JP2008160681A - Antenna apparatus and wireless unit - Google Patents

Antenna apparatus and wireless unit Download PDF

Info

Publication number
JP2008160681A
JP2008160681A JP2006349529A JP2006349529A JP2008160681A JP 2008160681 A JP2008160681 A JP 2008160681A JP 2006349529 A JP2006349529 A JP 2006349529A JP 2006349529 A JP2006349529 A JP 2006349529A JP 2008160681 A JP2008160681 A JP 2008160681A
Authority
JP
Japan
Prior art keywords
antenna device
conductor plate
notch
cut
radiation conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006349529A
Other languages
Japanese (ja)
Inventor
Kisho Odate
紀章 大舘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006349529A priority Critical patent/JP2008160681A/en
Publication of JP2008160681A publication Critical patent/JP2008160681A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Waveguide Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-sized antenna apparatus and a wireless unit with broadband characteristics. <P>SOLUTION: A notch 2 is formed at the side A of a conductor ground plate 1, and a radiation conductor plate 4 is provided at a position symmetric to the notch 2 with the side A as a symmetry axis. An area of the notch 2 is made larger than that of the radiation conductor plate 4, thereby shifting a bottom operating frequency to a low frequency side. Thus, in comparison with a false self-assistant antenna having an equal bottom operating frequency, the radiation conductor plate 4 of the antenna apparatus can be made smaller and the antenna apparatus can be made small in size. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、アンテナ装置及び無線機に関する。   The present invention relates to an antenna device and a radio device.

近年の携帯電話や無線機内蔵ゲーム機器、無線機内蔵ノートパソコンなどの携帯無線機では、様々な無線システムが1つの機器に搭載され、いつでもどこでも快適な無線通信が行える装置が提供されている。   In recent portable wireless devices such as mobile phones, game machines with built-in wireless devices, and notebook computers with built-in wireless devices, various wireless systems are mounted on one device, and devices capable of comfortable wireless communication anytime and anywhere are provided.

一般的に、無線システムに割り当てられる無線周波数は、その無線システム毎に異なる。そのため、複数の無線システムに対応した携帯無線機には、各無線システムに割り当てられた無線周波数にあわせて動作するアンテナが複数本必要となる。これは、アンテナが一つの無線周波数にしか対応していないためである。   Generally, the radio frequency assigned to a radio system differs for each radio system. Therefore, a portable wireless device that supports a plurality of wireless systems needs a plurality of antennas that operate in accordance with the radio frequency assigned to each wireless system. This is because the antenna supports only one radio frequency.

しかしながら、アンテナが広帯域特性を有する場合、1つのアンテナが複数の無線システムに割り当てられた無線周波数にあわせて動作する。従って、広帯域特性を有するアンテナを用いると、携帯無線機に必要なアンテナの本数を削減することができ、携帯無線機を小型化することができる。   However, when an antenna has a wideband characteristic, one antenna operates in accordance with a radio frequency assigned to a plurality of radio systems. Therefore, when an antenna having broadband characteristics is used, the number of antennas necessary for the portable wireless device can be reduced, and the portable wireless device can be reduced in size.

広帯域特性を有するアンテナとして、例えばモノポールアンテナと切り込みから構成される擬似自己補対アンテナが知られている(例えば、非特許文献1参照。)。   As an antenna having a wide band characteristic, for example, a pseudo self-complementary antenna composed of a monopole antenna and a notch is known (for example, see Non-Patent Document 1).

非特許文献1に記載される擬似自己補対アンテナは、構造が平面であるため薄型である。また、擬似自己補対アンテナは、モノポールと切り込みを対称同一形状とすればよいため、設計が容易であるという利点を持つ。
Pu Xu, K. Fujimoto, and Shiming Lin,” Performance of quasi−self−complementary antenna using a monopole and a slot,” Proc. of 2002 AP−S and USNC/URSI symposium, pp. 464−467, 2002, USA.
The pseudo self-complementary antenna described in Non-Patent Document 1 is thin because the structure is flat. Further, the pseudo self-complementary antenna has an advantage that the design is easy because the monopole and the cut need only have the same symmetrical shape.
Pu Xu, K.K. Fujimoto, and Shimming Lin, “Performance of quasi-self-complementary antenna using a monopole and a slot,” Proc. of 2002 AP-S and USNC / URSI symposium, pp. 464-467, 2002, USA.

しかしながら、上述した非特許文献1に記載される発明は、モノポールアンテナ及び切り込みが必要であり、構造が大きいという問題があった。また、高速大容量通信を実現するMIMO(Multiple Input Multiple Output)無線システムでは複数のアンテナが使用される。この擬似自己補対アンテナを、MIMO無線システムに適用する場合、単一の構造が大きいため、アンテナ間の結合を小さくするためにアンテナ同士の間隔を大きくあける必要がある。つまりアンテナ全体が大きくなってしまうという問題があった。   However, the invention described in Non-Patent Document 1 described above has a problem that a monopole antenna and a cut are necessary and the structure is large. A plurality of antennas are used in a MIMO (Multiple Input Multiple Output) wireless system that realizes high-speed and large-capacity communication. When this pseudo self-complementary antenna is applied to a MIMO radio system, since the single structure is large, it is necessary to increase the distance between the antennas in order to reduce the coupling between the antennas. That is, there is a problem that the entire antenna becomes large.

さらに、擬似自己補対アンテナの中心動作周波数は、モノポールアンテナの周囲長と切り込みの周囲長に依存する。また、モノポールアンテナと切り込みの形状は、対称同一であるため、ある周波数で動作する擬似自己補対アンテナを得ようとすると、モノポールアンテナと切り込みの両方の大きさを同時に変更しなければならず、アンテナの小形化が難しいという問題があった。   Furthermore, the center operating frequency of the pseudo self-complementary antenna depends on the peripheral length of the monopole antenna and the peripheral length of the cut. Also, since the shape of the notch and the monopole antenna are symmetrically the same, when trying to obtain a pseudo self-complementary antenna that operates at a certain frequency, both the size of the monopole antenna and the notch must be changed simultaneously. Therefore, there is a problem that it is difficult to miniaturize the antenna.

そこで、本発明は上記問題点を解決するためになされたものであり、広帯域特性を有する小形のアンテナ装置及び無線機の提供を目的とする。   Accordingly, the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a small antenna device and a wireless device having wideband characteristics.

上記目的を達成するために、本発明のアンテナ装置は、一辺に切り込みが形成された導体地板と、前記一辺をはさんだ前記切り込みの反対側に、該切り込みに近接して配置された放射導体板と、前記一辺の、前記切り込みが形成された第1の端部に配置され、前記放射導体板に給電を行う給電点とを備え、前記一辺の、前記切り込みが形成された第2の端部と前記放射導体板との間に両者を電気的に分離する開放端を形成し、前記切り込みの面積は、放射導体板の面積より大きいことを特徴とする。   In order to achieve the above object, an antenna device according to the present invention includes a conductor ground plane in which a cut is formed on one side, and a radiating conductor plate disposed on the opposite side of the cut across the one side and in proximity to the cut. And a first feeding point that feeds power to the radiation conductor plate and is arranged at the first end of the one side where the cut is formed, and the second end of the one side where the cut is formed An open end is formed between the radiating conductor plate and the radiating conductor plate to electrically separate them, and the area of the cut is larger than the area of the radiating conductor plate.

