JP2008152006A - 光モジュール及び光通信装置 - Google Patents

光モジュール及び光通信装置 Download PDF

Info

Publication number
JP2008152006A
JP2008152006A JP2006339783A JP2006339783A JP2008152006A JP 2008152006 A JP2008152006 A JP 2008152006A JP 2006339783 A JP2006339783 A JP 2006339783A JP 2006339783 A JP2006339783 A JP 2006339783A JP 2008152006 A JP2008152006 A JP 2008152006A
Authority
JP
Japan
Prior art keywords
light
transmittance
temperature
optical module
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006339783A
Other languages
English (en)
Inventor
Akira Miyamae
章 宮前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2006339783A priority Critical patent/JP2008152006A/ja
Priority to US11/955,906 priority patent/US7628547B2/en
Publication of JP2008152006A publication Critical patent/JP2008152006A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/008Mountings, adjusting means, or light-tight connections, for optical elements with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/264Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting
    • G02B6/266Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting the optical element being an attenuator

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

【課題】光モジュールの温度による出力光の変化を低減する。また、光モジュールの駆動可能な温度範囲を広げる。また、光モジュールの特性を向上させる。
【解決手段】発光素子10の出力光の光路に、温度の上昇に伴い透過率が上昇する波長フィルタ50を配置する。発光素子(VCSEL)10の出力は、温度の上昇に伴って低下する。一方、発光素子10の出力は、温度の上昇に伴って長波長側にシフトする。よって、長波が大きくなるに従って透過率が大きくなるように、波長フィルタ50を設計し、発光素子10の光出力の低下を、波長フィルタ50の透過率の上昇によって相殺する。よって、温度による出力光の変化を低減することができる。また、光モジュールの駆動可能な温度範囲を広げることができる。
【選択図】図1

Description

本発明は、光通信に用いられる光モジュール及び光通信装置に関する。
光モジュールには種々の形態があり、その1つとして、発光素子から出射する光の一部をモニタ用受光素子によって受光し、その光量をモニタする構造の光モジュールが知られている。この際、出射光の周囲温度による光量変動が生じる場合がある。そのため従来では、モニタ用受光素子やレンズ等の各部材の温度特性をなるべく低減し、周囲温度によらずモニタ光量とファイバ結合光量との間の比例関係が保たれるようにしていた(例えば、下記特許文献1、2参照)。
また、下記特許文献3には、発光層(24)から放射される光の発光強度が高い時の発光波長で低い透過率となる多層透過膜(27)を用いることで、光出力の温度による変動を小さくする技術が開示されている。
特開2004−72072号公報 特開平10−65189号公報 特開平8−236807号公報
本発明者らは、光モジュール(光通信用モジュール)の受光光量に応じて、発光素子の駆動電流をフィードバック制御することにより、発光素子の発光光量を一定にすることを検討している。特に、発光素子として面発光型垂直共振器型レーザ(VCSEL:Vertical Cavity Surface Emitting Laser)を用いた場合には、周囲温度による光量変動が大きく、温度が上昇するほど発光光量が低下するという現象が生じるため、光量を一定にするためには周囲温度が高くなるほど駆動電流を大きくするフィードバック制御(APC:Auto Power Control)が重要となる。
一方、850nm帯以上の光モジュールにおいては、低温においても高速に駆動させるため、駆動電流を大きくする必要がある。これは、低温で駆動電流が小さくなった場合には素子の駆動帯域が低下するという現象が生じるためである。この場合、光出力が大きくなるため、部分反射膜を使用して光量を減衰(アッテネーション)し、人の目などに対する安全を図っている。
しかしながら、減衰した光に基づいて上記発光素子の駆動電流をフィードバック制御すると、高温での駆動電流がさらに大きくなる。その結果、駆動電流の制限値(上限値)を超えることがあり、ある温度以上においては出力不足で動作できなくなるという問題がある。逆に、一定の駆動電流で動作させれば、使用温度範囲が大きくなるが、前述したように、光量変動が大きくなる。
さらに、レーザ光においては、各温度で最も効率良く発光する電流値があり、当該電流値で駆動できれば、使用温度範囲が大きくなり、さらに、送信特性を向上させる(例えば、動作の高速化、低ノイズ化を図る)ことができる。
そこで、本発明は、光モジュールの温度による出力光の変化を低減することを目的とする。また、光モジュールの駆動可能な温度範囲を広げることを目的とする。また、光モジュールの特性を向上させることを目的とする。
(1)本発明に係る光モジュールは、光源と、前記光源からの出射光の光路に前記光源と離間して配置された可変透過率部材であって、温度の上昇に伴い透過率が上昇する可変透過率部材と、前記可変透過率部材を透過した光を受光する光ファイバと、を有する。
かかる構成によれば、温度による出射光の変化の影響を低減することができる。
例えば、前記出射光は、温度の上昇に伴って、波長が大きくなる。このように、温度の上昇に伴って、出射光の波長が大きくなることを利用し、可変透過率部材を透過する出射光の光量の変化を低減することができる。
例えば、前記光源は、面発光型垂直共振器型レーザである。かかる構成によれば、温度による光量変動が大きい当該レーザを用いても、温度による出射光の変化の影響を低減することができる。
例えば、前記可変透過率部材は、入射する光の波長の変化に伴って透過率が変化する。かかる構成によれば、温度の上昇に伴ってその波長が変化する出射光に対し、前記可変透過率部材を透過させることにより、出射光の光量の変化を低減することができる。
例えば、前記可変透過率部材は、入射する光の波長が大きくなるに従って、透過率が大きくなる。かかる構成によれば、温度の上昇に伴ってその波長が大きくなる出射光に対し、前記可変透過率部材を透過させることにより、出射光の光量の変化を低減することができる。
例えば、上記光モジュールは、前記光路に配置され、前記可変透過率部材を透過した光の一部を分岐する分岐部材と、前記分岐材料により分岐された分岐光の光量を検知する光量モニタと、を有し、前記分岐光の光量に応じて、前記光源からの出射光の光量を制御する。かかる構成によれば、上記制御によっても出射光の温度による光量変動を低減することができる。また、光量モニタには、可変透過率部材を透過した分岐光をモニタするため、駆動電流の増加を防止することができる。よって、光モジュールの使用温度範囲を大きくすることができる。
例えば、前記分岐光は、前記可変透過率部材を透過することなく、前記光量モニタによって受光される。かかる構成によれば、可変透過率部材を1回透過した分岐光でモニタを行うため、可変透過率部材の設計が容易となる。
なお、前記光ファイバは、可変透過部材を透過した光を受光する受光部であり、受光部により受信された光を信号として外部に伝達する。
(2)本発明に係る光モジュールは、光源と、前記光源からの出射光の光路に前記光源と第1距離離間して配置された可変透過率部材であって、温度の上昇に伴い透過率が上昇する可変透過率部材と、前記光源からの出射光の光路に前記光源と前記第1距離より大きい第2距離離間して配置され、前記可変透過率部材を透過した光の内の第1光を反射し、第2光を透過させる部分反射部材と、前記第2光を受光する光ファイバと、を有し、前記第1光の光路に配置された光量モニタとを有し、前記可変透過率部材は、前記出射光の光路から前記第1光の光路に渡って配置され、前記光量モニタは、可変透過率部材を透過した前記第1光の光量を検知する。
かかる構成によれば、温度による出射光の変化の影響を低減することができる。また、前記光量モニタによっても出射光の温度による光量変動を低減することができる。よって、光モジュールの使用温度範囲を大きくすることができる。また、可変透過率部材を2回透過した分岐光をモニタすることで、可変透過率部材の形成領域に制約がなくなる。よって、光モジュールの製造が容易になる。
例えば、前記出射光は、温度の上昇に伴って、波長が大きくなる。このように、温度の上昇に伴って、出射光の波長が大きくなることを利用し、可変透過率部材を透過する出射光の光量の変化を低減することができる。
例えば、前記光源は、面発光型垂直共振器型レーザである。かかる構成によれば、温度による光量変動が大きい当該レーザを用いても、温度による出射光の変化の影響を低減することができる。
例えば、前記可変透過率部材は、入射する光の波長の変化に伴って透過率が変化する。かかる構成によれば、温度の上昇に伴ってその波長が変化する出射光に対し、前記可変透過率部材を透過させることにより、透過光量の変化を低減することができる。
例えば、前記可変透過率部材は、入射する光の波長が大きくなるに従って、透過率が大きくなる。かかる構成によれば、温度の上昇に伴ってその波長が大きくなる出射光に対し、前記可変透過率部材を透過させることにより、透過光量の変化を低減することができる。
例えば、特定温度において、前記可変透過率部材の透過率は、部分反射部材の透過率より小さい。かかる構成により、可変透過率部材および部分反射膜を透過する出射光の光量の変化を低減することができる。また、可変透過率部材を2回透過した分岐光のモニタ精度を向上させることができる。
例えば、前記可変透過率部材の温度変化に対する透過率変化である温度傾斜a1は、前記部分反射部材の温度変化に対する透過率変化である温度傾斜a2より小さい。かかる構成により、可変透過率部材および部分反射膜を透過する出射光の光量の変化を低減することができる。また、可変透過率部材を2回透過した分岐光のモニタ精度を向上させることができる。
(3)本発明に係る光通信装置は、上記光モジュールを備える光通信装置である。かかる構成によれば、光通信装置の特性を向上させることができる。
以下、本発明の実施の形態を図面を参照しながら詳細に説明する。なお、同一の機能を有するものには同一もしくは関連の符号を付し、その繰り返しの説明を省略する。
(実施の形態1)
図1は、本実施の形態の光モジュール(光送信モジュール、光送信装置、発光モジュール、光トランスミッタ)の構成を示す断面図である。本実施の形態の光モジュールは、カンパッケージ(CAN)100とコネクタ部品101とを位置合わせし、接着剤12を用いて両者を固定して構成されている。コネクタ部品101は、光ファイバ102の一端を支持し、当該光ファイバ102をカンパッケージ100内の発光素子(光源)10と光結合させる。
カンパッケージ100は、発光素子10を金属等からなる筐体によりパッケージングして構成されている。本実施の形態では、発光素子10としてマルチモード発光するVCSEL(Vertical Cavity Surface Emitting Laser Diode)を用いている。発光素子10の出力光の波長は、例えば850nmである。発光素子10は、リード線11とワイヤ等を介して接続されている。このリード線11を介して発光素子10が駆動される。また、カンパッケージ100は、発光素子10と離間して配置されたガラス板22を備えている。ガラス板22は、発光素子10とレンズ16との間、即ち、発光素子10の出力光の光路(光軸)上に配置されている。ここでは、その一面(表面)が、光軸に対して直交するよう配置されている。
コネクタ部品101は、カンパッケージ100を支持する孔状の支持部14と、レンズ16と、光ファイバ102の一端が装着され、これを支持するスリーブ部18と、を備える。レンズ16は、発光素子10の出力光の光路上に配置され、発光素子10の出力光を集光して光ファイバ102の一端(受光部、結合部)に導く。これらの各部位は、例えば、樹脂加工により一体成型される。もちろん、各部位を別部材とし、接着等によりコネクタ部101を形成してもよい。
また、光ファイバ102の一端にはフェルール19が装着されており、当該フェルールがスリーブ部18に挿入されている。この光ファイバ102は、例えばコア径50μm、クラッド径125μm、NA0.21のGI(Graded Index)マルチモードファイバである。
ここで、本実施の形態の特徴は、半透過ガラス22の表面に、波長フィルタ(フィルタ)50を配置したことにある。この波長フィルタ50は、入射(入力)する光の波長の変化に伴って透過率が変化する、具体的には、入射する光の波長が大きくなるに従って、透過率が大きくなる可変透過率部材である。ここで、波長フィルタ50自身の透過効率をある程度低く設定し、アッテネーション効果を持たせてある。よって、従来必要であった部分反射膜は必要なくなる。もちろん、部分反射膜を併用してアッテネーション量を増加させてもよい。この部分反射膜は、例えば、ガラス板22の表面や裏面にコーティングされた金属膜などのより構成される。
このように、本実施の形態によれば、発光素子10の出力光の光路に上記波長フィルタ50を配置したので、カンパッケージ100の出力光(波長フィルタ50の透過光)の温度変化を低減することができる。
以下、この効果について、図2〜図4を参照しながら、さらに、詳細に説明する。図2は、発光素子および波長フィルタ50を用いなかった場合のカンパッケージの出力光量の温度特性を示す図である。縦軸は、出力光量[mW]、横軸は、温度[℃]である。図3は、波長フィルタ50の透過率の温度特性を示す図である。縦軸は、透過率、横軸は、温度[℃]である。図4は、波長フィルタ50の透過率の波長特性を示す図である。縦軸は、透過率、横軸は、波長[nm]である。
図2のグラフ(a)に示すように、発光素子(VCSEL)の出力は、温度(周囲温度、使用温度)の上昇に伴って低下する。従って、これに対応して、カンパッケージ100の出力も、温度の上昇に伴って低下する(グラフ(b))。例えば、25℃において、VCSELの出力は、1.81mWであり、CAN出力は、0.46mWである。なお、発光素子の駆動電流は一定とした。また、図2(c)は、理想的なカンパッケージ100の出力を示すグラフである。
そこで、図3に示すような透過率の温度特性を有する波長フィルタ50を設計すれば、発光素子10の光出力の低下を、波長フィルタ50の透過率の上昇によって相殺することができる。
一方、発光素子10の出力は、温度の上昇に伴って長波長側にシフトする特性を有する。言い換えれば、発光素子10の出力は、温度の上昇に伴ってその波長(発振波長)が大きくなる。例えば、あるVCSELにおいては、25℃の波長が848nmであり、温度が1℃上昇する毎に0.06nmずつ波長が大きくなる。即ち、波長の温度シフト係数が、0.06nm/℃である。
そこで、本発明者らは、図4に示す、透過率の波長特性を有する材料(波長フィルタ)を設計し、上記波長フィルタ50として使用することで、カンパッケージ100の温度出力の変化を抑制することとした。
即ち、発光素子10の出力は、温度の上昇に伴って長波長側にズレるため、長波が大きくなるに従って透過率が大きくなるように、波長フィルタ50を設計する。
かかる波長フィルタ50は、例えば、誘電体の多層膜よりなる。種々の特性を有する誘電体膜を積層することにより、入射する光の長波の変化に伴って透過率を変化させることができる。
かかる波長フィルタの設計の際、透過率の波長特性の細かい制御(設計、シュミュレーション)は、波長フィルタの設計方法として確立している。このような設計技術は、例えば、「光学薄膜と成膜技術」李正中著、アグネ技術センター発行、「光設計とシュミュレーションソフトの上手な使い方 改訂版」オプトロニクス社編集部編などに詳しい。例えば、図4に示す透過率の波長特性を再現するよう設計した波長フィルタの特性を図5に示す。実線が、設計案(シュミュレーション結果)であり、破線が、ターゲット(target)部位である。
このように、本実施の形態によれば、上記波長フィルタ50を発光素子10の光路上に配置したので、カンパッケージ100の出力の変化を抑制することができる。よって、光モジュールの特性を向上させることができる。
(実施の形態2)
本実施の形態においては、モニタ用受光素子(光量モニタ)20を設け、発光素子の駆動電流をフィードバック制御(APC)した。なお、実施の形態1と同じ箇所には同一の符号を付し、その詳細な説明を省略する。
図6は、本実施の形態の光モジュールの構成を示す断面図である。実施の形態1と同様に、本実施の形態の光モジュールは、カンパッケージ100とコネクタ部品101とからなる。
本実施の形態においては、カンパッケージ100は、発光素子10の光出力を監視するための構成としてモニタ用受光素子20を備えている。このモニタ用受光素子20は、リード11と接続され、さらに、ワイヤを介して発光素子10と接続されている。
さらに、コネクタ部品101は、部分反射膜(分岐部材、部分反射部材)32およびレンズ(第2レンズ)34を備える。これらは、発光素子10の出力光の光路上に配置される。言い換えれば、レンズ(第1レンズ)16と光ファイバ102との間に配置される。
発光素子10と部分反射膜32との距離はD2であり、発光素子10と波長フィルタ50までの距離D1より大きい。また、部分反射膜32は、その一方の面が発光素子10の出力光の光路に対して斜め(すなわち直交しない状態)になるように配置される。この部分反射膜32は、例えば、ガラス板33の表面にコーティングされた極薄い誘電体薄膜により構成され、レンズ16によって準コリメートされた発光素子10の出力光のうち一部成分(第1光)を反射する。反射されるのは、出力光のうち例えば10%程度である。なお、他の成分(第2光)は、部分反射膜32を透過する。
この部分反射膜32は、入力光の波長や温度によって透過/反射比が変動しないよう設計されることが望ましい。即ち、入力光の波長や温度に関わらず、入力光の一定割合の光を反射することが望ましい。
ここでは、部分反射膜(ガラス板33)32は、発光素子10の出力光に交差する斜面上に配置される。この斜面は、例えば、コネクタ部品101を構成する樹脂部材を切り抜くことにより形成することができる。なお、当該斜面に上記誘電体薄膜を直接コーティングしてもよい。また、レンズ34を省略した構成としてもよい。
ここで、本実施の形態においては、発光素子10の出力光を、部分反射膜32によって反射(分岐)する。モニタ用受光素子20は、部分反射膜32によって生じた反射光(分岐光、第1光)を受光可能な位置に配置されている。そして、受光光量(反射光の光量)に応じた電流(以下「モニタ電流」という。)を発生する。このモニタ用受光素子20は、例えばフォトダイオードやフォトトランジスタなどの半導体素子からなる。よって、出力光の変化に対応してモニタ用受光素子20の受光光量が変化するので、モニタ電流を調整することができる。このように、発光素子10からの出力光の光量を制御することができる。
また、本実施の形態においては、波長フィルタ50がガラス板22の全面に形成されておらず、発光素子10の出力光の光路に対応する部分にのみ形成されている。従って、上記反射光は、波長フィルタ50を透過(通過)することなく、モニタ用受光素子20に入力される。言い換えれば、モニタ用受光素子20は、波長フィルタ50を1回だけ透過した光を受光する。
このように、本実施の形態によれば、発光素子10の出力光の光路に上記波長フィルタ50を配置したので、実施の形態1と同様に、カンパッケージ100の出力光(波長フィルタ50の透過光)の温度変化を低減することができる。
また、モニタ用受光素子20によるフィードバック制御(APC)により、発光素子10の出力光の均一性をさらに向上させることができる。また、温度変化以外の条件によって発光素子10の出力光が変化した場合にも、出力光を調整することができる。また、波長フィルタ50の製造ばらつきなどにより当初の設計値よりその特性がずれた場合でも、出力光を調整することができる。
さらに、光モジュールの使用温度範囲が大きくなる。以下、この効果について説明する。実施の形態1において、図2を参照しながら説明したように、発光素子(VCSEL)10の出力は、温度の上昇に伴って低下する(図2(a))。従って、これに対応して、カンパッケージ100の出力も低下する(図2(b))。しかしながら、モニタ用受光素子20によりフィードバック制御すれば、カンパッケージ100の出力の均一性の向上を図ることができ、理想的なカンパッケージ100の出力(グラフ(c))に近づけることができる。
しかしながら、駆動電流(モニタ電流)には、光出力が大きくなり過ぎることを防止するため、上限値が設定されている。従って、この上限値を超えて発光素子10を駆動させることはできない。結果として、上記駆動電流が上限値を超える温度においては、光モジュールを使用できなくなる。なお、この上限値は、装置によって適宜設定されている。
これに対し本実施の形態によれば、波長フィルタ50によりカンパッケージ100の出力光の温度変化を低減しているため、発光素子10の駆動電流(モニタ電流)による調整度合いが少なくて済む。言い換えれば、駆動電流をあまり大きくする必要がない。よって、光モジュールの使用温度範囲を大きくすることができる。また、波長フィルタ50を通過した光の反射光をモニタするため、モニタ精度を向上させることができる。
(実施の形態3)
本実施の形態においては、波長フィルタ50をガラス板22の全面に形成した。なお、実施の形態1および2と同じ箇所には同一の符号を付し、その詳細な説明を省略する。
図7は、本実施の形態の光モジュールの構成を示す断面図である。実施の形態2と異なり、波長フィルタ50がガラス板22の全面に形成されている。よって、波長フィルタ50の形成工程が容易となる。具体的には、マスクやエッチング処理が不要である。また、発光素子10と波長フィルタ50との位置あわせが不要となる。なお、上記波長フィルタ50の形成領域以外は、実施の形態2と同様である。
しかしながら、図7に示すように、モニタ用受光素子20は、波長フィルタ50を2回透過した光を受光することとなる。
そこで、本実施の形態においては、以下に示す式(i)と式(ii)に基づいて、波長フィルタ50および部分反射膜32の波長特性を調整した。
発光素子10の出力光量をPv、光ファイバ102への入力光をPo、モニタ用受光素子20への入力光をPm、波長フィルタ50の透過率をT1、部分反射膜32の透過率をT2とすると、Po=Pv×T1×T2…(i)、Pm=Pv×T1×(1−T2)×T1…(ii)が成立する。これらの式において、Pvが温度によって変化しても、Po、Pmが一定となるように、T1、T2を求める。
図8に、上記式により求められた、波長フィルタ50および部分反射膜32の透過率(T1、T2)の温度特性を示す。縦軸は、透過率[%]、横軸は、温度[℃]である。ここでは、出力光量(Pv)を0.54mW、モニタ用受光素子20への入力光(Pm)を0.072mWとしてT1、T2を求めた。よって、波長フィルタ50および部分反射膜32を、図8に示す温度特性を有する波長フィルタとすることで、カンパッケージ100の出力光の温度変化を低減することができる。図8から分かるように、特定温度において、部分反射膜32の透過率(T2)は、波長フィルタ50の透過率(T1)より大きい。また、部分反射膜32の温度変化に対する透過率変化である温度傾斜a2は、波長フィルタ50の温度変化に対する透過率変化である温度傾斜a1より小さい(a1<a2)。温度傾斜a2の方が、より緩やかである。
かかる温度特性を実施の形態1で詳細に説明した波長特性に変換し、波長フィルタ50および部分反射膜32を設計すればよい。
図9に、図8に示す温度特性を有する波長フィルタを用いた場合のPo、Pmの温度特性を示す。縦軸は、Po、Pmの光量[mW]、横軸は、温度[℃]である。図示するように、温度によらず、ほぼ一定電流で、一定のPo、Pmを得ることができる。
このように、本実施の形態によれば、発光素子10の出力光の光路に上記波長フィルタ50および部分反射膜32を配置したので、カンパッケージ100の出力光(波長フィルタ50の透過光)の温度変化を低減することができる。また、波長フィルタ50を2回透過した光でも、モニタすることができ、それに基づいてフィードバック制御(APC)することができる。言い換えれば、波長フィルタ50を2回透過した光でも、精度良くモニタすることができる。
もちろん、本実施の形態においても、実施の形態2で詳細に説明したように、モニタ用受光素子20によるフィードバック制御(APC)により、発光素子10の出力光の均一性をさらに向上させることができる。また、光モジュールの使用温度範囲が大きくなる。
なお、上記実施の形態1〜3の光モジュールを、光通信装置に用いることができる。上記光モジュールを用いることにより、温度による発光素子の出力光の変化を低減した光通信装置を得ることができる。また、使用温度範囲の広い光通信装置を得ることができる。このように、装置特性を向上させることができる。
また、上記実施の形態1〜3では発光素子の一例としてVCSELを挙げていたが、本発明にかかる発光素子はこれに限定されるものではない。更に、上記実施の形態では、カンパッケージを例に説明したが、セラミック封止等、他のパッケージ構成(材料)を用いてもよい。また、コネクタ部品の構成材料についても同様である。
また、上記実施の形態1〜3では波長フィルタ50をガラス板22の内側(発光素子10側)に配置したが、ガラス板22の外側に配置してもよい。
また、上記実施の形態1〜3においては、駆動電流(モニタ電流)が一定となるように、波長フィルタを設計した。しかしながら、必ずしも駆動電流が一定となる条件を目標とする必要はない。フィードバック制御により補償することもできるので、波長フィルタの設計において、駆動電流に一定の範囲を設けてもよい。このように、諸条件を加味し、波長フィルタの設計の際の目標特性を調整することができる。
例えば、高速使用においては、高温および低温領域で動作速度が小さくなる。よって、高温および低温領域で、駆動電流が増加するよう設定することも可能である。このように、各温度で最も効率良く発光する電流値があり、当該電流値で駆動できれば、さらに、送信特性を向上させることができる。
即ち、目標とする駆動電流曲線で駆動した場合に、カンパッケージの出力光やPo、Pmなどが一定となるよう波長フィルタを設計すればよい。波長フィルタの設計により駆動電流の温度変化を自由にコントロールできるところに、上記実施の形態の特徴がある。
このように、本発明は上述した実施の形態の内容に限定されるものではなく、本発明の要旨の範囲内において種々の変形実施が可能である。例えば、上述した実施の形態において具体的な数値等を挙げて説明した実施例は単なる例示に過ぎず、本発明の適用範囲を限定するものではない。また、上述した実施の形態を通じて説明された各種構成は、用途に応じて適宜に組み合わせて、又は変更若しくは改良を加えて用いることができる。
実施の形態1の光モジュールの構成を示す断面図である。 発光素子および波長フィルタ50を用いなかった場合のカンパッケージの出力光量の温度特性を示す図(グラフ)である。 波長フィルタ50の透過率の温度特性を示す図である。 波長フィルタ50の透過率の波長特性を示す図である。 図4に示す透過率の波長特性を再現するよう設計した波長フィルタの特性を示す図である。 実施の形態2の光モジュールの構成を示す断面図である。 実施の形態3の光モジュールの構成を示す断面図である。 波長フィルタ50および部分反射膜32の透過率(T1、T2)の温度特性を示す図である。 図8に示す温度特性を有する波長フィルタを用いた場合のPo、Pmの温度特性を示す図である。
符号の説明
10…発光素子、11…リード線、12…接着剤、14…支持部、16…レンズ(第1レンズ)、18…スリーブ部、19…フェルール、20…モニタ用受光素子、22…ガラス板、32…部分反射膜、33…ガラス板、34…第2レンズ、50…波長フィルタ、100…カンパッケージ、101…コネクタ部品、102…光ファイバ

Claims (15)

  1. 光源と、
    前記光源からの出射光の光路に前記光源と離間して配置された可変透過率部材であって、温度の上昇に伴い透過率が上昇する可変透過率部材と、
    前記可変透過率部材を透過した光を受光する光ファイバと、
    を有することを特徴とする光モジュール。
  2. 前記出射光は、温度の上昇に伴って、波長が大きくなることを特徴とする請求項1記載の光モジュール。
  3. 前記光源は、面発光型垂直共振器型レーザであることを特徴とする請求項2記載の光モジュール。
  4. 前記可変透過率部材は、入射する光の波長の変化に伴って透過率が変化することを特徴とする請求項1乃至3のいずれか一項記載の光モジュール。
  5. 前記可変透過率部材は、入射する光の波長が大きくなるに従って、透過率が大きくなることを特徴とする請求項4記載の光モジュール。
  6. 前記光路に配置され、前記可変透過率部材を透過した光の一部を分岐する分岐部材と、
    前記分岐材料により分岐された分岐光の光量を検知する光量モニタと、を有し、
    前記分岐光の光量に応じて、前記光源からの出射光の光量を制御することを特徴とする請求項1乃至5のいずれか一項記載の光モジュール。
  7. 前記分岐光は、前記可変透過率部材を透過することなく、前記光量モニタによって受光されることを特徴とする請求項6記載の光モジュール。
  8. 光源と、
    前記光源からの出射光の光路に前記光源と第1距離離間して配置された可変透過率部材であって、温度の上昇に伴い透過率が上昇する可変透過率部材と、
    前記光源からの出射光の光路に前記光源と前記第1距離より大きい第2距離離間して配置され、前記可変透過率部材を透過した光の内の第1光を反射し、第2光を透過させる部分反射部材と、
    前記第1光の光路に配置された光量モニタと、
    前記第2光を受光する光ファイバと、を有し、
    前記可変透過率部材は、前記出射光の光路から前記第1光の光路に渡って配置され、
    前記光量モニタは、可変透過率部材を透過した前記第1光の光量を検知することを特徴とする光モジュール。
  9. 前記出射光は、温度の上昇に伴って、波長が大きくなることを特徴とする請求項8記載の光モジュール。
  10. 前記光源は、面発光型垂直共振器型レーザであることを特徴とする請求項9記載の光モジュール。
  11. 前記可変透過率部材は、入射する光の波長の変化に伴って透過率が変化することを特徴とする請求項8乃至10のいずれか一項記載の光モジュール。
  12. 前記可変透過率部材は、入射する光の波長が大きくなるに従って、透過率が大きくなることを特徴とする請求項11記載の光モジュール。
  13. 特定温度において、前記部分反射部材の透過率は、前記可変透過率部材の透過率より大きいことを特徴とする請求項8乃至12のいずれか一項記載の光モジュール。
  14. 前記部分反射部材の温度変化に対する透過率変化である温度傾斜a2は、前記可変透過率部材の温度変化に対する透過率変化である温度傾斜a1より小さいことを特徴とする請求項8乃至13のいずれか一項記載の光モジュール。
  15. 請求項1乃至14のいずれか一項記載の光モジュールを備える光通信装置。
JP2006339783A 2006-12-18 2006-12-18 光モジュール及び光通信装置 Pending JP2008152006A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006339783A JP2008152006A (ja) 2006-12-18 2006-12-18 光モジュール及び光通信装置
US11/955,906 US7628547B2 (en) 2006-12-18 2007-12-13 Optical module and optical communications device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006339783A JP2008152006A (ja) 2006-12-18 2006-12-18 光モジュール及び光通信装置

Publications (1)

Publication Number Publication Date
JP2008152006A true JP2008152006A (ja) 2008-07-03

Family

ID=39526750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006339783A Pending JP2008152006A (ja) 2006-12-18 2006-12-18 光モジュール及び光通信装置

Country Status (2)

Country Link
US (1) US7628547B2 (ja)
JP (1) JP2008152006A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002477A (ja) * 2009-06-16 2011-01-06 Renesas Electronics Corp 光通信モジュール
KR101276338B1 (ko) * 2009-12-18 2013-06-18 한국전자통신연구원 파장 가변 광원
JP2018082061A (ja) * 2016-11-16 2018-05-24 富士ゼロックス株式会社 発光素子アレイ、および光伝送装置
JP2018082062A (ja) * 2016-11-16 2018-05-24 富士ゼロックス株式会社 発光素子アレイ、および光伝送装置
JP2019161243A (ja) * 2019-07-01 2019-09-19 富士ゼロックス株式会社 発光素子アレイ、および光伝送装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI562393B (en) * 2011-12-26 2016-12-11 Hon Hai Prec Ind Co Ltd Photoelectric converter
CN103185931B (zh) * 2011-12-27 2016-03-02 鸿富锦精密工业(深圳)有限公司 光电转换器
US9012826B2 (en) 2012-01-03 2015-04-21 Avago Technologies General Ip (Singapore) Pte. Ltd. Optocoupler with multiple photodetectors and improved feedback control of LED
ES2657872T3 (es) * 2012-06-21 2018-03-07 Huawei Technologies Co., Ltd. Filtro óptico sintonizable, conjunto óptico sintonizable y sistema de red óptica pasiva de múltiples longitudes de onda
US20150147034A1 (en) * 2013-11-27 2015-05-28 Texas Instruments Incorporated Optical Connector
CN104880775A (zh) * 2015-05-29 2015-09-02 青岛海信宽带多媒体技术有限公司 一种滤光片组件
CN114745052B (zh) * 2022-04-12 2024-03-29 青岛海信宽带多媒体技术有限公司 一种光模块

