JP2008144325A - Heat-treating method for carbon fiber precursor - Google Patents

Heat-treating method for carbon fiber precursor Download PDF

Info

Publication number
JP2008144325A
JP2008144325A JP2006335694A JP2006335694A JP2008144325A JP 2008144325 A JP2008144325 A JP 2008144325A JP 2006335694 A JP2006335694 A JP 2006335694A JP 2006335694 A JP2006335694 A JP 2006335694A JP 2008144325 A JP2008144325 A JP 2008144325A
Authority
JP
Japan
Prior art keywords
yarn
heat treatment
temperature
chamber
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006335694A
Other languages
Japanese (ja)
Other versions
JP5022014B2 (en
Inventor
Hiroshi Inagaki
博司 稲垣
Nobuyuki Yamamoto
伸之 山本
Atsushi Kawamura
篤志 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2006335694A priority Critical patent/JP5022014B2/en
Publication of JP2008144325A publication Critical patent/JP2008144325A/en
Application granted granted Critical
Publication of JP5022014B2 publication Critical patent/JP5022014B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Fiber Materials (AREA)
  • Inorganic Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-treating method by which the productivity by heat treatment can be improved while preventing the generation of a gas from a yarn discharged to the exterior of a heat-treating apparatus. <P>SOLUTION: The heat-treating method for a carbon fiber precursor includes regulating the temperature of the yarn F at the yarn outlet 7' of the heat-treating apparatus 1 so as to be ≤200°C while regulating the speed of the yarn F traveling in the heat-treating apparatus 1 within the range of ≥9 m/min and ≤20 m/min. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、炭素繊維前駆体の熱処理方法に関するものである。   The present invention relates to a heat treatment method for a carbon fiber precursor.

従来から、熱処理装置に設けられた熱処理室に加熱気体を循環させ、糸条入口から熱処理室内に炭素繊維の前駆体繊維の糸条を連続的に送入し、糸条出口から熱処理装置の外部に該糸条を連続的に送出することで、熱処理室内で該糸条を連続的に熱処理する熱処理方法が知られている。このような熱処理方法としては、例えば、縦型熱処理装置の熱処理室に隣接して上下にシール室を設け、熱処理室内に生じる上下方向の圧力差による熱処理室内への外気の流入および熱処理室内からの熱風の吹き出しを防止できるものが開示されている(例えば、特許文献1参照)。また、熱処理室の糸条出口近辺へのタールの凝縮を防止し、糸条へのタールの付着等による生産への悪影響を回避できる熱処理装置および熱処理方法が開示されている(例えば、特許文献2参照)。
特開昭59−112063号公報 特開2006−144167号公報
Conventionally, a heated gas is circulated in a heat treatment chamber provided in the heat treatment apparatus, and carbon fiber precursor fiber yarns are continuously fed from the yarn inlet into the heat treatment chamber, and from the yarn outlet to the outside of the heat treatment device. There is known a heat treatment method in which the yarn is continuously heat-treated in a heat treatment chamber by continuously feeding the yarn. As such a heat treatment method, for example, a seal chamber is provided on the upper and lower sides adjacent to the heat treatment chamber of the vertical heat treatment apparatus, the inflow of outside air into the heat treatment chamber due to the vertical pressure difference generated in the heat treatment chamber, and from the heat treatment chamber. The thing which can prevent the blowing of a hot air is disclosed (for example, refer patent document 1). Further, there is disclosed a heat treatment apparatus and a heat treatment method capable of preventing the condensation of tar near the yarn exit of the heat treatment chamber and avoiding the adverse effects on production due to the adhesion of tar to the yarn (for example, Patent Document 2). reference).
JP 59-112063 JP 2006-144167 A

しかしながら、上記従来の熱処理方法では、熱処理室の糸条出口近辺で高温の糸条から発生するタールが冷却され凝縮することを防止するため、シール室内あるいは糸条出入口近辺の温度を200度以上の高温に保つ必要がある。したがって、生産性の向上を目的として糸条が熱処理装置内を走行する速度を上昇させると、熱処理装置外に糸条が高温のまま排出されてしまう。この場合、熱処理装置外で高温の糸条からシアンガス等のガスが発生するという課題がある。
また、熱処理装置外でのガスの発生を防止するために、熱処理装置内を走行する糸条の速度を低下させると、熱処理の生産性が低下してしまうという課題がある。また、シール室内あるいは熱処理室の糸条出入口近辺の温度を低下させた場合、タールが冷却され凝縮することによって糸条の生産に悪影響を及ぼすという課題がある。
However, in the conventional heat treatment method, in order to prevent the tar generated from the high temperature yarn from being cooled and condensed in the vicinity of the yarn exit in the heat treatment chamber, the temperature in the seal chamber or in the vicinity of the yarn entrance / exit is 200 degrees or more. Must be kept at a high temperature. Therefore, when the speed at which the yarn travels in the heat treatment apparatus is increased for the purpose of improving productivity, the yarn is discharged out of the heat treatment apparatus at a high temperature. In this case, there is a problem that gas such as cyan gas is generated from the high-temperature yarn outside the heat treatment apparatus.
Further, when the speed of the yarn traveling inside the heat treatment apparatus is reduced in order to prevent the generation of gas outside the heat treatment apparatus, there is a problem that the productivity of the heat treatment is lowered. Further, when the temperature in the vicinity of the yarn entrance / exit of the seal chamber or the heat treatment chamber is lowered, there is a problem that the production of the yarn is adversely affected by the cooling and condensation of the tar.

そこで、この発明は、熱処理装置外に排出された糸条からのガスの発生を防止しつつ、熱処理の生産性を向上させ、かつタールの冷却、凝縮による生産への悪影響を回避することができる炭素繊維前駆体の熱処理方法を提供するものである。   Therefore, the present invention can improve the productivity of heat treatment while avoiding the generation of gas from the yarn discharged outside the heat treatment apparatus, and avoid the adverse effects on production due to cooling and condensation of tar. A method for heat treatment of a carbon fiber precursor is provided.

上記の課題を解決するために、本発明は、熱処理装置の熱処理室に加熱気体を循環させ、糸条入口より前記熱処理室内に糸条を連続的に送入し、糸条出口より前記熱処理室外に前記糸条を連続的に送出し、前記熱処理室内で前記糸条を連続的に熱処理する熱処理方法において、前記熱処理装置内を走行する前記糸条の速度を9m/min以上かつ20m/min以下の範囲としつつ、前記糸条出口における前記糸条の温度を200℃以下とすることを特徴とする。
このように熱処理することで、糸条が熱処理装置内を走行する速度を適切な速度範囲に維持し、糸条の熱処理量を増加させることができるので、熱処理の生産性を向上させることができる。また、炭素繊維の前駆体繊維の糸条は、通常200℃を超える高温に加熱されるとシアン等のガスを発生するが、熱処理装置の糸条出口における糸条の温度を200℃以下に低下させることで、熱処理装置外での糸条からのガスの発生を防止できる。
In order to solve the above problems, the present invention circulates a heated gas in a heat treatment chamber of a heat treatment apparatus, continuously feeds the yarn from the yarn inlet into the heat treatment chamber, and out of the heat treatment chamber from the yarn outlet. In the heat treatment method in which the yarn is continuously fed into the heat treatment chamber and the yarn is continuously heat treated in the heat treatment chamber, the speed of the yarn traveling in the heat treatment apparatus is 9 m / min or more and 20 m / min or less. The temperature of the yarn at the yarn outlet is set to 200 ° C. or lower while keeping the above range.
By performing the heat treatment in this manner, the speed at which the yarn travels in the heat treatment apparatus can be maintained in an appropriate speed range, and the amount of heat treatment of the yarn can be increased, so that the heat treatment productivity can be improved. . Further, when the yarn of the carbon fiber precursor fiber is heated to a temperature higher than 200 ° C., a gas such as cyan is generated, but the temperature of the yarn at the yarn outlet of the heat treatment apparatus is reduced to 200 ° C. or lower. By doing so, generation of gas from the yarn outside the heat treatment apparatus can be prevented.

また、本発明は前記熱処理室に隣接してシール室が設けられ、Tを前記糸条出口における前記糸条の温度、Tを前記シール室内の雰囲気温度、Tを前記熱処理室内の雰囲気温度、tを前記糸条の前記シール室内滞在時間、hを前記糸条の境膜伝熱係数、Aを前記糸条の表面積、Cを前記糸条の比熱、ρを前記糸条の密度、Vを前記糸条の体積とした場合に下記式(I)、下記式(II)を満たす関係が成立することを特徴とする。
T=T−(T−T)e−mt…(I)
m=hA/C/ρ/V…(II)
Further, the present invention is the sealing chamber is provided adjacent to the heat treatment chamber, the temperature of the yarn of the T in the yarn outlet, said T F seal chamber ambient temperature, ambient temperature of T 0 the thermal treatment chamber the seal chamber residence time, heat-transfer coefficient of the yarn to h, the surface area of the yarns with a, the specific heat of the C P the yarn, the density of the ρ the yarn of the yarn to t, When V is the volume of the yarn, a relationship satisfying the following formula (I) and the following formula (II) is established.
T = T F - (T F -T 0) e -mt ... (I)
m = hA / C P / ρ / V (II)

熱処理される糸条の形状および物性を特定すれば、上記の式(II)を用いて定数mを算出できる。そして、式(I)により、糸条出口における糸条の温度Tを200℃以下とするシール室内の雰囲気温度T、熱処理室内の雰囲気温度T、糸条のシール室内滞在時間tの関係式が得られる。
これにより、シール室内の雰囲気温度T、熱処理室内の雰囲気温度T、糸条のシール室内滞在時間tのそれぞれの限定要素、例えば熱処理装置の構造、糸条が耐炎化される条件、熱処理装置の設置スペース等を考慮しつつ、それぞれを最適な値に調整し、熱処理の生産性を向上させ、熱処理装置外での糸条からのガスの発生を防止できる。
If the shape and physical properties of the yarn to be heat-treated are specified, the constant m can be calculated using the above formula (II). Then, according to the formula (I), the relational expression of the atmosphere temperature T F in the seal chamber in which the yarn temperature T at the yarn outlet is 200 ° C. or less, the atmosphere temperature T 0 in the heat treatment chamber, and the stay time t of the yarn in the seal chamber Is obtained.
Thereby, each limiting element of the atmosphere temperature T F in the seal chamber, the atmosphere temperature T 0 in the heat treatment chamber, and the stay time t of the yarn in the seal chamber, for example, the structure of the heat treatment apparatus, the conditions under which the yarn is made flame resistant, the heat treatment apparatus In consideration of the installation space, etc., each can be adjusted to an optimum value to improve the heat treatment productivity, and the generation of gas from the yarn outside the heat treatment apparatus can be prevented.