また、本発明のアンテナ装置は、一辺に複数の切り込みが形成された導体地板と、前記一辺をはさんだ前記複数の切り込みの反対側に、該切り込みそれぞれに近接して配置された複数の放射導体板と、前記一辺の、各切り込みが形成された第1の端部それぞれに配置され、前記複数の放射導体板それぞれに給電を行う複数の給電点とを備え、前記一辺の、各切り込みが形成された第2の端部と該切り込みに近接配置された放射導体板との間に両者を電気的に分離する開放端を形成し、前記切り込みの面積は、該切り込みに近接配置された放射導体板の面積より大きいことを特徴とする。   In addition, the antenna device of the present invention includes a conductor ground plate in which a plurality of cuts are formed on one side, and a plurality of radiation conductors arranged on the opposite side of the plurality of cuts across the one side and adjacent to the cuts. A plate and a plurality of feed points that are arranged at each of the first ends of the one side where the cuts are formed and feed power to the plurality of radiation conductor plates, and each cut of the one side is formed. An open end that electrically separates the two is formed between the second end portion formed and the radiation conductor plate disposed in proximity to the notch, and the area of the notch is a radiation conductor disposed in proximity to the notch. It is characterized by being larger than the area of the plate.

また、本発明の無線機は、上述するアンテナ装置を備えることを特徴とする。   In addition, a wireless device according to the present invention includes the antenna device described above.

本発明によると、広帯域特性を有する小形のアンテナ装置及び無線機を提供することができる。   According to the present invention, it is possible to provide a small antenna device and a wireless device having broadband characteristics.

以下、本発明の実施例を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1乃至図9を用いて、本発明の第1の実施例に係るアンテナ装置を説明する。図1は、本実施例に係るアンテナ装置の構成を示す図である。   The antenna device according to the first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram illustrating the configuration of the antenna device according to the present embodiment.

図1に示すアンテナ装置は、略長方形の切り込み2が形成された導体地板1と、切り込み2を形成している導体地板1の一端に配置された給電点3と、一端が給電点3を介して導体地板1に接続された放射導体板4を備えている。   The antenna device shown in FIG. 1 includes a conductor ground plate 1 in which a substantially rectangular cut 2 is formed, a feed point 3 disposed at one end of the conductor ground plate 1 in which the cut 2 is formed, and one end via the feed point 3. And a radiating conductor plate 4 connected to the conductor ground plane 1.

導体地板1は、銅や銀、金などの導電性の高い金属で構成される薄い板である。その厚さは、アンテナ装置の中心動作周波数に対して十分薄く、中心動作周波数の50分の1波長から1000分の1波長程度であればよい。また、導体地板1の辺Aには、幅w、深さdの略長方形の切り込み2が形成される。   The conductor ground plate 1 is a thin plate made of a highly conductive metal such as copper, silver, or gold. The thickness may be sufficiently thin with respect to the center operating frequency of the antenna device and may be about 1 / 50th to 1000th of the wavelength of the center operating frequency. A substantially rectangular cut 2 having a width w and a depth d is formed on the side A of the conductor ground plane 1.

ここで、切り込み2によって二分される辺Aの給電点3が配置された方を辺A1、給電点3が配置されていない方を辺A2と称する。さらに、辺Aを含む直線(以下、対称軸と称する。)と切り込み2の各辺で囲まれた部分の面積w×dを切り込み2の面積と称する。   Here, the side where the feeding point 3 of the side A divided by the notch 2 is arranged is called side A1, and the side where the feeding point 3 is not arranged is called side A2. Further, an area w × d of a portion surrounded by a straight line including the side A (hereinafter referred to as an axis of symmetry) and each side of the cut 2 is referred to as an area of the cut 2.

次に、放射導体板4は、導体地板1と同様に導電性の高い金属で構成される薄い板であり、幅w、高さh(0<h<d)の略長方形状をしている。放射導体板4の幅方向の辺Bは、導体地板1の辺A1と辺A2の間にあり、辺Bの一端は、導体地板1の辺A1の一端と給電点3を介して接続している。すなわち、放射導体板4は、対称軸をはさんで切り込み2の反対側に、該切り込み2に近接して配置されている。   Next, the radiating conductor plate 4 is a thin plate made of a highly conductive metal like the conductor ground plate 1, and has a substantially rectangular shape having a width w and a height h (0 <h <d). . The side B in the width direction of the radiating conductor plate 4 is between the side A1 and the side A2 of the conductor ground plate 1, and one end of the side B is connected to one end of the side A1 of the conductor ground plate 1 through the feeding point 3. Yes. That is, the radiation conductor plate 4 is disposed on the opposite side of the notch 2 across the axis of symmetry and in proximity to the notch 2.

また、放射導体板4の辺Bの他端と導体地板1の辺A2の一端は、角が落ちた形状となっている。これにより、放射導体板4の辺Bの他端と、導体地板1の辺A2の一端との間には間隙が存在し、この間隙を開放端5と称する。なお、給電点3と開放端5の詳細については、後述する。   Further, the other end of the side B of the radiating conductor plate 4 and the one end of the side A2 of the conductor ground plate 1 have a shape in which corners are dropped. Thereby, a gap exists between the other end of the side B of the radiating conductor plate 4 and one end of the side A2 of the conductor ground plate 1, and this gap is referred to as an open end 5. Details of the feeding point 3 and the open end 5 will be described later.

切り込み2と放射導体板4とは、対称軸を中心に対称な位置に配置されている。ただし、放射導体板4の面積(w×h)は、切り込み2の面積(w×d)より小さい。   The notch 2 and the radiating conductor plate 4 are disposed at symmetrical positions around the symmetry axis. However, the area (w × h) of the radiation conductor plate 4 is smaller than the area (w × d) of the notch 2.

続いて、図2を用いて給電点3を詳細に説明する。本実施例に係る給電点3は、放射導体板4と導体地板1の間に電位差を与える構造であればよく、同軸給電、マイクロストリップ給電など任意の給電方法で実現すればよい。   Next, the feeding point 3 will be described in detail with reference to FIG. The feed point 3 according to the present embodiment may be a structure that gives a potential difference between the radiating conductor plate 4 and the conductor ground plate 1 and may be realized by any feeding method such as coaxial feeding or microstrip feeding.

図2は、同軸給電法を用いた場合の給電点3の構造を示す図である。図2に示すように、導体地板1と放射導体板4の間には微小な間隙が存在する。同軸線路6は、外部導体6−1および内部導体6−2を有しており、同軸線路6の外部導体6−1が導体地板1に接地し、同軸線路6の内部導体6−2が放射導体板4に接続する。これにより、導体地板1と放射導体板4とが給電点3を介して接続される。   FIG. 2 is a diagram showing the structure of the feeding point 3 when the coaxial feeding method is used. As shown in FIG. 2, a minute gap exists between the conductor ground plane 1 and the radiation conductor plate 4. The coaxial line 6 has an outer conductor 6-1 and an inner conductor 6-2, the outer conductor 6-1 of the coaxial line 6 is grounded to the conductor ground plane 1, and the inner conductor 6-2 of the coaxial line 6 radiates. Connect to conductor plate 4. Thereby, the conductor ground plane 1 and the radiation conductor board 4 are connected via the feeding point 3.

