order to improve the statistical reliability, the above measurement is repeated until there is about 50 particle information, and the average value of the measured values is taken as the average particle diameter.

次に、本発明の銅材料の製造方法は、200ppm以上の酸素を含有し、残部が銅と不可避不純物からなる銅材料を、800℃以上の温度で2時間以上焼鈍することを特徴としている。800℃未満の温度では焼鈍時間にかかわらず平均粒径が2μmを超える銅酸化物を得ることができず、800℃以上の温度での焼鈍を行うことにより、基地中に酸素を平均粒径が2μmを超える銅酸化物として分散させることができる。   Next, the method for producing a copper material of the present invention is characterized by annealing a copper material containing 200 ppm or more of oxygen and the balance of copper and inevitable impurities at a temperature of 800 ° C. or more for 2 hours or more. At temperatures below 800 ° C., a copper oxide having an average particle size exceeding 2 μm cannot be obtained regardless of the annealing time, and by performing annealing at a temperature of 800 ° C. or higher, the oxygen has an average particle size in the matrix. It can be dispersed as a copper oxide exceeding 2 μm.

ここで、平均粒径が2μmを超える銅酸化物を分散させるための焼鈍時間は、焼鈍温度によって左右され、焼鈍温度が低い程長時間を要する。たとえば、焼鈍温度が800℃の場合には、焼鈍時間は60分以上は必要であり、焼鈍温度が900℃以上の場合には、焼鈍時間は15分で足りる。また、焼鈍温度は1080℃以下で充分である。   Here, the annealing time for dispersing the copper oxide having an average particle size exceeding 2 μm depends on the annealing temperature, and the lower the annealing temperature, the longer the time required. For example, when the annealing temperature is 800 ° C., the annealing time needs to be 60 minutes or more, and when the annealing temperature is 900 ° C. or more, the annealing time is 15 minutes. An annealing temperature of 1080 ° C. or less is sufficient.

以上説明したように、本発明によれば、銅酸化物の平均粒径を2μm超とすることにより、基地の大部分は純銅に等しい状態が維持されて高い導電性が維持されるとともに、通常の材料よりも低い温度で拡散接合を実現することができる等の効果を奏する。   As described above, according to the present invention, by setting the average particle size of the copper oxide to more than 2 μm, most of the base is maintained in a state equal to pure copper and high conductivity is maintained. It is possible to achieve diffusion bonding at a temperature lower than that of the material.

以下、本発明の実施例を説明する。
1.実施例1
酸素濃度が200ppmのタフピッチ銅から直径:3mm、長さ:100mmの丸棒状の試料を作製し、この試料を200〜1080℃の範囲で設定した温度で2時間保持する熱処理を行った。なお、比較のために、熱処理を行わない試料も用意した。これら試料の導電率を4端子法にて測定した(使用装置:日置電機製、抵抗計3541。また、各試料の組織をSEMで観察し、析出物の平均粒径と析出物量(面積%)を計測した。次に、模擬溶接として各試料を1150℃で溶解し、その後上記と同様にして導電率を測定した。以上の結果を表1および図1に示す。なお、表1において導電率の単位はジーメンスである。
Examples of the present invention will be described below.
1. Example 1
A round bar-shaped sample having a diameter of 3 mm and a length of 100 mm was prepared from tough pitch copper having an oxygen concentration of 200 ppm, and this sample was subjected to heat treatment for 2 hours at a temperature set in the range of 200 to 1080 ° C. For comparison, a sample not subjected to heat treatment was also prepared. The electrical conductivity of these samples was measured by a four-terminal method (device used: Hioki Denki, resistance meter 3541. Further, the structure of each sample was observed with an SEM, and the average particle size and the amount of precipitates (area%) of the precipitates were measured. Next, each sample was melted at 1150 ° C. as simulated welding, and the conductivity was measured in the same manner as described above, and the above results are shown in Table 1 and FIG. The unit is Siemens.

