JP2008163140A - Method for producing olefin copolymer - Google Patents

Method for producing olefin copolymer Download PDF

Info

Publication number
JP2008163140A
JP2008163140A JP2006352924A JP2006352924A JP2008163140A JP 2008163140 A JP2008163140 A JP 2008163140A JP 2006352924 A JP2006352924 A JP 2006352924A JP 2006352924 A JP2006352924 A JP 2006352924A JP 2008163140 A JP2008163140 A JP 2008163140A
Authority
JP
Japan
Prior art keywords
group
olefin
mol
component
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006352924A
Other languages
Japanese (ja)
Other versions
JP5007116B2 (en
Inventor
Hidefumi Uchino
英史 内野
Yoshiyuki Ishihama
由之 石濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polypropylene Corp
Japan Polyethylene Corp
Original Assignee
Japan Polypropylene Corp
Japan Polyethylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polypropylene Corp, Japan Polyethylene Corp filed Critical Japan Polypropylene Corp
Priority to JP2006352924A priority Critical patent/JP5007116B2/en
Publication of JP2008163140A publication Critical patent/JP2008163140A/en
Application granted granted Critical
Publication of JP5007116B2 publication Critical patent/JP5007116B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an olefin copolymer realizing high olefin polymerization activity and having a high comonomer content with a high molecular weight and a practical polymerization temperature. <P>SOLUTION: Provided is a method for producing an olefin copolymer containing 1-20 mol% of a 4C or higher α-olefin in the copolymer by copolymerizing propylene, ethylene or a mixture thereof and a 4C or higher α-olefin using a catalyst containing a transition metal complex (A) of a structure represented by general formula (I), an ion exchangeable layered silicate (B) and an organic aluminum (C). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、オレフィン重合触媒を用いるオレフィン共重合体の製造方法に関し、さらに詳しくは、特定の非メタロセン錯体と有機アルミニウム化合物やホウ素化合物を含まない触媒成分の組み合わせにより高分子量で高コモノマー含量のオレフィン共重合体を効率よく製造する方法に関するものである。   The present invention relates to a method for producing an olefin copolymer using an olefin polymerization catalyst. More specifically, the present invention relates to an olefin having a high molecular weight and a high comonomer content by a combination of a specific nonmetallocene complex and a catalyst component containing no organoaluminum compound or boron compound. The present invention relates to a method for efficiently producing a copolymer.

ポリオレフィン系共重合体は、透明性、剛性、表面硬度、耐熱性、ヒートシール性が優れ、軽量、安価であり、そのバランスも良いため、フィルムや容器など多くの分野において広範囲に用いられている。その製造法としては、従来から、チタン化合物と有機アルミニウム化合物とからなるチタン系触媒の存在下に、オレフィンを重合させる方法が知られている。
また、ジルコノセンなどの遷移金属化合物と有機アルミニウムオキシ化合物(アルミノキサン)とからなるメタロセン系触媒の存在下にオレフィンを重合させる方法が知られており、このようなメタロセン系触媒を用いるとオレフィンを比較的高活性で重合させることが出来るとともに、分子量分布および組成分布が狭いオレフィン(共)重合体が得られることが知られている。
Polyolefin copolymers have excellent transparency, rigidity, surface hardness, heat resistance, heat sealability, light weight, low cost, and good balance, so they are widely used in many fields such as films and containers. . As a production method thereof, a method of polymerizing an olefin in the presence of a titanium catalyst composed of a titanium compound and an organoaluminum compound is conventionally known.
Also known is a method of polymerizing olefins in the presence of a metallocene catalyst comprising a transition metal compound such as zirconocene and an organoaluminum oxy compound (aluminoxane). It is known that an olefin (co) polymer having a high molecular weight distribution and a composition distribution can be obtained while being able to be polymerized with high activity.

近年、オレフィン系共重合体の物性に対する要求は多岐にわたっており、様々な物性を有するオレフィン系共重合体が求められている。また、このようなオレフィン系共重合体を製造し得るような触媒の出現が望まれている。
このような状況のもと、配位子として4位にフェニル基を持つ架橋メタロセン錯体とメチルアルミノキサンを組み合わせた触媒により高分子量のプロピレン系共重合体の製造方法(例えば、特許文献1〜2参照。)や配位子がインデンとフルオレンが架橋した構造の骨格を有するメタロセン錯体の使用が提案されている(例えば、特許文献3参照。)。しかしながら、これらの技術を使用しても得られるプロピレン共重合体の分子量は、不十分なレベルであり、また、高級オレフィンとの共重合に際しては取り込み率が低く、いまだ改良が期待されている。
一方、メタロセン錯体以外の、非メタロセン錯体におけるプロピレン系重合検討も行われており(例えば、特許文献4、非特許文献1参照。)、最近になって中心金属への配位が二つの窒素原子と炭素の三座構造をとるピリジルアミド配位子含有錯体とホウ素系共触媒との組み合わせでプロピレン系共重合を実施すると高分子量体が得られることが報告されている(例えば、特許文献5参照。)。
特開平9−176222号公報 国際公開第95/14717号パンフレット 特開平9−235313号公報 特開平8−253526号公報 国際公開第02/38628号パンフレット Macromolecular Chemistry and Physics,2001年,202巻,482頁
In recent years, there have been various demands on the physical properties of olefin copolymers, and olefin copolymers having various physical properties have been demanded. In addition, the appearance of a catalyst capable of producing such an olefin copolymer is desired.
Under such circumstances, a method for producing a high-molecular-weight propylene copolymer using a catalyst in which a bridged metallocene complex having a phenyl group at the 4-position as a ligand and methylaluminoxane is combined (see, for example, Patent Documents 1 and 2). And the use of a metallocene complex having a skeleton in which a ligand is a structure in which indene and fluorene are bridged has been proposed (see, for example, Patent Document 3). However, the molecular weight of the propylene copolymer obtained using these techniques is at an insufficient level, and the incorporation rate is low when copolymerizing with higher olefins, and improvement is still expected.
On the other hand, studies on propylene-based polymerization in nonmetallocene complexes other than metallocene complexes have also been conducted (for example, see Patent Document 4 and Non-Patent Document 1). Recently, coordination to a central metal has two nitrogen atoms. It has been reported that a propylene-based copolymerization is carried out with a combination of a pyridylamide ligand-containing complex having a tridentate structure of carbon and carbon and a boron-based cocatalyst (see, for example, Patent Document 5) .)
JP 9-176222 A International Publication No. 95/14717 Pamphlet JP-A-9-235313 JP-A-8-253526 International Publication No. 02/38628 Pamphlet Macromolecular Chemistry and Physics, 2001, 202, 482

本発明は、このような状況下、高価な有機アルミニウムオキシ化合物や有機ホウ素化合物を使用しなくても高いオレフィン重合活性を発現し、かつ、さらに実用的な重合温度で高い分子量で高コモノマー含量を有するオレフィン共重合体の製造方法を提供することを目的とするものである。   Under such circumstances, the present invention exhibits a high olefin polymerization activity without using an expensive organoaluminum oxy compound or organoboron compound, and has a high comonomer content with a high molecular weight at a practical polymerization temperature. It aims at providing the manufacturing method of the olefin copolymer which has.

本発明者等は、理想的なオレフィン重合用触媒成分について鋭意検討した結果、特定の非メタロセン錯体と特定のイオン交換性層状珪酸塩を組み合わせた触媒成分を使用することにより、高価な有機アルミニウムオキシ化合物や有機ホウ素化合物を使用しなくても高いオレフィン重合活性を発現し、かつ、さらに実用的な重合温度で高い分子量で高コモノマー含量を有するオレフィン共重合体の製造が可能になることを見出し、本発明を完成させた。   As a result of intensive studies on an ideal olefin polymerization catalyst component, the present inventors have used a catalyst component that combines a specific nonmetallocene complex and a specific ion-exchanged layered silicate, so that expensive organoaluminum oxy It has been found that the production of an olefin copolymer having a high comonomer content with a high molecular weight can be produced at a practical polymerization temperature without using a compound or an organic boron compound. The present invention has been completed.

すなわち、本発明の第1の発明によれば、少なくとも下記成分[A]、[B]及び[C]を含む触媒を使用して、プロピレン、エチレンあるいはその混合物と炭素数4以上のα−オレフィンとを共重合させて、共重合体中に炭素数4以上のα−オレフィンが1〜20モル%を含まれるオレフィン共重合体を得ることを特徴とするオレフィン共重合体の製造方法が提供される。
成分[A]:下記構造の遷移金属錯体
That is, according to the first invention of the present invention, using a catalyst containing at least the following components [A], [B] and [C], propylene, ethylene or a mixture thereof and an α-olefin having 4 or more carbon atoms. Is obtained, and an olefin copolymer containing 1 to 20 mol% of α-olefin having 4 or more carbon atoms in the copolymer is obtained. The
Component [A]: transition metal complex having the following structure

Figure 2008163140
(式(I)中、Mはチタン、ジルコニウム、ハフニウムから選ばれる原子を示し、複数存在してもよい各R〜Rは互いに同一でも異なっていてもよく、ハロゲン、炭素数1〜30の炭化水素基、炭素数1〜30のハロゲン、酸素、窒素、ホウ素、イオウ、リン、ケイ素又はゲルマニウム含有炭化水素基を示し、これらの置換基のうちの2個以上が互いに連結して環を形成してもよい。a、b、c、dは、0以上の整数を示し、a、dは5以下、bは3以下、cは4以下である。X及びYは、各々水素原子、ハロゲン原子、ケイ素もしくはハロゲンを含んでもよい炭素数1〜10の炭化水素基、あるいは酸素原子及び窒素原子よりなる群から選択されるヘテロ原子を有していてもよい炭素数1〜10の炭化水素基を示す。)
成分[B]:イオン交換性層状珪酸塩
成分[C]:有機アルミニウム
Figure 2008163140
(In formula (I), M represents an atom selected from titanium, zirconium and hafnium, and a plurality of R 1 to R 4 which may be present may be the same as or different from each other, and may be halogen, C 1-30. A hydrocarbon group of 1 to 30 halogen, oxygen, nitrogen, boron, sulfur, phosphorus, silicon or germanium-containing hydrocarbon group, wherein two or more of these substituents are linked to each other to form a ring A, b, c and d each represent an integer of 0 or more, a and d are 5 or less, b is 3 or less, and c is 4 or less, X and Y are each a hydrogen atom, A hydrocarbon group having 1 to 10 carbon atoms which may contain a halogen atom, silicon or halogen, or a hydrocarbon having 1 to 10 carbon atoms which may have a heteroatom selected from the group consisting of an oxygen atom and a nitrogen atom Group.)
Component [B]: Ion exchange layered silicate component [C]: Organoaluminum

また、本発明の第2の発明によれば、第1の発明において、成分[B]が化学処理されたイオン交換性層状珪酸塩であることを特徴とするオレフィン共重合体の製造方法が提供される。   According to a second aspect of the present invention, there is provided the method for producing an olefin copolymer according to the first aspect, wherein the component [B] is a chemically treated ion-exchanged layered silicate. Is done.

また、本発明の第3の発明によれば、第1又は2の発明において、成分[B]がスメクタイト族のイオン交換性層状珪酸塩であることを特徴とするオレフィン共重合体の製造方法が提供される。   According to a third aspect of the present invention, there is provided the method for producing an olefin copolymer according to the first or second aspect, wherein the component [B] is a smectite group ion-exchange layered silicate. Provided.

また、本発明の第4の発明によれば、第1〜3のいずれかの発明において、成分[B]は、pKaが−8.2以下の酸点を、1g当たり0.05mmol以上含有するイオン交換性層状珪酸塩であることを特徴とするオレフィン共重合体の製造方法が提供される。   According to the fourth invention of the present invention, in any one of the first to third inventions, the component [B] contains 0.05 mmol or more per 1 g of acid sites having a pKa of −8.2 or less. Provided is a method for producing an olefin copolymer, which is an ion-exchange layered silicate.

また、本発明の第5の発明によれば、第1〜4のいずれかの発明において、成分[A]のMがハフニウムであることを特徴とするオレフィン共重合体の製造方法が提供される。   According to a fifth aspect of the present invention, there is provided the method for producing an olefin copolymer according to any one of the first to fourth aspects, wherein M of component [A] is hafnium. .

また、本発明の第6の発明によれば、第1〜5のいずれかの発明において、共重合体の成分として、エチレンが80〜99mol%、炭素数4以上のα−オレフィンが1〜20mol%含まれることを特徴とするオレフィン共重合体の製造方法が提供される。   According to a sixth invention of the present invention, in any one of the first to fifth inventions, 80 to 99 mol% of ethylene and 1 to 20 mol of an α-olefin having 4 or more carbon atoms are used as components of the copolymer. %, An olefin copolymer production method is provided.

また、本発明の第7の発明によれば、第1〜5のいずれかの発明において、共重合体の成分として、プロピレンが80〜99mol%、炭素数4以上のα−オレフィンが1〜20mol%含まれることを特徴とするオレフィン共重合体の製造方法が提供される。   According to the seventh invention of the present invention, in any one of the first to fifth inventions, as a component of the copolymer, propylene is 80 to 99 mol%, and an α-olefin having 4 or more carbon atoms is 1 to 20 mol. %, An olefin copolymer production method is provided.

本発明のオレフィン系共重合体の製造方法は、特定の非メタロセン錯体と特定のイオン交換性層状珪酸塩を組み合わせた触媒成分を使用することにより、高価な有機アルミニウムオキシ化合物や有機ホウ素化合物を使用しなくても高い重合活性を発現し、かつ、実用的な重合温度で高い分子量、高いコモノマー含量を有するオレフィン共重合体の製造を可能にできる。   The method for producing an olefin copolymer of the present invention uses an expensive organoaluminum oxy compound or organoboron compound by using a catalyst component in which a specific nonmetallocene complex and a specific ion-exchange layered silicate are combined. Even if not, it is possible to produce an olefin copolymer that exhibits high polymerization activity and has a high molecular weight and a high comonomer content at a practical polymerization temperature.

本発明は、特定の遷移金属錯体(成分[A])、イオン交換性層状珪酸塩(成分[B])、有機アルミニウム(成分[C])を含む触媒を使用したプロピレン、エチレン、α−オレフィン共重合体の製造方法である。以下、本発明を詳細に説明する。   The present invention relates to propylene, ethylene, and α-olefin using a catalyst containing a specific transition metal complex (component [A]), an ion-exchange layered silicate (component [B]), and organoaluminum (component [C]). It is a manufacturing method of a copolymer. Hereinafter, the present invention will be described in detail.

1.成分[A]
本発明で用いる触媒における、成分[A]は、下記一般式(I)で表される非メタロセン錯体化合物である。
1. Ingredient [A]
Component [A] in the catalyst used in the present invention is a nonmetallocene complex compound represented by the following general formula (I).

