JP2008159810A - Binder for capacitor electrode - Google Patents

Binder for capacitor electrode Download PDF

Info

Publication number
JP2008159810A
JP2008159810A JP2006346660A JP2006346660A JP2008159810A JP 2008159810 A JP2008159810 A JP 2008159810A JP 2006346660 A JP2006346660 A JP 2006346660A JP 2006346660 A JP2006346660 A JP 2006346660A JP 2008159810 A JP2008159810 A JP 2008159810A
Authority
JP
Japan
Prior art keywords
electrode
binder
aramid
powder
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006346660A
Other languages
Japanese (ja)
Other versions
JP5015579B2 (en
Inventor
Shinji Naruse
新二 成瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DuPont Teijin Advanced Papers Japan Ltd
Original Assignee
DuPont Teijin Advanced Papers Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DuPont Teijin Advanced Papers Japan Ltd filed Critical DuPont Teijin Advanced Papers Japan Ltd
Priority to JP2006346660A priority Critical patent/JP5015579B2/en
Priority to KR1020097015364A priority patent/KR101381069B1/en
Priority to CNA2007800479777A priority patent/CN101578676A/en
Priority to PCT/JP2007/074472 priority patent/WO2008078634A1/en
Priority to TW096147719A priority patent/TW200838015A/en
Publication of JP2008159810A publication Critical patent/JP2008159810A/en
Application granted granted Critical
Publication of JP5015579B2 publication Critical patent/JP5015579B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a binder for a capacitor electrode, which represents a high bonding property of a powder-electrode-material and an adhesiveness with a collector electrode, is excellent in an electrically conductive of an electrode sheet and a wetting property to an electrolyte with the powder-electrode-material bonded, also is excellent in a heat resistance, and is chemically stable. <P>SOLUTION: The binder for capacitor electrode comprises an aramid grained by a heat treatment. The electrode sheet is manufactured by mixing the binder, the powder-electrode-material, and a solvent, and adjusting a slurry which is applied to the collector electrode, and obtained through the heat treatment after the application of the slurry. The binder is perfectly suitable, therefore, for a significant power capacitor, battery or the like which requires a thin electrode. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、キャパシタ、リチウム二次電池などの蓄電器の電極などを構成するのに有用な電極用バインダーに関する。   The present invention relates to a binder for an electrode useful for constituting an electrode of a capacitor such as a capacitor or a lithium secondary battery.

携帯通信機器や高速情報処理機器などの最近の進歩に象徴されるように、エレクトロニクス機器の小型軽量化、高性能化には目覚しいものがある。なかでも、小型、軽量、高容量で長期保存にも耐える高性能なキャパシタ、電池への期待は大きく、幅広く応用が図られ、部品開発が急速に進展している。これに応えるため、電極シート中で電極活物質を結着するバインダーに関しても技術・品質開発の必要性が高まっている。   As symbolized by recent advances in portable communication devices and high-speed information processing devices, there are remarkable improvements in the size and weight and performance of electronic devices. In particular, small capacitors, light weight, high capacity, high performance capacitors that can withstand long-term storage, and high expectations for batteries, are widely applied, and parts development is progressing rapidly. In order to meet this demand, there is an increasing need for technology and quality development for binders that bind electrode active materials in electrode sheets.

特に、高耐電圧、大容量、大出力が要求されるキャパシタ、電池等の蓄電器中の電極用バインダーには、バインダーに要求されるさまざまな特性の中でも、次の5つの特性項目が特に重要と認識される:
1)高い粉末電極材料結着性及び集電極との接着性、
2)粉末電極材料を結着した状態、すなわち電極シートの状態での導電性が良いこと、
3)粉末電極材料を結着した状態、すなわち電極シートの状態での電解液に対する濡れ性がよいこと、
4)耐熱性が高いこと、
5)電気化学的に安定であること。
In particular, among the various properties required for binders, the following five characteristic items are particularly important for electrode binders in capacitors such as capacitors and batteries that require high withstand voltage, large capacity, and large output. Recognized:
1) High powder electrode material binding and adhesion to collector electrode,
2) Good electrical conductivity in the state where the powder electrode material is bound, that is, in the state of the electrode sheet,
3) The powder electrode material is bound, that is, has good wettability with respect to the electrolyte in the state of the electrode sheet,
4) High heat resistance
5) Electrochemically stable.

従来、バインダーとしてはPVdF(ポリフッ化ビニリデン)、PTFE(ポリテトラフルオロエチレン)、SBR(スチレン・ブタジエンゴム)ラテックスなどが広く使用されてきたが、これらのバインダーは、近年、電気自動車用のキャパシタ、電池などに要求されている、高耐電圧化、大容量化や大出力化、さらにはこれらを達成するための一手法として本発明者らが先に提案した集電極と電極とセパレータからなる電極群の高温乾燥(特許文献1参照)に対しては、必ずしも十分に対応することができない。しかも、PTFE(ポリテトラフルオロエチレン)は、実用上薄い電極シートを作製することが困難であり、薄い電極が要求される大出力のキャパシタ、電池には適用が困難である場合がある。   Conventionally, PVdF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene), SBR (styrene-butadiene rubber) latex and the like have been widely used as binders, but these binders have recently been used as capacitors for electric vehicles, An electrode comprising a collector electrode, an electrode, and a separator previously proposed by the present inventors as a technique for achieving a high withstand voltage, a large capacity and a large output, and further achieving these required for batteries and the like. The high temperature drying of the group (see Patent Document 1) cannot always be handled sufficiently. In addition, PTFE (polytetrafluoroethylene) is practically difficult to produce a thin electrode sheet, and may be difficult to apply to high-power capacitors and batteries that require thin electrodes.