また、前記シール室は排気口と温度検出装置とを備え、前記温度検出装置の信号に基づいて前記排気口からの排気量を調整することにより前記熱処理装置の前記糸条出口における前記糸条の温度を制御してもよい。
これにより、シール室からの排気量を調整し、シール室内の雰囲気温度Tの目標値を上記の式(I)より算出したTを200℃以下とする値として、シール室内の雰囲気温度Tを制御することで、糸条出口における糸条の温度Tを200℃以下とすることができる。
The seal chamber includes an exhaust port and a temperature detection device, and the amount of the yarn at the yarn outlet of the heat treatment device is adjusted by adjusting an exhaust amount from the exhaust port based on a signal of the temperature detection device. The temperature may be controlled.
Thereby, the exhaust amount from the seal chamber is adjusted, and the target value of the ambient temperature TF in the seal chamber is set to a value that makes T calculated by the above formula (I) 200 ° C. or less, and the ambient temperature T F in the seal chamber. By controlling the above, the yarn temperature T at the yarn outlet can be made 200 ° C. or less.

また、前記熱処理室の前記糸条出口に、前記糸条の厚みに応じてスリット幅が変更可能、かつ前記糸条の接触部分が取り外し可能にスリット部材を設けてもよい。
これにより、糸条の厚みに応じて最適なスリット幅とし、糸条の損傷およびタールによる影響を防止することができる。また、糸条から発生したタールが冷却されて凝縮し、スリット部材に付着したとしても、スリット部材を定期的に取り外して洗浄することができる。したがって、タールが糸条の生産に悪影響を及ぼす前に、スリット部材に付着したタールを取り除くことができるので、タールが冷却され凝縮しても生産に悪影響を及ぼすことがない。
A slit member may be provided at the yarn outlet of the heat treatment chamber so that the slit width can be changed according to the thickness of the yarn and the contact portion of the yarn can be removed.
Thereby, it is set as the optimal slit width according to the thickness of a thread | yarn, and the damage by a thread | yarn and the influence by tar can be prevented. Further, even if tar generated from the yarn is cooled and condensed and adheres to the slit member, the slit member can be periodically removed and washed. Therefore, the tar adhering to the slit member can be removed before the tar adversely affects the production of the yarn. Therefore, even if the tar is cooled and condensed, the production is not adversely affected.

本発明によれば、熱処理装置の糸条出口における糸条温度を200℃以下にすることで熱処理装置外に排出された糸条からのガスの発生を防止することができる。また、熱処理装置内を走行する糸条の速度を比較的高速に維持できるので、熱処理の生産性を向上させることができる。また、熱処理室の糸条出口および糸条入口付近に付着したタールを取り除くことができるので、タールの冷却、凝縮による生産への悪影響を回避することができる。   According to the present invention, generation of gas from the yarn discharged out of the heat treatment apparatus can be prevented by setting the yarn temperature at the yarn outlet of the heat treatment apparatus to 200 ° C. or less. Further, since the speed of the yarn traveling in the heat treatment apparatus can be maintained at a relatively high speed, the productivity of the heat treatment can be improved. Further, since the tar adhering to the yarn outlet and the vicinity of the yarn inlet in the heat treatment chamber can be removed, adverse effects on the production due to cooling and condensation of tar can be avoided.

(第一実施形態)
次に、本発明の第一の実施の形態を図面に基づいて説明する。
図1に示すように、熱処理装置1は箱型の熱処理室2を備えている。熱処理室2には内部に熱風を循環させる図示しない熱風循環装置が連結されている。また、熱処理室2には排気口30が設けられている。排気口30は排気路31を介してファン14に接続されている。排気路31の途中には、例えばバルブ等の流量調節機構13が設けられている。ファン14は外部の図示しないガス回収処理装置に接続されている。
(First embodiment)
Next, a first embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the heat treatment apparatus 1 includes a box-shaped heat treatment chamber 2. The heat treatment chamber 2 is connected to a hot air circulation device (not shown) for circulating hot air therein. The heat treatment chamber 2 is provided with an exhaust port 30. The exhaust port 30 is connected to the fan 14 via an exhaust path 31. A flow rate adjusting mechanism 13 such as a valve is provided in the middle of the exhaust passage 31. The fan 14 is connected to an external gas recovery processing device (not shown).

熱処理室2の図示左右両側の外壁3,3には、シール室4,4がそれぞれ連設されている。シール室4,4の外壁5,5には被処理物、例えばポリアクリロニトリル系繊維からなる炭素繊維の前駆体繊維の糸条Fを送入、送出するためのスリット状の糸条入口7,糸条出口7´がそれぞれ設けられている。同様に、熱処理室2の外壁3,3にもシール室4,4の糸条入口7,糸条出口7´に対応して糸条入口6,糸条出口6´が設けられている。熱処理室2の糸条入口6,糸条出口6´とシール室4,4の糸条入口7,糸条出口7´は、シール室4,4の上下方向にそれぞれ3段、糸条の走行方向に対応して設けられている。   Sealing chambers 4, 4 are connected to outer walls 3, 3 on the left and right sides of the heat treatment chamber 2 in the drawing. Into the outer walls 5 and 5 of the seal chambers 4 and 4, slit-like yarn inlets 7 and yarns for feeding and sending the processing object, for example, the yarn F of the precursor fiber of carbon fiber made of polyacrylonitrile fiber Each strip outlet 7 'is provided. Similarly, the outer walls 3 and 3 of the heat treatment chamber 2 are also provided with a yarn inlet 6 and a yarn outlet 6 'corresponding to the yarn inlet 7 and the yarn outlet 7' of the seal chambers 4 and 4, respectively. The yarn inlet 6 and the yarn outlet 6 'of the heat treatment chamber 2 and the yarn inlet 7 and the yarn outlet 7' of the seal chambers 4 and 4 have three stages in the vertical direction of the seal chambers 4 and 4, respectively. It is provided corresponding to the direction.

シール室4,4の内部には、上下方向に各3段設けられた糸条入口6,7、糸条出口6´,7´を別々の区画4a,4b,4cに分割する仕切り板12が設けられている。また、シール室4,4は排気口15,15を備え、排気路32,32を介して排気ファン17,17に接続されている。排気路32の途中には、例えばバルブ等の流量調節機構16が設けられている。また、図2に示すように、排気口15はシール室4,4を仕切り板12で分割した区画4a,4b,4cに各々設けられている。図2に示すように、各排気口15に接続された排気路33には、例えばバルブ等の流量調節機構34が各々設けられている。
ここで、シール室4の糸条Fの走行方向の長さLsは繊維の性状、室内の清掃やメンテナンス作業性、熱処理装置の設置スペースおよび後述する糸条のシール室内滞在時間等を考慮して適宜決定される。
Inside the seal chambers 4, 4 are partition plates 12 that divide the yarn inlets 6, 7 and the yarn outlets 6 ′, 7 ′ provided in three stages in the vertical direction into separate sections 4 a, 4 b, 4 c. Is provided. Further, the seal chambers 4 and 4 are provided with exhaust ports 15 and 15, and are connected to the exhaust fans 17 and 17 through the exhaust passages 32 and 32. A flow rate adjusting mechanism 16 such as a valve is provided in the middle of the exhaust passage 32. Further, as shown in FIG. 2, the exhaust ports 15 are respectively provided in the sections 4 a, 4 b, 4 c obtained by dividing the seal chambers 4, 4 by the partition plate 12. As shown in FIG. 2, a flow rate adjusting mechanism 34 such as a valve is provided in each exhaust passage 33 connected to each exhaust port 15.
Here, the length Ls in the running direction of the yarn F in the seal chamber 4 takes into consideration the properties of the fibers, the indoor cleaning and maintenance workability, the installation space for the heat treatment apparatus, the stay time of the yarn in the seal chamber to be described later, and the like. It is determined appropriately.