Figure 2008163140
Figure 2008163140

上記一般式(I)で表される非メタロセン錯体化合物において、Mはチタン、ジルコニウム、ハフニウムから選ばれる原子を示し、好ましくはジルコニウム、ハフニウムであり、特に好ましくはハフニウムである。
複数存在してもよいR〜Rは互いに同一でも異なっていてもよく、ハロゲン、炭素数1〜30の炭化水素基、炭素数1〜30のハロゲン、酸素、窒素、ホウ素、イオウ、リン、ケイ素又はゲルマニウム含有炭化水素基を示し、これらの置換基のうちの2個以上が互いに連結して環を形成してもよい。a、b、c、dは、0以上の整数を示し、a、dは5以下、bは3以下、cは4以下である。
ハロゲンは、好ましくはフッ素、塩素である。
炭素数1〜30の炭化水素基は、メチル、エチル、n−プロピル、i−プロピル、n−ブチル、イソブチル、sec−ブチル、tert−ブチル、ネオペンチル、n−ヘキシルなどの炭素原子数が1〜30、好ましくは1〜20の直鎖状または分岐状のアルキル基、ビニル、アリル、i−プロペニルなどの炭素原子数が2〜30、好ましくは2〜20の直鎖状または分岐状のアルケニル基、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、アダマンチルなどの炭素原子数が3〜30、好ましくは3〜20の環状飽和炭化水素基、フェニル、ベンジル、ナフチル、ビフェニリル、ターフェニリル、フェナントリル、アントリルなどの炭素原子数が6〜30、好ましくは6〜20のアリール基、メチルフェニル、i−プロピルフェニル、t−ブチルフェニル、ジメチルフェニル、ジ−i−プロピルフェニル、ジ−t−ブチルフェニル、トリメチルフェニル、トリ−i−プロピルフェニル、トリ−t−ブチルフェニルなどのアルキル置換アリール基などが挙げられる。
In the nonmetallocene complex compound represented by the general formula (I), M represents an atom selected from titanium, zirconium, and hafnium, preferably zirconium and hafnium, and particularly preferably hafnium.
A plurality of R 1 to R 4 may be the same as or different from each other, and may be halogen, a hydrocarbon group having 1 to 30 carbon atoms, a halogen having 1 to 30 carbon atoms, oxygen, nitrogen, boron, sulfur, phosphorus , Represents a silicon- or germanium-containing hydrocarbon group, and two or more of these substituents may be linked to each other to form a ring. a, b, c and d are integers of 0 or more, a and d are 5 or less, b is 3 or less, and c is 4 or less.
Halogen is preferably fluorine or chlorine.
The hydrocarbon group having 1 to 30 carbon atoms has 1 to 1 carbon atoms such as methyl, ethyl, n-propyl, i-propyl, n-butyl, isobutyl, sec-butyl, tert-butyl, neopentyl, n-hexyl and the like. 30 or preferably 1 to 20 linear or branched alkyl groups, vinyl, allyl, i-propenyl and the like, which have 2 to 30 carbon atoms, preferably 2 to 20 linear or branched alkenyl groups , Cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, adamantyl and the like, a cyclic saturated hydrocarbon group having 3 to 30 carbon atoms, preferably 3-20 carbon atoms, phenyl, benzyl, naphthyl, biphenylyl, terphenylyl, phenanthryl, anthryl and the like carbon atoms An aryl group having 6-30, preferably 6-20, methylphenyl, i-propyl Examples include alkyl-substituted aryl groups such as phenyl, t-butylphenyl, dimethylphenyl, di-i-propylphenyl, di-t-butylphenyl, trimethylphenyl, tri-i-propylphenyl, and tri-t-butylphenyl. .

上記炭化水素基は、水素原子がハロゲンで置換されていてもよく、例えば、トリフルオロメチル、ペンタフルオロフェニル、クロロフェニルなどの炭素原子数1〜30、好ましくは1〜20のハロゲン化炭化水素基が挙げられる。
また、上記炭化水素基は、他の炭化水素基で置換されていてもよく、例えばベンジル、クミルなどのアリール基置換アルキル基などが挙げられる。
さらにまた、上記炭化水素基は、アルコキシ基、アリーロキシ基、エステル基、エーテル基、アシル基、カルボキシル基、カルボナート基、ヒドロキシ基等の酸素含有基、アミノ基、イミノ基、アミド基、イミド基、ヒドラジノ基、ヒドラゾノ基、ニトロ基、ニトロソ基、シアノ基、イソシアノ基、シアン酸エステル基、アミジノ基、ジアゾ基、アミノ基がアンモニウム塩となったものなどの窒素含有基、ボランジイル基、ボラントリイル基、ジボラニル基等のホウ素含有基、メルカプト基、チオエステル基、ジチオエステル基、アルキルチオ基、アリールチオ基、チオアシル基、チオエーテル基、チオシアン酸エステル基、イソチオシアン酸エステル基、スルホンエステル基、スルホンアミド基、チオカルボキシル基、ジチオカルボキシル基、スルホ基、スルホニル基、スルフィニル基、スルフェニル基などのイオウ含有基、ホスフィド基、ホスホリル基、チオホスホリル基、ホスファト基などのリン含有基、ヘテロ環式化合物残基、ケイ素含有基、又は、ゲルマニウム含有基等で置換されていてもよい。
In the hydrocarbon group, a hydrogen atom may be substituted with a halogen. For example, a halogenated hydrocarbon group having 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms such as trifluoromethyl, pentafluorophenyl, and chlorophenyl. Can be mentioned.
The hydrocarbon group may be substituted with another hydrocarbon group, and examples thereof include aryl group-substituted alkyl groups such as benzyl and cumyl.
Furthermore, the hydrocarbon group includes an alkoxy group, an aryloxy group, an ester group, an ether group, an acyl group, a carboxyl group, a carbonate group, a hydroxy group and other oxygen-containing groups, an amino group, an imino group, an amide group, an imide group, Nitrogen-containing groups such as hydrazino group, hydrazono group, nitro group, nitroso group, cyano group, isocyano group, cyanate ester group, amidino group, diazo group, amino group converted to ammonium salt, boranediyl group, boranetriyl group, Boron-containing groups such as diboranyl group, mercapto group, thioester group, dithioester group, alkylthio group, arylthio group, thioacyl group, thioether group, thiocyanate group, isothiocyanate group, sulfone ester group, sulfonamide group, thiocarboxyl Group, dithiocarboxyl A sulfur-containing group such as a sulfo group, a sulfonyl group, a sulfinyl group, and a sulfenyl group, a phosphorus-containing group such as a phosphide group, a phosphoryl group, a thiophosphoryl group, and a phosphato group, a heterocyclic compound residue, a silicon-containing group, or It may be substituted with a germanium-containing group or the like.

これらのうち、特に、メチル、エチル、n−プロピル、i−プロピル、n−ブチル、i−ブチル、sec−ブチル、t−ブチル、ネオペンチル、n−ヘキシルなどの炭素原子数1〜30、好ましくは1〜20の直鎖状または分岐状のアルキル基、フェニル、ナフチル、ビフェニリル、t−フェニリル、フェナントリル、アントリルなどの炭素原子数6〜30、好ましくは6〜20のアリール基、これらのアリール基にハロゲン原子、炭素原子数1〜30、好ましくは1〜20のアルキル基またはアルコキシ基、炭素原子数6〜30、好ましくは6〜20のアリール基またはアリーロキシ基などの置換基が1〜5個置換した置換アリール基などが好ましい。   Of these, in particular, 1 to 30 carbon atoms such as methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, t-butyl, neopentyl, n-hexyl, preferably 1 to 20 linear or branched alkyl groups, phenyl, naphthyl, biphenylyl, t-phenylyl, phenanthryl, anthryl and the like having 6 to 30 carbon atoms, preferably 6 to 20 aryl groups, and these aryl groups 1 to 5 substituents such as halogen atom, alkyl group or alkoxy group having 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms, aryl group or aryloxy group having 6 to 30 carbon atoms, preferably 6 to 20 carbon atoms are substituted. And substituted aryl groups are preferred.

複数存在してもよい各々のR〜Rは、これらのうちの2個以上の基、好ましくは隣接する基が互いに連結して環を形成することもできる。このような環としては、例えばベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、アセナフテン環等の縮環基、および上記縮環基上の水素原子がメチル、エチル、プロピル、ブチルなどのアルキル基で置換された基などが挙げられる。 Each of R 1 to R 4 , which may be present in plural, can also form a ring by linking two or more of these groups, preferably adjacent groups. Examples of such a ring include a condensed group such as a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, and an acenaphthene ring, and a hydrogen atom on the condensed group is an alkyl group such as methyl, ethyl, propyl, or butyl. Examples include substituted groups.

式(I)中のR〜Rが示す酸素含有基は、基中に酸素原子を1〜5個含有する基であり、具体的には、例えばアルコキシ基、アリーロキシ基、エステル基、エーテル基、アシル基、カルボキシル基、カルボナート基、ヒドロキシ基、ペルオキシ基、カルボン酸無水物基などが挙げられ、アルコキシ基、アリーロキシ基、アセトキシ基、カルボニル基、ヒドロキシ基などが好ましい。なお酸素含有基が炭素原子を含む場合は、炭素原子数が1〜30、好ましくは1〜20の範囲にあることが望ましい。具体的には、アルコキシ基としては、メトキシ、エトキシ、n−プロポキシ、イソプロポキシ、n−ブトキシ、イソブトキシ、tert−ブトキシ等が、アリーロキシ基としては、フェノキシ、2,6−ジメチルフェノキシ、2,4,6−トリメチルフェノキシ等が、アシル基としては、ホルミル、アセチル、ベンゾイル、p−クロロベンゾイル、p−メトキシベンソイル等が、エステル基としては、アセチルオキシ、ベンゾイルオキシ、メトキシカルボニル、フェノキシカルボニル、p−クロロフェノキシカルボニル等が好ましく例示される。 The oxygen-containing group represented by R 1 to R 4 in the formula (I) is a group containing 1 to 5 oxygen atoms in the group. Specifically, for example, an alkoxy group, an aryloxy group, an ester group, an ether Group, acyl group, carboxyl group, carbonate group, hydroxy group, peroxy group, carboxylic anhydride group and the like, and alkoxy group, aryloxy group, acetoxy group, carbonyl group, hydroxy group and the like are preferable. When the oxygen-containing group contains a carbon atom, the number of carbon atoms is preferably in the range of 1 to 30, preferably 1 to 20. Specifically, the alkoxy group includes methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, tert-butoxy and the like, and the aryloxy group includes phenoxy, 2,6-dimethylphenoxy, 2,4 , 6-trimethylphenoxy and the like, as acyl groups, formyl, acetyl, benzoyl, p-chlorobenzoyl, p-methoxybenzoyl and the like, and as ester groups, acetyloxy, benzoyloxy, methoxycarbonyl, phenoxycarbonyl, p Preferred examples include -chlorophenoxycarbonyl and the like.

式(I)中のR〜Rが示す窒素含有基は、基中に窒素原子を1〜5個含有する基であり、具体的には、例えばアミノ基、イミノ基、アミド基、イミド基、ヒドラジノ基、ヒドラゾノ基、ニトロ基、ニトロソ基、シアノ基、イソシアノ基、シアン酸エステル基、アミジノ基、ジアゾ基、アミノ基がアンモニウム塩となったものなどが挙げられ、アミノ基、イミノ基、アミド基、イミド基、ニトロ基、シアノ基が好ましい。なお、窒素含有基が炭素原子を含む場合は、炭素原子数が1〜30、好ましくは1〜20の範囲にあることが望ましい。具体的には、アミノ基としては、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジプロピルアミノ、ジブチルアミノ、ジシクロヘキシルアミノなどのアルキルアミノ基、フェニルアミノ、ジフェニルアミノ、ジトリルアミノ、ジナフチルアミノ、メチルフェニルアミノなどのアリールアミノ基またはアルキルアリールアミノ基等が、イミノ基としては、メチルイミノ、エチルイミノ、プロピルイミノ、ブチルイミノ、フェニルイミノ等が、アミド基としては、アセトアミド、N−メチルアセトアミド、N−メチルベンズアミド等が、イミド基としては、アセトイミド、ベンズイミド等が好ましく例示される。 The nitrogen-containing group represented by R 1 to R 4 in the formula (I) is a group containing 1 to 5 nitrogen atoms in the group, and specifically includes, for example, an amino group, an imino group, an amide group, an imide. Group, hydrazino group, hydrazono group, nitro group, nitroso group, cyano group, isocyano group, cyanate ester group, amidino group, diazo group, amino group converted to ammonium salt, amino group, imino group , An amide group, an imide group, a nitro group, and a cyano group are preferable. In addition, when a nitrogen-containing group contains a carbon atom, it is desirable that the number of carbon atoms is in the range of 1 to 30, preferably 1 to 20. Specifically, examples of the amino group include methylamino, dimethylamino, diethylamino, dipropylamino, dibutylamino, dicyclohexylamino and other alkylamino groups, phenylamino, diphenylamino, ditolylamino, dinaphthylamino, methylphenylamino and the like. An arylamino group or an alkylarylamino group is an imino group such as methylimino, ethylimino, propylimino, butylimino, phenylimino, etc., and an amide group is acetamido, N-methylacetamide, N-methylbenzamide or the like Preferred examples of the group include acetoimide and benzimide.

式(I)中のR〜Rが示すホウ素含有基は、基中に1〜5個のホウ素原子を含む基であり、具体的には、例えばボランジイル基、ボラントリイル基、ジボラニル基などのホウ素含有基が挙げられ、炭素原子数が1〜30、好ましくは1〜20の炭化水素基が1〜2個置換したボリル基または1〜3個置換したボレート基が好ましい。炭化水素基が2個以上置換している場合には、各炭化水素は同一でも異なっていてもよい。 The boron-containing group represented by R 1 to R 4 in the formula (I) is a group containing 1 to 5 boron atoms in the group. Specifically, for example, a boranediyl group, a boranetriyl group, a diboranyl group, etc. Examples thereof include boron-containing groups. Boryl groups substituted with 1 to 2 hydrocarbon groups having 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms, or borate groups substituted with 1 to 3 carbon atoms are preferred. When two or more hydrocarbon groups are substituted, each hydrocarbon may be the same or different.

式(I)中のR〜Rが示すイオウ含有基は、基中にイオウ原子を1〜5個含有する基であり、具体的には、例えばメルカプト基、チオエステル基、ジチオエステル基、アルキルチオ基、アリールチオ基、チオアシル基、チオエーテル基、チオシアン酸エステル基、イソチオシアン酸エステル基、スルホンエステル基、スルホンアミド基、チオカルボキシル基、ジチオカルボキシル基、スルホ基、スルホニル基、スルフィニル基、スルフェニル基、スルフォネート基、スルフィネート基などが挙げられ、スルフォネート基、スルフィネート基、アルキルチオ基、アリールチオ基が好ましい。なおイオウ含有基が炭素原子を含む場合は、炭素原子数が1〜30、好ましくは1〜20の範囲にあることが望ましい。具体的には、アルキルチオ基としては、メチルチオ、エチルチオなどが、アリールチオ基としては、フェニルチオ、メチルフェニルチオ、ナルチルチオ等が、チオエステル基としては、アセチルチオ、ベンゾイルチオ、メチルチオカルボニル、フェニルチオカルボニル等が、スルホンエステル基としては、スルホン酸メチル、スルホン酸エチル、スルホン酸フェニル等が、スルホンアミド基としては、フェニルスルホンアミド、N−メチルスルホンアミド、N−メチル−p−トルエンスルホンアミド等が好ましく挙げられる。さらに、スルフォネート基としては、メチルスルフォネート、トリフルオロメタンスルフォネート、フェニルスルフォネート、ベンジルスルフォネート、p−トルエンスルフォネート、トリメチルベンゼンスルフォネート、トリイソブチルベンゼンスルフォネート、p−クロルベンゼンスルフォネート、ペンタフルオロベンゼンスルフォネート等が、スルフィネート基としてはメチルスルフィネート、フェニルスルフィネート、ベンジルスルフィネート、p−トルエンスルフィネート、トリメチルベンゼンスルフィネート、ペンタフルオロベンゼンスルフィネート等が挙げられる。 The sulfur-containing group represented by R 1 to R 4 in formula (I) is a group containing 1 to 5 sulfur atoms in the group. Specifically, for example, a mercapto group, a thioester group, a dithioester group, Alkylthio group, arylthio group, thioacyl group, thioether group, thiocyanate group, isothiocyanate group, sulfone ester group, sulfonamide group, thiocarboxyl group, dithiocarboxyl group, sulfo group, sulfonyl group, sulfinyl group, sulfenyl group , Sulfonate groups, sulfinate groups, and the like, and sulfonate groups, sulfinate groups, alkylthio groups, and arylthio groups are preferable. In addition, when a sulfur containing group contains a carbon atom, it is desirable that the number of carbon atoms is in the range of 1 to 30, preferably 1 to 20. Specifically, as the alkylthio group, methylthio, ethylthio and the like, as the arylthio group, phenylthio, methylphenylthio, naltylthio and the like, as the thioester group, acetylthio, benzoylthio, methylthiocarbonyl, phenylthiocarbonyl and the like, Preferred examples of the sulfone ester group include methyl sulfonate, ethyl sulfonate, and phenyl sulfonate, and preferred examples of the sulfonamide group include phenylsulfonamide, N-methylsulfonamide, and N-methyl-p-toluenesulfonamide. . Further, as the sulfonate group, methyl sulfonate, trifluoromethane sulfonate, phenyl sulfonate, benzyl sulfonate, p-toluene sulfonate, trimethyl benzene sulfonate, triisobutyl benzene sulfonate, p- Chlorbenzene sulfonate, pentafluorobenzene sulfonate, etc., but the sulfinate groups are methyl sulfinate, phenyl sulfinate, benzyl sulfinate, p-toluene sulfinate, trimethylbenzene sulfinate, pentafluorobenzene And sulfinates.