また、特許文献2には、充放電効率の高い二次電池負極活物質を提供するため、主鎖もしくは側鎖に電気化学的に活性なカルボニル基を有する有機高分子を負極活物質の一部に用いてなる二次電池用負極活物質兼結着剤として例えばアラミド(芳香族ポリアミド)を使用することが開示されている。しかし、粉末電極材料結着性及び集電極との接着性と、電極シートでの低い導電性とを両立させることが困難であるため、所望の電池特性が得られない場合がある。
特願2006−073898号明細書 特開2001−345103号公報
Patent Document 2 discloses an organic polymer having an electrochemically active carbonyl group in the main chain or side chain as a part of the negative electrode active material in order to provide a secondary battery negative electrode active material with high charge / discharge efficiency. It is disclosed that, for example, aramid (aromatic polyamide) is used as the negative electrode active material and binder for secondary batteries used in the above. However, since it is difficult to achieve both the binding property of the powder electrode material and the adhesiveness to the collector electrode and the low conductivity of the electrode sheet, desired battery characteristics may not be obtained.
Japanese Patent Application No. 2006-073898 JP 2001-345103 A

本発明の主たる目的は、高い粉末電極材料結着性及び集電極との接着性を示し、且つ粉末電極材料を結着した状態、すなわち電極シートの状態での導電性及び電解液に対する濡れ性に優れ、耐熱性が高く、電気化学的に安定である蓄電器電極用バインダーを提供することである。   The main object of the present invention is to show high powder electrode material binding property and adhesion to the collector electrode, and to the state in which the powder electrode material is bound, that is, the conductivity in the state of the electrode sheet and the wettability to the electrolytic solution. An object is to provide a binder for a capacitor electrode that is excellent, has high heat resistance, and is electrochemically stable.

本発明の更なる目的は、上記バインダーを使用したキャパシタ、電池などの蓄電器を提
供することである。
It is a further object of the present invention to provide a capacitor, a battery or other power storage device using the above binder.

本発明者らは、上記の目的を達成すべく鋭意研究を行った結果、今回、蓄電器電極用バインダーとして、加熱処理により粒状化したアラミドをバインダーとして用いることが極めて有効であることを見出し本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that it is extremely effective to use aramid granulated by heat treatment as a binder as a binder for a capacitor electrode. It came to complete.

かくして、本発明は、加熱処理により粒状化したアラミドからなる蓄電器電極用バインダーを提供するものである。   Thus, the present invention provides a capacitor electrode binder comprising aramid granulated by heat treatment.

本発明は、また、粉末電極材料とバインダーと溶剤を混合してスラリーを調製し、そのスラリーを集電極に塗布することにより製造された電極シートであって、バインダーがアラミドであり、塗布後に加熱処理することにより得られた電極シートを提供するものである。   The present invention is also an electrode sheet produced by mixing a powder electrode material, a binder and a solvent to prepare a slurry, and applying the slurry to a collector electrode, wherein the binder is an aramid and heated after application. The electrode sheet obtained by processing is provided.

本発明は、さらに、上記の電極シートを使用した蓄電器、特に、キャパシタ及び電池を提供するものである。   The present invention further provides a battery, particularly a capacitor and a battery, using the above electrode sheet.

本発明のバインダーは、耐熱性が高く、電気化学的に安定なアラミドであり、加熱処理による粒状化が起こる過程でのバインダーの収縮により、粉末電極材料間に収縮応力が働き、また粉末電極材料の表面を覆っていた部分が収縮により小さくなるため、粉末電極材料間の接触面積が増加し、電極シートの状態での導電性が顕著に向上する。さらに、アラミドは分子鎖にアミド基を持つため、分子内にカルボキシル基を持つカーボネート系の電解液との濡れ性がよく、塗布法による電極シートの作製が可能であるため、薄い電極シートを作製することができ、薄い電極が要求される大出力のキャパシタ、電池などに最適である。   The binder of the present invention is an aramid that has high heat resistance and is electrochemically stable, and contraction stress acts between the powder electrode materials due to shrinkage of the binder in the process of granulation by heat treatment, and the powder electrode material Since the part which covered the surface of this becomes small by shrinkage | contraction, the contact area between powder electrode materials increases, and the electroconductivity in the state of an electrode sheet improves notably. In addition, since aramid has an amide group in the molecular chain, it has good wettability with carbonate-based electrolytes with a carboxyl group in the molecule, and an electrode sheet can be produced by a coating method, so a thin electrode sheet is produced. It is ideal for high output capacitors and batteries that require thin electrodes.

以下、本発明についてさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

粉末電極材料
本発明において、粉末電極材料は、電極活物質及び必要に応じて加えられる導電剤、その他の助剤の混合物を包含するものである。
Powder electrode material :
In the present invention, the powder electrode material includes a mixture of an electrode active material, a conductive agent added as necessary, and other auxiliary agents.