シール室4,4の外壁5,5には、糸条入口7,糸条出口7´を挟むように上下に一対のノズル10a,10bを備えたエアーカーテン手段8がそれぞれ設けられている。ノズル10a、10bは、圧力印加の点で好ましい支持部9の前端コーナー部分に取り付けられている。エアーカーテン手段8の上下のノズル10a,10bは単一の給気路35に接続され、給気路35には、例えばバルブ等の流量調節機構21が設けられている。各流量調節機構21はさらに共通給気路37を介して給気ファン24に接続されている。   On the outer walls 5 and 5 of the seal chambers 4 and 4, air curtain means 8 each provided with a pair of nozzles 10a and 10b are provided so as to sandwich the yarn inlet 7 and the yarn outlet 7 '. The nozzles 10a and 10b are attached to the front end corner portion of the support portion 9 which is preferable in terms of pressure application. The upper and lower nozzles 10a, 10b of the air curtain means 8 are connected to a single air supply path 35, and the air supply path 35 is provided with a flow rate adjusting mechanism 21 such as a valve. Each flow rate adjusting mechanism 21 is further connected to an air supply fan 24 via a common air supply path 37.

熱処理室2およびシール室4,4の各区画4a,4b,4cには、例えば赤外線温度計や熱電対等の温度検出装置38が各室内の雰囲気温度および糸条温度を検出可能に設けられている。温度検出装置38は図示しない排気量制御装置に接続され、検出した温度を電気信号として排気量制御装置に伝送することが可能となっている。同様に、シール室4,4の排気路32に設けられた排気ファン17も排気量制御装置に接続され、伝送された電気信号に応じて排気量を調整することが可能となっている。   In each of the compartments 4a, 4b and 4c of the heat treatment chamber 2 and the seal chambers 4 and 4, a temperature detecting device 38 such as an infrared thermometer or a thermocouple is provided so as to detect the atmospheric temperature and the yarn temperature in each chamber. . The temperature detection device 38 is connected to an exhaust amount control device (not shown), and the detected temperature can be transmitted to the exhaust amount control device as an electric signal. Similarly, the exhaust fan 17 provided in the exhaust passage 32 of the seal chambers 4 and 4 is also connected to the exhaust amount control device, and the exhaust amount can be adjusted according to the transmitted electric signal.

シール室4,4の外壁5,5の外側には糸条入口7、糸条出口7´の高さに対応して糸条Fを掛け渡すロール11が配置されている。ロール11の回転軸は図示しないモータ、コントローラ、電源等に接続され、自在に回転可能となっている。また、ロール11の表面は糸条Fに動力を伝達するのに適した摩擦係数を有している。   On the outer side of the outer walls 5 and 5 of the seal chambers 4 and 4, a roll 11 is disposed that spans the yarn F corresponding to the height of the yarn inlet 7 and the yarn outlet 7 ′. The rotating shaft of the roll 11 is connected to a motor, a controller, a power source, etc. (not shown) and can rotate freely. The surface of the roll 11 has a friction coefficient suitable for transmitting power to the yarn F.

熱処理室2の外壁3,3の各糸条入口6および各糸条出口6´の上下には一対の板状のスリット部材40が、糸条入口6,糸条出口6´を通過する糸条Fの走行方向と略平行に、糸条入口6,糸条出口6´の紙面垂直方向の幅と略同じか、それ以上の幅で設けられている。図3に示すように、スリット部材40は上側部41と下側部42によって構成され、熱処理室2側にはフランジ部43,44が設けられている。スリット部材40の上側部41および下側部42はそれぞれフランジ部43,44を介して熱処理室2の外壁3の上下方向に形成された固定溝45,46に、例えばボルト等の締結具によって上下方向に移動可能かつ取り外し可能に固定され、スリット幅Wが自在に変更可能となっている。   A pair of plate-like slit members 40 above and below each yarn inlet 6 and each yarn outlet 6 'of the outer walls 3 and 3 of the heat treatment chamber 2 pass through the yarn inlet 6 and the yarn outlet 6'. The width of the yarn inlet 6 and the yarn outlet 6 'is substantially the same as or greater than the width in the direction perpendicular to the paper surface, substantially parallel to the traveling direction of F. As shown in FIG. 3, the slit member 40 includes an upper portion 41 and a lower portion 42, and flange portions 43 and 44 are provided on the heat treatment chamber 2 side. The upper portion 41 and the lower portion 42 of the slit member 40 are vertically moved to fixing grooves 45 and 46 formed in the vertical direction of the outer wall 3 of the heat treatment chamber 2 via flange portions 43 and 44, respectively, by fasteners such as bolts. The slit width W can be freely changed.

次に、本実施の形態の作用・効果について説明する。
図1に示すように、炭素繊維の前駆体繊維の糸条Fが紙面に垂直方向に平行に揃えられた状態で熱処理装置1の図示左側のシール室4の最上段の糸条入口7から送入される。次いで、糸条Fは熱処理室2の外壁3の糸条入口6を通過し、熱処理室2の対抗する外壁3の糸条出口6´から送出される。さらに、糸条Fは熱処理室2に連接されたシール室4の外壁5の糸条出口7´を通過して熱処理装置1の外部に送出される。熱処理装置1の外部に送出された糸条Fはシール室4の外部のロール11に巻き掛けられるようにして折り返され、送出された糸条出口7´の一つ下の糸条入口7から、再び熱処理装置1内部に送入される。
Next, the operation and effect of the present embodiment will be described.
As shown in FIG. 1, the yarn F of the carbon fiber precursor fiber is fed from the uppermost yarn inlet 7 of the seal chamber 4 on the left side of the heat treatment apparatus 1 in a state where the yarn F is aligned parallel to the paper surface in the vertical direction. Entered. Next, the yarn F passes through the yarn inlet 6 of the outer wall 3 of the heat treatment chamber 2 and is sent out from the yarn outlet 6 ′ of the outer wall 3 opposed to the heat treatment chamber 2. Further, the yarn F passes through the yarn outlet 7 ′ of the outer wall 5 of the seal chamber 4 connected to the heat treatment chamber 2 and is sent out of the heat treatment apparatus 1. The yarn F sent to the outside of the heat treatment apparatus 1 is folded so as to be wound around the roll 11 outside the seal chamber 4, and from the yarn inlet 7 immediately below the sent yarn outlet 7 ′, It is again sent into the heat treatment apparatus 1.

再び熱処理装置1内部に送入された糸条Fは、逆向きに同様の経路を経て熱処理装置1の外部に送出され、熱処理装置1外部のロール11に再び巻き掛けられ折り返される。このように、糸条Fはロール11によって熱処理装置1の外部で繰り返し折り返されながら、熱処理装置1に繰り返し送入、送出され、蛇行するようにして熱処理装置1の内部を通過する。このとき、糸条Fにはロール11の回転とロール11表面の摩擦によって動力が与えられ、図1の矢印X方向に連続的に送り出されている。また、熱処理装置内を走行する糸条Fの矢印X方向の速度は、ロール11の回転を制御することによって自在に制御可能となっている。   The yarn F fed into the heat treatment apparatus 1 again is sent to the outside of the heat treatment apparatus 1 through the same path in the reverse direction, and is wound around the roll 11 outside the heat treatment apparatus 1 and folded back. In this way, the yarn F is repeatedly fed back to and out of the heat treatment apparatus 1 while being repeatedly folded outside the heat treatment apparatus 1 by the roll 11, and passes through the inside of the heat treatment apparatus 1 so as to meander. At this time, the yarn F is powered by the rotation of the roll 11 and the friction of the surface of the roll 11, and is continuously fed in the direction of the arrow X in FIG. Further, the speed of the yarn F traveling in the heat treatment apparatus in the direction of the arrow X can be freely controlled by controlling the rotation of the roll 11.

一方、熱処理室2の内部には図示しない熱風循環装置によって熱風が循環し、例えば、約200〜300℃の温度に保たれている。したがって、熱処理室2内部に連続的に繰り返し送入された糸条Fは、熱処理室2内で徐々に耐炎化されていく。この際、糸条Fの酸化反応によって熱処理室2内にシアン化合物、アンモニア、及び一酸化炭素等の分解ガスが発生する。発生した分解ガスは、熱処理室2に設けられた排気口30から排気ファン14によって排出され、外部のガス回収処理装置によって回収され処理される。また、排気ファン14による排気量の調整は、例えばバルブ等の流量調節機構13により行うことができる。   On the other hand, hot air circulates inside the heat treatment chamber 2 by a hot air circulation device (not shown), and is maintained at a temperature of about 200 to 300 ° C., for example. Accordingly, the yarn F that is continuously and repeatedly fed into the heat treatment chamber 2 is gradually made flame resistant in the heat treatment chamber 2. At this time, a decomposition gas such as cyanide, ammonia, and carbon monoxide is generated in the heat treatment chamber 2 by the oxidation reaction of the yarn F. The generated cracked gas is discharged from the exhaust port 30 provided in the heat treatment chamber 2 by the exhaust fan 14, and is recovered and processed by an external gas recovery processing device. Further, the adjustment of the exhaust amount by the exhaust fan 14 can be performed by a flow rate adjusting mechanism 13 such as a valve, for example.

シール室4,4の内部は、排気ファン17,17によって内部の気体を吸引することで負圧となっている。また、熱処理室2内部には加熱されることによって上部が高圧で下部が低圧となる上下方向の圧力分布が生じる。ここで、熱処理装置1外部の空気を給気ファン24によってエアーカーテン手段8のノズル10a,10bに供給し、糸条Fに向かって噴出することによってエアーカーテンを形成する。これにより、シール室からの分解ガスの漏出を確実に防止することができると共に、熱処理室2内への外気の流入を抑制することができる。   The inside of the seal chambers 4, 4 has a negative pressure by sucking the gas inside by the exhaust fans 17, 17. Further, the heat treatment chamber 2 is heated to generate a vertical pressure distribution in which the upper part has a high pressure and the lower part has a low pressure. Here, air outside the heat treatment apparatus 1 is supplied to the nozzles 10 a and 10 b of the air curtain means 8 by the air supply fan 24 and is ejected toward the yarn F to form an air curtain. As a result, leakage of cracked gas from the seal chamber can be reliably prevented, and inflow of outside air into the heat treatment chamber 2 can be suppressed.