式(I)中のR〜Rが示すリン含有基は、基中に1〜5のリン原子を含有する基であり、具体的には、例えばホスフィノ基、ホスホリル基、ホスホチオイル基、ホスホノ基などが挙げられる。具体的には、ホスフィノ基としては、ジメチルフォスフィノ、ジフェニルフォスフィノ等が挙げられ、ホスホリル基としては、メチルホスホリル、イソプロピルホスホリル、フェニルホスホリル等が挙げられ、ホスホチオイル基としては、メチルホスホチオイル、イソプロピルホスホチオイル、フェニルホスホチオイル等が挙げられ、ホスホノ基としては、リン酸ジメチル、リン酸ジイソプロピル、リン酸ジフェニル等のリン酸エステル基、リン酸基等が挙げられる。 The phosphorus-containing group represented by R 1 to R 4 in the formula (I) is a group containing 1 to 5 phosphorus atoms in the group, and specifically includes, for example, a phosphino group, a phosphoryl group, a phosphothioyl group, a phosphono group. Groups and the like. Specifically, examples of the phosphino group include dimethylphosphino and diphenylphosphino, examples of the phosphoryl group include methylphosphoryl, isopropylphosphoryl, and phenylphosphoryl. Examples of the phosphothioyl group include methylphosphothioyl, Examples thereof include isopropyl phosphothioyl and phenyl phosphothioyl, and examples of the phosphono group include a phosphate group such as dimethyl phosphate, diisopropyl phosphate, and diphenyl phosphate, and a phosphate group.

式(I)中のR〜Rが示すケイ素含有基は、基中に1〜5のケイ素原子を含有する基であり、例えば炭化水素置換シリル基などのシリル基、炭化水素置換シロキシ基などのシロキシ基が挙げられる。具体的には、メチルシリル、ジメチルシリル、トリメチルシリル、エチルシリル、ジエチルシリル、トリエチルシリル、ジフェニルメチルシリル、トリフェニルシリル、ジメチルフェニルシリル、ジメチル−t−ブチルシリル、ジメチル(ペンタフルオロフェニル)シリルなどが挙げられる。これらの中では、メチルシリル、ジメチルシリル、トリメチルシリル、エチルシリル、ジエチルシリル、トリエチルシリル、ジメチルフェニルシリル、トリフェニルシリルなどが好ましく、特にトリメチルシリル、トリエチルシリル、トリフェニルシリル、ジメチルフェニルシリルが好ましい。炭化水素置換シロキシ基として具体的には、トリメチルシロキシなどが挙げられる。なおケイ素含有基が炭素原子を含む場合は、炭素原子数が1〜30、好ましくは1〜20の範囲にあることが望ましい。 The silicon-containing group represented by R 1 to R 4 in formula (I) is a group containing 1 to 5 silicon atoms in the group. For example, a silyl group such as a hydrocarbon-substituted silyl group, a hydrocarbon-substituted siloxy group And a siloxy group. Specific examples include methylsilyl, dimethylsilyl, trimethylsilyl, ethylsilyl, diethylsilyl, triethylsilyl, diphenylmethylsilyl, triphenylsilyl, dimethylphenylsilyl, dimethyl-t-butylsilyl, dimethyl (pentafluorophenyl) silyl and the like. Among these, methylsilyl, dimethylsilyl, trimethylsilyl, ethylsilyl, diethylsilyl, triethylsilyl, dimethylphenylsilyl, triphenylsilyl and the like are preferable, and trimethylsilyl, triethylsilyl, triphenylsilyl and dimethylphenylsilyl are particularly preferable. Specific examples of the hydrocarbon-substituted siloxy group include trimethylsiloxy and the like. In addition, when a silicon containing group contains a carbon atom, it is desirable that the number of carbon atoms is in the range of 1 to 30, preferably 1 to 20.

式(I)中のR〜Rが示すゲルマニウム含有基としては、上記ケイ素含有基のケイ素をゲルマニウムに置換したものが挙げられる。 Examples of the germanium-containing group represented by R 1 to R 4 in formula (I) include those in which silicon in the silicon-containing group is replaced with germanium.

の特に好ましい例としては、骨格を成すフェニル基において2位と6位の両方に炭素数1〜6のアルキル基を有すること、さらに好ましい例は、そのアルキル基がイソプロピル基、イソブチル基である。 Particularly preferred examples of R 1 include an alkyl group having 1 to 6 carbon atoms in both the 2-position and the 6-position in the phenyl group constituting the skeleton, and more preferred examples thereof include an isopropyl group and an isobutyl group. is there.

の特に好ましい例としては、骨格を成すフェニル基上に、置換基の無い構造(水素のみ)である。 A particularly preferred example of R 2 is a structure having no substituent (hydrogen only) on the phenyl group constituting the skeleton.

の特に好ましい例としては、R置換基を持つフェニル基を下記一般式(II)で示した場合に、RとRの両方に置換基を有し、両者が連結して環を形成しても良い炭素数1〜15炭化水素基、さらに好ましくは両者が連結してベンゼン環を形成した構造である。 Particularly preferred examples of R 3 include, in the case of a phenyl group having R 3 substituents in the following formula (II), substituted on both R 5 and R 6, both linked ring Is a hydrocarbon group having 1 to 15 carbon atoms that may form a benzene ring, and more preferably a structure in which both are connected to form a benzene ring.

Figure 2008163140
Figure 2008163140

の特に好ましい例としては、置換基の無い構造(水素のみ)、オルト位に炭素数1〜10のメチル、エチル、イソプロピル等のアルキル基、フッ素、塩素等のハロゲン、フェニル、メチルフェニル、フルオロフェニル等のアリール基が例示される。 Particularly preferred examples of R 4 include a structure having no substituent (hydrogen only), an alkyl group having 1 to 10 carbon atoms in the ortho position, such as an alkyl group such as methyl, ethyl and isopropyl, halogen such as fluorine and chlorine, phenyl, methylphenyl, An aryl group such as fluorophenyl is exemplified.

X及びYは、各々水素原子、ハロゲン原子、ケイ素もしくはハロゲンを含んでもよい炭素数1〜10の炭化水素基、あるいは酸素原子及び窒素原子よりなる群から選択されるヘテロ原子を有していてもよい炭素数1〜10の炭化水素基であり、好ましくは、ハロゲン原子、炭素数1〜6の炭化水素である。具体的には、塩素やメチル、ベンジル等が例示される。   X and Y may each have a hydrogen atom, a halogen atom, silicon or a hydrocarbon group having 1 to 10 carbon atoms which may contain halogen, or a heteroatom selected from the group consisting of an oxygen atom and a nitrogen atom. It is a good C1-C10 hydrocarbon group, Preferably, it is a halogen atom and a C1-C6 hydrocarbon. Specifically, chlorine, methyl, benzyl and the like are exemplified.

以下に、上記一般式(I)で表される遷移金属化合物の具体的な例を示す。   Specific examples of the transition metal compound represented by the general formula (I) are shown below.

Figure 2008163140
Figure 2008163140

2.成分[B]
本発明で用いる触媒における、成分[B]は、イオン交換性層状珪酸塩である。
(1)イオン交換性層状珪酸塩の種類
本発明において、イオン交換性層状珪酸塩(以下、単に珪酸塩と略記することもある。)とは、イオン結合などによって構成される面が互いに結合力で平行に積み重なった結晶構造を有し、且つ、含有されるイオンが交換可能である珪酸塩化合物をいう。大部分の珪酸塩は、天然には主に粘土鉱物の主成分として産出され、水中に分散/膨潤させ、沈降速度等の違いにより精製することが一般的であるが、完全に除去することが困難であることがあり、イオン交換性層状珪酸塩以外の夾雑物(石英、クリストバライト等)を含んでいることが多いが、それらを含んでもよい。それら夾雑物の種類、量、粒子径、結晶性、分散状態によっては純粋な珪酸塩以上に好ましいことがあり、そのような複合体も、成分[B]に含まれる。
尚、本発明の原料とは、後述する本発明の化学処理を行う前段階の珪酸塩をさす。また、本発明で使用する珪酸塩は、天然産のものに限らず、人工合成物であってもよい。
2. Ingredient [B]
Component [B] in the catalyst used in the present invention is an ion-exchange layered silicate.
(1) Types of ion-exchange layered silicates In the present invention, ion-exchange layered silicates (hereinafter sometimes abbreviated simply as silicates) are surfaces in which ionic bonds and the like are bonded to each other. A silicate compound having a crystal structure stacked in parallel and having exchangeable ions. Most silicates are naturally produced mainly as the main component of clay minerals, and are generally dispersed / swelled in water and purified by differences in sedimentation rate, etc., but they can be completely removed. Although it may be difficult and contains impurities (quartz, cristobalite, etc.) other than ion-exchangeable layered silicate, they may also be included. Depending on the type, amount, particle diameter, crystallinity, and dispersion state of these impurities, it may be preferable to pure silicate, and such a complex is also included in component [B].
In addition, the raw material of this invention refers to the silicate of the previous stage which performs the chemical treatment of this invention mentioned later. Further, the silicate used in the present invention is not limited to a natural product, and may be an artificial synthetic product.

イオン交換性層状珪酸塩の具体例としては、例えば、「粘土ハンドブック」第二版第二刷(日本粘土学会編、技報堂出版、1994年)等に記載される、1:1型構造や2:1型構造をもつ粘土鉱物に関係のある層状珪酸塩において、その一部がイオン交換性層状珪酸塩として挙げられる。   Specific examples of the ion-exchange layered silicate include, for example, a 1: 1 type structure described in “Clay Handbook”, second edition, second edition (edited by the Japan Clay Society, Gihodo Publishing, 1994), and the like: In the layered silicate related to the clay mineral having the type 1 structure, a part of the layered silicate is mentioned as the ion-exchangeable layered silicate.

その構造は、2:1型構造と呼ばれる、2層の四面体シートが1層の八面体シートを挟み込んでいる2:1層構造の積み重なりを基本とする構造で、具体例としては、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スチーブンサイト等のスメクタイト族珪酸塩、バーミキュライト等のバーミキュライト族珪酸塩、雲母、イライト、セリサイト、海緑石等の雲母族珪酸塩、アタパルジャイト、セピオライト、パリゴルスカイト、ベントナイト、緑泥石群等が挙げられる。これらは混合層を形成していてもよい。
これらの中では、主成分がスメクタイト族珪酸塩、雲母族珪酸塩が好ましい。より好ましくは、主成分がスメクタイト族珪酸塩であり、さらに好ましくは、主成分がモンモリロナイトである。
The structure is a structure based on a stack of 2: 1 layers called a 2: 1 type structure, in which two layers of tetrahedral sheets sandwich one layer of octahedron sheets. Specific examples include montmorillonite, Smectite silicates such as beidellite, nontronite, saponite, hectorite, stevensite, vermiculite silicates such as vermiculite, mica silicates such as mica, illite, sericite, sea green stone, attapulgite, sepiolite, palygorskite , Bentonite, chlorite group and the like. These may form a mixed layer.
Among these, the main component is preferably smectite group silicate or mica group silicate. More preferably, the main component is a smectite group silicate, and still more preferably, the main component is montmorillonite.

層間カチオン(イオン交換性層状珪酸塩の層間に含有される陽イオン)の種類としては、特に限定されないが、主成分として、リチウム、ナトリウム等の周期律表第1族のアルカリ金属、カルシウム、マグネシウム等の周期律表第2族のアルカリ土類金属、あるいは鉄、コバルト、銅、ニッケル、亜鉛、ルテニウム、ロジウム、パラジウム、銀、イリジウム、白金、金等の遷移金属などが、工業原料として比較的容易に入手可能である点で好ましい。   The type of interlayer cations (cations contained between the layers of the ion-exchange layered silicate) is not particularly limited, but as a main component, alkali metals of the first group of the periodic table such as lithium and sodium, calcium and magnesium Alkali earth metals of Group 2 of the periodic table, etc., or transition metals such as iron, cobalt, copper, nickel, zinc, ruthenium, rhodium, palladium, silver, iridium, platinum, gold, etc. are relatively It is preferable in that it can be easily obtained.

(2)イオン交換性層状珪酸塩の造粒
前記イオン交換性層状珪酸塩は、乾燥状態で用いてもよく、液体にスラリー化した状態で用いてもよい。また、イオン交換性層状珪酸塩の形状については、特に制限はなく、天然に産出する形状、人工的に合成した時点の形状でもよいし、また、粉砕、造粒、分級などの操作によって形状を加工したイオン交換性層状珪酸塩を用いてもよい。このうち造粒されたイオン交換性層状珪酸塩を用いると、該イオン交換性層状珪酸塩を触媒成分として用いた場合に、良好なポリマー粒子性状を与えるため特に好ましい。
(2) Granulation of ion-exchangeable layered silicate The ion-exchangeable layered silicate may be used in a dry state or in a slurry state in a liquid. In addition, the shape of the ion-exchange layered silicate is not particularly limited, and may be a naturally produced shape, a shape when artificially synthesized, or a shape by operations such as pulverization, granulation, and classification. You may use the processed ion exchange layered silicate. Of these, granulated ion-exchange layered silicate is particularly preferable because it gives good polymer particle properties when the ion-exchange layered silicate is used as a catalyst component.

造粒、粉砕、分級などのイオン交換性層状珪酸塩の形状の加工は、化学処理の前に行ってもよい(すなわち、あらかじめ形状を加工したイオン交換性層状珪酸塩に下記の化学処理を行ってもよい)し、化学処理を行った後に形状を加工してもよい。   Processing of the shape of the ion-exchange layered silicate such as granulation, pulverization, and classification may be performed before the chemical treatment (that is, the following chemical treatment is performed on the ion-exchange layered silicate that has been processed in advance). The shape may be processed after chemical treatment.

ここで用いられる造粒法としては、例えば、撹拌造粒法、噴霧造粒法、転動造粒法、ブリケッティング、コンパクティング、押出造粒法、流動層造粒法、乳化造粒法、液中造粒法、圧縮成型造粒法等が挙げられるが、特に限定されない。好ましくは、撹拌造粒法、噴霧造粒法、転動造粒法、流動造粒法が挙げられ、特に好ましくは撹拌造粒法、噴霧造粒法が挙げられる。   Examples of the granulation method used here include stirring granulation method, spray granulation method, rolling granulation method, briquetting, compacting, extrusion granulation method, fluidized bed granulation method, emulsion granulation method. , Submerged granulation method, compression molding granulation method, and the like, but are not particularly limited. Preferably, agitation granulation method, spray granulation method, rolling granulation method, and fluidized granulation method are exemplified, and particularly preferably, agitation granulation method and spray granulation method are exemplified.

なお、噴霧造粒を行う場合、原料スラリーの分散媒として、水あるいはメタノール、エタノール、クロロホルム、塩化メチレン、ペンタン、ヘキサン、ヘプタン、トルエン、キシレン等の有機溶媒を用いる。好ましくは水を分散媒として用いる。球状粒子が得られる噴霧造粒の原料スラリー液中における成分(B)の濃度は、0.1〜30重量%、好ましくは0.5〜20重量%、特に好ましくは1〜10重量%である。球状粒子が得られる噴霧造粒の熱風の入口温度は、分散媒により異なるが、水を例にとると80〜260℃、好ましくは100〜220℃で行う。   When spray granulation is performed, water or an organic solvent such as methanol, ethanol, chloroform, methylene chloride, pentane, hexane, heptane, toluene, and xylene is used as a dispersion medium for the raw slurry. Preferably, water is used as a dispersion medium. The concentration of the component (B) in the raw slurry liquid for spray granulation from which spherical particles are obtained is 0.1 to 30% by weight, preferably 0.5 to 20% by weight, particularly preferably 1 to 10% by weight. . Although the inlet temperature of the hot air for spray granulation from which spherical particles are obtained varies depending on the dispersion medium, 80 to 260 ° C., preferably 100 to 220 ° C., is taken for water.