次に、図3を用いて開放端5の構成を説明する。開放端5は、導体地板1と放射導体板4の間の微小な間隙のことをさす。この間隙は、中心動作周波数の10分の1波長以下であればよい。   Next, the configuration of the open end 5 will be described with reference to FIG. The open end 5 refers to a minute gap between the conductor ground plane 1 and the radiation conductor plate 4. This gap need only be 1/10 wavelength or less of the center operating frequency.

続いて図1、図4乃至図7を用いて、本実施例に係るアンテナ装置の小形化の原理を説明する。   Next, the principle of miniaturization of the antenna device according to the present embodiment will be described with reference to FIGS. 1 and 4 to 7.

給電点3から入力された電流は、切り込み2および放射導体板4の辺に沿って流れる。辺に電流が流れることにより、切り込み2および放射導体板4から電磁波が放射される。なお、ここではアンテナ装置の小形化に寄与する切り込み2からの電磁波放射について詳細に説明する。   The current input from the feeding point 3 flows along the notches 2 and the sides of the radiation conductor plate 4. Electromagnetic waves are radiated from the notch 2 and the radiation conductor plate 4 by the current flowing through the sides. Here, the electromagnetic wave radiation from the notch 2 that contributes to the miniaturization of the antenna device will be described in detail.

給電点3から入力された電流は、切り込み2の辺に沿って流れ、開放端5で反射して再び切り込み2の辺に沿って流れる。以下、給電点3から開放端5に向かって流れる電流を入力電流と称し、開放端5で反射して給電点3に向かって流れる電流を反射電流と称する。この反射電流が大きいと、反射電流が給電点から同軸線路に戻ってしまう。この戻ってしまった反射電流は放射されないので、放射される電磁波が小さくなってしまう。   The current input from the feeding point 3 flows along the side of the cut 2, is reflected by the open end 5, and flows again along the side of the cut 2. Hereinafter, a current flowing from the feeding point 3 toward the open end 5 is referred to as an input current, and a current reflected by the open end 5 and flowing toward the feed point 3 is referred to as a reflected current. When this reflected current is large, the reflected current returns from the feeding point to the coaxial line. Since the returned reflected current is not radiated, the radiated electromagnetic wave becomes small.

ここで、図4を用いて入力電流が高周波である場合について説明する。図4は、入力電流の振幅の一例を示す図である。   Here, a case where the input current is a high frequency will be described with reference to FIG. FIG. 4 is a diagram illustrating an example of the amplitude of the input current.

入力電流が高周波である場合、切り込み2の各辺の中で給電点3付近の入力電流が一番大きく、電磁波は、給電点3付近で強く放射される。給電点3付近で電磁波が放射されると入力電流は小さくなっていき、開放端5付近で流れる入力電流が小さくなる。従って、開放端5で反射された反射電流も小さくなる。このように、入力電流が高周波である場合は、反射電流が小さいので、切り込み2から電磁波が放射される。   When the input current is a high frequency, the input current near the feeding point 3 is the largest among the sides of the notch 2, and the electromagnetic wave is radiated strongly near the feeding point 3. When electromagnetic waves are radiated in the vicinity of the feeding point 3, the input current decreases, and the input current flowing in the vicinity of the open end 5 decreases. Accordingly, the reflected current reflected by the open end 5 is also reduced. Thus, when the input current is a high frequency, the reflected current is small, so that electromagnetic waves are radiated from the cut 2.

次に図5を用いて入力電流が低周波である場合について説明する。図5は、入力電流の振幅の一例を示す図である。   Next, a case where the input current has a low frequency will be described with reference to FIG. FIG. 5 is a diagram illustrating an example of the amplitude of the input current.

入力電流が低周波である場合、波長が長いため、給電点3付近での入力電流が大きいと開放端5付近での入力電流も大きくなる。従って、開放端5で反射した反射電流も大きくなる。つまり、切り込み2から電磁波が放射されにくくなる。   When the input current has a low frequency, the wavelength is long. Therefore, if the input current near the feeding point 3 is large, the input current near the open end 5 also increases. Therefore, the reflected current reflected by the open end 5 is also increased. That is, it becomes difficult for electromagnetic waves to be radiated from the notch 2.

ここで、入力電流が高周波であるとは、入力電流波長の4分の1波長が、切り込み2の辺の長さ(2d+w)より短いものをさし、低周波であるとは、入力電流の4分の1波長が、切り込み2の辺の長さ(2d+w)より長いものをさす。   Here, the input current has a high frequency means that a quarter wavelength of the input current wavelength is shorter than the length (2d + w) of the side of the notch 2, and the low frequency means that the input current A quarter wavelength is longer than the length of the side of the cut 2 (2d + w).

すなわち、本実施例のアンテナ装置が動作する周波数帯域は、切り込み2の辺の長さに依存する。切り込み2の辺の長さが短くなると、動作周波数帯域が高周波にずれる。逆に切り込み2の辺の長さが長くなると、動作周波数帯域が低周波にずれる。   That is, the frequency band in which the antenna apparatus of this embodiment operates depends on the length of the side of the cut 2. When the length of the side of the cut 2 is shortened, the operating frequency band is shifted to a high frequency. Conversely, when the length of the side of the notch 2 is increased, the operating frequency band is shifted to a low frequency.

これを図6および図7を用いて説明する。図6は、切り込み2と放射導体板4の周囲長が異なるアンテナ装置を示す図であり、図7は、図6(a)〜(c)のアンテナ装置の動作周波数帯域を示す図である。   This will be described with reference to FIGS. FIG. 6 is a diagram showing an antenna device in which the perimeters of the notch 2 and the radiating conductor plate 4 are different, and FIG. 7 is a diagram showing an operating frequency band of the antenna device of FIGS. 6 (a) to 6 (c).

図6(a)〜(c)に示すアンテナ装置は、放射導体板3の辺Bを含む切り込み2の周囲長(2w+2d)および放射導体板4の周囲長(2w+2h)をあわせた長さ(以下、放射部位の周囲長の和と称する。)が一定(中心動作周波数の半波長程度)とし、切り込み2の深さdおよび放射導体板4の長さ4をそれぞれ異なる値としたものである。ここでは、放射導体板4の高さhから切り込み2の深さdを引いた値(h−d)をオフセットと呼ぶ。   The antenna device shown in FIGS. 6A to 6C has a length (hereinafter referred to as “the length of the perimeter 2 (2w + 2d) of the notch 2 including the side B of the radiation conductor plate 3) and the circumference (2w + 2h) of the radiation conductor plate 4”. , The sum of the peripheral lengths of the radiation portions) is constant (about a half wavelength of the center operating frequency), and the depth d of the notch 2 and the length 4 of the radiation conductor plate 4 are different values. Here, a value (hd) obtained by subtracting the depth d of the notch 2 from the height h of the radiation conductor plate 4 is referred to as an offset.

図6(a)は、放射導体板4の高さhが切り込み2の深さdより長い(h−d>0)場合のアンテナ装置を示す図である。このとき、アンテナ装置のオフセットは、プラスであるとする。図6(b)は、放射導体板4の高さhが切り込み2の深さdと等しい(h−d=0)場合のアンテナ装置を示す図である。このとき、アンテナ装置は、オフセットなしとする。なお、図(b)に示すアンテナ装置は、一般的に擬似自己補対アンテナと呼ばれるものである。図(c)は、放射導体板4の高さhが切り込み2の深さdより短い(h−d<0)場合のアンテナ装置を示す図である。このとき、アンテナ装置のオフセットは、マイナスであるとする。図(c)に示すアンテナ装置が、本実施例に係るアンテナ装置である。   FIG. 6A is a diagram showing the antenna device when the height h of the radiating conductor plate 4 is longer than the depth d of the notch 2 (hd> 0). At this time, the offset of the antenna device is assumed to be positive. FIG. 6B is a diagram showing the antenna device when the height h of the radiating conductor plate 4 is equal to the depth d of the notch 2 (h−d = 0). At this time, the antenna device is assumed to have no offset. Note that the antenna device shown in FIG. 2B is generally called a pseudo self-complementary antenna. FIG. 7C is a diagram showing the antenna device when the height h of the radiating conductor plate 4 is shorter than the depth d of the cut 2 (hd <0). At this time, the offset of the antenna device is assumed to be negative. The antenna device shown in FIG. 3C is the antenna device according to this embodiment.

図7は、図6(a)〜(c)に示すアンテナ装置のオフセットを、5〜−7.5mmの範囲で2.5mmずつ変化させた場合の動作周波数帯域を示すグラフである。図7では、アンテナ装置の反射特性S11がS11≦−10dB以下の周波数範囲を示している。この反射特性S11は、同軸線路を伝わり給電点から入力された入力電流と、給電点から同軸線路へと戻ってきた反射電流の比である。   FIG. 7 is a graph showing an operating frequency band when the offset of the antenna device shown in FIGS. 6A to 6C is changed by 2.5 mm in a range of 5 to −7.5 mm. FIG. 7 shows a frequency range where the reflection characteristic S11 of the antenna device is S11 ≦ −10 dB or less. This reflection characteristic S11 is the ratio of the input current that has been transmitted through the coaxial line and input from the feeding point to the reflected current that has returned from the feeding point to the coaxial line.

オフセットのない一般的な擬似自己補対アンテナ(図6(b)参照)は、最低動作周波数が約2GHzである。最高動作周波数は5GHzを超えるため、ここでは図示していない。このように一般的な擬似自己補対アンテナの動作周波数帯域は、非常に広帯域となる。   A general pseudo self-complementary antenna without offset (see FIG. 6B) has a minimum operating frequency of about 2 GHz. Since the maximum operating frequency exceeds 5 GHz, it is not shown here. As described above, the operating frequency band of a general pseudo self-complementary antenna is very wide.

オフセットをプラス(h−d>0)としたアンテナ装置(図6(a)参照)では、最低動作周波数がオフセットのない場合に比べ、高くなっている。これは、オフセットのない場合に比べ、切り込み2の辺の長さが短くなっているためと考えられる。一方、最高動作周波数は、オフセットがない場合と同様、5GHzを超えるため図示していない。このようにオフセットをプラスにするとオフセットのない場合と同様、動作周波数帯域は非常に広帯域となるが、最低動作周波数は、高周波側にシフトする。   In the antenna device (see FIG. 6A) in which the offset is plus (hd> 0), the minimum operating frequency is higher than that in the case where there is no offset. This is presumably because the length of the side of the cut 2 is shorter than when there is no offset. On the other hand, the maximum operating frequency is not shown because it exceeds 5 GHz as in the case of no offset. When the offset is made positive in this way, the operating frequency band becomes very wide as in the case where there is no offset, but the minimum operating frequency shifts to the high frequency side.

次に、オフセットをマイナス(h−d<0)としたアンテナ装置(図6(c)参照)では、最低動作周波数がオフセットのない場合に比べ低くなっている。これは、オフセットのない場合に比べ、切り込み2の辺の長さが長くなっているためと考えられる。オフセットが−5.0mmの場合、最低動作周波数は約1.7GHz、最高動作周波数は約2.5GHz、中心動作周波数は約2.1GHzなので、比帯域が約38パーセントとなる((2.5−1.7)÷2.1×100=38%)。また、オフセットが−7.5mmの場合、最低動作周波数は約1.6GHz、最高動作周波数は約2GHz、中心周波数は約1.8GHzなので、比帯域は約22パーセントとなる((2−1.6)÷1.8×100=22%)。比帯域が20パーセントをこえるアンテナ装置は、一般に広帯域と言えるため、オフセットがマイナス(図6(c)参照)である場合も十分に広帯域であると言える。   Next, in the antenna device (see FIG. 6C) in which the offset is minus (hd <0), the minimum operating frequency is lower than that in the case where there is no offset. This is presumably because the length of the side of the cut 2 is longer than when there is no offset. When the offset is −5.0 mm, the minimum operating frequency is about 1.7 GHz, the maximum operating frequency is about 2.5 GHz, and the center operating frequency is about 2.1 GHz, so the specific band is about 38 percent ((2.5 -1.7) ÷ 2.1 × 100 = 38%). When the offset is −7.5 mm, the minimum operating frequency is about 1.6 GHz, the maximum operating frequency is about 2 GHz, and the center frequency is about 1.8 GHz, so the specific band is about 22% ((2-1. 6) ÷ 1.8 × 100 = 22%). An antenna device having a specific band exceeding 20 percent is generally a wide band. Therefore, even when the offset is negative (see FIG. 6C), it can be said that the antenna apparatus is sufficiently wide.

このように、オフセットを変化させても、アンテナ装置は広帯域特性を維持している。また、切り込み2の辺の長さを短くすると最低動作周波数が高周波側にシフトし、辺の長さを長くすると最低動作周波数が低周波側にシフトする。   Thus, even if the offset is changed, the antenna device maintains the wideband characteristics. Further, when the side length of the notch 2 is shortened, the minimum operating frequency is shifted to the high frequency side, and when the side length is lengthened, the minimum operating frequency is shifted to the low frequency side.