Figure 2008163395
Figure 2008163395

図1に示すように、熱処理により生成された析出物の平均粒径が2μm以下であっても溶接前の導電率は高い。しかしながら、析出物の平均粒径が2μm以下の試料では、溶接を行うことによって導電率は急激に低下する。これは、溶接により析出物の酸素が基地中にくまなく再固溶したためである。これに対して、析出物の平均粒径が2μmを超える本発明例では、溶接後の導電率の低下が抑えられ、導電率は高い値を維持して安定することが確認された。   As shown in FIG. 1, the electrical conductivity before welding is high even if the average particle size of the precipitate generated by the heat treatment is 2 μm or less. However, in a sample having an average particle size of precipitates of 2 μm or less, the conductivity rapidly decreases by performing welding. This is because the oxygen in the precipitates was re-dissolved throughout the base by welding. On the other hand, in the present invention example in which the average particle size of the precipitates exceeded 2 μm, it was confirmed that the decrease in the conductivity after welding was suppressed and the conductivity was stable while maintaining a high value.

図4(A)は各試料のSEM写真である。図4(A)から判るように、熱処理温度が800℃以上では析出物の粒径は2μm以上であるが、熱処理温度が700℃以下では析出物の粒径は2μmよりもかなり小さい。また、図4(B)は、1080℃で120分の熱処理を行った試料のEPMAチャートである。このチャートから、析出物が酸化銅であることが判る。   FIG. 4A is an SEM photograph of each sample. As can be seen from FIG. 4A, the particle size of the precipitate is 2 μm or more when the heat treatment temperature is 800 ° C. or higher, but the particle size of the precipitate is considerably smaller than 2 μm when the heat treatment temperature is 700 ° C. or less. FIG. 4B is an EPMA chart of a sample subjected to heat treatment at 1080 ° C. for 120 minutes. From this chart, it can be seen that the precipitate is copper oxide.

次に、上記試料の熱処理時間を15〜120分の範囲で設定し、熱処理時間、熱処理温度および析出物の平均粒径との関係を調査した。その結果を表2および図2に示す。表2および図2に示すように、熱処理温度が800℃未満では、熱処理時間が長くても析出物の平均粒径は2μm以下となる。これに対して、表2に示すように、熱処理温度が800℃では60分以上の熱処理で析出物の平均粒径が2μmを超え、熱処理温度が900℃以上では15分以上の熱処理で析出物の平均粒径が2μmを超えた。   Next, the heat treatment time of the sample was set in the range of 15 to 120 minutes, and the relationship between the heat treatment time, the heat treatment temperature, and the average particle size of the precipitates was investigated. The results are shown in Table 2 and FIG. As shown in Table 2 and FIG. 2, when the heat treatment temperature is less than 800 ° C., the average particle size of the precipitate is 2 μm or less even if the heat treatment time is long. On the other hand, as shown in Table 2, when the heat treatment temperature is 800 ° C., the average particle size of the precipitate exceeds 2 μm after the heat treatment for 60 minutes or more, and when the heat treatment temperature is 900 ° C. or more, the precipitate is obtained after the heat treatment for 15 minutes or more. The average particle size exceeded 2 μm.

Figure 2008163395
Figure 2008163395

2.実施例2
酸素濃度が200ppmのタフピッチ銅から縦:3mm、横:3mm、長さ:100mmの角棒状の試料を作製し、この試料を200〜1050℃の範囲で設定した温度で2時間保持する熱処理を行った。なお、比較のために、熱処理を行わない試料も用意した。これら試料の導電率を4端子法にて測定した(使用装置:日置電機製、抵抗計3541)。また、各試料の組織をSEMで観察し、析出物の平均粒径と析出物量(面積%)を計測した。次に、2つの試料を温度400℃、加圧力3MPaで拡散接合し(使用装置:住友重機械テクノフォート製、SPS−515S)、その後上記と同様にして導電率を測定した。以上の結果を表3および図3に示す。
2. Example 2
A rod-shaped sample of length: 3 mm, width: 3 mm, length: 100 mm is prepared from tough pitch copper with an oxygen concentration of 200 ppm, and heat treatment is performed for 2 hours at a temperature set in the range of 200 to 1050 ° C. It was. For comparison, a sample not subjected to heat treatment was also prepared. The electrical conductivity of these samples was measured by a four-terminal method (device used: Hioki Denki, resistance meter 3541). Moreover, the structure | tissue of each sample was observed by SEM, and the average particle diameter of precipitates and the amount of precipitates (area%) were measured. Next, two samples were diffusion-bonded at a temperature of 400 ° C. and a pressure of 3 MPa (use apparatus: manufactured by Sumitomo Heavy Industries Technofort, SPS-515S), and then the conductivity was measured in the same manner as described above. The above results are shown in Table 3 and FIG.