造粒において、粒子強度の高い担体を得るため、及び、オレフィン重合活性を向上させるためには、珪酸塩を必要に応じ微細化する。珪酸塩は、如何なる方法において微細化してもよい。微細化する方法としては、乾式粉砕、湿式粉砕いずれの方法でも可能である。好ましくは、水を分散媒として使用し珪酸塩の膨潤性を利用した湿式粉砕であり、例えばポリトロン等を使用した強制撹拌による方法やダイノーミル、パールミル等による方法がある。造粒する前の平均粒径は、0.01〜3μm、好ましくは0.05〜1μmである。   In granulation, in order to obtain a carrier having high particle strength and to improve the olefin polymerization activity, the silicate is refined as necessary. The silicate may be refined by any method. As a method for miniaturization, either dry pulverization or wet pulverization is possible. Preferably, wet pulverization using water as a dispersion medium and utilizing the swellability of silicate, for example, a method using forced stirring using polytron or the like, a method using dyno mill, pearl mill, or the like. The average particle size before granulation is 0.01 to 3 μm, preferably 0.05 to 1 μm.

また、造粒の際に有機物、無機溶媒、無機塩、各種バインダーを用いてもよい。用いられるバインダーとしては、例えば、塩化マグネシウム、硫酸アルミニウム、塩化アルミニウム、硫酸マグネシウム、アルコール類、グリコール等が挙げられる。   Moreover, you may use organic substance, an inorganic solvent, inorganic salt, and various binders in the case of granulation. Examples of the binder used include magnesium chloride, aluminum sulfate, aluminum chloride, magnesium sulfate, alcohols, glycols and the like.

上記のようにして得られた球状粒子は、重合工程での破砕や微粉発生を抑制するためには、0.2MPa以上の圧縮破壊強度を有することが好ましい。また、造粒されたイオン交換性層状珪酸塩の粒径は、0.1〜1000μm、好ましくは1〜500μmの範囲である。粉砕法についても特に制限はなく、乾式粉砕、湿式粉砕のいずれでもよい。   The spherical particles obtained as described above preferably have a compression fracture strength of 0.2 MPa or more in order to suppress crushing and fine powder generation in the polymerization step. The particle size of the granulated ion-exchange layered silicate is in the range of 0.1 to 1000 μm, preferably 1 to 500 μm. There is no particular limitation on the pulverization method, and either dry pulverization or wet pulverization may be used.

(3)イオン交換性層状珪酸塩の化学処理
本発明で用いる触媒における成分[B]のイオン交換性層状珪酸塩は、特に処理を行うことなくそのまま用いることができるが、化学処理を行なうことが望ましく、イオン交換性層状珪酸塩の化学処理とは、酸類、塩類、アルカリ類、有機物等とイオン交換性層状珪酸塩とを接触させることをいう。
(3) Chemical treatment of ion-exchange layered silicate The component [B] ion-exchange layered silicate in the catalyst used in the present invention can be used as it is without any particular treatment, but chemical treatment can be performed. Desirably, the chemical treatment of the ion-exchange layered silicate refers to bringing an acid, salt, alkali, organic substance or the like into contact with the ion-exchange layered silicate.

化学処理による共通の影響として、層間陽イオンの交換を行うことが挙げられるが、それ以外に各種化学処理は、次のような種々の効果がある。例えば、酸類による酸処理によれば、珪酸塩表面の不純物が取り除かれる他、結晶構造中のAl、Fe、Mg等の陽イオンを溶出させることによって、表面積を増大させることができる。これは、珪酸塩の酸強度を増大させ、また、単位重量当たりの酸点量を増大させることに寄与する。
アルカリ類によるアルカリ処理では、粘土鉱物の結晶構造が破壊され、粘土鉱物の構造の変化をもたらす。以下に、処理剤の具体例を示す。
A common effect of chemical treatment is to exchange interlayer cations. In addition, various chemical treatments have the following various effects. For example, according to the acid treatment with acids, impurities on the silicate surface can be removed and the surface area can be increased by eluting cations such as Al, Fe, and Mg in the crystal structure. This contributes to increasing the acid strength of the silicate and increasing the amount of acid sites per unit weight.
In alkali treatment with alkalis, the crystal structure of the clay mineral is destroyed, resulting in a change in the structure of the clay mineral. Below, the specific example of a processing agent is shown.

(i)酸類
酸処理は、表面の不純物を除く、あるいは層間に存在する陽イオンの交換を行うほか、結晶構造の中に取り込まれているAl、Fe、Mg等の陽イオンの一部又は全部を溶出させることができる。酸処理で用いられる酸としては、塩酸、硝酸、硫酸、リン酸、酢酸、シュウ酸、安息香酸、ステアリン酸、プロピオン酸、アクリル酸、マレイン酸、フマル酸、フタル酸、などが挙げられる。中でも硫酸、塩酸、硝酸等の無機酸が好ましく、硫酸が特に好ましい。
(I) Acids In addition to removing impurities on the surface or exchanging cations existing between layers, acid treatment is a part or all of cations such as Al, Fe and Mg incorporated in the crystal structure. Can be eluted. Examples of the acid used in the acid treatment include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, acetic acid, oxalic acid, benzoic acid, stearic acid, propionic acid, acrylic acid, maleic acid, fumaric acid, and phthalic acid. Of these, inorganic acids such as sulfuric acid, hydrochloric acid and nitric acid are preferable, and sulfuric acid is particularly preferable.

(ii)塩類
塩類としては、有機陽イオン、無機陽イオン、金属イオンからなる群から選ばれる陽イオンと、有機陰イオン、無機陰イオン、ハロゲン化物イオンからなる群から選ばれる陰イオンとから構成される塩類が例示される。例えば、周期律表第1〜14族から選択される少なくとも一種の原子を含む陽イオンと、ハロゲンの陰イオン、無機ブレンステッド酸及び有機ブレンステッド酸の陰イオンからなる群より選ばれる少なくとも一種の陰イオンとから構成される化合物が好ましい例として挙げられる。
(Ii) Salts Salts are composed of a cation selected from the group consisting of an organic cation, an inorganic cation, and a metal ion, and an anion selected from the group consisting of an organic anion, an inorganic anion, and a halide ion. Examples of such salts are exemplified. For example, at least one selected from the group consisting of a cation containing at least one atom selected from Groups 1 to 14 of the periodic table, a halogen anion, an inorganic Bronsted acid, and an organic Bronsted acid anion. A preferred example is a compound composed of an anion.

このような塩類の具体例としては、LiCl、LiBr、LiSO、Li(PO)、LiNO、Li(OOCCH)、NaCl、NaBr、NaSO、Na(PO)、NaNO、Na(OOCCH)、KCl、KBr、KSO、K(PO)、KNO、K(OOCCH)、CaCl、CaSO、Ca(NO、Ca(C、Ti(OOCCH、MgCl、MgSO、Mg(NO、Mg(C、Ti(OOCCH、Ti(CO、Ti(NO、Ti(SO、TiF、TiCl、TiBr、TiI、Zr(OOCCH、Zr(CO、Zr(NO、Zr(SO、ZrF、ZrCl等が挙げられる。 Specific examples of such salts include LiCl, LiBr, Li 2 SO 4 , Li 3 (PO 4 ), LiNO 3 , Li (OOCCH 3 ), NaCl, NaBr, Na 2 SO 4 , and Na 3 (PO 4 ). , NaNO 3 , Na (OOCCH 3 ), KCl, KBr, K 2 SO 4 , K 3 (PO 4 ), KNO 3 , K (OOCCH 3 ), CaCl 2 , CaSO 4 , Ca (NO 3 ) 2 , Ca 3 (C 6 H 5 O 7 ) 2 , Ti (OOCCH 3 ) 4 , MgCl 2 , MgSO 4 , Mg (NO 3 ) 2 , Mg 3 (C 6 H 5 O 7 ) 2 , Ti (OOCCH 3 ) 4 , Ti (CO 3 ) 2 , Ti (NO 3 ) 4 , Ti (SO 4 ) 2 , TiF 4 , TiCl 4 , TiBr 4 , TiI 4 , Zr (OOCCH 3 ) 4 , Zr (CO 3 ) 2 , Zr (NO 3 ) 4 , Zr (SO 4 ) 2 , ZrF 4 , ZrCl 4 and the like.

また、Cr(OOCHOH、Cr(CHCOCHCOCH、Cr(NO、Cr(ClO、CrPO、Cr(SO、CrOCl、CrF、CrCl、CrBr、CrI、FeCO、Fe(NO、Fe(ClO、FePO、FeSO、Fe(SO、FeF、FeCl、MnBr、FeI、FeC、Co(OOCH等が挙げられる。 Also, Cr (OOCH 3 ) 2 OH, Cr (CH 3 COCHCOCH 3 ) 3 , Cr (NO 3 ) 3 , Cr (ClO 4 ) 3 , CrPO 4 , Cr 2 (SO 4 ) 3 , CrO 2 Cl 3 , CrF 3 , CrCl 3 , CrBr 3 , CrI 3 , FeCO 3 , Fe (NO 3 ) 3 , Fe (ClO 4 ) 3 , FePO 4 , FeSO 4 , Fe 2 (SO 4 ) 3 , FeF 3 , FeCl 3 , MnBr 3 FeI 3 , FeC 6 H 5 O 7 , Co (OOCH 3 ) 2 and the like.

さらに、CuCl、CuBr、Cu(NO、CuC、Cu(ClO、CuSO、Cu(OOCCH、Zn(OOCH、Zn(CHCOCHCOCH、ZnCO、Zn(NO、Zn(ClO、Zn(PO、ZnSO、ZnF、ZnCl、ZnBr、ZnI、AlF、AlCl、AlBr、AlI、Al(SO、Al(C、Al(CHCOCHCOCH、Al(NO、AlPO等が挙げられる。 Furthermore, CuCl 2 , CuBr 2 , Cu (NO 3 ) 2 , CuC 2 O 4 , Cu (ClO 4 ) 2 , CuSO 4 , Cu (OOCCH 3 ) 2 , Zn (OOCH 3 ) 2 , Zn (CH 3 COCHCOCH 3 ) 2 , ZnCO 3 , Zn (NO 3 ) 2 , Zn (ClO 4 ) 2 , Zn 3 (PO 4 ) 2 , ZnSO 4 , ZnF 2 , ZnCl 2 , ZnBr 2 , ZnI 2 , AlF 3 , AlCl 3 , AlBr 3 , AlI 3 , Al 2 (SO 4 ) 3 , Al 2 (C 2 O 4 ) 3 , Al (CH 3 COCHCOCH 3 ) 3 , Al (NO 3 ) 3 , AlPO 4 and the like.

これらのなかで好ましくは、陰イオンが無機ブレンステッド酸やハロゲンからなり、陽イオンがLi、Mg、Znからなる化合物である。
そのような塩類で特に好ましい化合物は、具体的には、LiCl、LiSO、MgCl、MgSO、ZnCl、ZnSO、Zn(NO、Zn(POである。
Among these, a compound in which the anion is composed of an inorganic Bronsted acid or a halogen and the cation is composed of Li, Mg, or Zn is preferable.
Particularly preferred compounds in such salts are specifically LiCl, Li 2 SO 4 , MgCl 2 , MgSO 4 , ZnCl 2 , ZnSO 4 , Zn (NO 3 ) 2 , Zn 3 (PO 4 ) 2 . .

(iii)その他の処理剤
酸、塩処理の他に、必要に応じて下記のアルカリ処理や有機物処理を行ってもよい。アルカリ処理で処理剤としては、LiOH、NaOH、KOH、Mg(OH)、Ca(OH)、Sr(OH)、Ba(OH)などが例示される
(Iii) Other treatment agents In addition to acid and salt treatment, the following alkali treatment or organic matter treatment may be performed as necessary. Examples of the treatment agent in the alkali treatment include LiOH, NaOH, KOH, Mg (OH) 2 , Ca (OH) 2 , Sr (OH) 2 , Ba (OH) 2 and the like.

有機処理剤の例としては、トリメチルアンモニウム、トリエチルアンモニウム、トリプロピルアンモニウム、トリブチルアンモニウム、ドデシルアンモニウム、N,N−ジメチルアニリニウム、N,N−ジエチルアニリニウム、N,N−2,4,5−ペンタメチルアニリニウム、N,N−ジメチルオクタデシルアンモニウム、オクタドデシルアンモニウム、が例示されるが、これらに限定されるものではない。   Examples of organic treating agents include trimethylammonium, triethylammonium, tripropylammonium, tributylammonium, dodecylammonium, N, N-dimethylanilinium, N, N-diethylanilinium, N, N-2,4,5- Examples thereof include, but are not limited to, pentamethylanilinium, N, N-dimethyloctadecylammonium, and octadodecylammonium.

また、これらの処理剤は、単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。これらの組み合わせは、処理開始時に添加する処理剤について組み合わせて用いてもよいし、処理の途中で添加する処理剤について、組み合わせて用いてもよい。また化学処理は、同一または異なる処理剤を用いて複数回行うことも可能である。   Moreover, these processing agents may be used independently and may be used in combination of 2 or more types. These combinations may be used in combination for the treatment agent added at the start of the treatment, or may be used in combination for the treatment agent added during the treatment. The chemical treatment can be performed a plurality of times using the same or different treatment agents.

(iv)化学処理条件
上述した各種処理剤は、適当な溶剤に溶解させて処理剤溶液として用いてもよいし、処理剤自身を溶媒として用いてもよい。使用できる溶剤としては、特に制限はないが、水、アルコール類が一般的であり、特に水が好ましい。例えば、化学処理として酸処理を行う場合、酸処理剤濃度、イオン交換性層状珪酸塩と処理剤との比率、処理時間、処理温度等の酸処理条件を制御することによって、イオン層状珪酸塩化合物を所定の組成、構造へと変化させ制御することが可能である。
(Iv) Chemical treatment conditions The various treatment agents described above may be dissolved in an appropriate solvent and used as a treatment agent solution, or the treatment agent itself may be used as a solvent. Although there is no restriction | limiting in particular as a solvent which can be used, Water and alcohol are common, and water is especially preferable. For example, when performing acid treatment as a chemical treatment, by controlling acid treatment conditions such as acid treatment agent concentration, ratio of ion-exchangeable layered silicate and treatment agent, treatment time, treatment temperature, etc., an ion layered silicate compound Can be controlled by changing to a predetermined composition and structure.

そのような酸処理剤濃度に関しては、下式を満たす酸濃度(N)の酸で処理することが好ましい。
N≧1.0
ここで示す酸濃度Nは、酸のモル数×酸の価数/酸水溶液の体積(単位:モル/リットル)と定義する。ただし、塩を共存させたときには、塩化合物に含まれる結晶水量は考慮するが、塩による体積変化は考慮しないものとする。なお、酸水溶液の比重は、化学便覧の基礎編IIp6(日本化学会編集,丸善発行,改訂3版)を引用した。なお、上限は取り扱い上の安全性、容易性、設備面の観点から、酸濃度Nが、20以下、特に15以下であることが好ましい
Regarding such an acid treating agent concentration, it is preferable to treat with an acid having an acid concentration (N) satisfying the following formula.
N ≧ 1.0
The acid concentration N shown here is defined as the number of moles of acid × the valence of acid / the volume of the acid aqueous solution (unit: mole / liter). However, when a salt is allowed to coexist, the amount of water of crystallization contained in the salt compound is considered, but the volume change due to the salt is not considered. As for the specific gravity of the acid aqueous solution, the basic edition IIp6 (edited by the Chemical Society of Japan, published by Maruzen, revised 3rd edition) of the Chemical Handbook was quoted. The upper limit is that the acid concentration N is 20 or less, particularly 15 or less, from the viewpoint of safety in handling, ease, and equipment.

