JP2008147632A5 - - Google Patents

Download PDF

Info

Publication number
JP2008147632A5
JP2008147632A5 JP2007290164A JP2007290164A JP2008147632A5 JP 2008147632 A5 JP2008147632 A5 JP 2008147632A5 JP 2007290164 A JP2007290164 A JP 2007290164A JP 2007290164 A JP2007290164 A JP 2007290164A JP 2008147632 A5 JP2008147632 A5 JP 2008147632A5
Authority
JP
Japan
Prior art keywords
film
organic ferroelectric
forming
crystallinity
ferroelectric film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007290164A
Other languages
Japanese (ja)
Other versions
JP2008147632A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2007290164A priority Critical patent/JP2008147632A/en
Priority claimed from JP2007290164A external-priority patent/JP2008147632A/en
Priority to US11/937,197 priority patent/US20080135900A1/en
Priority to KR1020070114744A priority patent/KR20080043239A/en
Publication of JP2008147632A publication Critical patent/JP2008147632A/en
Priority to US12/578,481 priority patent/US20100022032A1/en
Publication of JP2008147632A5 publication Critical patent/JP2008147632A5/ja
Withdrawn legal-status Critical Current

Links

Description

このような目的は、下記の本発明により達成される。
本発明に係るひとつの有機強誘電体膜の形成方法は、基板に、低結晶化度膜を形成する第1の工程と、前記低結晶化度膜から有機強誘電体膜を形成する第2の工程と、を有し、前記低結晶化度膜の結晶化度は、前記有機強誘電体膜の結晶化度よりも低く、前記第1の工程は、前記基板に有機強誘電体材料を含む液体材料を塗布・乾燥する工程を含み、前記第2の工程は、前記低結晶化度膜を加熱・加圧する第3の工程を含むことを特徴とする。
前記低結晶化度膜における結晶化度は、前記有機強誘電体膜の結晶化度の80%以下であることが好ましい。
前記第3の工程において、前記加熱・加圧における加圧の圧力が、0.1〜10MPa/cm であることが好ましい。
前記第3の工程において、前記加熱・加圧における加熱の温度が、80℃〜200℃であることが好ましい。
更に、前記第2の工程は、前記第3の工程の後、加圧状態を維持したまま冷却を行う第4の工程を含むことが好ましい。
前記第4の工程において、前記冷却の温度は、前記有機強誘電体材料のガラス転移点以下の温度であることが好ましい。
前記第2の工程において、前記第3の工程の前に、前記低結晶化度膜を加熱する工程を有することが好ましい。
前記第3の工程における前記加圧及び前記第4の工程における前記加圧状態の維持には、前記有機強誘電体膜の有効領域を規定し得る型が用いられ、前記低結晶化度膜が前記型により整形されることが好ましい。
前記基板における前記液体材料が塗布された面は導電性を有する部分が形成されており、前記型は導電性を有し、前記第3の工程若しくは前記第4の工程が、前記導電性を有する面と前記型との間に電界を印加しつつ行われることが好ましい。
本発明に係るひとつの有機強誘電体膜の形成方法は、基板の一方の面側に、前記有機強誘電体膜の結晶化度よりも低い結晶化度の低結晶化度膜を形成する第1の工程と、前記低結晶化度膜から前記有機強誘電体膜を形成する第2の工程と、を有し、前記第1の工程は、前記基板の一方の面側に前記有機強誘電体材料を含む液体材料を塗布・乾燥する工程を含み、前記第2の工程は、前記低結晶化度膜を加熱して前記低結晶化度膜の結晶化度を高めた結晶膜を形成する第3の工程と、前記結晶膜を加熱・加圧することにより前記結晶膜を整形し前記有機強誘電体膜を形成する第4の工程とを含む、ことを特徴とする。
本発明に係るひとつの有機強誘電体膜を用いた記憶素子の製造方法は、基板の一方の面側に、一対の第1の電極を形成する工程と、前記一対の第1の電極の前記基板とは反対側の面上に前記有機強誘電体膜の結晶化度よりも低い結晶化度の低結晶化度膜を形成する第1の工程と、前記低結晶化度膜から前記有機強誘電体膜を形成する第2の工程と、前記有機強誘電体膜の前記一対の第1の電極とは反対側の面上に、第2の電極を形成する工程と、を含み、前記第1の工程は、前記基板の一方の面側に前記有機強誘電体材料を含む液体材料を塗布・乾燥する工程を含み、前記第2の工程は、前記低結晶化度膜を加熱・加圧することにより、前記低結晶化度膜を整形しつつ前記低結晶化度膜中の結晶化度を高める工程を含む、ことを特徴とする。
上記ひとつの有機強誘電体膜を用いた記憶素子の製造方法において、更に前記一対の第1の電極を形成する工程の後、かつ、前記第1の工程の前に、半導体膜を形成する工程を含み、前記半導体膜を形成する工程において、前記1対の第1の電極のそれぞれに接触するように前記半導体膜を形成し、前記第1の工程において形成される前記低結晶化度膜は、前記半導体膜の前記基板とは反対側の面上に形成されることが好ましい。
また、本発明に係るひとつの記憶装置は、上記ひとつの有機強誘電体膜を用いた記憶素子の製造方法で製造された記憶素子を備えることが好ましい。
また、本発明に係るひとつの電子機器は、上記のひとつの記憶装置を備えることが好ましい。
本発明に係るひとつの有機強誘電体膜の形成方法は、結晶性を有する有機強誘電体材料を主材料として構成された有機強誘電体膜の形成方法であって、基板の一方面上に、前記有機強誘電体膜の結晶化度よりも低い結晶化度の低結晶化度膜を形成する第1の工程と、
前記低結晶化度膜から前記有機強誘電体膜を形成する第2の工程と、を有し、前記第1の工程は、前記基板の一方面上に前記有機強誘電体材料を含む液体材料を塗布・乾燥する工程を含み、前記第2の工程は、前記低結晶化度膜を加熱・加圧することにより、前記低結晶化度膜を整形しつつ前記低結晶化度膜中の結晶化度を高める工程を含む、ことを特徴とする。
また、本発明において、前記低結晶化度膜における結晶化度は、前記有機強誘電体膜の結晶化度の80%以下であることが好ましい。
Such an object is achieved by the present invention described below.
One method of forming an organic ferroelectric film according to the present invention includes a first step of forming a low crystallinity film on a substrate, and a second step of forming an organic ferroelectric film from the low crystallinity film. And wherein the crystallinity of the low crystallinity film is lower than the crystallinity of the organic ferroelectric film, and the first process comprises applying an organic ferroelectric material to the substrate. Including a step of applying and drying the liquid material, wherein the second step includes a third step of heating and pressurizing the low crystallinity film.
The crystallinity in the low crystallinity film is preferably 80% or less of the crystallinity of the organic ferroelectric film.
In the third step, it is preferable that the pressurization pressure in the heating / pressurization is 0.1 to 10 MPa / cm 2 .
In the third step, the heating temperature in the heating / pressurization is preferably 80 ° C to 200 ° C.
Furthermore, it is preferable that the second step includes a fourth step of performing cooling while maintaining the pressurized state after the third step.