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4311134A (en) * 1978-05-19 1982-01-19 Olympus Optical Co., Ltd. Fluid feeding device for an endoscope
US4667655A (en) * 1985-01-21 1987-05-26 Olympus Optical Co., Ltd. Endoscope apparatus
JPH08236807A (ja) 1995-02-24 1996-09-13 Ricoh Co Ltd 半導体発光素子及び半導体発光素子アレイチップ
JPH1065189A (ja) 1997-07-08 1998-03-06 Hoya Corp 受光素子
JP4645008B2 (ja) 2002-06-10 2011-03-09 日亜化学工業株式会社 半導体レーザ装置
TWI280673B (en) * 2004-09-22 2007-05-01 Sharp Kk Optical semiconductor device, optical communication device, and electronic equipment
JP2007164132A (ja) * 2005-11-16 2007-06-28 Seiko Epson Corp 光モジュール及び光通信装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002477A (ja) * 2009-06-16 2011-01-06 Renesas Electronics Corp 光通信モジュール
KR101276338B1 (ko) * 2009-12-18 2013-06-18 한국전자통신연구원 파장 가변 광원
US8542425B2 (en) 2009-12-18 2013-09-24 Electronics And Telecommunications Research Institute Wavelength tunable light source
JP2018082061A (ja) * 2016-11-16 2018-05-24 富士ゼロックス株式会社 発光素子アレイ、および光伝送装置
JP2018082062A (ja) * 2016-11-16 2018-05-24 富士ゼロックス株式会社 発光素子アレイ、および光伝送装置
US10177532B2 (en) 2016-11-16 2019-01-08 Fuji Xerox Co., Ltd. Light emitting element array and optical transmission device
JP2019161243A (ja) * 2019-07-01 2019-09-19 富士ゼロックス株式会社 発光素子アレイ、および光伝送装置

Also Published As

Publication number Publication date
US20080144032A1 (en) 2008-06-19
US7628547B2 (en) 2009-12-08

Similar Documents

Publication Publication Date Title
JP2008152006A (ja) 光モジュール及び光通信装置
US7439533B2 (en) Optical module and optical communication device
US7625136B2 (en) Optical module and optical communication device
JP4924144B2 (ja) 光通信モジュール及び半導体レーザ出力制御方法
US11705692B2 (en) Laser side mode suppression ratio control
US11725942B2 (en) Photonic integrated chip
CN104678517B (zh) 一种集成的半导体光学器件
JP5356560B2 (ja) レーザ装置および調整方法
JP2000208869A (ja) 発光素子モジュ―ル
JP2007133160A (ja) 光モジュール
JP2008166577A (ja) 波長モニタ付レーザモジュール
CN103944060A (zh) 一种基于激光器封装的硅基光电子芯片
CN118295086A (zh) 具有波分复用器的光纤耦合激光源泵浦
JPWO2007043558A1 (ja) 光レセプタクル、光モジュール及び光レセプタクルにおける結合効率のばらつき低減方法
JP2001144370A (ja) 外部共振器型半導体レーザ
KR20030042565A (ko) 곡선형 광도파로를 갖는 능동형 광반도체
JP2008065105A (ja) 光モジュール
JP5314587B2 (ja) 光モジュール
KR100731859B1 (ko) 외부 광귀환 잡음특성의 향상구조를 갖는 레이저 다이오드
JP3891967B2 (ja) 光通信モジュール及びその製造方法
JP2008242364A (ja) 光モジュール
JP2009069470A (ja) 光導波路、光導波路作製方法、および光モジュール
JP2012156430A (ja) 光半導体モジュール
JP4735097B2 (ja) 光モジュール
JP2009288531A (ja) 光送信モジュール