電極活物質
本発明において使用される電極活物質としては、キャパシタ及び/又は電池の電極として機能すれば特に制限はなく、具体的には、キャパシタの場合には、ヘルムホルツが1879年に発見した電気二重層を活用し、電気を蓄える電気二重層キャパシタなどに使用される、活性炭、泡状カーボン、カーボン・ナノチューブ、ポリアセン、ナノゲート・カーボンなどのカーボン系材料;酸化還元反応を伴う擬似容量も活用可能な金属酸化物、導電性ポリマー、有機ラジカルなどが挙げられ、片方の電極には電池の電極を使用することができる。また、電池、特にリチウムイオン二次電池の場合には、正極として、コバルト酸リチウム、クロム酸リチウム、バナジウム酸リチウム、クロム酸リチウム、ニッケル酸リチウム、マンガン酸リチウムなどのリチウムの金属酸化物などを使用することができ、負極としては、例えば、天然黒鉛、人造黒鉛、樹脂炭、天然物の炭化物、石油コークス、石炭コークス、ピッチコークス、メソカーボンマイクロビーズなどの炭素質材料、金属リチウムなどを使用することができる。
Electrode active material :
The electrode active material used in the present invention is not particularly limited as long as it functions as an electrode of a capacitor and / or a battery. Specifically, in the case of a capacitor, an electric double layer discovered by Helmholtz in 1879 is used. Carbon-based materials such as activated carbon, foamed carbon, carbon nanotube, polyacene, and nanogate carbon used for electric double layer capacitors that utilize and store electricity; metal oxidation that can also utilize pseudocapacitance with redox reaction Products, conductive polymers, organic radicals, etc., and the electrode of the battery can be used as one of the electrodes. In the case of batteries, particularly lithium ion secondary batteries, lithium metal oxides such as lithium cobaltate, lithium chromate, lithium vanadate, lithium chromate, lithium nickelate, and lithium manganate are used as the positive electrode. As the negative electrode, for example, natural graphite, artificial graphite, resin charcoal, natural carbide, petroleum coke, coal coke, pitch coke, mesocarbon microbeads and other carbonaceous materials, metallic lithium, etc. are used. can do.

導電剤
本発明において、導電剤としては、電極シートの電気伝導度を向上させる機能を有すれば特に制限はなく、例えば、アセチレンブラック、ケッチェンブラックなどのカーボンブラックなどを好適に使用することができる。
Conductive agent :
In the present invention, the conductive agent is not particularly limited as long as it has a function of improving the electrical conductivity of the electrode sheet. For example, carbon black such as acetylene black and ketjen black can be suitably used.

アラミド
本発明において、アラミドには、アミド結合の60%以上が芳香環に直接結合した線状高分子化合物が包含され、具体的には、例えば、ポリメタフェニレンイソフタルアミド及びその共重合体、ポリパラフェニレンテレフタルアミド及びその共重合体、ポリ(パラフェニレン)−コポリ(3,4−ジフェニルエーテル)テレフタールアミドなどが挙げられる。これらのアラミドは、例えば、イソフタル酸塩化物及びメタフェニレンジアミンを用いたそれ自体既知の界面重合法、溶液重合法等により工業的に製造されており、市販品として入手することができるが、これに限定されるものではない。これらのアラミドの中で、特に、ポリメタフェニレンイソフタルアミドが、良好な成型加工性、熱接着性、難燃性、耐熱性などの特性を備えている点で好ましく用いられる。
Aramid :
In the present invention, aramid includes linear polymer compounds in which 60% or more of amide bonds are directly bonded to an aromatic ring. Specifically, for example, polymetaphenylene isophthalamide and copolymers thereof, polyparaffins are included. Examples include phenylene terephthalamide and copolymers thereof, poly (paraphenylene) -copoly (3,4-diphenyl ether) terephthalamide, and the like. These aramids are industrially produced by, for example, known interfacial polymerization methods and solution polymerization methods using isophthalic acid chloride and metaphenylenediamine, and can be obtained as commercial products. It is not limited to. Among these aramids, polymetaphenylene isophthalamide is particularly preferably used because it has good molding processability, thermal adhesiveness, flame retardancy, heat resistance and the like.

加熱処理により粒状化したアラミド
本発明において、加熱処理により粒状化したアラミドは、例えば、粉末電極材料とアラミドと溶剤を混合してスラリーを調製し、そのスラリーを集電極に塗布した後に加熱することにより得ることができる。塗布後加熱前は、塗膜中のアラミドは、図1に示すように樹形状であるが、それを例えば350℃で2時間加熱すると、図2に示すように粒状になる。アラミドは、粒状になる過程で収縮し、粉末電極材料間に収縮応力が働き、且つ粉末電極材料の表面を覆っていた部分が収縮により小さくなるため、粉末電極材料間の接触面積が増加し、蓄電器の特性、特に電極シートの高伝導化により抵抗値が低下し、さらに、このようして粒状化したアラミドは高い結着力を有しているため、電解液に含浸後も蓄電器の抵抗は低いまま保持される。
Aramid granulated by heat treatment :
In the present invention, the aramid granulated by heat treatment can be obtained, for example, by preparing a slurry by mixing a powder electrode material, aramid, and a solvent, and applying the slurry to a collecting electrode and then heating. Before application and before heating, the aramid in the coating film has a tree shape as shown in FIG. 1, but when it is heated at, for example, 350 ° C. for 2 hours, it becomes granular as shown in FIG. Aramid shrinks in the process of becoming granular, shrinkage stress works between the powder electrode materials, and the portion that covered the surface of the powder electrode material becomes smaller due to shrinkage, so the contact area between the powder electrode materials increases, The resistance value decreases due to the characteristics of the capacitor, particularly the high conductivity of the electrode sheet. Further, since the aramid thus granulated has a high binding force, the resistance of the capacitor is low even after impregnation with the electrolyte. Is retained.