Figure 2008163395
Figure 2008163395

図3に示すように、熱処理により生成された析出物の平均粒径が2μm以下であっても拡散接合前の導電率は高い。しかしながら、析出物の平均粒径が2μm以下の試料では、拡散接合溶接を行うことによって導電率は急激に低下した。特に、熱処理温度が600℃以下の場合には、析出物の平均粒径が小さすぎるため、加圧時の変形抵抗が大きく試料の密着性が低下する。このため、原子の拡散が困難となり、接合が不可能となった。これに対して、析出物の平均粒径が2μmを超える本発明例では、拡散接合後の導電率の低下が抑えられ、導電率は高い値を維持して安定することが確認された。   As shown in FIG. 3, the electrical conductivity before diffusion bonding is high even if the average particle size of the precipitate generated by the heat treatment is 2 μm or less. However, in the sample having the average particle size of the precipitates of 2 μm or less, the conductivity rapidly decreased by performing diffusion bonding welding. In particular, when the heat treatment temperature is 600 ° C. or lower, the average particle size of the precipitate is too small, so that the deformation resistance at the time of pressurization is large and the adhesion of the sample is lowered. For this reason, diffusion of atoms became difficult, and joining became impossible. On the other hand, in the present invention example in which the average particle size of the precipitates exceeds 2 μm, it was confirmed that the decrease in the conductivity after diffusion bonding was suppressed, and the conductivity was maintained at a high value and stabilized.

3.実施例3
酸素濃度が290ppmのタフピッチ銅を用いた以外は実施例1と同じ条件で試料の作製、熱処理、および各種計測を行った。その結果を表4および表5、図5および図6に示す。これらの表および図面に示すように、実施例3においても実施例1と同等の結果が得られた。
3. Example 3
Sample preparation, heat treatment, and various measurements were performed under the same conditions as in Example 1 except that tough pitch copper having an oxygen concentration of 290 ppm was used. The results are shown in Tables 4 and 5, FIG. 5 and FIG. As shown in these tables and drawings, the same results as in Example 1 were obtained in Example 3.

Figure 2008163395
Figure 2008163395

Figure 2008163395
Figure 2008163395

4.実施例4
酸素濃度が290ppmのタフピッチ銅を用いた以外は実施例2と同じ条件で試料の作製、熱処理、および各種計測を行った。その結果を表6および図7に示す。表6および図7に示すように、実施例4においても実施例2と同等の結果が得られた。
4). Example 4
Sample preparation, heat treatment, and various measurements were performed under the same conditions as in Example 2 except that tough pitch copper having an oxygen concentration of 290 ppm was used. The results are shown in Table 6 and FIG. As shown in Table 6 and FIG. 7, in Example 4, the same result as in Example 2 was obtained.

Figure 2008163395
Figure 2008163395

5.実施例5
酸素濃度が500ppmのタフピッチ銅を用いた以外は実施例1と同じ条件で試料の作製、熱処理、および各種計測を行った。その結果を表7および表8、図8および図9に示す。これらの表および図面に示すように、実施例5においても実施例1と同等の結果が得られた。
5. Example 5
Sample preparation, heat treatment, and various measurements were performed under the same conditions as in Example 1 except that tough pitch copper having an oxygen concentration of 500 ppm was used. The results are shown in Tables 7 and 8, and FIGS. As shown in these tables and drawings, in Example 5, the same results as in Example 1 were obtained.