アンテナ装置を小形化すると、最低動作周波数が高周波側にシフトする。一方、アンテナ装置のオフセットをマイナスにすると、オフセットのないアンテナ装置に比べ最低動作周波数が低周波側にシフトする。従って、アンテナ装置のオフセットをマイナスとし、アンテナ装置を小形化すると、オフセットのないアンテナ装置と同様の最低動作周波数が得られる。すなわち、最低動作周波数が等しいアンテナ装置の場合、オフセットのないアンテナ装置に比べ、オフセットがマイナスであるアンテナ装置の方が小形となる。   When the antenna device is miniaturized, the minimum operating frequency shifts to the high frequency side. On the other hand, when the offset of the antenna device is negative, the lowest operating frequency is shifted to the low frequency side compared to an antenna device without an offset. Therefore, if the offset of the antenna device is set to be negative and the antenna device is downsized, the same minimum operating frequency as that of the antenna device without offset can be obtained. In other words, in the case of antenna devices having the same minimum operating frequency, an antenna device having a negative offset is smaller than an antenna device having no offset.

続いて、図8を用いて本実施例に係るアンテナ装置を携帯無線機に実装した場合の例を示す。図8に示す携帯無線機は、筐体7、筐体7内部に配置された基板8、図1に示すアンテナ装置、無線回路IC(図示せず)やスピーカー(図示せず)などを備えている。アンテナ装置の構成および動作は、図1に示すアンテナ装置と同じであるため同一符号を付し説明を省略する。アンテナ装置の導体地板1は、基板8のグランド層で代用してもよい。図示しないが、基板8上には、無線回路IC、バッテリー、液晶画面、入力キー、スピーカーなどが配置され、通話やデータ通信などの無線通信を行う。   Then, the example at the time of mounting the antenna apparatus which concerns on a present Example on a portable radio using FIG. 8 is shown. The portable wireless device shown in FIG. 8 includes a housing 7, a substrate 8 arranged inside the housing 7, the antenna device shown in FIG. 1, a wireless circuit IC (not shown), a speaker (not shown), and the like. Yes. The configuration and operation of the antenna device are the same as those of the antenna device shown in FIG. The ground plane 1 of the substrate 8 may be substituted for the conductor ground plane 1 of the antenna device. Although not shown, a radio circuit IC, a battery, a liquid crystal screen, an input key, a speaker, and the like are arranged on the substrate 8 to perform radio communication such as a call and data communication.

次に、図9を用いて本実施例に係るアンテナ装置を無線カードに実装した場合の例を示す。図9に示す無線カードは、筐体9、基板10、図1に示すアンテナ装置、無線回路IC(図示せず)などを備えている。アンテナ装置の構成および動作は、図1に示すアンテナ装置と同じであるため、同一符号を付し、説明を省略する。アンテナ装置の導体地板1は、基板10のグランド層で代用してもよい。   Next, an example in which the antenna device according to the present embodiment is mounted on a wireless card will be described with reference to FIG. The wireless card shown in FIG. 9 includes a housing 9, a substrate 10, the antenna device shown in FIG. 1, a wireless circuit IC (not shown), and the like. The configuration and operation of the antenna device are the same as those of the antenna device shown in FIG. The ground plane 1 of the substrate 10 may be substituted for the conductor ground plane 1 of the antenna device.

図9に示す無線カードは、例えばノートパソコン11のカードスロットに挿入される。ノートパソコン11から出力された信号は、無線カードの無線回路IC(図示せず)に入力され、信号処理が施された後、アンテナ装置を介して送信される。また、アンテナ装置を介して受信された信号は、無線回路IC(図示せず)に入力され、信号処理が施された後、ノートパソコン11へ入力される。   The wireless card shown in FIG. 9 is inserted into a card slot of the notebook computer 11, for example. The signal output from the notebook personal computer 11 is input to a wireless circuit IC (not shown) of the wireless card, subjected to signal processing, and then transmitted via the antenna device. The signal received via the antenna device is input to a radio circuit IC (not shown), subjected to signal processing, and then input to the notebook computer 11.

以上のように第1の実施例によると、アンテナ装置の導体地板1に設けた長方形状の切り込み2の深さdを、放射導体板4の高さhより長くすることで、広帯域特性を有する小形のアンテナ装置を提供することができる。   As described above, according to the first embodiment, the depth d of the rectangular notch 2 provided in the conductor ground plane 1 of the antenna device is longer than the height h of the radiating conductor plate 4, thereby providing wideband characteristics. A small antenna device can be provided.

次に、図10を用いて本発明の第2の実施例を説明する。第2の実施例に係るアンテナ装置は、切り込み12及び放射導体板13の形状をのぞき、図1に示すアンテナ装置の構成及び動作とほぼ同じであるため、同一符号を付して説明は省略する。   Next, a second embodiment of the present invention will be described with reference to FIG. The antenna device according to the second embodiment is substantially the same as the configuration and operation of the antenna device shown in FIG. 1 except for the shapes of the notch 12 and the radiating conductor plate 13. .

切り込み12は、幅w、深さh’(h’<d)の長方形と、半径0.8w半円を組み合わせた形状をしている。また放射導体板13は、幅w、高さh’(h’<h)の長方形と半径wの円を、一部が重なるように組み合わせた形状をしている。ここでは、切り込み12、放射導体板13の形状を、長方形と半円(又は円)とを組み合わせた形状としているが、切り込み12と放射導体板13の形状が、対称軸から一定距離h’離れた範囲内で対称となればよく、上述した形状には限られない。   The notch 12 has a combination of a rectangle having a width w and a depth h ′ (h ′ <d) and a semicircle having a radius of 0.8 w. The radiating conductor plate 13 has a shape in which a rectangle having a width w and a height h ′ (h ′ <h) and a circle having a radius w are combined so as to partially overlap each other. Here, the shape of the cut 12 and the radiation conductor plate 13 is a combination of a rectangle and a semicircle (or a circle), but the shape of the cut 12 and the radiation conductor plate 13 is separated from the symmetry axis by a certain distance h ′. However, the shape is not limited to the above-described shape.

図1に示すように、切り込み2の深さdが放射導体板4の高さhより長くなると、擬似自己補対アンテナの広帯域な一定インピーダンス動作が変化してしまう。しかしながら、図10に示すように切り込み12と放射導体板13の形状とが、対称軸からh‘離れた範囲内で対称となっていれば、この一定インピーダンス動作の変化を最小に抑えられる。   As shown in FIG. 1, when the depth d of the notch 2 is longer than the height h of the radiating conductor plate 4, the broadband constant impedance operation of the pseudo self-complementary antenna changes. However, if the notch 12 and the shape of the radiating conductor plate 13 are symmetric within a range h ′ away from the symmetry axis as shown in FIG. 10, the change in the constant impedance operation can be minimized.

これは、図4に示すように、入力信号が高周波の場合、電磁波が主に切り込み12の給電点3付近から放射されるためである。給電点3付近、すなわち対称軸から一定範囲h’離れた範囲内で切り込み12と放射導体板13とが対称形状であれば、アンテナ装置の構造が、高周波電流の強いところ(給電点3付近)で擬似自己補対アンテナの構造とほぼ同様となるためである。   This is because, as shown in FIG. 4, when the input signal has a high frequency, electromagnetic waves are mainly emitted from the vicinity of the feed point 3 of the cut 12. If the notch 12 and the radiating conductor plate 13 are symmetrical in the vicinity of the feeding point 3, that is, within a certain range h ′ from the symmetry axis, the structure of the antenna device has a strong high-frequency current (near the feeding point 3). This is because the structure of the pseudo self-complementary antenna is almost the same.

以上のように第2の実施例によれば、第1の実施例と同様の効果が得られるとともに、切り込み12及び放射導体板13の形状を変形することができるため、設計の自由度が増加する。   As described above, according to the second embodiment, the same effects as those of the first embodiment can be obtained, and the shapes of the notch 12 and the radiation conductor plate 13 can be deformed. To do.

次に、図11を用いて第3の実施例について説明する。図11は、本実施例に係るアンテナ装置を示す図である。   Next, a third embodiment will be described with reference to FIG. FIG. 11 is a diagram illustrating the antenna device according to the present embodiment.

図11に示すアンテナ装置は、導体地板14と放射導体板15がメッシュ導体で構成されている点をのぞき、図1に示すアンテナ装置とほぼ同じ構成及び動作であるため、同一符号を付し説明を省略する。   The antenna device shown in FIG. 11 has substantially the same configuration and operation as the antenna device shown in FIG. 1 except that the conductor ground plane 14 and the radiating conductor plate 15 are made of mesh conductors. Is omitted.

図11に示す導体地板14及び放射導体板15は、メッシュ導体で構成されている。導体地板14及び放射導体板15を構成しているメッシュが細かいほど、導体地板14及び放射導体板15の特性は、板状の導体地板1及び放射導体板4の特性から大きく変化しない。メッシュのサイズは、最高動作周波数の約10分の1波長程度以下とすればよい。   The conductor ground plate 14 and the radiation conductor plate 15 shown in FIG. 11 are made of mesh conductors. As the mesh constituting the conductor ground plate 14 and the radiation conductor plate 15 is finer, the characteristics of the conductor ground plate 14 and the radiation conductor plate 15 are not significantly changed from the characteristics of the plate-like conductor ground plate 1 and the radiation conductor plate 4. The size of the mesh may be about 1/10 wavelength or less of the maximum operating frequency.

以上のように第3の実施例によると、第1の実施例と同様の効果が得られるとともに、導体地板14及び放射導体板15をメッシュ導体で構成することにより、アンテナ装置を軽量化できる。また、風を受けた場合も転倒しにくく、耐風特性を向上させることができる。さらに、アンテナ装置の給電線路(図示せず)をメッシュの穴に通して無線回路に接続させることもでき、部品のレイアウトの自由度が向上する。   As described above, according to the third embodiment, the same effect as that of the first embodiment can be obtained, and the antenna device can be reduced in weight by configuring the conductor base plate 14 and the radiation conductor plate 15 with mesh conductors. Moreover, even when it receives wind, it is difficult to fall down, and wind resistance characteristics can be improved. Furthermore, a feed line (not shown) of the antenna device can be connected to a wireless circuit through a hole in the mesh, and the degree of freedom of component layout is improved.

なお、本実施例では、図1に示すアンテナ装置を用いた場合について説明したが、図10のアンテナ装置を用いても同様の効果が得られる。   In this embodiment, the case where the antenna device shown in FIG. 1 is used has been described. However, the same effect can be obtained by using the antenna device shown in FIG.

次に、図12を用いて、本発明の第3の実施例について説明する。本実施例に係るアンテナ装置は、図1に示すアンテナ装置を2つ隣り合わせに配置しているが、各アンテナ装置の動作は、図1に示すアンテナ装置の動作と同じであるため説明を省略する。   Next, a third embodiment of the present invention will be described with reference to FIG. In the antenna device according to the present embodiment, two antenna devices shown in FIG. 1 are arranged next to each other, but the operation of each antenna device is the same as the operation of the antenna device shown in FIG. .

図12(a)に示すアンテナ装置は、導体地板16と、導体地板16上に設けられた切り込み2−1,2−2と、導体地板16に給電点3−1を介して接続された放射導体板4−1と、導体地板16に給電点3−2を介して接続された放射導体板4−2を備えている。   The antenna device shown in FIG. 12A includes a conductor ground plane 16, cuts 2-1 and 2-2 provided on the conductor ground plane 16, and radiation connected to the conductor ground plane 16 via a feeding point 3-1. A conductor plate 4-1 and a radiation conductor plate 4-2 connected to the conductor ground plate 16 via a feeding point 3-2 are provided.

放射導体板4−1は、対称軸をはさんで切り込み2−1の反対側に、該切り込み2−1に近接して配置されている。同様に、放射導体板4−2も、対称軸をはさんで切り込み2−2の反対側に、該切り込み2−2に近接して配置されている。なお、各部の詳細な構成は、図1に示すアンテナ装置と同じであるため、説明を省略する。   The radiation conductor plate 4-1 is disposed on the opposite side of the notch 2-1 across the axis of symmetry and close to the notch 2-1. Similarly, the radiation conductor plate 4-2 is also arranged on the opposite side of the notch 2-2 across the axis of symmetry and close to the notch 2-2. The detailed configuration of each part is the same as that of the antenna device shown in FIG.

放射導体板4−1より切り込み2−1の面積を大きくし、同様に放射導体板4−2より切り込み2−2の面積を大きくすることで、放射導体板4−1と4−2の間の相互結合を小さくすることができる。   By increasing the area of the notch 2-1 from the radiating conductor plate 4-1, and similarly increasing the area of the notch 2-2 from the radiating conductor plate 4-2, the area between the radiating conductor plates 4-1 and 4-2 is increased. The mutual coupling can be reduced.

以下、この相互結合を小さくする原理について説明する。
まず、導体地板16と放射導体板4−1との間の間隙を開放端5−1と称し、導体地板16と放射導体板4−2との間の間隙を開放端5−2と称する。また、給電点3−1から開放端5−2までの距離を距離L1、給電点3−1から給電点3−2までの距離をL2、開放端5−1から給電点3−2までの距離をL3と称する。
Hereinafter, the principle of reducing this mutual coupling will be described.
First, the gap between the conductor ground plate 16 and the radiation conductor plate 4-1 is referred to as an open end 5-1, and the gap between the conductor ground plate 16 and the radiation conductor plate 4-2 is referred to as an open end 5-2. Further, the distance from the feeding point 3-1 to the open end 5-2 is the distance L1, the distance from the feeding point 3-1 to the feeding point 3-2 is L2, and the distance from the open end 5-1 to the feeding point 3-2. The distance is referred to as L3.

図12(b)に、切り込み2’−1、2’−3の面積と放射導体板4’−1、4’−2の面積がほぼ等しい従来の自己補対アンテナを2つ並べた従来のアンテナ装置を示す。   FIG. 12B shows a conventional self-complementary antenna in which two conventional self-complementary antennas having the notches 2′-1, 2′-3 and the radiating conductor plates 4′-1, 4′-2 having almost the same area are arranged. An antenna device is shown.

ここで、導体地板17と放射導体板4’−1の間の間隙を開放端5’−1と称し、放射導体板17と放射導体板4’−2の間の間隙を開放端5’−2と称する。また、給電点3’−1から開放端5’−2までの距離を距離L’1、給電点3’−1から給電点3’−2までの距離をL’2、開放端5’−1から給電点3’−2までの距離をL’3と称する。   Here, the gap between the conductor ground plane 17 and the radiating conductor plate 4′-1 is referred to as an open end 5′-1, and the gap between the radiating conductor plate 17 and the radiating conductor plate 4′-2 is referred to as the open end 5′−. 2 is called. Further, the distance from the feeding point 3′-1 to the open end 5′-2 is a distance L′ 1, the distance from the feeding point 3′-1 to the feeding point 3′-2 is L′ 2, and the open end 5′−. The distance from 1 to the feeding point 3′-2 is referred to as L′ 3.

なお、図12(a)に示す本実施例に係るアンテナ装置(a)と、図12(b)に示す従来のアンテナ装置(b)の最低動作周波数は、互いに等しいものとする。   Note that the minimum operating frequencies of the antenna device (a) according to the present embodiment shown in FIG. 12A and the conventional antenna device (b) shown in FIG. 12B are equal to each other.

ここで、本実施例に係るアンテナ装置(図12(a))の給電点3−1から開放端5−2までの距離L1と、従来のアンテナ装置(図12(b))の給電点3’−1から開放端5’−2までの距離L’1とが等しい(L1=L’1)とする。   Here, the distance L1 from the feeding point 3-1 to the open end 5-2 of the antenna device (FIG. 12A) according to the present embodiment and the feeding point 3 of the conventional antenna device (FIG. 12B). It is assumed that the distance L′ 1 from “−1” to the open end 5′−2 is equal (L1 = L′ 1).

このとき、本実施例に係るアンテナ装置は、上述したように従来のアンテナ装置に比べて小型であるため、給電点3−1から給電点3−2までの距離L2を、給電点3’−1から給電点3’−2までの距離L’2より大きく(L2>L’2)することができる。すなわち、給電点3−1と3−2を離して配置することができるため、各給電点3−1,3−2による影響を抑制でき、放射導体板4−1,4−2間の相互結合を小さくすることができる。   At this time, since the antenna device according to the present embodiment is smaller than the conventional antenna device as described above, the distance L2 from the feeding point 3-1 to the feeding point 3-2 is set as the feeding point 3′−. 1 can be larger than the distance L′ 2 from the feeding point 3′-2 (L2> L′ 2). That is, since the feeding points 3-1 and 3-2 can be arranged apart from each other, the influence of the feeding points 3-1 and 3-2 can be suppressed, and the mutual connection between the radiation conductor plates 4-1 and 4-2 can be suppressed. Bonding can be reduced.

同様に、開放端5−1から給電点3−2までの距離L2−L3を、開放端5’−1から給電点3’−2までの距離L2‘−L’3より大きく(L2−L3>L2‘−L’3)することができる。開放端5−1の部分は、アンテナ装置の構造が不連続になっている点なので、放射導体板4−2の広帯域動作に影響を及ぼす。しかしながら、本実施例に係るアンテナ装置のように、開放端5−1から給電点3−2までの距離L2−L3を大きくすることで、開放端5−1が広帯域動作に与える影響を小さくすることができる。   Similarly, the distance L2-L3 from the open end 5-1 to the feed point 3-2 is larger than the distance L2′-L′3 from the open end 5′-1 to the feed point 3′-2 (L2-L3). > L2'-L'3). Since the portion of the open end 5-1 is a point where the structure of the antenna device is discontinuous, it affects the broadband operation of the radiation conductor plate 4-2. However, like the antenna device according to the present embodiment, the influence of the open end 5-1 on the broadband operation is reduced by increasing the distance L2-L3 from the open end 5-1 to the feeding point 3-2. be able to.

以上のように第4の実施例によれば、第1の実施例と同様の効果が得られるとともに、切り込みの面積が放射導体板の面積より大きい切り込み及び放射導体板を2つずつ配置することで、放射導体板4−1,4−2の間を広くとることができ、放射導体板4−1,4−2間の相互結合を小さくし、広帯域動作への影響を小さくすることで、アンテナ性能の向上、無線性能の向上を実現できる。   As described above, according to the fourth embodiment, the same effect as in the first embodiment can be obtained, and two cuts and two radiating conductor plates each having a cut area larger than that of the radiating conductor plate can be arranged. Therefore, the space between the radiation conductor plates 4-1 and 4-2 can be widened, the mutual coupling between the radiation conductor plates 4-1 and 4-2 is reduced, and the influence on the broadband operation is reduced. Antenna performance and wireless performance can be improved.

なお、本実施例では、図1に示すアンテナ装置を用いた場合について説明したが、図10及び図11のアンテナ装置を用いても同様の効果が得られる。また、切り込み2及び放射導体板4の個数は、2個に限られるものではなく、n個並べてもよい。   In this embodiment, the case where the antenna device shown in FIG. 1 is used has been described. However, the same effect can be obtained by using the antenna device shown in FIGS. Further, the number of the cuts 2 and the radiating conductor plates 4 is not limited to two, and n pieces may be arranged.

なお、本発明は上記実施例そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施例に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施例に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施例にわたる構成要素を適宜組み合わせてもよい。   In addition, this invention is not limited to the said Example as it is, A component can be deform | transformed and embodied in the range which does not deviate from the summary in an implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiments. Furthermore, constituent elements over different embodiments may be appropriately combined.

本発明の第1の実施例に係るアンテナ装置の構成を示す図。The figure which shows the structure of the antenna apparatus which concerns on 1st Example of this invention. 本発明の第1の実施例に係る給電点3の構成を示す図。The figure which shows the structure of the feed point 3 which concerns on the 1st Example of this invention. 本発明の第1の実施例に係る開放端5の構成を示す図。The figure which shows the structure of the open end 5 which concerns on the 1st Example of this invention. 本発明の第1の実施例に係る切り込み2に流れる入力電流(高周波)の振幅の一例を示す図。The figure which shows an example of the amplitude of the input current (high frequency) which flows into the notch 2 which concerns on 1st Example of this invention. 本発明の第1の実施例に係る切り込み2に流れる入力電流(低周波)の振幅の一例を示す図。The figure which shows an example of the amplitude of the input current (low frequency) which flows into the notch 2 which concerns on 1st Example of this invention. 切り込み2と放射導体板4の周囲長が異なるアンテナ装置を示す図。The figure which shows the antenna apparatus from which the perimeter of the notch 2 and the radiation | emission conductor plate 4 differs. 図6(a)〜(c)のアンテナ装置の動作周波数帯域を示す図。The figure which shows the operating frequency band of the antenna apparatus of Fig.6 (a)-(c). 本発明の第1の実施例に係る実施例に係るアンテナ装置を携帯無線機に実装した場合の例を示す図。The figure which shows the example at the time of mounting the antenna apparatus which concerns on the Example which concerns on 1st Example of this invention in a portable radio | wireless machine. 本発明の第1の実施例に係るアンテナ装置を無線カードに実装した場合の例を示す図。The figure which shows the example at the time of mounting the antenna apparatus which concerns on 1st Example of this invention in the radio | wireless card. 本発明の第2の実施例に係るアンテナ装置の構成を示す図。The figure which shows the structure of the antenna apparatus which concerns on the 2nd Example of this invention. 本発明の第3の実施例に係るアンテナ装置の構成を示す図。The figure which shows the structure of the antenna apparatus which concerns on the 3rd Example of this invention. 本発明の第4の実施例に係るアンテナ装置の構成を示す図。The figure which shows the structure of the antenna apparatus which concerns on the 4th Example of this invention.