本発明においてアラミドバインダーの使用量は、加熱により粒状となるかぎり特に制限されるものではないが、アラミドと粉末電極材料の合計を基準にして、通常3〜15wt%の範囲内、特に5〜13wt%の範囲内が好ましい。アラミドバインダーの使用量が上記範囲を超えて多くなりすぎると、一般に粒状化が起こりにくくなり、図3及び図4に示すように、350℃で2時間加熱後もバインダーが粉末電極材料を覆ってしまい、蓄電器の機能が著しく低下する。   In the present invention, the amount of the aramid binder used is not particularly limited as long as it is granulated by heating, but is usually in the range of 3 to 15 wt%, particularly 5 to 13 wt%, based on the total of the aramid and the powder electrode material. % Is preferable. When the amount of the aramid binder used exceeds the above range, the granulation is generally difficult to occur. As shown in FIGS. 3 and 4, the binder covers the powder electrode material even after heating at 350 ° C. for 2 hours. As a result, the function of the battery is significantly reduced.

上記加熱処理条件は、所望の蓄電器の特性が達成される限り特に制限はないが、アラミドの結晶化温度の近辺が、アラミドの結着力が最も高くなると考えられるため特に好適である。例えば、ポリメタフェニレンイソフタルアミドの場合、370℃を超えると熱分解することもあるので、370℃以下が好ましく、結晶化温度の観点から、330〜365℃の範囲が特に好ましい。また、加熱処理するタイミングは、塗布後であれば特に制限はないが、溶剤の突沸による発泡が蓄電器の特性を妨げないように、塗布後、溶剤の沸点近辺の比較的低温で一旦乾燥し、溶剤を除去してから、加熱処理を行うことが好ましい。加熱手段としては、例えば、一対の平板間または金属製ロール間にて高温高圧で熱圧する方法を挙げることができる。熱圧の条件は、例えば、金属製ロールを使用する場合、温度275〜365℃及び線圧50〜400kg/cmの範囲内を例示することができるが、これらに限定されるものではない。加圧操作を加えずに単に加熱だけを行うこともできる。熱圧の際に複数の電極シートを積層することもでき、さらに上記の熱圧加工を任意の順に複数回繰り返し行うこともできる。また、集電極、電極及びセパレータを組み立てて電極ユニットとしてから、加熱処理することも可能である。   The heat treatment conditions are not particularly limited as long as desired characteristics of the battery are achieved, but are particularly suitable in the vicinity of the crystallization temperature of aramid because the binding power of aramid is considered to be the highest. For example, in the case of polymetaphenylene isophthalamide, if it exceeds 370 ° C., it may be thermally decomposed, so it is preferably 370 ° C. or lower, and particularly preferably in the range of 330 to 365 ° C. from the viewpoint of crystallization temperature. In addition, the timing of the heat treatment is not particularly limited as long as it is after application, but after application, it is once dried at a relatively low temperature near the boiling point of the solvent so that foaming due to bumping of the solvent does not interfere with the characteristics of the capacitor, It is preferable to perform the heat treatment after removing the solvent. Examples of the heating means include a method of hot pressing at a high temperature and high pressure between a pair of flat plates or between metal rolls. Examples of the hot pressure conditions include, but are not limited to, a temperature range of 275 to 365 ° C. and a linear pressure of 50 to 400 kg / cm when a metal roll is used. Only heating can be performed without applying a pressurizing operation. A plurality of electrode sheets can be laminated during hot pressing, and the above hot pressing can be repeated a plurality of times in an arbitrary order. It is also possible to heat-treat after assembling the collector electrode, electrode and separator to form an electrode unit.

電極ユニットとしては、集電極、電極及びセパレータを組み立てたものであれば特に制限はなく、例えば、集電極、電極、セパレータ、電極、集電極の順に積み重ねたり、電極
、集電極、電極、セパレータ、電極、集電極、電極、セパレータの順に積み重ねたり、積み重ねることを繰り返したり、このように積み重ねた積層体をさらに巻き上げたりすることによりユニットを組み立てることができる。その際各部材間を予め接着剤などで接着することも可能である。
The electrode unit is not particularly limited as long as the collector electrode, the electrode and the separator are assembled. For example, the collector electrode, the electrode, the separator, the electrode, and the collector electrode are stacked in this order, or the electrode, the collector electrode, the electrode, the separator, The unit can be assembled by stacking electrodes, collector electrodes, electrodes, and separators in this order, repeating the stacking, or further winding up the stacked body. At that time, the members can be bonded in advance with an adhesive or the like.