In the fourth step, the cooling temperature is preferably equal to or lower than the glass transition point of the organic ferroelectric material.
The second step preferably includes a step of heating the low crystallinity film before the third step.
A mold capable of defining an effective area of the organic ferroelectric film is used for maintaining the pressurized state in the third step and the pressurized state in the fourth step, and the low crystallinity film is It is preferable to be shaped by the mold.
The surface of the substrate on which the liquid material is applied has a conductive portion, the mold has conductivity, and the third step or the fourth step has the conductivity. It is preferable to carry out the process while applying an electric field between the surface and the mold.
In one method of forming an organic ferroelectric film according to the present invention, a low crystallinity film having a crystallinity lower than the crystallinity of the organic ferroelectric film is formed on one surface side of the substrate. 1 and a second step of forming the organic ferroelectric film from the low crystallinity film, wherein the first step includes forming the organic ferroelectric on one surface side of the substrate. A step of applying and drying a liquid material including a body material, wherein the second step forms a crystal film in which the low crystallinity film is heated to increase the crystallinity of the low crystallinity film. The method includes a third step and a fourth step of forming the organic ferroelectric film by shaping the crystal film by heating and pressurizing the crystal film.
A method of manufacturing a memory element using one organic ferroelectric film according to the present invention includes a step of forming a pair of first electrodes on one surface side of a substrate, and the step of forming the pair of first electrodes. A first step of forming a low crystallinity film having a crystallinity lower than the crystallinity of the organic ferroelectric film on a surface opposite to the substrate; and from the low crystallinity film, A second step of forming a dielectric film, and a step of forming a second electrode on a surface of the organic ferroelectric film opposite to the pair of first electrodes, The first step includes a step of applying and drying a liquid material containing the organic ferroelectric material on one surface side of the substrate, and the second step heats and pressurizes the low crystallinity film. Thus, the method includes a step of increasing the crystallinity in the low crystallinity film while shaping the low crystallinity film.
In the method of manufacturing a memory element using the one organic ferroelectric film, a step of forming a semiconductor film after the step of forming the pair of first electrodes and before the first step In the step of forming the semiconductor film, the semiconductor film is formed in contact with each of the pair of first electrodes, and the low crystallinity film formed in the first step is The semiconductor film is preferably formed on a surface opposite to the substrate.
Moreover, it is preferable that one memory | storage device based on this invention is equipped with the memory element manufactured with the manufacturing method of the memory element using said one organic ferroelectric film.
One electronic device according to the present invention preferably includes the one storage device.
One method of forming an organic ferroelectric film according to the present invention is a method for forming an organic ferroelectric film composed mainly of an organic ferroelectric material having crystallinity, on one surface of a substrate. A first step of forming a low crystallinity film having a crystallinity lower than the crystallinity of the organic ferroelectric film;
Forming the organic ferroelectric film from the low crystallinity film, and the first process includes a liquid material containing the organic ferroelectric material on one surface of the substrate. And the second step includes crystallization in the low crystallinity film while shaping the low crystallinity film by heating and pressurizing the low crystallinity film. Including a step of increasing the degree.
In the present invention, the crystallinity of the low crystallinity film is preferably 80% or less of the crystallinity of the organic ferroelectric film.