Figure 2008163395
Figure 2008163395

Figure 2008163395
Figure 2008163395

6.実施例6
酸素濃度が500ppmのタフピッチ銅を用いた以外は実施例2と同じ条件で試料の作製、熱処理、および各種計測を行った。その結果を表9および図10に示す。表9および図10に示すように、実施例6においても実施例2と同等の結果が得られた。
6). Example 6
Sample preparation, heat treatment, and various measurements were performed under the same conditions as in Example 2 except that tough pitch copper having an oxygen concentration of 500 ppm was used. The results are shown in Table 9 and FIG. As shown in Table 9 and FIG. 10, in Example 6, the same result as in Example 2 was obtained.

Figure 2008163395
Figure 2008163395

本発明の実施例1における析出物の平均粒径と導電率との関係を示すグラフである。It is a graph which shows the relationship between the average particle diameter of the precipitate in Example 1 of this invention, and electrical conductivity. 本発明の実施例1における熱処理時間と析出物の平均粒径との関係を示すグラフである。It is a graph which shows the relationship between the heat processing time in Example 1 of this invention, and the average particle diameter of a precipitate. 本発明の実施例2における析出物の平均粒径と導電率との関係を示すグラフである。It is a graph which shows the relationship between the average particle diameter of the precipitate in Example 2 of this invention, and electrical conductivity. (A)本発明の実施例1における金属組織を示すSEM写真であり、(B)はEPMAチャートである。(A) It is a SEM photograph which shows the metal structure in Example 1 of this invention, (B) is an EPMA chart. 本発明の実施例3における析出物の平均粒径と導電率との関係を示すグラフである。It is a graph which shows the relationship between the average particle diameter of the deposit in Example 3 of this invention, and electrical conductivity. 本発明の実施例3における熱処理時間と析出物の平均粒径との関係を示すグラフである。It is a graph which shows the relationship between the heat processing time in Example 3 of this invention, and the average particle diameter of a precipitate. 本発明の実施例4における析出物の平均粒径と導電率との関係を示すグラフである。It is a graph which shows the relationship between the average particle diameter of the precipitate in Example 4 of this invention, and electrical conductivity. 本発明の実施例5における析出物の平均粒径と導電率との関係を示すグラフである。It is a graph which shows the relationship between the average particle diameter of the deposit in Example 5 of this invention, and electrical conductivity. 本発明の実施例5における熱処理時間と析出物の平均粒径との関係を示すグラフである。It is a graph which shows the relationship between the heat processing time in Example 5 of this invention, and the average particle diameter of a precipitate. 本発明の実施例6における析出物の平均粒径と導電率との関係を示すグラフである。It is a graph which shows the relationship between the average particle diameter of the deposit in Example 6 of this invention, and electrical conductivity.

Claims (4)

200ppm以上の酸素を含有し、残部が銅と不可避不純物からなり、基地中に前記酸素が平均粒径が2μmを超える銅酸化物として分散していることを特徴とする銅材料。   A copper material containing 200 ppm or more of oxygen, the balance being made of copper and inevitable impurities, wherein the oxygen is dispersed in the matrix as a copper oxide having an average particle size exceeding 2 μm. 200ppm以上の酸素を含有し、残部が銅と不可避不純物からなる銅材料を、800℃以上の温度で焼鈍することを特徴とする銅材料の製造方法。   A method for producing a copper material, comprising annealing a copper material containing oxygen of 200 ppm or more and the balance of copper and inevitable impurities at a temperature of 800 ° C. or more. 前記焼鈍により、基地中に前記酸素を平均粒径が2μmを超える銅酸化物として分散させることを特徴とする請求項2に記載の銅材料の製造方法。   The method for producing a copper material according to claim 2, wherein the oxygen is dispersed in the matrix as a copper oxide having an average particle size exceeding 2 μm by the annealing. 焼鈍温度が800℃以上900℃未満の場合には、焼鈍時間を60分以上とし、焼鈍温度が900℃以上の場合には、焼鈍時間を15分以上とすることを特徴とする請求項2または3に記載の銅材料の製造方法。   The annealing time is 60 minutes or more when the annealing temperature is 800 ° C. or more and less than 900 ° C., and the annealing time is 15 minutes or more when the annealing temperature is 900 ° C. or more. 3. The method for producing a copper material according to 3.
JP2006354574A 2006-12-28 2006-12-28 Copper material and its production method Pending JP2008163395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006354574A JP2008163395A (en) 2006-12-28 2006-12-28 Copper material and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006354574A JP2008163395A (en) 2006-12-28 2006-12-28 Copper material and its production method

Publications (1)

Publication Number Publication Date
JP2008163395A true JP2008163395A (en) 2008-07-17

Family

ID=39693248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006354574A Pending JP2008163395A (en) 2006-12-28 2006-12-28 Copper material and its production method

Country Status (1)

Country Link
JP (1) JP2008163395A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157304A1 (en) 2008-06-23 2009-12-30 シャープ株式会社 Solar cell, photoconcentration-type photovoltaic module, and method for manufacturing solar cell
CN106917023A (en) * 2017-03-21 2017-07-04 西安交通大学 A kind of metal material of good mechanical performance and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157304A1 (en) 2008-06-23 2009-12-30 シャープ株式会社 Solar cell, photoconcentration-type photovoltaic module, and method for manufacturing solar cell
CN106917023A (en) * 2017-03-21 2017-07-04 西安交通大学 A kind of metal material of good mechanical performance and preparation method thereof
CN106917023B (en) * 2017-03-21 2019-05-24 西安交通大学 A kind of metal material of good mechanical performance and preparation method thereof

Similar Documents

Publication Publication Date Title
TWI503425B (en) Copper alloy for electronic device, manufacturing method thereof, and rolled copper alloy for electronic device
TWI431127B (en) Titanium alloy excellent in strength, electrical conductivity and bending workability and a method for manufacturing the same
JP2009007666A (en) Copper alloy for electrical and electronic equipment
WO2006006534A1 (en) Flexible printed wiring board terminal part or flexible flat cable terminal part
JP4444245B2 (en) Cu-Zn-Sn alloy for electrical and electronic equipment
JPWO2010126046A1 (en) Cu-Ni-Si-Mg alloy with improved conductivity and bendability
JP2009263784A (en) Cu-Ni-Si BASE ALLOY TO BE USED IN ELECTRICALLY CONDUCTIVE SPRING MATERIAL
JP2009144248A (en) Deposition type copper alloy material for electronic equipment, and method for production thereof
JP2007100111A (en) Cu-Ni-Sn-P-BASED COPPER ALLOY EXCELLENT IN PRESS-PUNCHING PROPERTY, AND ITS PRODUCTION METHOD
WO2009107289A1 (en) Iridium alloy excellent in hardness, processability and stain proofness
JP2007294923A (en) Manufacturing method of copper strip or copper foil having excellent strength, electric conductivity, and bendability, and electronic component using the same
KR20140002079A (en) Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device
WO2016171055A1 (en) Copper alloy material and method for producing same
JP2007039804A5 (en)
JP6074244B2 (en) Probe pin material made of an Ag-based alloy, probe pin, and probe pin manufacturing method
JP3275377B2 (en) Cu alloy sheet with fine structure for electric and electronic parts
JPWO2019194322A1 (en) Pd alloy for electric / electronic devices, Pd alloy material, probe pin and manufacturing method
JP2010031339A (en) COPPER ALLOY FOR ELECTRIC-ELECTRONIC COMPONENT HAVING EXCELLENT ELECTRIC CONDUCTIVITY AND STRENGTH, AND Sn-PLATED COPPER ALLOY MATERIAL
JP4916206B2 (en) Cu-Cr-Si alloy and Cu-Cr-Si alloy foil for electric and electronic parts
JP2017179502A (en) Copper alloy sheet excellent in strength and conductivity
JP2018154910A (en) Copper alloy sheet having excellent strength and electric conductivity
JP2016069713A (en) Copper alloy material, connector terminal and manufacturing method of copper alloy material
JP2016014165A (en) Copper alloy material, method for producing copper alloy material, lead frame and connector
JP2008163395A (en) Copper material and its production method
JP6077755B2 (en) Cu-Zn-Sn-Ni-P-based alloy and manufacturing method thereof