溶剤
本発明において、溶剤としては、アラミドを溶解することができるものであれば特に制限なく使用することができるが、なかでも、良溶媒であるN,N−ジメチルアセトアミド(DMAC)、N−メチル−2−ピロリドン(NMP)のいずれかまたはその混合物が特に好ましい。
Solvent :
In the present invention, any solvent can be used without particular limitation as long as it can dissolve aramid. Among them, N, N-dimethylacetamide (DMAC), N-methyl-, which are good solvents, can be used. Any of 2-pyrrolidone (NMP) or a mixture thereof is particularly preferred.

集電極
本発明において、集電極としては、導電性の素材からなり、電極、溶剤及び電解液に対して安定なものであれば特に制限はなく、例えば、アルミニウム薄板、白金薄板、銅薄板などの金属薄板を使用することができる。
Collector electrode :
In the present invention, the collector electrode is not particularly limited as long as it is made of a conductive material and is stable with respect to the electrode, the solvent and the electrolytic solution. For example, a metal thin plate such as an aluminum thin plate, a platinum thin plate, or a copper thin plate. Can be used.

電極シート
本発明における電極シートは、例えば、粉末電極材料とアラミドバインダーと溶剤を混合したスラリーを調製し、そのスラリーを集電極に塗布した後加熱処理することにより作製することができる。具体的には、例えば、次のようにして作製することができる:
1)スラリー作製工程:
アラミドを溶剤に溶解し、アラミド溶液を調製する。この溶液と粉末電極材料を混合し、攪拌することに均質なスラリーを作製する。
2)厚手のシート作製工程:
上記スラリーをドクターナイフなどのスラリー塗布装置を用いて、集電極の片面または両面に塗布し、連続乾燥炉を通過させるか、あるいは定置型乾燥炉内で乾燥・固化させることにより厚手のシートを作製する。その際の乾燥温度は溶剤の沸点±5℃の範囲内が好ましいが、これに限定されるものではない。
3)プレス工程:
得られるシートを、例えば、一対の平板間または金属製ロール間にて高温高圧で熱圧することにより、シートの密度、機械強度を向上することができる。プレス後の電極シートは、下式(1)に示される範囲を満たすことが好ましい。

0.25<D×(1/D―We/De―Wc/Dc―Wb/Db)<0.75 (1)

式中、
Dは集電極を除いた電極シートの密度であり、
Weは電極活物質の重量分率であり、
Deは電極活物質の真比重であり、
Wcは導電剤の重量分率であり、
Dcは導電剤の真比重であり、
Wbはバインダーの重量分率であり、
Dbはバインダーの真比重である。
Electrode sheet :
The electrode sheet in the present invention can be produced, for example, by preparing a slurry in which a powder electrode material, an aramid binder, and a solvent are mixed, applying the slurry to a collecting electrode, and then performing heat treatment. Specifically, for example, it can be produced as follows:
1) Slurry preparation process:
Aramid is dissolved in a solvent to prepare an aramid solution. A homogeneous slurry is prepared by mixing and stirring this solution and the powder electrode material.
2) Thick sheet production process:
Using a slurry coating device such as a doctor knife, apply the above slurry to one or both sides of the collector electrode, and pass through a continuous drying furnace, or dry and solidify in a stationary drying furnace to produce a thick sheet To do. The drying temperature at that time is preferably within the range of the boiling point of the solvent ± 5 ° C., but is not limited thereto.
3) Pressing process:
The sheet density and mechanical strength can be improved by, for example, hot pressing the obtained sheet at a high temperature and high pressure between a pair of flat plates or between metal rolls. The pressed electrode sheet preferably satisfies the range represented by the following formula (1).

0.25 <D × (1 / D―We / De―Wc / Dc―Wb / Db) <0.75 (1)

Where
D is the density of the electrode sheet excluding the collector electrode,
We is the weight fraction of the electrode active material,
De is the true specific gravity of the electrode active material,
Wc is the weight fraction of the conductive agent,
Dc is the true specific gravity of the conductive agent,
Wb is the weight fraction of the binder,
Db is the true specific gravity of the binder.

D×(1/D―We/De―Wc/Dc―Wb/Db)が0.75以上である場合、電極シートが十分に高密度化しておらず、キャパシタ、電池として十分な容量を得ることは困難である。反対に、D×(1/D―We/De―Wc/Dc―Wb/Db)が0.25以下である場合、電極シートが高密度化しすぎており、電池として十分な出力を得ることは困難である。   When D × (1 / D−We / De−Wc / Dc−Wb / Db) is 0.75 or more, the electrode sheet is not sufficiently densified, and a sufficient capacity as a capacitor or battery is obtained. It is difficult. On the other hand, when D × (1 / D−We / De−Wc / Dc−Wb / Db) is 0.25 or less, the electrode sheet is too dense, and sufficient output as a battery can be obtained. Have difficulty.

以下、実施例を挙げて本発明をさらに具体的に説明する。なお、これらの実施例は単なる例示であり、本発明の内容を何ら限定するためのものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. These examples are merely illustrative and are not intended to limit the contents of the present invention.

参考例1(電極シートの作製)
1)スラリー作製工程:
ポリメタフェニレンイソフタルアミド(真比重1.38)をNMPに溶解し、メタアラミド溶液を調製した。
Reference Example 1 (Production of electrode sheet)
1) Slurry preparation process:
Polymetaphenylene isophthalamide (true specific gravity 1.38) was dissolved in NMP to prepare a meta-aramid solution.