Claims (18)

基板に、低結晶化度膜を形成する第1の工程と、
前記低結晶化度膜から有機強誘電体膜を形成する第2の工程と、を有し、
前記低結晶化度膜の結晶化度は、前記有機強誘電体膜の結晶化度よりも低く、
前記第1の工程は、前記基板有機強誘電体材料を含む液体材料を塗布・乾燥する工程を含み、
前記第2の工程は、前記低結晶化度膜を加熱・加圧する第3の工程を含むことを特徴とする有機強誘電体膜の形成方法。
A first step of forming a low crystallinity film on a substrate ;
A second step of forming an organic ferroelectric film from the low crystallinity film,
The crystallinity of the low crystallinity film is lower than the crystallinity of the organic ferroelectric film,
Wherein the first step includes a step of applying and drying a liquid material containing an organic ferroelectric material on the substrate,
The method of forming an organic ferroelectric film, wherein the second step includes a third step of heating and pressurizing the low crystallinity film.
前記低結晶化度膜における結晶化度は、前記有機強誘電体膜の結晶化度の80%以下であることを特徴とする請求項1に記載の有機強誘電体膜の形成方法。 2. The method of forming an organic ferroelectric film according to claim 1, wherein the crystallinity of the low crystallinity film is 80% or less of the crystallinity of the organic ferroelectric film. 前記第3の工程において、前記加熱・加圧における加圧の圧力が、0.1〜10MPa/cmであることを特徴とする請求項1又は2に記載の有機強誘電体膜の形成方法。 3. The method of forming an organic ferroelectric film according to claim 1 , wherein in the third step, the pressurizing pressure in the heating and pressurizing is 0.1 to 10 MPa / cm 2. . 前記有機強誘電体膜の膜厚は、5nm〜500nmであることを特徴とする請求項1ないし3のいずれかに記載の有機強誘電体膜の形成方法。 4. The method of forming an organic ferroelectric film according to claim 1, wherein the thickness of the organic ferroelectric film is 5 nm to 500 nm. 前記有機強誘電体材料は、フッ化ビニリデンとトリフルオロエチレンとの共重合体、フッ化ビニリデンの重合体のうちの1種を単独または2種を組み合わせたものであることを特徴とする請求項1ないし4のいずれかに記載の有機強誘電体膜の形成方法。 The organic ferroelectric materials, claims, characterized in that a copolymer of vinylidene fluoride and trifluoroethylene, a combination of the singly or in admixture of polymer of vinylidene fluoride 5. A method for forming an organic ferroelectric film according to any one of 1 to 4. 前記液体材料は、前記有機強誘電体材料を溶媒に溶解したものであることを特徴とする請求項1ないし5のいずれかに記載の有機強誘電体膜の形成方法。 6. The method of forming an organic ferroelectric film according to claim 1, wherein the liquid material is obtained by dissolving the organic ferroelectric material in a solvent. 前記第3の工程において、前記加熱・加圧における加熱の温度が、80℃〜200℃であることを特徴とする請求項1ないし6のいずれかに記載の有機強誘電体膜の形成方法。 Wherein in the third step, the temperature of heating in the heating and pressurization, a method of forming the organic ferroelectric film according to any one of claims 1 to 6, characterized in that a 80 ° C. to 200 DEG ° C.. 更に、前記第2の工程は、前記第3の工程の後加圧状態を維持したまま冷却を行う第4の工程を含むことを特徴とする請求項1乃至7のいずれか1項に記載の有機強誘電体膜の形成方法。 Furthermore, the said 2nd process includes the 4th process of cooling after the said 3rd process, maintaining a pressurization state , The any one of Claim 1 thru | or 7 characterized by the above-mentioned. Of forming an organic ferroelectric film. 前記第4の工程において、前記冷却の温度は、前記有機強誘電体材料のガラス転移点以下の温度であることを特徴とする請求項8に記載の有機強誘電体膜の形成方法。 9. The method of forming an organic ferroelectric film according to claim 8, wherein, in the fourth step, the cooling temperature is equal to or lower than a glass transition point of the organic ferroelectric material. 前記第2の工程において、前記第3の工程の前に、前記低結晶化度膜を加熱する工程を有することを特徴とする請求項1ないし9のいずれかに記載された有機強誘電体膜の形成方法。 10. The organic ferroelectric film according to claim 1 , further comprising a step of heating the low crystallinity film before the third step in the second step. 10. Forming method. 前記第3の工程における前記加圧及び前記第4の工程における前記加圧状態の維持には、前記有機強誘電体膜の有効領域を規定し得る型が用いられ、前記低結晶化度膜が前記型により整形されることを特徴とする請求項1ないし10のいずれかに記載の有機強誘電体膜の形成方法。 A mold capable of defining an effective area of the organic ferroelectric film is used for maintaining the pressurized state in the third step and the pressurized state in the fourth step , and the low crystallinity film is The method of forming an organic ferroelectric film according to claim 1, wherein the organic ferroelectric film is shaped by the mold. 前記型は、押圧面に離型処理が施されていることを特徴とする請求項11に記載の有機強誘電体膜の形成方法。 The method for forming an organic ferroelectric film according to claim 11, wherein the mold has a release surface applied to the pressing surface . 前記基板における前記液体材料が塗布された面は導電性を有する部分が形成されており、
前記型は導電性を有し、
前記第3の工程若しくは前記第4の工程が、前記導電性を有する面と前記型との間に電界を印加しつつ行われることを特徴とする請求項11または請求項12に記載の有機強誘電体膜の形成方法。
The surface of the substrate on which the liquid material is applied has a conductive portion,
The mold has conductivity,
The organic strength according to claim 11 or 12, wherein the third step or the fourth step is performed while applying an electric field between the conductive surface and the mold. Dielectric film formation method.
結晶性を有する有機強誘電体材料を主材料として構成された有機強誘電体膜の製造方法であって、
基板の一方の面側に、前記有機強誘電体膜の結晶化度よりも低い結晶化度の低結晶化度膜を形成する第1の工程と、
前記低結晶化度膜から前記有機強誘電体膜を形成する第2の工程と、を有し、
前記第1の工程は、前記基板の一方の面側に前記有機強誘電体材料を含む液体材料を塗布・乾燥する工程を含み、
前記第2の工程は、
前記低結晶化度膜を加熱して前記低結晶化度膜の結晶化度を高めた結晶膜を形成する第3の工程と、
前記結晶膜を加熱・加圧することにより前記結晶膜を整形し前記有機強誘電体膜を形成する第4の工程とを含む、ことを特徴とする有機強誘電体膜の形成方法。
A method for producing an organic ferroelectric film comprising an organic ferroelectric material having crystallinity as a main material,
A first step of forming a low crystallinity film having a crystallinity lower than the crystallinity of the organic ferroelectric film on one surface side of the substrate ;
A second step of forming the organic ferroelectric film from the low crystallinity film,
The first step includes a step of applying and drying a liquid material containing the organic ferroelectric material on one surface side of the substrate ,
The second step includes
A third step of forming a crystal film in which the low crystallinity film is heated to increase the crystallinity of the low crystallinity film;
And a fourth step of forming the organic ferroelectric film by shaping the crystal film by heating and pressurizing the crystal film, and forming the organic ferroelectric film.
結晶性を有する有機強誘電体材料を主材料として構成された有機強誘電体膜を用いた記憶素子の製造方法であって、
基板の一方の面側に一対の第1の電極を形成する工程と、
前記一対の第1の電極の前記基板とは反対側の面上に前記有機強誘電体膜の結晶化度よりも低い結晶化度の低結晶化度膜を形成する第1の工程と、
前記低結晶化度膜から前記有機強誘電体膜を形成する第2の工程と、
前記有機強誘電体膜の前記一対の第1の電極とは反対側の面上に、第2の電極を形成する工程と、を含み、
前記第1の工程は、前記基板の一方の面側に前記有機強誘電体材料を含む液体材料を塗布・乾燥する工程を含み、
前記第2の工程は、前記低結晶化度膜を加熱・加圧することにより、前記低結晶化度膜を整形しつつ前記低結晶化度膜中の結晶化度を高める工程を含む、
ことを特徴とする記憶素子の製造方法。
A method of manufacturing a memory element using an organic ferroelectric film composed mainly of an organic ferroelectric material having crystallinity,
Forming a pair of first electrodes on one surface side of the substrate ;
Forming a low crystallinity film having a crystallinity lower than the crystallinity of the organic ferroelectric film on a surface of the pair of first electrodes opposite to the substrate;
A second step of forming the organic ferroelectric film from the low crystallinity film;
Forming a second electrode on a surface opposite to the pair of first electrodes of the organic ferroelectric film,
The first step includes a step of applying and drying a liquid material containing the organic ferroelectric material on one surface side of the substrate ,
The second step includes a step of increasing the crystallinity in the low crystallinity film while shaping the low crystallinity film by heating and pressurizing the low crystallinity film.
A method for manufacturing a memory element.
更に前記一対の第1の電極を形成する工程の後、かつ、前記第1の工程の前に、半導体膜を形成する工程を含み、
前記半導体膜を形成する工程において、前記1対の第1の電極のそれぞれに接触するように前記半導体膜を形成し、
前記第1の工程において形成される前記低結晶化度膜は、前記半導体膜の前記基板とは反対側の面上に形成されることを特徴とする請求項15に記載の記憶素子の製造方法。
Furthermore, after the step of forming the pair of first electrodes and before the first step, a step of forming a semiconductor film,
In the step of forming the semiconductor film, the semiconductor film is formed so as to be in contact with each of the pair of first electrodes,
16. The method for manufacturing a memory element according to claim 15, wherein the low crystallinity film formed in the first step is formed on a surface of the semiconductor film opposite to the substrate. .
請求項15または16に記載の記憶素子の製造方法で製造された記憶素子を備えることを特徴とする記憶装置。   A storage device comprising a storage element manufactured by the method for manufacturing a storage element according to claim 15. 請求項17に記載の記憶装置を備えることを特徴とする電子機器。   An electronic apparatus comprising the storage device according to claim 17.
JP2007290164A 2006-11-13 2007-11-07 Method for forming organic ferroelectric film, method for manufacturing memory element, memory device and electronic apparatus Withdrawn JP2008147632A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007290164A JP2008147632A (en) 2006-11-13 2007-11-07 Method for forming organic ferroelectric film, method for manufacturing memory element, memory device and electronic apparatus
US11/937,197 US20080135900A1 (en) 2006-11-13 2007-11-08 Method of forming organic ferroelectric film, method of manufacturing memory element, memory device, and electronic apparatus
KR1020070114744A KR20080043239A (en) 2006-11-13 2007-11-12 Method of forming organic ferroelectric film, method of manufacturing memory element, memory device, and electronic apparatus
US12/578,481 US20100022032A1 (en) 2006-11-13 2009-10-13 Method of forming organic ferroelectric film, method of manufacturing memory element, memory device, and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006307153 2006-11-13
JP2007290164A JP2008147632A (en) 2006-11-13 2007-11-07 Method for forming organic ferroelectric film, method for manufacturing memory element, memory device and electronic apparatus

Publications (2)

Publication Number Publication Date
JP2008147632A JP2008147632A (en) 2008-06-26
JP2008147632A5 true JP2008147632A5 (en) 2010-11-18

Family

ID=39480511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007290164A Withdrawn JP2008147632A (en) 2006-11-13 2007-11-07 Method for forming organic ferroelectric film, method for manufacturing memory element, memory device and electronic apparatus

Country Status (3)

Country Link
JP (1) JP2008147632A (en)
KR (1) KR20080043239A (en)
CN (1) CN101188198A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5957648B2 (en) * 2009-09-14 2016-07-27 株式会社イデアルスター Mixed film of vinylidene fluoride, trifluoroethylene or tetrafluoroethylene copolymer and fullerene and method for producing the same
JP2011159848A (en) * 2010-02-02 2011-08-18 Toshiba Corp Solid-state imaging device and method for manufacturing the same
KR101276560B1 (en) * 2011-03-17 2013-06-24 한국과학기술원 Ferroelectric Polymer Nanodot Arrays and Dewetting Process for Manufacturing the Same
JP5926903B2 (en) * 2011-08-22 2016-05-25 株式会社クレハ Method for producing a polymer having a desired Curie temperature
CN103999207B (en) * 2011-11-09 2017-07-28 国立研究开发法人科学技术振兴机构 Solid state electronic devices
EP2973775B1 (en) * 2013-03-14 2017-06-07 Saudi Basic Industries Corporation Ferroelectric capacitor with improved fatigue and breakdown properties
JP6229532B2 (en) * 2014-02-21 2017-11-15 国立研究開発法人産業技術総合研究所 Method for producing organic ferroelectric thin film
JP2016171152A (en) * 2015-03-12 2016-09-23 ペクセル・テクノロジーズ株式会社 Ferroelectric memory device arranged by use of perovskite compound and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP2008147632A5 (en)
White et al. Low‐Cost, facile, and scalable manufacturing of capacitive sensors for soft systems
Hong et al. Omnidirectionally stretchable and transparent graphene electrodes
Cheng et al. Stretchable thin‐film electrodes for flexible electronics with high deformability and stretchability
Hu et al. A highly stretchable, self-healing, recyclable and interfacial adhesion gel: preparation, characterization and applications
Wu et al. Controlled chlorine plasma reaction for noninvasive graphene doping
US20150024122A1 (en) Graphene ink and method for manufacturing graphene pattern using the same
JP2009010409A5 (en)
Jun et al. Transparent, pressure-sensitive, and healable e-skin from a UV-cured polymer comprising dynamic urea bonds
JP2017106124A5 (en)
JP2013541203A5 (en)
US20150322220A1 (en) Ultrasonic transducer using ferroelectric polymer
Li et al. Ferroelectric poly (vinylidene fluoride) homopolymer nanotubes derived from solution in anodic alumina membrane template
CN105752965A (en) Etching method for directly forming multi-layer graphene film in graphene prepared through CVD method
CN103935992A (en) Graphene transfer method
JP2016046530A5 (en) Method for manufacturing semiconductor device
Lu et al. Controlled evolution of surface patterns for ZnO coated on stretched PMMA upon thermal and solvent treatments
KR102651023B1 (en) Piezoelectric film and its manufacturing method
JP2008147632A (en) Method for forming organic ferroelectric film, method for manufacturing memory element, memory device and electronic apparatus
Shar et al. 3D Printable One‐Part Carbon Nanotube‐Elastomer Ink for Health Monitoring Applications
KR20140075502A (en) Method of preparation of complex electrode with multi layered structure
US20180130569A1 (en) Graphene-polymer nanocomposites incorporating chemically doped graphene-polymer heterostructure for flexible and transparent conducting films
JP2012126078A5 (en)
KR102258442B1 (en) Method for manufacturing graphene sheet and the graphene sheet manufactured by the same
KR101733297B1 (en) Manufacturing method of metal nanowire electrode