また、非定常熱伝導の式より、Tを熱処理装置1の糸条出口7´における糸条Fの温度、Tをシール室4内の雰囲気温度、Tを熱処理室2内の雰囲気温度、tを糸条Fのシール室4内滞在時間、hを糸条Fの境膜伝熱係数、Aを糸条Fの表面積、Cを糸条Fの比熱、ρを糸条Fの密度、Vを糸条Fの体積とした場合に下記式(I)、下記式(II)を満たす関係が成立する。
T=T−(T−T)e−mt…(I)
m=hA/C/ρ/V…(II)
The non-stationary heat conduction from the equation, the temperature of the yarn F of yarn outlet 7 'of the heat treatment apparatus 1 to T, T F the ambient temperature of the sealing chamber 4, T 0 temperature of the atmosphere in the heat treatment chamber 2, t the yarn F seal chamber 4 inside the residence time of heat-transfer coefficient of the yarn and h F, the surface area of a the yarn F, the specific heat of C P the yarn F, the density of ρ the yarn F, When V is the volume of the yarn F, a relationship satisfying the following formula (I) and the following formula (II) is established.
T = T F - (T F -T 0) e -mt ... (I)
m = hA / C P / ρ / V (II)

ここで、糸条Fの比熱C、糸条Fの密度ρは用いる炭素繊維の前駆体繊維の糸条Fの仕様によって特定される。また、糸条Fの表面積Aおよび糸条Fの体積Vは、例えば断面が略矩形状に整形された状態の糸条Fの寸法を、ノギス等により測定して得ることができる。また、温度検出装置38によりシール室4内の雰囲気温度T、熱処理室2内の雰囲気温度Tを測定することができる。さらに、糸条Fのシール室4内滞在時間tは、熱処理装置1内を走行する糸条Fの速度とシール室長さLsより算出することができる。 Here, the specific heat C P of the yarn F and the density ρ of the yarn F are specified by the specifications of the yarn F of the carbon fiber precursor fiber to be used. The surface area A of the yarn F and the volume V of the yarn F can be obtained, for example, by measuring the dimensions of the yarn F with the cross-section shaped into a substantially rectangular shape with calipers or the like. Further, the ambient temperature T F in the seal chamber 4 and the ambient temperature T 0 in the heat treatment chamber 2 can be measured by the temperature detection device 38. Furthermore, the stay time t of the yarn F in the seal chamber 4 can be calculated from the speed of the yarn F traveling in the heat treatment apparatus 1 and the seal chamber length Ls.

一方、糸条Fの境膜伝熱係数hは測定によって求めることが困難であるため、例えば、熱処理装置1の糸条出口7´における糸条の温度Tを測定し、上記の式(I)に代入することで、定数mを逆算して求めてもよい。これにより、式(I)から熱処理装置1の糸条出口7´における糸条の温度Tを200℃以下とするシール室4内の雰囲気温度T、熱処理室2内の雰囲気温度T、糸条Fのシール室4内滞在時間tの関係式を得ることができる。 On the other hand, since the film heat transfer coefficient h of the yarn F is difficult to obtain by measurement, for example, the temperature T of the yarn at the yarn outlet 7 ′ of the heat treatment apparatus 1 is measured, and the above formula (I) By substituting into, the constant m may be calculated by back calculation. Thereby, from the formula (I), the ambient temperature T F in the seal chamber 4 where the yarn temperature T at the yarn outlet 7 ′ of the heat treatment apparatus 1 is 200 ° C. or less, the ambient temperature T 0 in the heat treatment chamber 2, and the yarn The relational expression of the stay time t in the seal chamber 4 of the strip F can be obtained.

ここで、まず熱処理装置の設置スペースの制限から、シール室の長さLsを決定する。次に、炭素繊維の前駆体繊維の糸条Fを耐炎化するのに要する温度と時間および糸条Fの走行方向の熱処理室2の長さの関係から、熱処理装置1内を走行する糸条Fの速度と熱処理室2内の雰囲気温度Tを決定する。このとき糸条Fの速度は、従来よりも生産性を向上させることができ、かつ糸条Fを耐炎化できるように9m/min以上かつ20m/min以下の範囲で決定する。決定したシール室の長さLsと糸条Fの速度より、糸条Fのシール室4内滞在時間tが得られる。
これにより、式(I)から熱処理装置1の糸条出口7´における糸条の温度Tを200℃以下とするシール室4内の雰囲気温度Tの値(目標温度)を得ることができる。
Here, first, the length Ls of the seal chamber is determined from the limitation of the installation space of the heat treatment apparatus. Next, from the relationship between the temperature and time required for flameproofing the yarn F of the carbon fiber precursor fiber and the length of the heat treatment chamber 2 in the running direction of the yarn F, the yarn running in the heat treatment apparatus 1 is used. The speed of F and the atmospheric temperature T 0 in the heat treatment chamber 2 are determined. At this time, the speed of the yarn F is determined in the range of 9 m / min or more and 20 m / min or less so that productivity can be improved as compared with the conventional method and the yarn F can be made flame resistant. From the determined length Ls of the seal chamber and the speed of the yarn F, the stay time t of the yarn F in the seal chamber 4 is obtained.
Thereby, from the formula (I), the value (target temperature) of the ambient temperature TF in the seal chamber 4 in which the yarn temperature T at the yarn outlet 7 ′ of the heat treatment apparatus 1 is 200 ° C. or less can be obtained.

シール室4内の雰囲気温度Tは、シール室4のからの排気量を調整し、シール室4内への外気の流入量を増減させることで制御することができる。したがって、例えば、シール室4内の雰囲気温度Tを温度検出装置38によって検出し、検出された温度の信号を排気量制御装置に伝送し、伝送された温度の信号と上述の目標温度との差分に基づいて排気量制御装置によって排気量を調整することで、検出された温度と目標温度との差分を0とするようにシール室4内の雰囲気温度Tを制御することができる。 The atmospheric temperature TF in the seal chamber 4 can be controlled by adjusting the exhaust amount from the seal chamber 4 and increasing or decreasing the inflow amount of outside air into the seal chamber 4. Therefore, for example, the ambient temperature TF in the seal chamber 4 is detected by the temperature detection device 38, and the detected temperature signal is transmitted to the displacement control device, and the transmitted temperature signal and the above-described target temperature are By adjusting the exhaust amount by the exhaust amount control device based on the difference, the ambient temperature TF in the seal chamber 4 can be controlled so that the difference between the detected temperature and the target temperature is zero.

したがって、本実施の形態によれば、シール室4内の雰囲気温度Tを温度検出装置38によって検出し、排気量制御装置によってシール室4からの排気量を調整し、糸条出口7´における糸条の温度Tを200℃以下に制御することができる。
また、糸条Fが熱処理装置1内を走行する速度を上記の範囲とすることで、従来よりも一定時間に熱処理される糸条Fの量を増加させ、熱処理の生産性を向上させることができる。
Therefore, according to the present embodiment, the atmospheric temperature TF in the seal chamber 4 is detected by the temperature detection device 38, the exhaust amount from the seal chamber 4 is adjusted by the exhaust amount control device, and the yarn outlet 7 ' The temperature T of the yarn can be controlled to 200 ° C. or less.
In addition, by setting the speed at which the yarn F travels in the heat treatment apparatus 1 within the above range, the amount of the yarn F that is heat-treated in a certain period of time can be increased and the heat treatment productivity can be improved. it can.

一方、上記のようにシール室4内の雰囲気温度を制御することで、シール室4内の雰囲気温度が200℃以下となった場合、糸条Fから発生したタールが熱処理室2の糸条出口6´近辺で冷却され凝縮する。しかし、糸条出口6´に糸条Fの厚みに応じてスリット幅Wが上下方向で変更可能、かつ糸条Fの接触部分、すなわち熱処理室2の糸条出口6´の上下に設けられたスリット部材40の上側部41および下側部42を取り外し可能に設けたので、熱処理室2の糸条出口6´近辺でタールが凝縮し、スリット部材40に付着したとしても、スリット部材40を定期的に取り外して洗浄することができる。また、スリット幅Wを糸条Fの厚みに合わせて最適な幅に設定することができる。   On the other hand, when the atmospheric temperature in the seal chamber 4 becomes 200 ° C. or lower by controlling the atmospheric temperature in the seal chamber 4 as described above, tar generated from the yarn F is removed from the yarn outlet of the heat treatment chamber 2. Cools and condenses around 6 '. However, the slit width W can be changed in the vertical direction according to the thickness of the yarn F at the yarn outlet 6 ′, and provided at the contact portion of the yarn F, that is, above and below the yarn outlet 6 ′ of the heat treatment chamber 2. Since the upper part 41 and the lower part 42 of the slit member 40 are detachably provided, even if tar is condensed near the yarn outlet 6 ′ of the heat treatment chamber 2 and adheres to the slit member 40, the slit member 40 is periodically Can be removed and cleaned. Further, the slit width W can be set to an optimum width according to the thickness of the yarn F.