上記溶液と活性炭(クラレケミカル社製、RP−20)及びケッチェンブラックを混合し、攪拌することに均質なスラリーを作製した。配合比は、NMPが蒸発後に、活性炭:ケッチェンブラック:ポリメタフェニレンイソフタルアミド=85:5:10の重量比となるように調整した。   The above solution was mixed with activated carbon (RP-20, Kuraray Chemical Co., Ltd.) and ketjen black, and a homogeneous slurry was prepared by stirring. The blending ratio was adjusted so that the weight ratio of activated carbon: Ketjen black: polymetaphenylene isophthalamide = 85: 5: 10 after NMP was evaporated.

2)電極シート作製工程:
上記で得られたスラリーをドクターナイフを用いて、アルミ箔集電極(導電性フェノール樹脂を予め付与)の片面に塗布し、乾燥(100℃、20分、常圧、大気雰囲気)を行った後にプレスし、乾燥(温度170℃、圧力1トル以下、10時間)して、厚み93μmの電極シートを得た。
2) Electrode sheet manufacturing process:
After applying the slurry obtained above to one side of an aluminum foil collector electrode (provided with a conductive phenol resin in advance) using a doctor knife and drying (100 ° C., 20 minutes, normal pressure, air atmosphere) It was pressed and dried (temperature 170 ° C., pressure 1 torr or less, 10 hours) to obtain an electrode sheet having a thickness of 93 μm.

参考例2(電極ユニットの作製)
特開平17−307360号公報の実施例の記載にしたがってm−アラミドとp−アラミドからなるセパレータ(坪量24.4g/m2、厚み46μm、密度0.53g/cm3)を作製し、正負極1対の上記電極シートの間に挟み電極ユニットを得た。
Reference Example 2 (Production of electrode unit)
A separator (basis weight 24.4 g / m 2 , thickness 46 μm, density 0.53 g / cm 3 ) made of m-aramid and p-aramid was prepared according to the description in Examples of JP-A No. 17-307360. An electrode unit was obtained by sandwiching between the pair of electrode sheets.

実施例1
参考例2で作製した電極ユニットを温度350℃で加熱処理した(圧力1トル以下、12時間)後、ドライ雰囲気にて乾燥しアルミラミネート外装に挿入した。ついで外装の三方を封口状態にし、電解液として1.5MのTEMABF4/PC(トリエチルメチルアンモニウム・テトラフルオロボーレイトをプロピレンカーボネートに溶解した液)を注液し、減圧含浸し、外装の残りの一方を減圧封口して下記表1に示す構成のキャパシタを作製した。
Example 1
The electrode unit produced in Reference Example 2 was heat-treated at a temperature of 350 ° C. (pressure 1 torr or less, 12 hours), then dried in a dry atmosphere and inserted into an aluminum laminate exterior. Next, three sides of the exterior were sealed, and 1.5M TEMABF 4 / PC (a solution of triethylmethylammonium tetrafluoroborate dissolved in propylene carbonate) was injected as an electrolyte, impregnated under reduced pressure, and the remaining one of the exterior Was sealed under reduced pressure to produce a capacitor having the structure shown in Table 1 below.

比較例1
参考例2で作製した電極ユニットの加熱処理の温度を150℃にした以外は実施例1と同様の方法で表1に示す構成のキャパシタを作製した。この場合の加熱処理は活性炭電極の乾燥のために行ったものであり、塗布後のバインダーが受けた加熱温度は電極シート作製工程での170℃が最高である。
Comparative Example 1
A capacitor having the structure shown in Table 1 was produced in the same manner as in Example 1 except that the temperature of the heat treatment of the electrode unit produced in Reference Example 2 was changed to 150 ° C. The heat treatment in this case was performed for drying the activated carbon electrode, and the highest heating temperature received by the binder after coating was 170 ° C. in the electrode sheet manufacturing process.

<特性評価>
上記キャパシタの初期特性、レート特性及び低温特性を以下の方法で測定した。
<Characteristic evaluation>
The initial characteristics, rate characteristics, and low temperature characteristics of the capacitor were measured by the following methods.

1)初期充放電特性
初期特性として、初期における1Cレートでの充放電測定及びインピーダンス測定を行い、抵抗を算出した。測定条件は下記のとおりである。
初期容量測定(25℃)
充電:CCCV3.0mA(1C),2.8V-2時間(*)
放電:CC 3.0mA(1C),0.01V(**)
(*)CCCV:定電流定電圧、 (**) CC:定電流
インピーダンス測定(25℃)
測定状態:放電末
測定周波数:20000Hz〜0.1Hz
振幅(ΔE):10mV
1) Initial charge / discharge characteristics As the initial characteristics, charge / discharge measurement and impedance measurement at an initial 1C rate were performed to calculate resistance. The measurement conditions are as follows.
Initial capacity measurement (25 ℃)
Charging: CCCV3.0mA (1C), 2.8V-2 hours (*)
Discharge: CC 3.0mA (1C), 0.01V (**)
(*) CCCV: Constant current constant voltage, (**) CC: Constant current impedance measurement (25 ° C)
Measurement state: End of discharge Measurement frequency: 20000Hz to 0.1Hz
Amplitude (ΔE): 10mV