符号の説明Explanation of symbols

1,14,16、17・・・導体地板
2,12・・・切り込み
3・・・給電点
4,13,15・・・放射導体板
5・・・開放端
6・・・同軸線路
1, 14, 16, 17: Conductor ground plane 2, 12: Cut 3 ... Feed point 4, 13, 15 ... Radiation conductor plate 5 ... Open end 6 ... Coaxial line

Claims (6)

一辺に切り込みが形成された導体地板と、
前記一辺をはさんだ前記切り込みの反対側に、該切り込みに近接して配置された放射導体板と、
前記一辺の、前記切り込みが形成された第1の端部に配置され、前記放射導体板に給電を行う給電点とを備え、
前記一辺の、前記切り込みが形成された第2の端部と前記放射導体板との間に両者を電気的に分離する開放端を形成し、
前記切り込みの面積は、放射導体板の面積より大きい
ことを特徴とするアンテナ装置。
A conductor ground plane with cuts on one side;
On the opposite side of the notch across the one side, a radiating conductor plate disposed close to the notch,
A feed point that is disposed at the first end of the one side where the cut is formed and feeds the radiation conductor plate;
Forming an open end that electrically separates the one side of the radiation conductor plate between the second end portion where the cut is formed and the radiation conductor plate;
The area of the cut is larger than the area of the radiation conductor plate.
前記放射導体板及び前記切り込みは、前記一辺から距離L離れた範囲内で、前記一辺を中心軸として対称形状をしていることを特徴とする請求項1に記載のアンテナ装置。   2. The antenna device according to claim 1, wherein the radiation conductor plate and the notch are symmetrical with respect to the one side as a central axis within a distance L from the one side. 前記放射導体板は、前記第1の端部と前記第2の端部とを結ぶ線分を辺とする幅w、高さhの略長方形状であり、前記切り込みは、前記第1の端部と前記第2の端部とを結ぶ線分を辺とする幅w、深さd(d>h)の略長方形状であることを特徴とする請求項1に記載のアンテナ装置。   The radiation conductor plate has a substantially rectangular shape having a width w and a height h with a line segment connecting the first end portion and the second end portion as a side, and the notch is formed on the first end portion. The antenna device according to claim 1, wherein the antenna device has a substantially rectangular shape having a width w and a depth d (d> h) in which a line segment connecting a portion and the second end portion is a side. 前記導体地板及び前記放射導体板は、メッシュ導体で構成されることを特徴とする請求項1乃至請求項3のいずれか1項に記載のアンテナ装置。   The antenna device according to any one of claims 1 to 3, wherein the ground conductor plate and the radiation conductor plate are configured by mesh conductors. 一辺に複数の切り込みが形成された導体地板と、
前記一辺をはさんだ前記複数の切り込みの反対側に、該切り込みそれぞれに近接して配置された複数の放射導体板と、
前記一辺の、各切り込みが形成された第1の端部それぞれに配置され、前記複数の放射導体板それぞれに給電を行う複数の給電点とを備え、
前記一辺の、各切り込みが形成された第2の端部と該切り込みに近接配置された放射導体板との間に両者を電気的に分離する開放端を形成し、
前記切り込みの面積は、該切り込みに近接配置された放射導体板の面積より大きい
ことを特徴とするアンテナ装置。
A conductor ground plate with a plurality of cuts formed on one side;
A plurality of radiation conductor plates arranged on the opposite side of the plurality of cuts across the one side and in close proximity to each of the cuts;
A plurality of feeding points that are arranged at the first ends of the one side where the respective cuts are formed, and feed each of the plurality of radiation conductor plates;
Forming an open end that electrically separates the two sides between the second end portion where each cut is formed and the radiating conductor plate disposed adjacent to the cut;
The antenna device is characterized in that an area of the cut is larger than an area of a radiating conductor plate disposed close to the cut.
請求項1乃至請求項5のいずれか1項に記載のアンテナ装置を備えることを特徴とする無線機。   A wireless device comprising the antenna device according to any one of claims 1 to 5.
JP2006349529A 2006-12-26 2006-12-26 Antenna apparatus and wireless unit Pending JP2008160681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006349529A JP2008160681A (en) 2006-12-26 2006-12-26 Antenna apparatus and wireless unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006349529A JP2008160681A (en) 2006-12-26 2006-12-26 Antenna apparatus and wireless unit

Publications (1)

Publication Number Publication Date
JP2008160681A true JP2008160681A (en) 2008-07-10

Family

ID=39661057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006349529A Pending JP2008160681A (en) 2006-12-26 2006-12-26 Antenna apparatus and wireless unit

Country Status (1)

Country Link
JP (1) JP2008160681A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011004346A (en) * 2009-06-22 2011-01-06 Nippon Telegr & Teleph Corp <Ntt> Antenna apparatus
JP2011082951A (en) * 2009-09-14 2011-04-21 Nagasaki Univ Inverse-l shaped antenna

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011004346A (en) * 2009-06-22 2011-01-06 Nippon Telegr & Teleph Corp <Ntt> Antenna apparatus
JP2011082951A (en) * 2009-09-14 2011-04-21 Nagasaki Univ Inverse-l shaped antenna

Similar Documents

Publication Publication Date Title
JP4384102B2 (en) Portable radio device and antenna device
JP4868128B2 (en) ANTENNA DEVICE AND RADIO COMMUNICATION DEVICE USING THE SAME
TWI425713B (en) Three-band antenna device with resonance generation
US8854267B2 (en) Antenna device for a portable terminal
CA2553439C (en) Slotted multiple band antenna
TWI686009B (en) Multi-antenna and wireless device with it
US10069199B2 (en) Antenna and radio frequency signal transceiving device
US9190740B2 (en) Communication device and antennas with high isolation characteristics
US8890762B2 (en) Communication electronic device and antenna structure thereof
JP2002299933A (en) Electrode structure for antenna and communication equipment provided with the same
JP2009105503A (en) Circularly polarized antenna, semiconductor module, and wireless device
US11329382B1 (en) Antenna structure
US8816914B2 (en) Communication device and antenna structure therein
JP2015062276A (en) Antenna
KR101915388B1 (en) Antenna device
US9124001B2 (en) Communication device and antenna element therein
EP2728665B1 (en) Communication device and wide-band antenna element therein
US9865929B2 (en) Communication device and antenna element therein
JP2008160681A (en) Antenna apparatus and wireless unit
JP3838971B2 (en) Wireless device
EP2752939B1 (en) Communication device comprising antenna elements
US12046837B2 (en) Communication device
TW202408084A (en) Slot antenna structure and electronic device
CN111954957A (en) Antenna device
JP2006237915A (en) Communication device