イオン交換性層状珪酸塩と処理剤との比率に関しては、特に限定されないが、好ましくはイオン交換性層状珪酸塩[g]:処理剤[酸の価数×mol数]=1:0.001〜1:0.1程度である。
また、酸処理温度は、室温〜処理剤溶液の沸点の範囲が好ましく、処理時間は5分〜24時間の条件を選択し、イオン交換性層状珪酸塩を構成している物質の少なくとも一部が除去又は交換される条件で行うことが好ましい。酸処理条件は、特には制限されないが、上記化学処理として硫酸を用いた場合、処理温度は80℃から、処理剤溶媒沸点以下で、処理時間は0.5時間以上5時間未満にすることが好ましい。
The ratio of the ion-exchange layered silicate and the treatment agent is not particularly limited, but preferably the ion-exchange layered silicate [g]: treatment agent [acid valence × mol number] = 1: 0.001. It is about 1: 0.1.
The acid treatment temperature is preferably in the range of room temperature to the boiling point of the treatment agent solution, the treatment time is selected from 5 minutes to 24 hours, and at least a part of the substances constituting the ion-exchange layered silicate is present. It is preferable to carry out under the conditions for removal or replacement. The acid treatment conditions are not particularly limited, but when sulfuric acid is used as the chemical treatment, the treatment temperature is from 80 ° C. to the boiling point of the treating agent solvent, and the treatment time may be from 0.5 hours to less than 5 hours. preferable.

(4)イオン交換性層状珪酸塩の乾燥
上記化学処理を実施した後に、過剰の処理剤及び処理により溶出したイオンの除去をすることが可能であり、好ましい。この際、一般的には、水や有機溶媒などの液体を使用する。脱水後は、乾燥を行うが、一般的には、乾燥温度は、100〜800℃、好ましくは150〜600℃で実施可能である。800℃を超えると、珪酸塩の構造破壊を生じるおそれがあるので好ましくない。
(4) Drying of ion-exchange layered silicate After carrying out the above chemical treatment, it is possible to remove excess treatment agent and ions eluted by the treatment, which is preferable. At this time, generally, a liquid such as water or an organic solvent is used. After the dehydration, drying is performed. In general, the drying temperature can be 100 to 800 ° C, preferably 150 to 600 ° C. Exceeding 800 ° C. is not preferable because it may cause structural destruction of the silicate.

これらのイオン交換性層状珪酸塩は、構造破壊されなくとも乾燥温度により特性が変化するために、用途に応じて乾燥温度を変えることが好ましい。乾燥時間は、通常1分〜24時間、好ましくは5分〜4時間であり、雰囲気は、乾燥空気、乾燥窒素、乾燥アルゴン、又は減圧下であることが好ましい。乾燥方法に関しては特に限定されず各種方法で実施可能である。   Since these ion-exchange layered silicates have different characteristics depending on the drying temperature even if they are not structurally destroyed, it is preferable to change the drying temperature depending on the application. The drying time is usually 1 minute to 24 hours, preferably 5 minutes to 4 hours, and the atmosphere is preferably dry air, dry nitrogen, dry argon, or under reduced pressure. It does not specifically limit regarding a drying method, It can implement by various methods.

(5)イオン交換性層状珪酸塩の化学処理後の組成
イオン交換性層状珪酸塩中のアルミニウム及びケイ素は、JIS法による化学分析による方法で検量線を作成し、蛍光X線で定量するという方法で測定される。
なお、化学処理されたイオン交換性層状ケイ酸塩を本発明の成分[B]として使用する場合の酸点の量は、該化学処理後に乾燥処理を施したイオン交換性層状珪酸塩において測定する。
本発明においては、pKaが−8.2以下の酸点を、その酸点を中和するに要する2,6ジメチルピリジン量がイオン交換性層状珪酸塩1g当たり、0.03mmol以上となる量、好ましくは0.04mmol/g以上有するように、イオン交換性層状珪酸塩を上記の如き各種の処理法を適宜に組合せ、酸点の強度及び量を制御することが肝要である。
各種処理を実施した後のアルミニウム、ケイ素の組成は、AL/Siの原子比として、0.05〜0.4、好ましくは0.05〜0.25のもの、さらには0.07〜0.23の範囲のものがよい。Al/Si原子比は粘土部分の酸処理の指標となるものとみられる。
(5) Composition after chemical treatment of ion-exchange layered silicate Aluminum and silicon in ion-exchange layered silicate are prepared by a calibration method using a chemical analysis method according to JIS method, and quantified by fluorescent X-rays. Measured in
In addition, the amount of acid sites when using chemically treated ion-exchanged layered silicate as the component [B] of the present invention is measured in ion-exchanged layered silicate that has been subjected to a drying treatment after the chemical treatment. .
In the present invention, an acid point having a pKa of −8.2 or less is an amount such that the amount of 2,6 dimethylpyridine required to neutralize the acid point is 0.03 mmol or more per gram of ion-exchanged layered silicate, It is important to control the strength and amount of the acid sites by appropriately combining the above-mentioned various treatment methods with the ion-exchange layered silicate so as to have preferably 0.04 mmol / g or more.
The composition of aluminum and silicon after the various treatments is 0.05 to 0.4, preferably 0.05 to 0.25, and further 0.07 to 0.00 as the atomic ratio of AL / Si. A range of 23 is preferable. The Al / Si atomic ratio is considered to be an index for acid treatment of the clay portion.

3.成分[C]
本発明で用いる触媒における、成分[C]は、有機アルミニウム化合物である。
有機アルミニウム化合物としては、好ましくは、一般式(AlR3−nで表される有機アルミニウム化合物が使用される。式中、Rは炭素数1〜20のアルキル基を表し、Zはハロゲン、水素、アルコキシ基又はアミノ基を表し、nは1〜3の、mは1〜2の整数を各々表す。有機アルミニウム化合物は、単独であるいは複数種を組み合わせて使用することができる。
3. Ingredient [C]
Component [C] in the catalyst used in the present invention is an organoaluminum compound.
As the organoaluminum compound, preferably of the general formula organoaluminum compound represented by (AlR n Z 3-n) m is used. In formula, R represents a C1-C20 alkyl group, Z represents a halogen, hydrogen, an alkoxy group, or an amino group, n represents 1-3, m represents the integer of 1-2, respectively. The organoaluminum compounds can be used alone or in combination.

有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリノルマルプロピルアルミニウム、トリノルマルブチルアルミニウム、トリイソブチルアルミニウム、トリノルマルヘキシルアルミニウム、トリノルマルオクチルアルミニウム、トリノルマルデシルアルミニウム、ジエチルアルミニウムクロライド、ジエチルアルミニウムセスキクロライド、ジエチルアルミニウムヒドリド、ジエチルアルミニウムエトキシド、ジエチルアルミニウムジメチルアミド、ジイソブチルアルミニウムヒドリド、ジイソブチルアルミニウムクロライド等が挙げられる。これらのうち、好ましくは、m=1、n=3のトリアルキルアルミニウム及びアルキルアルミニウムヒドリドである。さらに好ましくは、Zが炭素数1〜8であるトリアルキルアルミニウムである。   Specific examples of the organoaluminum compound include trimethylaluminum, triethylaluminum, trinormalpropylaluminum, trinormalbutylaluminum, triisobutylaluminum, trinormalhexylaluminum, trinormaloctylaluminum, trinormaldecylaluminum, diethylaluminum chloride, diethylaluminum. Examples thereof include sesquichloride, diethylaluminum hydride, diethylaluminum ethoxide, diethylaluminum dimethylamide, diisobutylaluminum hydride, and diisobutylaluminum chloride. Of these, trialkylaluminum and alkylaluminum hydride with m = 1 and n = 3 are preferable. More preferably, Z is a trialkylaluminum having 1 to 8 carbon atoms.

4.オレフィン重合用触媒の調製
本発明で使用するオレフィン重合用触媒は、上記成分[A]、成分[B]及び成分[C]を含む。これらは、重合槽内で、あるいは重合槽外で接触させオレフィンの存在下で予備重合を行ってもよい。予備重合方法については後述する。
4). Preparation of Olefin Polymerization Catalyst The olefin polymerization catalyst used in the present invention comprises the above component [A], component [B] and component [C]. These may be contacted in the polymerization tank or outside the polymerization tank and preliminarily polymerized in the presence of olefin. The prepolymerization method will be described later.

前記成分[A]、成分[B]及び成分[C]の使用量は、任意であるが、成分[B]中の遷移金属と成分[C]中のアルミニウムとの比が、成分[A]1gあたり、0.1〜1000(μmol):0〜100000(μmol)となるように接触させることが好ましい。また前記成分[A]に加えて、本発明の特徴が損なわない限り、他の種の錯体を使用することも可能である。   The amount of component [A], component [B] and component [C] used is arbitrary, but the ratio of the transition metal in component [B] to aluminum in component [C] is the component [A]. It is preferable to make it contact so that it may become 0.1-1000 (micromol): 0-100,000 (micromol) per 1g. In addition to the component [A], other types of complexes may be used as long as the characteristics of the present invention are not impaired.

前記成分[A]、成分[B]及び成分[C]を接触させる順番は、任意であり、これらのうち2つの成分を接触させた後に残りの1成分を接触させてもよいし、3つの成分を同時に接触させてもよい。これらの接触において、接触を充分に行うため、溶媒を用いてもよい。溶媒としては、脂肪族飽和炭化水素、芳香族炭化水素、脂肪族不飽和炭化水素やこれらのハロゲン化物、また予備重合モノマーなどが例示される。脂肪族飽和炭化水素、芳香族炭化水素の例として、具体的にはヘキサン、ヘプタン、トルエン等が挙げられる。また予備重合モノマーとしては、プロピレンを溶媒として用いることができる。   The order in which the component [A], the component [B], and the component [C] are contacted is arbitrary, and after contacting two of these components, the remaining one component may be contacted, The components may be contacted simultaneously. In these contacts, a solvent may be used for sufficient contact. Examples of the solvent include aliphatic saturated hydrocarbons, aromatic hydrocarbons, aliphatic unsaturated hydrocarbons, halides thereof, and prepolymerized monomers. Specific examples of the aliphatic saturated hydrocarbon and the aromatic hydrocarbon include hexane, heptane, toluene and the like. Further, as a prepolymerized monomer, propylene can be used as a solvent.

本発明で用いるオレフィン重合用触媒は、前記のように、これにオレフィンを接触させて少量重合されることからなる予備重合処理に付されることが可能であり、好ましい。使用するオレフィンは、特に限定はないが、前記のように、エチレン、プロピレン、1−ブテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテン、3−メチル−1−ブテン、ビニルシクロアルカン、スチレン等を例示することができる。オレフィンのフィード方法は、オレフィンを反応槽に定速的にあるいは定圧状態になるように維持するフィード方法やその組み合わせ、段階的な変化をさせる等、任意の方法が可能である。   As described above, the olefin polymerization catalyst used in the present invention is preferable because it can be subjected to a prepolymerization treatment comprising contacting an olefin with the olefin polymerization and performing a small amount of polymerization. The olefin used is not particularly limited, but as described above, ethylene, propylene, 1-butene, 1-hexene, 1-octene, 4-methyl-1-pentene, 3-methyl-1-butene, vinylcyclohexane. Examples include alkanes and styrene. The olefin feed method may be any method such as a feed method for maintaining the olefin at a constant rate or a constant pressure in the reaction tank, a combination thereof, or a stepwise change.

予備重合温度、時間は、特に限定されないが、各々−20℃〜100℃、5分〜24時間の範囲であることが好ましい。また、予備重合量は、成分[B]に対する予備重合ポリマーの重量比が好ましくは0.01〜100、さらに好ましくは0.1〜50である。また、予備重合時に成分[C]を添加、又は追加することもできる。
上記各成分の接触の際もしくは接触の後に、ポリエチレン、ポリプロピレン等の重合体、シリカ、チタニア等の無機酸化物の固体を共存させる等の方法も可能である。
予備重合後に触媒を乾燥してもよい。乾燥方法には、特に制限は無いが、減圧乾燥や加熱乾燥、乾燥ガスを流通させることによる乾燥などが例示され、これらの方法を単独で用いても良いし2つ以上の方法を組み合わせて用いてもよい。乾燥工程において触媒を攪拌、振動、流動させてもよいし静置させてもよい。
The prepolymerization temperature and time are not particularly limited, but are preferably in the range of −20 ° C. to 100 ° C. and 5 minutes to 24 hours, respectively. Moreover, the prepolymerization amount is preferably 0.01 to 100, more preferably 0.1 to 50, by weight ratio of the prepolymerized polymer to the component [B]. Moreover, component [C] can also be added or added at the time of prepolymerization.
A method of coexisting a polymer such as polyethylene or polypropylene and a solid of an inorganic oxide such as silica or titania at the time of contacting or after the contact of the above components is also possible.
The catalyst may be dried after the prepolymerization. The drying method is not particularly limited, and examples thereof include reduced-pressure drying, heat drying, and drying by circulating a drying gas. These methods may be used alone or in combination of two or more methods. May be. In the drying step, the catalyst may be stirred, vibrated, fluidized, or allowed to stand.

5.オレフィンの重合方法
重合形態は、前記成分[A]、成分[B]及び成分[C]からなるオレフィン重合用触媒とモノマーが効率よく接触するならば、あらゆる様式を採用しうる。具体的には、不活性溶媒を用いるスラリー法、溶液法、プロピレンが主なモノマーの場合には不活性溶媒を実質的に用いずプロピレンを溶媒として用いるバルク重合法あるいは実質的に液体溶媒を用いず各モノマーをガス状に保つ気相重合法などが採用できる。
また、重合方式は、連続重合、回分式重合、又は予備重合を行う方法も適用される。
また、重合段数は、本発明の物質を製造できるのであればとくに制限はないが、スラリー重合の多段重合、プロピレンバルク重合後に気相重合、気相重合2段といった様式も可能であり、さらにはそれ以上の重合段数で製造することが可能である。
5. Olefin Polymerization Method Any form of polymerization may be adopted as long as the olefin polymerization catalyst comprising the component [A], the component [B] and the component [C] is in efficient contact with the monomer. Specifically, a slurry method using an inert solvent, a solution method, a bulk polymerization method using propylene as a solvent without using an inert solvent when propylene is the main monomer, or a liquid solvent being used substantially. First, a gas phase polymerization method for keeping each monomer in a gaseous state can be employed.
As the polymerization method, a method of performing continuous polymerization, batch polymerization, or prepolymerization is also applied.
Further, the number of polymerization stages is not particularly limited as long as the substance of the present invention can be produced, but it is also possible to use a slurry polymerization multistage polymerization, propylene bulk polymerization followed by gas phase polymerization, gas phase polymerization two stages, It is possible to produce with more polymerization stages.

スラリー重合の場合は、重合溶媒として、ヘキサン、ヘプタン、ペンタン、シクロヘキサン、ベンゼン、トルエン等の飽和脂肪族又は芳香族炭化水素の単独又は混合物が用いられる。重合温度は、0〜150℃であり、また分子量調節剤として、補助的に水素を用いることができる。重合圧力は、0〜4MPaG、好ましくは0〜3MPaGが適当である。   In the case of slurry polymerization, a saturated aliphatic or aromatic hydrocarbon such as hexane, heptane, pentane, cyclohexane, benzene, toluene, or the like is used alone or as a polymerization solvent. The polymerization temperature is 0 to 150 ° C., and hydrogen can be used supplementarily as a molecular weight regulator. The polymerization pressure is suitably from 0 to 4 MPaG, preferably from 0 to 3 MPaG.

バルク重合法の場合は、重合温度は、0〜85℃であり、好ましくは60〜80℃であり、さらに好ましくは65〜75℃である。重合圧力は、0〜5MPaG、好ましくは0〜4MPaGが適当である。   In the case of the bulk polymerization method, the polymerization temperature is 0 to 85 ° C, preferably 60 to 80 ° C, and more preferably 65 to 75 ° C. The polymerization pressure is 0 to 5 MPaG, preferably 0 to 4 MPaG.

気相重合の場合は、重合温度は、0〜200℃であり、好ましくは60〜120℃であり、さらに好ましくは70〜100℃である。重合圧力は、0〜4MPaG、好ましくは0〜3MPaGが適当である。   In the case of gas phase polymerization, the polymerization temperature is 0 to 200 ° C, preferably 60 to 120 ° C, more preferably 70 to 100 ° C. The polymerization pressure is suitably from 0 to 4 MPaG, preferably from 0 to 3 MPaG.

共重合に際しては、共重合体が得られたときにエチレンまたはプロピレンと炭素数4以上のα−オレフィンとの成分の割合が、エチレンまたはプロピレンが20〜99mol%、炭素数4以上のα−オレフィンが1〜80mol%となるように各モノマーの混合比を調整する。
重合反応時のモノマーの混合割合としては、通常、エチレンまたはプロピレンが10〜99.9mol%、好ましくは15〜99.5mol%、さらに好ましくは20〜99mol%、特に好ましくは30〜98mol%であり、炭素数4以上のα−オレフィンは、通常、0.1〜90mol%、好ましくは0.5〜85mol%、さらに好ましくは1〜80mol%、特に好ましくは2〜70mol%である。
At the time of copolymerization, when the copolymer is obtained, the proportion of the component of ethylene or propylene and α-olefin having 4 or more carbon atoms is 20 to 99 mol% of ethylene or propylene and α-olefin having 4 or more carbon atoms. The mixing ratio of each monomer is adjusted so that the amount becomes 1 to 80 mol%.
As the mixing ratio of the monomers during the polymerization reaction, ethylene or propylene is usually 10 to 99.9 mol%, preferably 15 to 99.5 mol%, more preferably 20 to 99 mol%, particularly preferably 30 to 98 mol%. The α-olefin having 4 or more carbon atoms is usually 0.1 to 90 mol%, preferably 0.5 to 85 mol%, more preferably 1 to 80 mol%, and particularly preferably 2 to 70 mol%.

前述の触媒を用いて得られた共重合体は、その成分としてエチレンまたはプロピレンを20〜99mol%、炭素数4以上のα−オレフィンを1〜80mol%含んでいる。本発明に用いられる触媒系は、特定のピリジルアミド化合物とイオン交換性層状珪酸塩とを主たる成分としており、この組み合わせにより炭素数4以上のα−オレフィンをエチレンやプロピレンと共重合において、効率よく炭素数4以上のα−オレフィンの導入が可能となる。
オレフィン共重合体中の成分の割合としては、エチレンまたはプロピレンが80〜99mol%、炭素数4以上のα−オレフィンが1〜20mol%であることが好ましく、エチレンまたはプロピレンが85〜98mol%、炭素数4以上のα−オレフィン2〜15mol%であることが更に好ましく、エチレンまたはプロピレンが85〜98mol%、炭素数4以上のα−オレフィンが2〜10mol%であることが特に好ましい。上記範囲であれば透明性、剛性、耐熱性、表面硬度、ヒートシール性がバランスして優れる。
The copolymer obtained using the above-mentioned catalyst contains 20 to 99 mol% of ethylene or propylene and 1 to 80 mol% of an α-olefin having 4 or more carbon atoms as its components. The catalyst system used in the present invention comprises a specific pyridylamide compound and an ion-exchange layered silicate as main components, and by this combination, an α-olefin having 4 or more carbon atoms is efficiently copolymerized with ethylene or propylene. An α-olefin having 4 or more carbon atoms can be introduced.
As a ratio of the components in the olefin copolymer, ethylene or propylene is preferably 80 to 99 mol%, α-olefin having 4 or more carbon atoms is preferably 1 to 20 mol%, ethylene or propylene is 85 to 98 mol%, carbon It is more preferable that it is 2 to 15 mol% of α-olefin having 4 or more, particularly preferably 85 to 98 mol% of ethylene or propylene, and 2 to 10 mol% of α-olefin having 4 or more carbon atoms. If it is the said range, transparency, rigidity, heat resistance, surface hardness, and heat sealability will be excellent in balance.

炭素数4以上のα−オレフィンとしては具体的には1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ウンデセン、1−ドデセン等の直鎖状のα−オレフィン、3−メチル−1−ブテン、4−メチル−1−ペンテン、3−メチル−1−ペンテン、3,4−ジメチル−1−ヘキセン等の分岐状α−オレフィンが挙げられる。
これらのうち、好ましくは炭素数4〜12のα−オレフィンであり、さらに好ましくは炭素数4〜10のα−オレフィンであり、特に好ましくは炭素数6〜8のα−オレフィンである。また、直鎖状と分岐状では直鎖状の方が好ましい。
Specific examples of the α-olefin having 4 or more carbon atoms include 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene and the like. A branched α-olefin such as 3-methyl-1-butene, 4-methyl-1-pentene, 3-methyl-1-pentene, and 3,4-dimethyl-1-hexene. Can be mentioned.
Of these, α-olefins having 4 to 12 carbon atoms are preferable, α-olefins having 4 to 10 carbon atoms are more preferable, and α-olefins having 6 to 8 carbon atoms are particularly preferable. In addition, linear and branched are more preferable.

次に、本発明を実施例によって更に具体的に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。なお、以下の実施例における物性測定、分析等は、下記の方法に従ったものである。   EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited to a following example, unless the summary is exceeded. In addition, the physical-property measurement, analysis, etc. in a following example follow the following method.

(1)メルトフローレート(MFR)
JIS K6758のポリプロピレン試験方法のメルトフローレート(試験条件:230℃、荷重2.16kgf)に従って、測定した。
但し、エチレン/1−ヘキセン共重合体のメルトフローレートは、JIS K6760に準拠し、190℃・2.16kg荷重で測定した。単位はg/10分である。
(1) Melt flow rate (MFR)
It was measured according to the melt flow rate (test condition: 230 ° C., load 2.16 kgf) of the polypropylene test method of JIS K6758.
However, the melt flow rate of the ethylene / 1-hexene copolymer was measured under a load of 190 ° C. and 2.16 kg in accordance with JIS K6760. The unit is g / 10 minutes.

(2)分子量及び分子量分布(Mw、Mn、Q値)
以下の装置及び条件で測定を実施した。
装置:Waters社製GPC(ALC/GPC、150C)
検出器:FOXBORO社製MIRAN、1A、IR検出器(測定波長:3.42μm)
カラム:昭和電工社製AD806M/S(3本)
移動相溶媒:o−ジクロロベンゼン(ODCB)
測定温度:140℃
流速:1.0ml/分
注入量:0.2ml
(2) Molecular weight and molecular weight distribution (Mw, Mn, Q value)
Measurements were performed with the following equipment and conditions.
Equipment: GPC manufactured by Waters (ALC / GPC, 150C)
Detector: MIRAN, 1A, IR detector manufactured by FOXBORO (measurement wavelength: 3.42 μm)
Column: AD806M / S (3 pieces) manufactured by Showa Denko KK
Mobile phase solvent: o-dichlorobenzene (ODCB)
Measurement temperature: 140 ° C
Flow rate: 1.0 ml / min Injection volume: 0.2 ml

(3)融点(Tm)
セイコーインスツルメンツ社製DSC6200を使用し、シート状にしたサンプル片を5mgアルミパンに詰め、室温から一旦200℃まで昇温速度100℃/分で昇温し、5分間保持した後に、10℃/分で20℃まで降温して結晶化させた後に、10℃/分で200℃まで昇温させた時の融解最大ピーク温度(℃)として求めた。
但し、エチレン/1−ヘキセン共重合体においては、JIS K7121に準拠して、試料5mgを170℃で5分間融解後、10℃/分の速度で20℃に降温し、1分間保持後、170℃まで10℃/分の昇温速度で融解曲線を測定し、ピークトップ温度(℃)をTmとした。
(3) Melting point (Tm)
Using a Seiko Instruments DSC6200, the sheet-shaped sample piece was packed in a 5 mg aluminum pan, heated from room temperature to 200 ° C. at a heating rate of 100 ° C./minute, held for 5 minutes, and then 10 ° C./minute. After the temperature was lowered to 20 ° C. for crystallization, the maximum melting peak temperature (° C.) when the temperature was raised to 200 ° C. at 10 ° C./min was obtained.
However, in the ethylene / 1-hexene copolymer, in accordance with JIS K7121, 5 mg of a sample was melted at 170 ° C. for 5 minutes, then cooled to 20 ° C. at a rate of 10 ° C./minute, held for 1 minute, 170 The melting curve was measured at a rate of temperature increase of 10 ° C / min up to ° C, and the peak top temperature (° C) was defined as Tm.

(4)コモノマー含量
プロピレン−オクテン共重合体のオクテン含量は、Macromolecular Chemstry And Physics、2003年、204巻、1738頁、エチレン−プロピレン共重合体のエチレン含量は、Macromolecules、1982年、15巻、1150頁の方法に従い13CNMR測定により決定した。
一方、エチレン・1−ヘキセン共重合体の1−ヘキセン含量(mol%)は、該共重合体から作成したプレスフィルムの赤外吸収スペクトル(IR)を日本分光社製A−202型の装置を用いて測定し、1378cm−1のピークの吸光度より次式から算出される1000炭素原子当りの分岐数をmol%に換算して求められる。ここで、ΔAは吸光度、tはフィルム厚(mm)である。
Σ分岐数(個/1000炭素原子)=[ΔA/t]×7.823−0.102
1−ヘキセン含量(重量%)=Σ分岐数×84.16×100/[Σ分岐数×84.16+(1000−6×Σ分岐数)/2×28.05]
1−ヘキセン含量(mol%)=100×[1−ヘキセン含量(重量%)]/(300−2×[1−ヘキセン含量(重量%)])
(4) Comonomer content The octene content of the propylene-octene copolymer is Macromolecular Chemistry And Physics, 2003, 204, 1738. The ethylene content of the ethylene-propylene copolymer is Macromolecules, 1982, 15, 1150. It was determined by 13 C NMR measurement according to the method of page.
On the other hand, the 1-hexene content (mol%) of the ethylene / 1-hexene copolymer was determined by using an infrared absorption spectrum (IR) of a press film prepared from the copolymer as an A-202 type apparatus manufactured by JASCO Corporation. And the number of branches per 1000 carbon atoms calculated from the following formula from the absorbance of the peak at 1378 cm −1 is calculated as mol%. Here, ΔA is absorbance and t is film thickness (mm).
Σ Number of branches (pieces / 1000 carbon atoms) = [ΔA / t] × 7.823-0.102
1-hexene content (% by weight) = Σ branch number × 84.16 × 100 / [Σ branch number × 84.16 + (1000−6 × Σ branch number) /2×28.05]
1-hexene content (mol%) = 100 × [1-hexene content (wt%)] / (300-2 × [1-hexene content (wt%)])

(5)イオン交換性層状珪酸塩の酸強度分析
pKaが−8.2以下の酸点を、イオン交換性層状ケイ酸塩1グラム当たり、その酸点を中和するに要する塩基量で測定する。すなわち、塩基性を示す滴定試薬として、2,6−ジメチルピリジンを用い、指示薬として、アントラキノンを使用する。容器に試料、アントラキノン及びトルエンを入れ、これに2,6−ジメチルピリジンを滴下して、指示薬の酸性色である黄色が消失するまでに加えた2,6−ジメチルピリジンの量を、その試料が有するpKaが−8.2以下の強酸点の量とする。
なお、上記における「酸性色である黄色が消失」とは滴定試薬を加えることによって色が変化しはじめた後でさらに滴定試薬を加えても色が変化しなくなった時点のことを示し、必ずしも色が完全に消失している必要は無い。また「黄色」というのは酸が無色もしくは白色である場合の色であり、試料に元々色がある場合は必ずしも黄色ではなく、その場合は指示薬を加えることによって生じた色を示す。
指示薬であるアントラキノンを加えても黄色に変色しない場合は、pKaが−8.2以下の強酸点の量はゼロとされる。また上記滴定試験は酸素、水分の影響を避けるため精製した不活性ガス、たとえば窒素やアルゴン雰囲気で行う必要がある。また滴定試薬の添加速度が極端に速い、又は遅い場合には正確な測定ができないため、イオン交換性層状ケイ酸塩1gあたり1分間に2,6−ジメチルピリジンを、通常、0.5〜5マイクロモル、好ましくは1マイクロモル程度のゆっくりした速度で滴下する必要がある。測定する温度は10℃で行う。
(5) Acid strength analysis of ion-exchange layered silicate The acid point having a pKa of −8.2 or less is measured by the amount of base required to neutralize the acid point per gram of ion-exchange layered silicate. . That is, 2,6-dimethylpyridine is used as a titration reagent showing basicity, and anthraquinone is used as an indicator. A sample, anthraquinone and toluene are put in a container, and 2,6-dimethylpyridine is added dropwise to the container, and the amount of 2,6-dimethylpyridine added until the acidic yellow color of the indicator disappears. The amount of strong acid sites having a pKa of -8.2 or less is assumed.
In the above, “discolored yellow as an acidic color” means the time when the color does not change even after adding a titration reagent after the color starts to change by adding a titration reagent. Need not disappear completely. “Yellow” is a color when the acid is colorless or white, and is not necessarily yellow when the sample originally has color, in which case it indicates a color generated by adding an indicator.
If an anthraquinone as an indicator is not added and the color does not change to yellow, the amount of strong acid points having a pKa of −8.2 or less is zero. The titration test needs to be performed in a purified inert gas such as nitrogen or argon atmosphere in order to avoid the influence of oxygen and moisture. Moreover, since accurate measurement cannot be performed when the addition rate of the titration reagent is extremely fast or slow, 2,6-dimethylpyridine is usually added at 0.5 to 5 per gram per 1 g of the ion-exchangeable layered silicate. It is necessary to add dropwise at a slow rate of about micromolar, preferably about 1 micromolar. The temperature to be measured is 10 ° C.

(6)イオン交換性層状珪酸塩の組成分析
JIS法による化学分析により検量線を作成し、蛍光X線により測定した。
(6) Composition analysis of ion-exchange layered silicate A calibration curve was prepared by chemical analysis according to JIS method and measured by fluorescent X-ray.

(実施例1)
(1)成分[A]、下記構造を有する化合物(PAH)の合成
WO03/040201号公報に記載の方法に従い合成を行った。
化合物の確認は、HNMRスペクトルで行い、結果は以下の通りであった。
(Example 1)
(1) Synthesis | combination of component [A] and the compound (PAH) which has the following structure It synthesize | combined according to the method as described in WO03 / 040201.
The compound was confirmed by 1 HNMR spectrum, and the results were as follows.

HNMR(C) δ0.39(d,3H),0.66(s,3H),0.94(s, 3H),1.16(d,3H),1.40(m,6H),3.28(sept,1H),3.83(sept,1H),5.93(s,1H),6.40(d,1H),6.98−7.29(m,10H),7.49(d,1H),7.72(d,1H),7.81(d,1H),8.25(d,1H),8.57(d,1H)ppm. 1 HNMR (C 6 D 6 ) δ 0.39 (d, 3H), 0.66 (s, 3H), 0.94 (s, 3H), 1.16 (d, 3H), 1.40 (m, 6H), 3.28 (sept, 1H), 3.83 (sept, 1H), 5.93 (s, 1H), 6.40 (d, 1H), 6.98-7.29 (m, 10H) ), 7.49 (d, 1H), 7.72 (d, 1H), 7.81 (d, 1H), 8.25 (d, 1H), 8.57 (d, 1H) ppm.

Figure 2008163140
Figure 2008163140

(2)イオン交換性層状珪酸塩の化学処理、乾燥
セパラブルフラスコ中で蒸留水1730gに96%硫酸(502g)を加えその後、層状珪酸塩としてモンモリロナイト(水澤化学社製ベンクレイSL:平均粒径19μm)300gを加えた。このスラリーを0.5℃/分で1時間かけて90℃まで昇温し、90℃で120分反応させた。この反応スラリーを1時間で室温まで冷却し、蒸留水1200g加えた後にろ過したところケーキ状固体615gを得た。
次に、セパラブルフラスコ中に、硫酸リチウム324g、蒸留水900gを加え硫酸リチウム水溶液としたところへ、上記ケーキ上固体を全量投入し、更に蒸留水261gを加えた。このスラリーを0.5℃/分で1時間かけて90℃まで昇温し、90℃で120分反応させた。この反応スラリーを1時間で室温まで冷却し、蒸留水990g加えた後にろ過し、更に蒸留水でpH3まで洗浄し、ろ過を行ったところ、ケーキ状固体575gを得た。
得られた固体を窒素気流下130℃で2日間予備乾燥後、53μm以上の粗大粒子を除去し、更に215℃、窒素気流下、滞留時間10分の条件でロータリーキルン乾燥することにより、化学処理スメクタイト170gを得た。
この化学処理スメクタイトの組成は、Al:7.86重量%、Si:36.6重量%、Mg:1.29重量%、Fe:1.84重量%、Li:0.21重量%であり、Al/Si=0.224[mol/mol]であった。
また、このスメクタイトはpKaが−8.2以下の酸点を1g当たり0.043mmol含有していた。
(2) Chemical treatment and drying of ion-exchanged layered silicate 96% sulfuric acid (502 g) was added to 1730 g of distilled water in a separable flask, and then montmorillonite (Menzawa Chemical Co., Ltd. Benclay SL: average particle size 19 μm) as a layered silicate ) 300 g was added. The slurry was heated to 90 ° C. over 1 hour at 0.5 ° C./minute, and reacted at 90 ° C. for 120 minutes. The reaction slurry was cooled to room temperature in 1 hour, and 1200 g of distilled water was added, followed by filtration to obtain 615 g of a cake-like solid.
Next, 324 g of lithium sulfate and 900 g of distilled water were added to the separable flask to make a lithium sulfate aqueous solution, and the whole amount of the above-mentioned cake solid was added, and 261 g of distilled water was further added. The slurry was heated to 90 ° C. over 1 hour at 0.5 ° C./minute, and reacted at 90 ° C. for 120 minutes. The reaction slurry was cooled to room temperature in 1 hour, filtered after adding 990 g of distilled water, further washed with distilled water to pH 3, and filtered to obtain 575 g of a cake-like solid.
The obtained solid was preliminarily dried at 130 ° C. for 2 days under a nitrogen stream, then coarse particles of 53 μm or more were removed, and further, rotary kiln drying was performed under a condition of 215 ° C. under a nitrogen stream for a residence time of 10 minutes. 170 g was obtained.
The composition of this chemically treated smectite is Al: 7.86 wt%, Si: 36.6 wt%, Mg: 1.29 wt%, Fe: 1.84 wt%, Li: 0.21 wt%, Al / Si = 0.224 [mol / mol].
Further, this smectite contained 0.043 mmol of acid sites having a pKa of −8.2 or less per gram.

(3)オレフィンの共重合
先に合成したPAHをグローブボックス内で100mg採取し、トルエンを加えて、2.00mg/mlの溶液を調製した。同時に、先に合成したイオン交換性層状珪酸塩をグローブボックス内で500mg採取し、n−ヘプタンを8.26ml、撹拌しながらトリイソブチルアルミニウム(TiBA)のヘプタン希釈液(140mg/ml)を1.74ml添加し、室温にて30分間撹拌した。反応終了後、ヘプタン90mlを加え、5分間撹拌、静置後に上澄みを90ml抜き出した。この洗浄操作を2回繰り返した。
続いて、加熱下窒素を流通させることにより予めよく乾燥させ、室温に維持した1Lオートクレーブに、トリイソブチルアルミニウム(TiBA)のヘプタン希釈液(35.5mg/ml)を1.41ml加え、n−ヘプタンを477ml、さらに、1−オクテンを9.70ml添加し、内温を70℃まで昇温させた後に、プロピレンを供給し、内圧が0.50MPaまで昇圧、維持した。
次に、先に調製したPAHを3.39ml(10.0μmol)、TiBA処理したイオン交換性層状珪酸塩全量(500mg)をアルゴンで圧入し重合を開始させた。重合開始後は内部圧力、温度が一定となるように維持し、20分間重合を実施した。重合終了後、残モノマーのパージを行い、ヘプタンスラリーを回収し、さらにエタノールを1L添加/撹拌後に、固体成分を減圧ろ過によりろ別し、90℃で減圧乾燥を実施した。
その結果、32.1gのプロピレン−オクテン共重合体が得られた。触媒活性は、9610(kg−PP/mol−PAH・hr)、GPCによる重量平均分子量(Mw)は、2940000、Mw/Mnは2.94、融点(Tm)は72℃、1−オクテン含量は6.4mol%であった。重合データを表1に纏めた。
(3) Copolymerization of olefin 100 mg of the PAH synthesized earlier was collected in a glove box, and toluene was added to prepare a 2.00 mg / ml solution. At the same time, 500 mg of the ion-exchanged layered silicate synthesized earlier was collected in a glove box, 8.26 ml of n-heptane, and a heptane diluted solution of triisobutylaluminum (TiBA) (140 mg / ml) with 1. 74 ml was added and stirred at room temperature for 30 minutes. After completion of the reaction, 90 ml of heptane was added, stirred for 5 minutes and allowed to stand, and 90 ml of the supernatant was extracted. This washing operation was repeated twice.
Subsequently, 1.41 ml of a triisobutylaluminum (TiBA) heptane dilution (35.5 mg / ml) was added to a 1 L autoclave that had been thoroughly dried by flowing nitrogen under heating and maintained at room temperature, and n-heptane was added. Was added, and further, 9.70 ml of 1-octene was added and the internal temperature was raised to 70 ° C., and then propylene was supplied, and the internal pressure was increased and maintained to 0.50 MPa.
Next, 3.39 ml (10.0 μmol) of the previously prepared PAH and the whole amount of ion-exchanged layered silicate (500 mg) treated with TiBA were injected with argon to initiate polymerization. After the start of polymerization, the internal pressure and temperature were kept constant and polymerization was carried out for 20 minutes. After the completion of the polymerization, the residual monomer was purged, the heptane slurry was recovered, 1 L of ethanol was added / stirred, the solid component was filtered off under reduced pressure, and dried at 90 ° C. under reduced pressure.
As a result, 32.1 g of propylene-octene copolymer was obtained. The catalytic activity is 9610 (kg-PP / mol-PAH · hr), the weight average molecular weight (Mw) by GPC is 2940000, Mw / Mn is 2.94, the melting point (Tm) is 72 ° C., and the 1-octene content is It was 6.4 mol%. The polymerization data is summarized in Table 1.

(参考例1)
重合時に1−オクテンを添加せず、重合を1時間実施した以外は、実施例1と同様に実施した。その結果、24.8gのプロピレン重合体が得られた。触媒活性は、2480(kg−PP/mol−PAH・hr)、GPCによる重量平均分子量(Mw)は、3090000、Mw/Mnは2.78、融点(Tm)は137℃であった。重合データを表1に纏めた。
(Reference Example 1)
The same procedure as in Example 1 was carried out except that 1-octene was not added during the polymerization and the polymerization was carried out for 1 hour. As a result, 24.8 g of a propylene polymer was obtained. The catalyst activity was 2480 (kg-PP / mol-PAH · hr), the weight average molecular weight (Mw) by GPC was 3090000, Mw / Mn was 2.78, and the melting point (Tm) was 137 ° C. The polymerization data is summarized in Table 1.

(比較例1)
PAHを1.13ml(3.33μmol)、共触媒としてTiBA処理したイオン交換性層状珪酸塩の代わりに、希釈MMAO(東ソーファインケム社製)を3.33ml(Al換算で6.67mmol、ヘキサン溶液)使用し、重合を1時間実施した以外は、実施例1と同様に実施した。その結果、31.8gのプロピレン−オクテン共重合体が得られた。触媒活性は、22800(kg−PP/mol−PAH・hr)、GPCによる重量平均分子量(Mw)は、109000、Mw/Mnは2.63、融点(Tm)は109℃、1−オクテン含量は3.0mol%であった。重合データを表1に纏めた。
(Comparative Example 1)
1.33 ml (3.33 μmol) of PAH and 3.33 ml of diluted MMAO (manufactured by Tosoh Finechem) instead of the ion-exchanged layered silicate treated with TiBA as a cocatalyst (6.67 mmol in terms of Al, hexane solution) Used as in Example 1 except that the polymerization was carried out for 1 hour. As a result, 31.8 g of a propylene-octene copolymer was obtained. The catalytic activity is 22800 (kg-PP / mol-PAH · hr), the weight average molecular weight (Mw) by GPC is 109000, Mw / Mn is 2.63, the melting point (Tm) is 109 ° C., and the 1-octene content is It was 3.0 mol%. The polymerization data is summarized in Table 1.

(比較例2)
共触媒としてTiBA処理したイオン交換性層状珪酸塩の代わりに、希釈MMAO(東ソーファインケム社製)を10.0ml(Al換算で20.0mmol)使用した以外は、実施例2と同様に実施した。その結果、19.0gのプロピレン重合体が得られた。触媒活性は、5910(kg−PP/mol−PAH・hr)、GPCによる重量平均分子量(Mw)は、38300、Mw/Mnは3.06、融点(Tm)は141℃であった。重合データを表1に纏めた。
(Comparative Example 2)
It implemented like Example 2 except having used 10.0 ml (20.0 mmol in Al conversion) of diluted MMAO (made by Tosoh Finechem) instead of the ion-exchange layered silicate which carried out TiBA as a cocatalyst. As a result, 19.0 g of a propylene polymer was obtained. The catalytic activity was 5910 (kg-PP / mol-PAH · hr), the weight average molecular weight (Mw) by GPC was 38300, Mw / Mn was 3.06, and the melting point (Tm) was 141 ° C. The polymerization data is summarized in Table 1.

(実施例2)
1−オクテンの添加量を4.85ml、重合温度を80℃で実施する以外は、実施例1と同様に実施した。その結果、触媒活性は、14500(kg−PP/mol−PAH・hr)、MFRは0.35g/10分、融点(Tm)は109℃、1−オクテン含量は3.2mol%であった。重合データを表2に纏めた。
(Example 2)
The same procedure as in Example 1 was conducted except that the amount of 1-octene added was 4.85 ml and the polymerization temperature was 80 ° C. As a result, the catalytic activity was 14500 (kg-PP / mol-PAH · hr), the MFR was 0.35 g / 10 min, the melting point (Tm) was 109 ° C., and the 1-octene content was 3.2 mol%. The polymerization data is summarized in Table 2.

(参考例2)
1−オクテンを使用しないことを除き、実施例2と同様に実施した。その結果、触媒活性は、6900(kg−PP/mol−PAH・hr)、MFRは0.06g/10分、融点(Tm)は142℃、であった。重合データを表2に纏めた。
(Reference Example 2)
The same procedure as in Example 2 was performed except that 1-octene was not used. As a result, the catalytic activity was 6900 (kg-PP / mol-PAH · hr), the MFR was 0.06 g / 10 min, and the melting point (Tm) was 142 ° C. The polymerization data is summarized in Table 2.

(比較例3)
PAHを1.13ml(3.33μmol)、共触媒としてTiBA処理したイオン交換性層状珪酸塩の代わりに、N,N−ジメチルアニリニウムテトラキスペンタフルオロフェニルボレートを6.40ml(4.00μmol、トルエン溶液)使用した以外は、実施例3と同様に実施した。その結果、触媒活性は、23800(kg−PP/mol−PAH・hr)、MFRは3.01g/10分、融点(Tm)は109℃、1−オクテン含量は3.1mol%であった。重合データを表2に纏めた。
(Comparative Example 3)
1.40 ml (4.00 μmol, toluene solution) of N, N-dimethylanilinium tetrakispentafluorophenylborate instead of 1.13 ml (3.33 μmol) of PAH and ion-exchanged layered silicate treated with TiBA as a cocatalyst ) The same procedure as in Example 3 was performed except that it was used. As a result, the catalytic activity was 23800 (kg-PP / mol-PAH · hr), MFR was 3.01 g / 10 min, melting point (Tm) was 109 ° C., and 1-octene content was 3.1 mol%. The polymerization data is summarized in Table 2.

(比較例4)
共触媒としてTiBA処理したイオン交換性層状珪酸塩の代わりに、N,N−ジメチルアニリニウムテトラキスペンタフルオロフェニルボレートを19.2ml(12.0μmol、トルエン溶液)使用した以外は、実施例4と同様に実施した。その結果、触媒活性は、4910(kg−PP/mol−PAH・hr)、MFRは0.27g/10分、融点(Tm)は141℃であった。重合データを表2に纏めた。
(Comparative Example 4)
As in Example 4, except that 19.2 ml (12.0 μmol, toluene solution) of N, N-dimethylanilinium tetrakispentafluorophenylborate was used in place of TiBA-treated ion-exchanged layered silicate as a cocatalyst. Implemented. As a result, the catalytic activity was 4910 (kg-PP / mol-PAH · hr), the MFR was 0.27 g / 10 min, and the melting point (Tm) was 141 ° C. The polymerization data is summarized in Table 2.

(実施例3)
重合温度を100℃で実施する以外は、実施例2と同様に実施した。その結果、触媒活性は、24800(kg−PP/mol−PAH・hr)、GPCによる重量平均分子量(Mw)は、416000、融点(Tm)は98℃、1−オクテン含量は4.2mol%であった。
(Example 3)
It implemented like Example 2 except implementing superposition | polymerization temperature at 100 degreeC. As a result, the catalyst activity was 24800 (kg-PP / mol-PAH · hr), the weight average molecular weight (Mw) by GPC was 416000, the melting point (Tm) was 98 ° C., and the 1-octene content was 4.2 mol%. there were.

(参考例3)
重合温度を100℃で実施する以外は、参考例2と同様に実施した。その結果、触媒活性は、12400(kg−PP/mol−PAH・hr)、GPCによる重量平均分子量(Mw)は、127000、融点(Tm)は140℃であった。
(Reference Example 3)
It implemented similarly to the reference example 2 except implementing superposition | polymerization temperature at 100 degreeC. As a result, the catalyst activity was 12400 (kg-PP / mol-PAH · hr), the weight average molecular weight (Mw) by GPC was 127,000, and the melting point (Tm) was 140 ° C.

(参考例4)
続いて、加熱下窒素を流通させることにより予めよく乾燥させ、室温に維持した1Lオートクレーブに、トリイソブチルアルミニウム(TiBA)のヘプタン希釈液(35.5mg/ml)を1.41ml加え、n−ヘプタンを477ml添加し、内温を100℃まで昇温させた後に、プロピレンを供給し、内圧が0.50MPaまで昇圧し、その後、エチレンを供給し、内圧を0.8MPaまで昇圧した。
次に、実施例1と同様に調製したPAHをml(10.0μmol)、TiBA処理したイオン交換性層状珪酸塩全量(500mg)をアルゴンで圧入し重合を開始させ、温度が一定となるように維持し、15分間重合を実施した。重合終了後、残モノマーのパージを行い、ヘプタンスラリーを回収し、さらにエタノールを1L添加/撹拌後に、固体成分を減圧ろ過によりろ別し、90℃で減圧乾燥を実施した。
その結果、41.9gのエチレン−プロピレン共重合体が得られた。触媒活性は、25100(kg−PP/mol−PAH・hr)、GPCによる重量平均分子量(Mw)は、2640000、融点(Tm)は確認出来ず、エチレン含量は24mol%であった。
(Reference Example 4)
Subsequently, 1.41 ml of a triisobutylaluminum (TiBA) heptane dilution (35.5 mg / ml) was added to a 1 L autoclave that had been thoroughly dried by flowing nitrogen under heating and maintained at room temperature, and n-heptane was added. 477 ml was added and the internal temperature was raised to 100 ° C., and then propylene was supplied to increase the internal pressure to 0.50 MPa, and then ethylene was supplied to increase the internal pressure to 0.8 MPa.
Next, ml (10.0 μmol) of PAH prepared in the same manner as in Example 1 and the entire amount of ion-exchanged layered silicate (500 mg) treated with TiBA were injected with argon to start polymerization, so that the temperature became constant. The polymerization was carried out for 15 minutes. After the completion of the polymerization, the residual monomer was purged, the heptane slurry was recovered, 1 L of ethanol was added / stirred, the solid component was filtered off under reduced pressure, and dried at 90 ° C. under reduced pressure.
As a result, 41.9 g of ethylene-propylene copolymer was obtained. The catalytic activity was 25100 (kg-PP / mol-PAH · hr), the weight average molecular weight (Mw) by GPC was 2640000, the melting point (Tm) could not be confirmed, and the ethylene content was 24 mol%.

(実施例4)
(1)有機アルミニウム処理スメクタイトの調製
窒素雰囲気下、100mLフラスコにn−ヘプタン25mLと、実施例1(2)で製造した乾燥化学処理スメクタイト粒子1.0gを導入した。系を20℃に保ち、トリエチルアルミニウムのn−ヘプタン溶液(濃度0.613mol/L)3.2mLを添加した。温度を保持したまま1時間反応を行った後、洗浄率が1/100となるまでn−ヘプタンによる洗浄を行った後、総量を100mLに調製した。
(2)エチレン/1−ヘキセン共重合
加熱下窒素を流通させることにより予めよく乾燥させ、室温に維持した1Lオートクレーブに、n−ヘプタン500mlと1−ヘキセン20mlとトリエチルアルミニウムのヘプタン希釈液(0.625mmol/ml)を0.8ml加え、内温を70℃まで昇温させた後、エチレンを供給し、エチレン分圧が2.0MPaとなるまで昇圧した。実施例1と同様に調製したPAHのトルエン溶液2.0ml(PAH 2.0μmol分)と、(1)で得た有機アルミニウム処理スメクタイトのn−ヘプタンスラリー2.0ml(該スメクタイト20mg分)をアルゴンで圧入して重合を開始させ、温度が一定となるように維持し、エチレン分圧が2.0MPaで一定となるようにエチレンの供給をして重合を継続した。60分重合を行った後、エタノールを加えて重合を停止し、固体成分をろ過によりろ別し、90℃で減圧乾燥を実施した。その結果、5.1gのエチレン/1−ヘキセン共重合体が得られた。触媒活性は2550(kg−PE/mol−PAH.hr)、GPCによる重量平均分子量(Mw)は2590000、融点(Tm)は115℃、ヘキセン含量は2.7mol%であった。
Example 4
(1) Preparation of organoaluminum-treated smectite In a nitrogen atmosphere, 25 mL of n-heptane and 1.0 g of the dry chemically-treated smectite particles produced in Example 1 (2) were introduced into a 100 mL flask. While maintaining the system at 20 ° C., 3.2 mL of an n-heptane solution of triethylaluminum (concentration 0.613 mol / L) was added. The reaction was carried out for 1 hour while maintaining the temperature, and after washing with n-heptane until the washing rate became 1/100, the total amount was adjusted to 100 mL.
(2) Copolymerization of ethylene / 1-hexene A 1 L autoclave that had been well dried by circulating nitrogen under heating and maintained at room temperature was diluted with a heptane dilution of 0.5 ml of n-heptane, 20 ml of 1-hexene, and triethylaluminum (0. 625 mmol / ml) was added and the internal temperature was raised to 70 ° C., and then ethylene was supplied to increase the ethylene partial pressure to 2.0 MPa. 2.0 ml of a PAH toluene solution prepared in the same manner as in Example 1 (2.0 μmol for PAH) and 2.0 ml of n-heptane slurry of the organoaluminum-treated smectite obtained in (1) (for 20 mg of the smectite) were added to argon. The polymerization was started by press-fitting at a temperature of 0 to maintain the temperature constant, and ethylene was supplied to keep the ethylene partial pressure constant at 2.0 MPa to continue the polymerization. After performing the polymerization for 60 minutes, ethanol was added to stop the polymerization, the solid component was separated by filtration, and dried at 90 ° C. under reduced pressure. As a result, 5.1 g of ethylene / 1-hexene copolymer was obtained. The catalytic activity was 2550 (kg-PE / mol-PAH.hr), the weight average molecular weight (Mw) by GPC was 2590000, the melting point (Tm) was 115 ° C., and the hexene content was 2.7 mol%.

(比較例5)
共触媒として、TEA処理したイオン交換性層状珪酸塩の代わりに、希釈MMAO(東ソーファインケム社製)を2.70ml(Al換算で3.97mmol、ヘキサン溶液)使用した以外は、実施例7と同様に実施した。その結果、17.9gのエチレン・1−ヘキセン共重合体が得られた。触媒活性は8950(kg−PE/mol−PAH.hr)、GPCによる重量平均分子量(Mw)は227000、融点(Tm)は117℃、ヘキセン含量は2.4mol%であった。
(Comparative Example 5)
The same procedure as in Example 7 except that 2.70 ml of diluted MMAO (manufactured by Tosoh Finechem Co., Ltd.) (3.97 mmol in terms of Al, hexane solution) was used as the cocatalyst instead of the TEA-treated ion exchange layered silicate. Implemented. As a result, 17.9 g of ethylene / 1-hexene copolymer was obtained. The catalytic activity was 8950 (kg-PE / mol-PAH.hr), the weight average molecular weight (Mw) by GPC was 227,000, the melting point (Tm) was 117 ° C., and the hexene content was 2.4 mol%.

Figure 2008163140
Figure 2008163140

Figure 2008163140
Figure 2008163140

本発明のオレフィン共重合体の製造方法は、高価な有機アルミニウムオキシ化合物や有機ホウ素化合物を使用しなくても高いオレフィン重合活性を発現し、かつ、さらに実用的な重合温度で高い分子量で高コモノマー含量を有するオレフィン共重合体の製造が可能になるので、産業上優れた効果を有する。   The method for producing an olefin copolymer of the present invention exhibits a high olefin polymerization activity without using an expensive organoaluminum oxy compound or organoboron compound, and further has a high molecular weight and a high comonomer at a practical polymerization temperature. Since an olefin copolymer having a high content can be produced, it has an industrially excellent effect.

Claims (7)

少なくとも下記成分[A]、[B]及び[C]を含む触媒を使用して、プロピレン、エチレンあるいはその混合物と炭素数4以上のα−オレフィンとを共重合させて、共重合体中に炭素数4以上のα−オレフィンが1〜20モル%を含まれるオレフィン共重合体を得ることを特徴とするオレフィン共重合体の製造方法。
成分[A]:下記構造の遷移金属錯体
Figure 2008163140
(式(I)中、Mはチタン、ジルコニウム、ハフニウムから選ばれる原子を示し、複数存在してもよい各R〜Rは互いに同一でも異なっていてもよく、ハロゲン、炭素数1〜30の炭化水素基、炭素数1〜30のハロゲン、酸素、窒素、ホウ素、イオウ、リン、ケイ素又はゲルマニウム含有炭化水素基を示し、これらの置換基のうちの2個以上が互いに連結して環を形成してもよい。a、b、c、dは、0以上の整数を示し、a、dは5以下、bは3以下、cは4以下である。X及びYは、各々水素原子、ハロゲン原子、ケイ素もしくはハロゲンを含んでもよい炭素数1〜10の炭化水素基、あるいは酸素原子及び窒素原子よりなる群から選択されるヘテロ原子を有していてもよい炭素数1〜10の炭化水素基を示す。)
成分[B]:イオン交換性層状珪酸塩
成分[C]:有機アルミニウム
Using a catalyst containing at least the following components [A], [B] and [C], propylene, ethylene or a mixture thereof and an α-olefin having 4 or more carbon atoms are copolymerized, and carbon is contained in the copolymer. The manufacturing method of the olefin copolymer characterized by obtaining the olefin copolymer in which 1-20 mol% of several alpha-olefins are contained.
Component [A]: transition metal complex having the following structure
Figure 2008163140
(In formula (I), M represents an atom selected from titanium, zirconium and hafnium, and a plurality of R 1 to R 4 which may be present may be the same as or different from each other, and may be halogen, C 1-30. A hydrocarbon group of 1 to 30 halogen, oxygen, nitrogen, boron, sulfur, phosphorus, silicon or germanium-containing hydrocarbon group, wherein two or more of these substituents are linked to each other to form a ring A, b, c and d each represent an integer of 0 or more, a and d are 5 or less, b is 3 or less, and c is 4 or less, X and Y are each a hydrogen atom, A hydrocarbon group having 1 to 10 carbon atoms which may contain a halogen atom, silicon or halogen, or a hydrocarbon having 1 to 10 carbon atoms which may have a heteroatom selected from the group consisting of an oxygen atom and a nitrogen atom Group.)
Component [B]: Ion exchange layered silicate component [C]: Organoaluminum
成分[B]が化学処理されたイオン交換性層状珪酸塩であることを特徴とする請求項1に記載のオレフィン共重合体の製造方法。   The method for producing an olefin copolymer according to claim 1, wherein the component [B] is a chemically treated ion-exchanged layered silicate. 成分[B]がスメクタイト族のイオン交換性層状珪酸塩であることを特徴とする請求項1又は2に記載のオレフィン共重合体の製造方法。   The method for producing an olefin copolymer according to claim 1 or 2, wherein the component [B] is a smectite group ion-exchangeable layered silicate. 成分[B]は、pKaが−8.2以下の酸点を、1g当たり0.05mmol以上含有するイオン交換性層状珪酸塩であることを特徴とする請求項1〜3のいずれか1項に記載のオレフィン共重合体の製造方法。   The component [B] is an ion-exchange layered silicate containing 0.05 mmol or more per 1 g of acid sites having a pKa of -8.2 or less. The manufacturing method of the olefin copolymer of description. 成分[A]のMがハフニウムであることを特徴とする請求項1〜4のいずれか1項に記載のオレフィン共重合体の製造方法。   M of component [A] is hafnium, The manufacturing method of the olefin copolymer of any one of Claims 1-4 characterized by the above-mentioned. 共重合体の成分として、エチレンが80〜99mol%、炭素数4以上のα−オレフィンが1〜20mol%含まれることを特徴とする請求項1〜5のいずれか1項に記載のオレフィン共重合体の製造方法。   The olefin copolymer according to any one of claims 1 to 5, wherein the copolymer contains 80 to 99 mol% of ethylene and 1 to 20 mol% of an α-olefin having 4 or more carbon atoms. Manufacturing method of coalescence. 共重合体の成分として、プロピレンが80〜99mol%、炭素数4以上のα−オレフィンが1〜20mol%含まれることを特徴とする請求項1〜5のいずれか1項に記載のオレフィン共重合体の製造方法。   The olefin copolymer according to any one of claims 1 to 5, wherein propylene is contained in an amount of 80 to 99 mol% and α-olefin having 4 or more carbon atoms is contained in an amount of 1 to 20 mol%. Manufacturing method of coalescence.
JP2006352924A 2006-12-27 2006-12-27 Process for producing olefin copolymer Active JP5007116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006352924A JP5007116B2 (en) 2006-12-27 2006-12-27 Process for producing olefin copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006352924A JP5007116B2 (en) 2006-12-27 2006-12-27 Process for producing olefin copolymer

Publications (2)

Publication Number Publication Date
JP2008163140A true JP2008163140A (en) 2008-07-17
JP5007116B2 JP5007116B2 (en) 2012-08-22

Family

ID=39693048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006352924A Active JP5007116B2 (en) 2006-12-27 2006-12-27 Process for producing olefin copolymer

Country Status (1)

Country Link
JP (1) JP5007116B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015199919A (en) * 2014-04-03 2015-11-12 三井化学株式会社 Catalyst for olefin polymerization, and method for producing olefin polymer
WO2022075350A1 (en) * 2020-10-06 2022-04-14 三井化学株式会社 Resin composition
JP7446662B2 (en) 2020-04-16 2024-03-11 エルジー・ケム・リミテッド Polyolefin-polystyrene multi-block copolymer and method for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301917A (en) * 1991-05-01 1993-11-16 Mitsubishi Kasei Corp Olefin-polymerization catalyst and production of olefin polymer using the catalyst
JP2002053609A (en) * 2000-05-29 2002-02-19 Japan Polychem Corp Catalyst for olefin polymerization
JP2005504853A (en) * 2001-06-15 2005-02-17 ダウ グローバル テクノロジーズ インコーポレイティド Branched polymers based on alpha-olefins
JP2005508415A (en) * 2001-11-06 2005-03-31 ダウ グローバル テクノロジーズ インコーポレイティド Isotactic propylene copolymers, their production and use
JP2005508413A (en) * 2001-11-06 2005-03-31 ダウ・グローバル・テクノロジーズ・インコーポレイテッド Supported catalyst for polymer production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301917A (en) * 1991-05-01 1993-11-16 Mitsubishi Kasei Corp Olefin-polymerization catalyst and production of olefin polymer using the catalyst
JP2002053609A (en) * 2000-05-29 2002-02-19 Japan Polychem Corp Catalyst for olefin polymerization
JP2005504853A (en) * 2001-06-15 2005-02-17 ダウ グローバル テクノロジーズ インコーポレイティド Branched polymers based on alpha-olefins
JP2005508415A (en) * 2001-11-06 2005-03-31 ダウ グローバル テクノロジーズ インコーポレイティド Isotactic propylene copolymers, their production and use
JP2005508413A (en) * 2001-11-06 2005-03-31 ダウ・グローバル・テクノロジーズ・インコーポレイテッド Supported catalyst for polymer production

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015199919A (en) * 2014-04-03 2015-11-12 三井化学株式会社 Catalyst for olefin polymerization, and method for producing olefin polymer
JP7446662B2 (en) 2020-04-16 2024-03-11 エルジー・ケム・リミテッド Polyolefin-polystyrene multi-block copolymer and method for producing the same
WO2022075350A1 (en) * 2020-10-06 2022-04-14 三井化学株式会社 Resin composition
CN116234836A (en) * 2020-10-06 2023-06-06 三井化学株式会社 Resin composition
JP7476337B2 (en) 2020-10-06 2024-04-30 三井化学株式会社 Resin composition

Also Published As

Publication number Publication date
JP5007116B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5028010B2 (en) Propylene homopolymer and process for producing the same
US6677411B2 (en) Component of catalyst for olefin polymerization
JP5555785B2 (en) Propylene polymer
JP5456343B2 (en) Metallocene complex and olefin polymerization catalyst containing the same
JP2007517960A (en) Supported activator
JP2019131821A (en) Preparation of ultra high molecular weight polyethylene
JP5624948B2 (en) Process for producing ethylene-α-olefin copolymer having bimodal composition distribution
JP2009120810A (en) METALLOCENE-BASED POLYMERIZATION CATALYST AND A METHOD FOR PRODUCING alpha-OLEFIN-ALKENYLSILANE COPOLYMER USING THE SAME
JP2001031720A (en) Catalyst component for olefin polymerization, and olefin polymerization catalyst using the same
JP5007116B2 (en) Process for producing olefin copolymer
JP6885451B2 (en) Method for producing olefin polymer
JPH11255816A (en) Catalyst component for alpha-olefin polymerization, catalyst and process for polymerization of alpha-olefin using it
US20240084051A1 (en) Process for preparing catalysts and catalyst compositions
JP2021152155A (en) Support catalyst for olefin polymerization, and method for producing propylene polymer with support catalyst for olefin polymerization
JP2007254704A (en) Catalyst component for olefin polymerization, method for producing the catalyst component, and method for producing olefin polymer by polymerization catalyst by using the catalyst component
JP6369382B2 (en) Olefin polymerization catalyst component and process for producing olefin polymer using the same
JPH11166011A (en) Catalyst component for alpha-olefin polymerization, catalyst, and production of alpha-olefin polymer
JPH111508A (en) Catalytic component for alpha-olefin polymerization, catalyst and production of alpha-olefin polymer
JP2002053609A (en) Catalyst for olefin polymerization
JP5508660B2 (en) Ion exchange layered silicate particles and production method thereof, olefin polymerization catalyst comprising the same, and production method of olefin polymer using the same
JP6848195B2 (en) Method for producing ethylene copolymer by a specific catalyst and a specific process
JP2008274142A (en) Catalyst for olefin polymerization and manufacturing method thereof
JP2003327613A (en) Olefin polymerization catalyst and method for manufacturing olefin polymer
JP6866813B2 (en) Propylene-comonomer copolymer
WO2022059765A1 (en) Method for producing ion-exchangeable layered silicate salt particles, method for producing olefin polymerization catalyst component, method for producing olefin polymerization catalyst, and method for producing olefin polymer using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5007116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250