2)低温特性
-30℃における低温特性として、1Cレートでの充放電測定及びインピーダンス測定を行い、抵抗を算出した。測定条件は下記のとおりである。
容量測定(-30℃)
充電:CCCV3.0mA(1C),2.8V-2時間(*)
放電:CC 3.0mA(1C),0.01V(**)
(*)CCCV:定電流定電圧、 (**) CC:定電流
インピーダンス測定(-30℃)
測定状態:放電末
測定周波数:20000Hz〜0.1Hz
振幅(ΔE):10mV
2) Low temperature characteristics
As low temperature characteristics at −30 ° C., charge / discharge measurement and impedance measurement at a 1 C rate were performed, and resistance was calculated. The measurement conditions are as follows.
Capacity measurement (-30 ℃)
Charging: CCCV3.0mA (1C), 2.8V-2 hours (*)
Discharge: CC 3.0mA (1C), 0.01V (**)
(*) CCCV: Constant current constant voltage, (**) CC: Constant current impedance measurement (-30 ° C)
Measurement state: End of discharge Measurement frequency: 20000Hz to 0.1Hz
Amplitude (ΔE): 10mV

これらの結果は表2に示すとおりであった。 These results are shown in Table 2.

表2から明らかなように、本発明実施例のキャパシタの抵抗は比較例のキャパシタに比べて低く、良い結果であり、キャパシタとして十分に機能することが確認された。   As is apparent from Table 2, the resistance of the capacitor of the embodiment of the present invention is lower than that of the comparative example, which is a good result, and it was confirmed that the capacitor functions sufficiently.

これは、350℃加熱による粒状化が起こる過程で、バインダーの収縮により粉末電極材料間に収縮応力が働き、且つ粉末電極材料の表面を覆っていた部分が収縮により小さくなることにより、粉末電極材料間の接触面積が増加したことによるものと考えられる。   This is because in the process of granulation by heating at 350 ° C., the shrinkage stress acts between the powder electrode materials due to the shrinkage of the binder, and the portion covering the surface of the powder electrode material becomes smaller due to the shrinkage. This is thought to be due to an increase in the contact area.

粉末電極材料とアラミドと溶剤の混合スラリーが塗布された集電極の加熱前の塗膜(活性炭/アラミド=90wt%/10wt%)表面の顕微鏡写真(倍率3500)。The microscope picture (magnification 3500) of the coating-film (active carbon / aramid = 90 wt% / 10 wt%) surface before the heating of the collector electrode with which the mixed slurry of powder electrode material, the aramid, and the solvent was apply | coated. 図1に示す集電極の加熱(350℃)後の塗膜表面の顕微鏡写真(倍率3500)。The microscope picture (magnification 3500) of the coating-film surface after the heating (350 degreeC) of the collector electrode shown in FIG. 粉末電極材料とアラミドと溶剤の混合スラリーが塗布された集電極の加熱前の塗膜(活性炭/アラミド=70wt%/30wt%)表面の顕微鏡写真(倍率3500)。The microscope picture (magnification 3500) of the surface of the coating film (active carbon / aramid = 70 wt% / 30 wt%) of the collector electrode to which the mixed slurry of powder electrode material, aramid and solvent was applied. 図1に示す集電極の加熱(350℃)後の塗膜表面の顕微鏡写真(倍率3500)。The microscope picture (magnification 3500) of the coating-film surface after the heating (350 degreeC) of the collector electrode shown in FIG.

Claims (5)

加熱処理により粒状化したアラミドからなる蓄電器電極用バインダー。   A capacitor electrode binder comprising aramid granulated by heat treatment. 粉末電極材料とバインダーと溶剤を混合してスラリーを調製し、そのスラリーを集電極に塗布することにより製造された電極シートであって、バインダーがアラミドであり、塗布後に加熱処理することにより得られた電極シート。   A powder electrode material, a binder and a solvent are mixed to prepare a slurry, and the slurry is applied to a collector electrode. The electrode sheet is produced by applying heat treatment after coating, the binder being aramid. Electrode sheet. 請求項2に記載の電極シートを使用した蓄電器。   A battery using the electrode sheet according to claim 2. 請求項2に記載の電極シートを使用したキャパシタ。   A capacitor using the electrode sheet according to claim 2. 請求項2に記載の電極シートを使用した電池。   A battery using the electrode sheet according to claim 2.
JP2006346660A 2006-12-22 2006-12-22 Capacitor electrode binder Expired - Fee Related JP5015579B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006346660A JP5015579B2 (en) 2006-12-22 2006-12-22 Capacitor electrode binder
KR1020097015364A KR101381069B1 (en) 2006-12-22 2007-12-13 Binder for capacitor electrode
CNA2007800479777A CN101578676A (en) 2006-12-22 2007-12-13 Binder for capacitor electrode
PCT/JP2007/074472 WO2008078634A1 (en) 2006-12-22 2007-12-13 Binder for capacitor electrode
TW096147719A TW200838015A (en) 2006-12-22 2007-12-13 Binder for electrodes of condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006346660A JP5015579B2 (en) 2006-12-22 2006-12-22 Capacitor electrode binder

Publications (2)