したがって、本実施の形態によれば、スリット幅Wを糸条Fの厚さに応じて最適に設定することが可能であると共に、タールが糸条Fに付着するなどして生産に悪影響を及ぼす前に、スリット部材40に付着したタールを取り除くことができるので、シール室内でタールが冷却され凝縮しても生産に悪影響を及ぼすことがない。   Therefore, according to the present embodiment, the slit width W can be optimally set according to the thickness of the yarn F, and tar is attached to the yarn F to adversely affect production. Since the tar adhering to the slit member 40 can be removed before, even if the tar is cooled and condensed in the seal chamber, the production is not adversely affected.

(第二実施形態)
次に、本発明の第二の実施の形態を、図1〜3を援用して説明する。
本実施の形態では、シール室4の雰囲気温度Tを制御するのではなく、シール室4内滞在時間tを調整することで、熱処理装置1の糸条出口7´における糸条の温度Tを200℃以下とする点で上述の第一の実施の形態と異なる。その他の構成は第一の実施の形態と同様であるので、説明は省略する。
(Second embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS.
In the present embodiment, the temperature T of the yarn at the yarn outlet 7 ′ of the heat treatment apparatus 1 is adjusted by adjusting the residence time t in the seal chamber 4 rather than controlling the ambient temperature TF of the seal chamber 4. It differs from the above-mentioned first embodiment in that it is 200 ° C. or lower. Since other configurations are the same as those of the first embodiment, description thereof is omitted.

上述の式(I)、式(II)から、第一の実施の形態と同様に、熱処理装置1の糸条出口7´における糸条の温度Tを200℃以下とするシール室4内の雰囲気温度T、熱処理室2内の雰囲気温度T、糸条Fのシール室4内滞在時間tの関係式を得ることができる。そして、第一の実施の形態と同様にシール室4の長さLsを決定した後、シール室4内の雰囲気温度T、熱処理室2内の雰囲気温度Tを適当な値に決定する。 From the above formulas (I) and (II), as in the first embodiment, the atmosphere in the seal chamber 4 in which the yarn temperature T at the yarn outlet 7 ′ of the heat treatment apparatus 1 is 200 ° C. or less. A relational expression of the temperature T F , the atmospheric temperature T 0 in the heat treatment chamber 2, and the stay time t of the yarn F in the seal chamber 4 can be obtained. Then, after determining the length Ls of the seal chamber 4 as in the first embodiment, the atmosphere temperature T F in the seal chamber 4 and the atmosphere temperature T 0 in the heat treatment chamber 2 are determined to appropriate values.

これにより、式(I)、式(II)から、糸条出口7´における糸条の温度Tを200℃以下とするために必要な糸条Fのシール室4内滞在時間tの最小値を得ることができるので、この最小値に基づいて糸条Fの速度が9m/min以上かつ20m/min以下の範囲となる最小のtを決定することができる。
このとき、温度Tを200℃以下とする糸条Fのシール室4内滞在時間tが存在しない場合、または、糸条Fの速度が9m/minよりも小さくなってしまう場合は、シール室4の長さLs、シール室4内の雰囲気温度T、熱処理室2内の雰囲気温度Tを再度調整し、同様の手順を繰り返す。
Thereby, from Formula (I) and Formula (II), the minimum value of the stay time t of the yarn F in the seal chamber 4 necessary for setting the yarn temperature T at the yarn outlet 7 ′ to 200 ° C. or less is obtained. Therefore, based on this minimum value, the minimum t in which the speed of the yarn F is in the range of 9 m / min to 20 m / min can be determined.
At this time, if there is no staying time t of the yarn F in the seal chamber 4 at a temperature T of 200 ° C. or less, or if the speed of the yarn F becomes less than 9 m / min, the seal chamber 4 The length Ls, the atmospheric temperature T F in the seal chamber 4 and the atmospheric temperature T 0 in the heat treatment chamber 2 are adjusted again, and the same procedure is repeated.

したがって、本実施の形態によれば、予め決定したシール室4内の雰囲気温度T、熱処理室2内の雰囲気温度Tに応じて、糸条出口7´における糸条Fの温度Tを200℃以下とし、かつ糸条Fの速度を9m/min以上かつ20m/min以下の範囲で最大とすることできる。よって、第一の実施の形態と同様の効果を得ることができる。 Therefore, according to the present embodiment, the temperature T of the yarn F at the yarn outlet 7 ′ is set to 200 according to the predetermined atmospheric temperature T F in the seal chamber 4 and the atmospheric temperature T 0 in the heat treatment chamber 2. The speed of the yarn F can be maximized within a range of 9 m / min to 20 m / min. Therefore, the same effect as the first embodiment can be obtained.

(第一変形例)
次に、上述の実施の形態の第一変形例について、図1および図2を援用し、図6を用いて説明する。上述の本実施形態では図3に示すように、スリット部材40を一体的に構成し、外壁3に直接取り付ける構造としたが、本変形例では、図6に示すように、熱処理室2の外壁3の糸条入口6,糸条出口6´を挟んで上下に、固定溝45´を有する断面L字形状の第一支持部材47が固定されている。固定溝45´は図の上下方向に幅を持たせて形成されている。この第一支持部材47に、第二部材支持部材48の一端側が固定溝45´を介してボルト等で着脱自在に固定されている。第二支持部材48の他端側はT字状に形成され、その両端部は第二支持部材48の一端側に立ち上がり、係止部48´、48´が形成されている。
(First modification)
Next, a first modification of the above-described embodiment will be described with reference to FIG. 6 with reference to FIGS. In the above-described embodiment, as shown in FIG. 3, the slit member 40 is integrally configured and directly attached to the outer wall 3. However, in this modification, as shown in FIG. 6, the outer wall of the heat treatment chamber 2 is formed. A first support member 47 having an L-shaped cross section having a fixing groove 45 ′ is fixed above and below the three yarn inlets 6 and the yarn outlet 6 ′. The fixing groove 45 'is formed with a width in the vertical direction in the figure. One end side of the second member support member 48 is detachably fixed to the first support member 47 with a bolt or the like via a fixing groove 45 ′. The other end side of the second support member 48 is formed in a T shape, and both end portions thereof are raised on one end side of the second support member 48 to form locking portions 48 ′ and 48 ′.

また、第二支持部材48のT字状に分岐にした他端側および係止部48´、48´を包み込むように、断面C字形状のスリット部材40が装着されている。ここで、スリット部材40としては、例えばステンレス製角パイプの一側面に切込みを入れたものを用いることができる。スリット部材40は係止部48´の端面に接し、熱処理装置1の奥行き方向にスライド可能に設けられている。また、スリット部材40は、熱処理装置1の奥行き方向にスライドさせることで、着脱自在に装着されている。   A slit member 40 having a C-shaped cross section is mounted so as to wrap around the other end side of the second support member 48 branched in a T shape and the locking portions 48 ′ and 48 ′. Here, as the slit member 40, for example, a stainless steel square pipe cut into one side can be used. The slit member 40 is in contact with the end surface of the locking portion 48 ′ and is slidable in the depth direction of the heat treatment apparatus 1. The slit member 40 is detachably mounted by sliding in the depth direction of the heat treatment apparatus 1.

上述のように、スリット部材40の形状を、第二支持部材48の先端に嵌め込み可能な形状とし、熱処理装置1の奥行き方向にスライド可能かつ着脱自在に構成したことで、スリット部材40の取り付け、取り外しを簡便に行うことができる。したがって、本変形例によれば、熱処理装置1のメンテナンスを容易にすることができる。
また、第二支持部材48の他端側の断面形状をT字形状に分岐させ、その両端部を一端側に立ち上げて係止部48´を設け、スリット部材40として、例えばステンレス製角パイプの一側面に切込みを入れた断面C字形状のものを用いている。係る構造は以下の好ましい特性を有する。即ち、
1)耐熱性を有する。
2)強度に優れ、取り外し、洗浄を繰り返して行う際の耐久性を有する。
3)耐久性を有しつつ、軽量化できるので作業性に優れる。
As described above, the slit member 40 has a shape that can be fitted into the distal end of the second support member 48, and is configured to be slidable and detachable in the depth direction of the heat treatment apparatus 1. Removal can be easily performed. Therefore, according to this modification, the maintenance of the heat treatment apparatus 1 can be facilitated.
Further, the cross-sectional shape on the other end side of the second support member 48 is branched into a T-shape, and both end portions thereof are raised to one end side to provide a locking portion 48 ′. The thing of the cross-section C shape which made the notch in one side is used. Such a structure has the following preferred characteristics. That is,
1) It has heat resistance.
2) Excellent strength and durability when repeated removal and cleaning.
3) Since it can be reduced in weight while having durability, it is excellent in workability.

(第二変形例)
次に、本実施の形態の第二変形例について、図1および図2を援用し、図7を用いて説明する。本変形例は、上述の実施の形態および第一変形例と比較して、図7に示すように第一支持部材47の熱処理室2の外壁3への固定部を支点49として、第一支持部材47および第二支持部材48が上下方向を向く状態から、水平或いは斜め上、斜め下方向を向く状態に自在に回転可能となっている点で異なっている。その他の構成は第一変形例と同様であるので、説明は省略する。
(Second modification)
Next, a second modification of the present embodiment will be described with reference to FIG. Compared with the above-described embodiment and the first modified example, the present modified example has a first support member 47 fixed to the outer wall 3 of the heat treatment chamber 2 as a fulcrum 49 as shown in FIG. The member 47 and the second support member 48 are different in that they can freely rotate from a state in which the member 47 and the second support member 48 are directed in the vertical direction to a state in which the member 47 and the second support member 48 are directed in the horizontal or obliquely upward and obliquely downward directions. Since other configurations are the same as those of the first modification, description thereof is omitted.

このように、第一支持部材47の固定部を支点49としてスリット部材40を回転自在に設けたので、熱処理室2の外側に設けられた支点49の軸部分を回転させることで、スリット幅Wの調整を熱処理室2の外側から行うことができる。したがって、スリット幅Wの操作を容易にすることができる。
また、スリット幅Wの操作を熱処理室2の外側から行うためには、外壁3を貫通させて操作部を設ける必要がある。このため、外壁3の貫通部からの有害ガスの漏れを防止する必要がある。したがって、図3に示すように外壁3に長孔状の固定溝45を形成する場合、固定溝45全体をシールしなければならない。一方、本変形例では第一支持部材47、第二支持部材48を回転自在に設けたことで、支点49の回転軸部分をシールするだけでよいので、その他方式と比較して、シール機構が単純となる。更に支点49を中心としてスリット部材40を回転させることでスリット幅Wを操作することができるので、スリット幅Wの操作のために必要な力も小さくできる。
Thus, since the slit member 40 is rotatably provided with the fixed portion of the first support member 47 as the fulcrum 49, the slit width W can be obtained by rotating the shaft portion of the fulcrum 49 provided outside the heat treatment chamber 2. Can be adjusted from the outside of the heat treatment chamber 2. Therefore, the operation of the slit width W can be facilitated.
Further, in order to perform the operation of the slit width W from the outside of the heat treatment chamber 2, it is necessary to provide an operation portion through the outer wall 3. For this reason, it is necessary to prevent leakage of harmful gas from the through portion of the outer wall 3. Therefore, as shown in FIG. 3, when the long hole-like fixing groove 45 is formed in the outer wall 3, the entire fixing groove 45 must be sealed. On the other hand, in the present modification, the first support member 47 and the second support member 48 are rotatably provided, so that only the rotation shaft portion of the fulcrum 49 needs to be sealed. It will be simple. Furthermore, since the slit width W can be operated by rotating the slit member 40 around the fulcrum 49, the force required for the operation of the slit width W can be reduced.

また、熱処理室2は、温度の変化に伴って膨張・収縮する。一方糸条Fは熱処理室2に固定されていないので、熱処理室2とは連動せずに一定の位置を保つ。従って回転機構を有さない場合、熱処理室2の温度が低い状態でスリット部材40の位置が適切となるように調節すると、昇温に伴い熱処理室2が膨張し、糸条入口6,糸条出口6´の位置も上に移動するので糸条の下側の隙間が狭くなる。また昇温完了後にスリット部材40の位置が適切な位置となる状態に調節した上で昇温しようとすると、昇温開始時に糸条の上側の隙間が狭くなる。   Further, the heat treatment chamber 2 expands and contracts as the temperature changes. On the other hand, since the yarn F is not fixed to the heat treatment chamber 2, the yarn F maintains a certain position without being interlocked with the heat treatment chamber 2. Therefore, when the rotation mechanism is not provided, if the position of the slit member 40 is adjusted to be appropriate while the temperature of the heat treatment chamber 2 is low, the heat treatment chamber 2 expands as the temperature rises, and the yarn inlet 6, the yarn Since the position of the outlet 6 'also moves upward, the gap below the yarn is narrowed. Further, if the temperature of the slit member 40 is adjusted to an appropriate position after completion of the temperature rise and the temperature is to be raised, the gap above the yarn becomes narrow at the start of the temperature rise.

このとき、回転機構を設けたことで、上下のスリット部材40の位置を、昇温完了後に適切な位置となるように調整した上で、上側の第二支持部材48を回転させて上げた状態で昇温を開始し、昇温完了後にこれを下ろすことができる。また、温度を下げる場合は逆に下側の第二支持部材48を回転させ下げてから行うことができる。したがって、温度変化に伴って糸条入口6,糸条出口6´における糸条Fの上下の隙間が狭くなったとしても、上下のスリット部材40の位置を調整し、糸条Fに接触することを防止できる。   At this time, by providing the rotation mechanism, the upper and lower slit members 40 are adjusted so that the positions of the upper and lower slit members 40 become appropriate positions after completion of the temperature increase, and then the upper second support member 48 is rotated and raised. The temperature rise can be started at, and the temperature can be lowered after the temperature rise is completed. Conversely, the temperature can be lowered after the lower second support member 48 is rotated and lowered. Therefore, even if the upper and lower gaps of the yarn F at the yarn inlet 6 and the yarn outlet 6 ′ become narrower due to the temperature change, the positions of the upper and lower slit members 40 are adjusted to contact the yarn F. Can be prevented.

加えて、清掃や糸条Fの品種切替を行った際、立ち上げ時に熱処理室2に糸条Fを通すに当たって、別の糸条と結んだものを通す必要が生じる。このとき、結び目が通る際にどちらか一方或いは両方の第二支持部材48を回転させて、スリット部材40を糸条Fから遠ざけておくことができる。したがって、糸条Fの結び目がスリット部材40に接触することを防止できる。   In addition, when cleaning or changing the type of the yarn F, when the yarn F is passed through the heat treatment chamber 2 at the time of start-up, it is necessary to pass something tied with another yarn. At this time, when the knot passes, either one or both of the second support members 48 can be rotated to keep the slit member 40 away from the yarn F. Therefore, the knot of the yarn F can be prevented from coming into contact with the slit member 40.

尚、本発明は上述した実施の形態に限られるものではなく、上記の式(I)、式(II)の関係から糸条出口における糸条温度を200℃以下とするものであれば、シール室の雰囲気温度、糸条のシール室内滞在時間以外のパラメータを調整しても良い。例えば、物性値、表面積等の異なる糸条を使用するなどして定数mを調整してもよいし、熱処理室内の雰囲気温度Tを調整してもよい。
また、熱処理装置は上述の実施の形態で説明した横型炉ではなく、糸条の走行方向が熱処理装置の上下方向となる縦型熱処理装置であってもよい。
Note that the present invention is not limited to the above-described embodiment, and if the yarn temperature at the yarn outlet is 200 ° C. or less from the relationship of the above formulas (I) and (II), the seal Parameters other than the atmospheric temperature of the chamber and the staying time of the yarn in the seal chamber may be adjusted. For example, the constant m may be adjusted by using yarns having different physical property values, surface areas, etc., or the atmospheric temperature T 0 in the heat treatment chamber may be adjusted.
The heat treatment apparatus may be a vertical heat treatment apparatus in which the running direction of the yarn is the vertical direction of the heat treatment apparatus, instead of the horizontal furnace described in the above embodiment.

また、シール室の温度検出装置は、シール室内の温度勾配に対応して糸条走行方向に複数設けてもよい。これにより、シール室内の温度分布、あるいは平均温度を得ることができる。また、シール室の排気量の制御方法は、温度検出装置によって検出した温度の信号に基づいて排気量を調整するものであれば、上述した制御方法でなくてもよい。また、シール室の糸条入口、糸条出口のシール手段は、エアーカーテン手段でなくてもよい。また、熱処理装置のパス数は上述の実施の形態のパス数と異なるものであっても差し支えない。   A plurality of temperature detection devices for the seal chamber may be provided in the yarn traveling direction corresponding to the temperature gradient in the seal chamber. Thereby, the temperature distribution in the seal chamber or the average temperature can be obtained. Further, the control method of the exhaust amount of the seal chamber may not be the above-described control method as long as the exhaust amount is adjusted based on the temperature signal detected by the temperature detection device. Further, the sealing means for the yarn inlet and the yarn outlet of the sealing chamber may not be air curtain means. Further, the number of passes of the heat treatment apparatus may be different from the number of passes in the above-described embodiment.

また、スリット部材は上下方向に移動可能かつ取り外し可能な構造であれば、上述の実施の形態および変形例に示した構造に限られない。すなわち、スリット部材を取り外し可能にする構造は、図3、図6および図7に示す構造に限定されるものではない。また、スリット部材を第二支持部材に装着するための構造は特に限定されない。   In addition, the slit member is not limited to the structure shown in the above-described embodiment and modification examples as long as the slit member is movable in the vertical direction and removable. That is, the structure that allows the slit member to be removed is not limited to the structure shown in FIGS. 3, 6, and 7. Moreover, the structure for attaching the slit member to the second support member is not particularly limited.

以下、実施例により本発明を具体的に説明する。
上述の実施の形態において説明した熱処理装置により、糸条走行方向のシール室長さを1.5m、熱処理装置内を走行する糸条走行速度を12m/minとして、繊度18000dtex(15K)の炭素繊維の前駆体繊維の糸条の熱処理を行った。このときの糸条のシール室内滞在時間は7.5secである。また、熱電対により、熱処理室雰囲気温度T、シール室雰囲気温度T、放射温度計(チノー製IR−TA)により糸条出口の糸条温度Tを測定した。次いで、上述の非定常熱伝導の式(I)より定数mを算出した。得られた値を表1に示す。
Hereinafter, the present invention will be described specifically by way of examples.
With the heat treatment apparatus described in the above embodiment, the length of the seal chamber in the yarn running direction is 1.5 m, the yarn running speed in the heat treatment apparatus is 12 m / min, and the carbon fiber having a fineness of 18000 dtex (15K) is used. The yarn of the precursor fiber was heat-treated. At this time, the yarn stays in the seal chamber for 7.5 sec. Further, the heat treatment chamber atmosphere temperature T 0 , the seal chamber atmosphere temperature T F , and the yarn temperature T at the yarn outlet were measured by a thermocouple (IR-TA manufactured by Chino). Next, the constant m was calculated from the above-mentioned unsteady heat conduction equation (I). The obtained values are shown in Table 1.

Figure 2008144325
Figure 2008144325

表1に示した条件で糸条の熱処理を行った結果、糸条出口の糸条温度Tを200℃以下とすることができ、熱処理装置外でのシアンガス等のガスの発生を防止することができた。
また、図4に示すように、縦軸を糸条出口の糸条温度T、横軸を糸条のシール室内滞在時間tとするグラフを作成した。グラフ中、円形の点iは表1に示したデータを表している。また、一点鎖線はシール室雰囲気温度T、熱処理室雰囲気温度Tおよび定数mを表1の条件に固定したときに、式(I)の関係を満たす糸条出口の糸条温度Tと糸条のシール室内滞在時間tを示している。
As a result of the heat treatment of the yarn under the conditions shown in Table 1, the yarn temperature T at the yarn outlet can be set to 200 ° C. or less, and generation of gas such as cyan gas outside the heat treatment apparatus can be prevented. did it.
Further, as shown in FIG. 4, a graph was prepared in which the vertical axis represents the yarn temperature T at the yarn outlet, and the horizontal axis represents the yarn staying time t in the seal chamber. In the graph, a circular point i represents the data shown in Table 1. The alternate long and short dash line indicates the yarn temperature T and yarn at the yarn outlet satisfying the relationship of formula (I) when the seal chamber atmosphere temperature T F , the heat treatment chamber atmosphere temperature T 0 and the constant m are fixed to the conditions shown in Table 1. The stay time t in the seal in the strip is shown.

これにより、糸条出口の糸条温度Tは200℃以下にするためには、シール室内滞在時間tを約2.5sec以上とすればよいことが分かる。したがって、糸条走行速度を約36m/minまで上昇させることが考えられるが、例えば、熱処理室における熱処理時間等の制限により、糸条の走行速度の最大値は約20m/minとなる。したがって、糸条の走行速度を許容できる最大値まで増加させ、糸条の熱処理の生産性を向上することができる。   Accordingly, it is understood that the staying time t in the seal chamber should be about 2.5 sec or more in order to set the yarn temperature T at the yarn outlet to 200 ° C. or lower. Accordingly, although it is conceivable to increase the yarn traveling speed to about 36 m / min, for example, the maximum value of the yarn traveling speed is about 20 m / min due to the limitation of the heat treatment time in the heat treatment chamber. Therefore, the yarn traveling speed can be increased to an allowable maximum value, and the heat treatment productivity of the yarn can be improved.

シール室の排気量を調整し、シール室雰囲気温度Tを156℃とした以外は、実施例1と同様の条件で炭素繊維の前駆体繊維の糸条の熱処理を行った。 The yarn of the carbon fiber precursor fiber was heat-treated under the same conditions as in Example 1 except that the exhaust amount of the seal chamber was adjusted and the seal chamber atmosphere temperature TF was 156 ° C.

Figure 2008144325
Figure 2008144325

表2に示した条件で糸条の熱処理を行った結果、糸条出口の糸条温度Tを200℃以下とすることができ、熱処理装置外においてシアンガス等のガスの発生を防止することができた。
図4に示すグラフ中、四角形の点iiは表2に示したデータを表している。また、破線はシール室雰囲気温度T、熱処理室雰囲気温度Tおよび定数mを表2の条件に固定したときに、式(I)の関係を満たす糸条出口の糸条温度Tと糸条のシール室内滞在時間tを示している。
これにより、糸条出口の糸条温度Tは200℃以下にするためには、シール室内滞在時間tを約5sec以上とすればよいことが分かる。したがって、糸条走行速度を約18m/minまで上昇させ、糸条の熱処理の生産性を向上することができる。
As a result of heat treatment of the yarn under the conditions shown in Table 2, the yarn temperature T at the yarn outlet can be made 200 ° C. or less, and generation of gas such as cyan gas can be prevented outside the heat treatment apparatus. It was.
In the graph shown in FIG. 4, square points ii represent the data shown in Table 2. Also, the broken line indicates the yarn temperature T and yarn at the yarn outlet satisfying the relationship of the formula (I) when the seal chamber atmosphere temperature T F , the heat treatment chamber atmosphere temperature T 0 and the constant m are fixed to the conditions shown in Table 2. This shows the stay time t in the seal chamber.
Thus, it can be seen that the stay time t in the seal chamber should be about 5 sec or more in order to set the yarn temperature T at the yarn outlet to 200 ° C. or lower. Therefore, the yarn traveling speed can be increased to about 18 m / min, and the heat treatment productivity of the yarn can be improved.

熱処理室雰囲気温度Tを243℃まで上昇させ、シール室の排気量を調整し、シール室雰囲気温度Tを96℃とした以外は、実施例1、実施例2と同様に炭素繊維の前駆体繊維の糸条の熱処理を行った。 Raising the heat treatment chamber ambient temperature T 0 to 243 ° C., by adjusting the exhaust amount of the seal chamber, except that the seal chamber atmospheric temperature T F and 96 ° C., Example 1, as well as precursors of carbon fibers as in Example 2 The body fiber yarn was heat-treated.

Figure 2008144325
Figure 2008144325

表3に示した条件で糸条の熱処理を行った結果、糸条出口の糸条温度Tを200℃以下とすることができ、熱処理装置外においてシアンガス等のガスの発生を防止することができた。
上述の図4に示すグラフと同様に、図5に示すグラフを作成した。図5に示すグラフ中、円形の点iiiは表3に示したデータを表している。また、一点鎖線はシール室雰囲気温度T、熱処理室雰囲気温度Tおよび定数mを表3の条件に固定したときに、式(I)の関係を満たす糸条出口の糸条温度Tと糸条のシール室内滞在時間tを示している。
これにより、糸条出口の糸条温度Tは200℃以下にするためには、シール室内滞在時間tを約3sec以上とすればよいことが分かる。したがって、糸条走行速度を許容できる最大値である約20m/minまで増加させ、糸条の熱処理の生産性を向上することができる。
As a result of heat treatment of the yarn under the conditions shown in Table 3, the yarn temperature T at the yarn outlet can be made 200 ° C. or less, and generation of gas such as cyan gas can be prevented outside the heat treatment apparatus. It was.
Similar to the graph shown in FIG. 4 described above, the graph shown in FIG. 5 was created. In the graph shown in FIG. 5, circular points iii represent the data shown in Table 3. The alternate long and short dash line indicates the yarn temperature T and yarn at the yarn outlet satisfying the relationship of formula (I) when the seal chamber atmosphere temperature T F , the heat treatment chamber atmosphere temperature T 0 and the constant m are fixed to the conditions shown in Table 3. The stay time t in the seal in the strip is shown.
Accordingly, it can be seen that the stay time t in the seal chamber should be about 3 sec or more in order to set the yarn temperature T at the yarn outlet to 200 ° C. or less. Therefore, the yarn traveling speed can be increased up to about 20 m / min, which is the maximum allowable value, and the heat treatment productivity of the yarn can be improved.

(比較例1)
シール室の排気量を調整し、シール室雰囲気温度Tを215℃とした以外は、実施例3と同様に炭素繊維の前駆体繊維の糸条の熱処理を行った。
(Comparative Example 1)
The yarn of the carbon fiber precursor fiber was heat-treated in the same manner as in Example 3 except that the exhaust amount of the seal chamber was adjusted and the seal chamber atmosphere temperature TF was 215 ° C.

Figure 2008144325
Figure 2008144325

表4に示した条件で糸条の熱処理を行った結果、糸条出口の糸条温度Tは200℃以上となり、熱処理装置外においてシアンガス等のガスが検出された。
図5に示すグラフ中、四角形の点ivは表4に示したデータを表している。また、破線はシール室雰囲気温度T、熱処理室雰囲気温度Tおよび定数mを表4の条件に固定したときに、式(I)の関係を満たす糸条出口の糸条温度Tと糸条のシール室内滞在時間tを示している。
これにより、シール室内滞在時間tを延長しても糸条出口の糸条温度Tは200℃以下に低下しないことが分かる。したがって、表4に示すようにシール室雰囲気温度Tを215℃とした場合、熱処理装置外部でのシアンガスの発生を防止することができない。
As a result of heat treatment of the yarn under the conditions shown in Table 4, the yarn temperature T at the yarn outlet was 200 ° C. or higher, and a gas such as cyan gas was detected outside the heat treatment apparatus.
In the graph shown in FIG. 5, a square point iv represents the data shown in Table 4. The broken line indicates the yarn temperature T and yarn at the yarn outlet satisfying the relationship of the formula (I) when the seal chamber atmosphere temperature T F , the heat treatment chamber atmosphere temperature T 0 and the constant m are fixed to the conditions shown in Table 4. This shows the stay time t in the seal chamber.
Accordingly, it is understood that the yarn temperature T at the yarn outlet does not decrease to 200 ° C. or less even if the stay time t in the seal chamber is extended. Therefore, as shown in Table 4, when the seal chamber atmosphere temperature TF is 215 ° C., generation of cyan gas outside the heat treatment apparatus cannot be prevented.

本発明の実施の形態における熱処理装置の概略断面図である。It is a schematic sectional drawing of the heat processing apparatus in embodiment of this invention. 本発明の実施の形態における熱処理装置の部分拡大側面図である。It is a partial expanded side view of the heat processing apparatus in embodiment of this invention. 本発明の実施の形態におけるスリット部材の断面図である。It is sectional drawing of the slit member in embodiment of this invention. 本発明の実施例1、実施例2における糸条出口の糸条温度と糸条のシール室内滞在時間との関係を表すグラフである。It is a graph showing the relationship between the yarn temperature of the yarn exit in Example 1 and Example 2 of this invention, and the stay time in the seal | sticker chamber in a yarn. 本発明の実施例3、比較例1における糸条出口の糸条温度と糸条のシール室内滞在時間との関係を表すグラフである。It is a graph showing the relationship between the yarn temperature of the yarn exit in Example 3 and Comparative Example 1 of the present invention and the staying time of the yarn in the seal chamber. 本発明の実施の形態におけるスリット部材の変形例の断面図である。It is sectional drawing of the modification of the slit member in embodiment of this invention. 本発明の実施の形態におけるスリット部材の変形例の断面図である。It is sectional drawing of the modification of the slit member in embodiment of this invention.

符号の説明Explanation of symbols

1 熱処理装置
2 熱処理室
4 シール室
7 糸条入口
7´ 糸条出口
15 排気口
38 温度検出装置
40 スリット部材
F 糸条
W スリット幅
DESCRIPTION OF SYMBOLS 1 Heat processing apparatus 2 Heat processing chamber 4 Seal chamber 7 Yarn inlet 7 'Yarn outlet 15 Exhaust outlet 38 Temperature detection apparatus 40 Slit member F Yarn W Slit width

Claims (4)

熱処理装置の熱処理室に加熱気体を循環させ、糸条入口より前記熱処理室内に糸条を連続的に送入し、糸条出口より前記熱処理室外に前記糸条を連続的に送出し、前記熱処理室内で前記糸条を連続的に熱処理する熱処理方法において、
前記熱処理装置内を通過する前記糸条の速度を9m/min以上かつ20m/min以下の範囲としつつ、前記糸条出口における前記糸条の温度を200℃以下とすることを特徴とする熱処理方法。
A heated gas is circulated in the heat treatment chamber of the heat treatment apparatus, the yarn is continuously fed into the heat treatment chamber from the yarn inlet, the yarn is continuously fed out of the heat treatment chamber from the yarn outlet, and the heat treatment is performed. In a heat treatment method for continuously heat treating the yarn in a room,
A heat treatment method characterized in that a temperature of the yarn at the yarn outlet is set to 200 ° C. or less while a speed of the yarn passing through the heat treatment apparatus is in a range of 9 m / min to 20 m / min. .
前記熱処理室に隣接してシール室が設けられ、Tを前記糸条出口における前記糸条の温度、Tを前記シール室内の雰囲気温度、Tを前記熱処理室内の雰囲気温度、tを前記糸条の前記シール室内滞在時間、hを前記糸条の境膜伝熱係数、Aを前記糸条の表面積、Cを前記糸条の比熱、ρを前記糸条の密度、Vを前記糸条の体積とした場合に下記式(I)、下記式(II)を満たす関係が成立することを特徴とする請求項1記載の熱処理方法。
T=T−(T−T)e−mt…(I)
m=hA/C/ρ/V…(II)
A seal chamber is provided adjacent to the heat treatment chamber, T is the temperature of the yarn at the yarn outlet, TF is the ambient temperature in the seal chamber, T 0 is the ambient temperature in the heat treatment chamber, and t is the yarn. said seal chamber residence time of the strip, heat-transfer coefficient of the yarn to h, the surface area of the yarns with a, the specific heat of the yarn and C P, the yarn density of the yarns, the V and ρ 2. The heat treatment method according to claim 1, wherein a relationship satisfying the following formula (I) and the following formula (II) is established when the volume is set to:
T = T F - (T F -T 0) e -mt ... (I)
m = hA / C P / ρ / V (II)
前記シール室は排気口と温度検出装置とを備え、前記温度検出装置の信号に基づいて前記排気口からの排気量を調整することにより前記糸条出口における前記糸条の温度を制御することを特徴とする請求項2記載の熱処理方法。   The seal chamber includes an exhaust port and a temperature detection device, and controls the temperature of the yarn at the yarn outlet by adjusting an exhaust amount from the exhaust port based on a signal of the temperature detection device. The heat treatment method according to claim 2, wherein: 前記熱処理室の前記糸条出口に、前記糸条の厚みに応じてスリット幅が変更可能、かつ前記糸条の接触部分が取り外し可能にスリット部材を設けたことを特徴とする請求項1〜請求項3のいずれかに記載の熱処理方法。   A slit member is provided at the yarn outlet of the heat treatment chamber so that the slit width can be changed according to the thickness of the yarn and the contact portion of the yarn is removable. Item 4. The heat treatment method according to any one of Items 3.
JP2006335694A 2006-12-13 2006-12-13 Heat treatment method for carbon fiber precursor Active JP5022014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006335694A JP5022014B2 (en) 2006-12-13 2006-12-13 Heat treatment method for carbon fiber precursor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006335694A JP5022014B2 (en) 2006-12-13 2006-12-13 Heat treatment method for carbon fiber precursor

Publications (2)

Publication Number Publication Date
JP2008144325A true JP2008144325A (en) 2008-06-26
JP5022014B2 JP5022014B2 (en) 2012-09-12

Family

ID=39604798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006335694A Active JP5022014B2 (en) 2006-12-13 2006-12-13 Heat treatment method for carbon fiber precursor

Country Status (1)

Country Link
JP (1) JP5022014B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015043728A1 (en) * 2013-09-24 2015-04-02 Eisenmann Ag Oxidation furnace

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228865A (en) * 1986-03-31 1987-10-07 三菱レイヨン株式会社 Horizontal type heat treating furnace
JPH02289121A (en) * 1989-02-17 1990-11-29 Toray Ind Inc Production of carbon fiber
JP2636509B2 (en) * 1990-12-25 1997-07-30 東レ株式会社 Carbon fiber and method for producing the same
JPH1161574A (en) * 1997-08-05 1999-03-05 Mitsubishi Rayon Co Ltd Production of carbon yarn
JP2001194071A (en) * 2000-01-06 2001-07-17 Mitsubishi Rayon Co Ltd Horizontal heat treatment apparatus for thread and heat treatment method therefor
JP2003342838A (en) * 2002-05-28 2003-12-03 Toho Tenax Co Ltd Apparatus and method for flameproofing heat treatment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228865A (en) * 1986-03-31 1987-10-07 三菱レイヨン株式会社 Horizontal type heat treating furnace
JPH02289121A (en) * 1989-02-17 1990-11-29 Toray Ind Inc Production of carbon fiber
JP2636509B2 (en) * 1990-12-25 1997-07-30 東レ株式会社 Carbon fiber and method for producing the same
JPH1161574A (en) * 1997-08-05 1999-03-05 Mitsubishi Rayon Co Ltd Production of carbon yarn
JP2001194071A (en) * 2000-01-06 2001-07-17 Mitsubishi Rayon Co Ltd Horizontal heat treatment apparatus for thread and heat treatment method therefor
JP2003342838A (en) * 2002-05-28 2003-12-03 Toho Tenax Co Ltd Apparatus and method for flameproofing heat treatment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015043728A1 (en) * 2013-09-24 2015-04-02 Eisenmann Ag Oxidation furnace
US10222122B2 (en) 2013-09-24 2019-03-05 Eisenmann Se Oxidation furnace

Also Published As

Publication number Publication date
JP5022014B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
KR101885344B1 (en) Oven for fiber heat treatment
US10132008B2 (en) Horizontal heat treatment device
TW522182B (en) Flame resistant rendering heat treating device, and operation method for the device
JP2017524834A (en) Oxidation furnace
WO2015002202A1 (en) Horizontal heat treatment device and method for producing carbon fibers using horizontal heat treatment device
JP4352047B2 (en) Heat treatment apparatus and heat treatment method for sheet-like material
JP5022014B2 (en) Heat treatment method for carbon fiber precursor
US11718049B2 (en) Treatment machine for a flexible material web, in particular plastic film, which can be passed through a treatment furnace
TWI507579B (en) Method for manufacturing carbon fiber bundle and heating furnace for carbon fiber precursor fiber bundle
JP2008267794A (en) Heat treatment furnace and method of manufacturing heat treated object
JP4796467B2 (en) Horizontal flameproof furnace and flameproofing method
JP2004124310A (en) Flameproofing furnace
JP6394010B2 (en) Tenter oven and method for producing thermoplastic resin film using the same
JP2006057222A (en) Flame resisting treatment furnace and method for flame resisting treatment
JP2018504534A (en) Discharge nozzle plate for center-to-end fiber oxidation furnace
JP4838700B2 (en) Heat treatment apparatus and heat treatment method
JP4961229B2 (en) Heat treatment furnace and heat treatment method
JP2007224432A (en) Horizontal thermal treatment apparatus and thermal treatment method
JP4292771B2 (en) Heat treatment furnace
JP2011167923A (en) Transverse stretching device and method
KR101851252B1 (en) Heat blocking apparatus of outlet plug of vertical annealing furnace
JP2014221956A (en) Heat treatment apparatus, and method for producing flame-resistant fiber by using the same
TWI744722B (en) Apparatus and method for thermal treatment of moving web strips
JP2008056972A (en) Continuous annealing furnace
FI113790B (en) Method and apparatus for calendering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120615

R151 Written notification of patent or utility model registration

Ref document number: 5022014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250