Publication Number Publication Date
JP2008159810A true JP2008159810A (en) 2008-07-10
JP5015579B2 JP5015579B2 (en) 2012-08-29

Family

ID=39562426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006346660A Expired - Fee Related JP5015579B2 (en) 2006-12-22 2006-12-22 Capacitor electrode binder

Country Status (5)

Country Link
JP (1) JP5015579B2 (en)
KR (1) KR101381069B1 (en)
CN (1) CN101578676A (en)
TW (1) TW200838015A (en)
WO (1) WO2008078634A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142244A (en) * 2011-01-06 2012-07-26 Teijin Techno Products Ltd Binder for electrode mixture comprising aromatic polyamide and electrode sheet
CN111420853A (en) * 2020-03-27 2020-07-17 天目湖先进储能技术研究院有限公司 Pole piece drying method for inhibiting adhesive migration, pole piece and battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110159370A1 (en) * 2008-10-31 2011-06-30 Akira Inaba Nonaqueous secondary battery
KR101710231B1 (en) 2014-04-29 2017-02-27 황철주 machine of folding and sealing paper

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04109553A (en) * 1990-08-29 1992-04-10 Mitsubishi Petrochem Co Ltd Electrode for secondary battery
JPH10312791A (en) * 1997-03-13 1998-11-24 Mitsui Chem Inc Electrode material for nonaqueous electrolyte secondary battery
JP2003068284A (en) * 2001-08-27 2003-03-07 Mitsubishi Cable Ind Ltd Negative electrode for use in lithium secondary battery and is producing method, and lithium secondary battery
JP2006339092A (en) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its negative electrode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345103A (en) * 2000-03-29 2001-12-14 Toyo Tanso Kk Negative electrode material for secondary battery, lithium ion secondary battery using it, and manufacturing method of negative electrode material for secondary battery
JP4204380B2 (en) * 2003-05-14 2009-01-07 Tdk株式会社 Composite particle for electrode and method for producing composite particle for electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04109553A (en) * 1990-08-29 1992-04-10 Mitsubishi Petrochem Co Ltd Electrode for secondary battery
JPH10312791A (en) * 1997-03-13 1998-11-24 Mitsui Chem Inc Electrode material for nonaqueous electrolyte secondary battery
JP2003068284A (en) * 2001-08-27 2003-03-07 Mitsubishi Cable Ind Ltd Negative electrode for use in lithium secondary battery and is producing method, and lithium secondary battery
JP2006339092A (en) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its negative electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142244A (en) * 2011-01-06 2012-07-26 Teijin Techno Products Ltd Binder for electrode mixture comprising aromatic polyamide and electrode sheet
CN111420853A (en) * 2020-03-27 2020-07-17 天目湖先进储能技术研究院有限公司 Pole piece drying method for inhibiting adhesive migration, pole piece and battery

Also Published As

Publication number Publication date
CN101578676A (en) 2009-11-11
KR101381069B1 (en) 2014-04-04
KR20090105938A (en) 2009-10-07
TW200838015A (en) 2008-09-16
JP5015579B2 (en) 2012-08-29
WO2008078634A1 (en) 2008-07-03

Similar Documents

Publication Publication Date Title
Foreman et al. A review of inactive materials and components of flexible lithium‐ion batteries
Song et al. Interpenetrated gel polymer binder for high‐performance silicon anodes in lithium‐ion batteries
KR101114122B1 (en) Composite positive electrode material for lithium ion battery and battery using the same
JP5200367B2 (en) Bipolar battery electrode
JP5163439B2 (en) FIBER-CONTAINING POLYMER FILM AND METHOD FOR PRODUCING SAME, ELECTROCHEMICAL DEVICE AND METHOD FOR PRODUCING SAME
JP5550988B2 (en) Sodium secondary battery manufacturing method and sodium secondary battery
JP5796367B2 (en) Separator with heat-resistant insulation layer
JP5760593B2 (en) Method for producing active material, electrode and lithium ion secondary battery
WO1997008763A1 (en) Cell and production method thereof
JP6223466B2 (en) Lithium ion capacitor
JPWO2007125712A1 (en) Electrode sheet manufacturing method
WO2015076099A1 (en) Method for producing negative electrode for nonaqueous electrolyte secondary batteries
JP4765109B2 (en) Carbon material for electrode and manufacturing method thereof, electrode and manufacturing method thereof, and electrochemical device and manufacturing method thereof
WO2017038669A1 (en) Lithium ion secondary battery
JP5015579B2 (en) Capacitor electrode binder
JP6806068B2 (en) Resin composition
CN108878947B (en) Method for reducing occurrence of short circuit and/or lithium precipitation in battery pack
JP5711825B2 (en) Integrated electrode assembly and secondary battery using the integrated electrode assembly
JP2016096250A (en) Lithium ion capacitor
US20230081140A1 (en) Catalysts and methods for lowering electrode pyrolysis temperature
JP2004247180A (en) Electrode mix, electrode structure using it, and nonaqueous electrochemical element
JP2014072129A (en) Electrode for power storage device and power storage device using the same
WO2016152833A1 (en) Method for producing electrode for lithium secondary batteries
JP5057249B2 (en) Electrode sheet manufacturing method
JP2018060605A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091210

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100511

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100514

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120528

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees