JP2008143981A - Optically reflective resin composition, light-emitting device and optical display - Google Patents

Optically reflective resin composition, light-emitting device and optical display Download PDF

Info

Publication number
JP2008143981A
JP2008143981A JP2006330815A JP2006330815A JP2008143981A JP 2008143981 A JP2008143981 A JP 2008143981A JP 2006330815 A JP2006330815 A JP 2006330815A JP 2006330815 A JP2006330815 A JP 2006330815A JP 2008143981 A JP2008143981 A JP 2008143981A
Authority
JP
Japan
Prior art keywords
light
resin composition
light emitting
epoxy resin
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006330815A
Other languages
Japanese (ja)
Inventor
Akito Muramatsu
昭人 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Priority to JP2006330815A priority Critical patent/JP2008143981A/en
Priority to PCT/US2007/085171 priority patent/WO2008073682A1/en
Priority to TW096146158A priority patent/TW200838927A/en
Publication of JP2008143981A publication Critical patent/JP2008143981A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/32257Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic the layer connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optically reflective resin composition which has a high optical reflectance, thermal stability, and optical stability, and furthermore excels in bond strength as well. <P>SOLUTION: The optically reflective resin composition comprises an epoxy resin having no carbon-carbon double bond, 40-400 pts.wt., based on 100 pts.wt. epoxy resin, titanium oxide, and a curing agent. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光反射性樹脂組成物に関する。また、本発明は、かかる光反射性樹脂組成物を使用した光学装置及び光学表示装置に関する。   The present invention relates to a light reflective resin composition. The present invention also relates to an optical device and an optical display device using such a light reflective resin composition.

従来、光学装置などにおいて、発光素子は、通常、接着剤やそのフィルムなどによって下地の基板などに接合されている。また、その発光素子から放出される光を有効に活用するために、発光素子の近傍に光反射層(例えば白色フィルム、白色塗膜、銀色フィルム、銀色塗膜など)が配置されており、反射性の改良が図られている。このように、発光装置において、接着性と反射性とは機能的に別々に分離して論じられ、発光素子と基板表面の光反射層との間に挟まれて使用される接着剤などにおいて、その反射率が議論されることは少なかった。   Conventionally, in an optical device or the like, a light emitting element is usually bonded to an underlying substrate or the like with an adhesive or a film thereof. In order to effectively utilize the light emitted from the light emitting element, a light reflecting layer (for example, a white film, a white coating film, a silver film, a silver coating film, etc.) is disposed in the vicinity of the light emitting element and reflected. The improvement of the nature is aimed at. As described above, in the light emitting device, the adhesiveness and the reflective property are discussed separately separately from each other functionally. In the adhesive used between the light emitting element and the light reflecting layer on the substrate surface, The reflectivity was rarely discussed.

発光ダイオードを参照して一例を示すと、特許文献1は、図1に示すような発光ダイオード100を記載している。マウントリード(リード電極)105のカップ底面上に、ダイボンド樹脂103を介してLEDチップ102が接合されており、また、LEDチップ102は、光利用効率の優れた発光ダイオードを提供するため、フェノール誘導体エポキシ樹脂が10%未満のエポキシ樹脂からなる透光性の樹脂101で封止されている。また、LEDチップ102は、ワイヤ104を介してリード電極105及び106と電気的に接続されている。ここで、マウントリード105のカップ部分は、表面を銀めっきされた鉄入り銅からなり、また、ダイボンド樹脂103は、無色透明なエポキシ樹脂組成物からなる。   As an example with reference to a light emitting diode, Patent Document 1 describes a light emitting diode 100 as shown in FIG. An LED chip 102 is joined to the bottom surface of the cup of the mount lead (lead electrode) 105 via a die bond resin 103. The LED chip 102 is a phenol derivative in order to provide a light-emitting diode with excellent light utilization efficiency. The epoxy resin is sealed with a translucent resin 101 made of an epoxy resin of less than 10%. Further, the LED chip 102 is electrically connected to the lead electrodes 105 and 106 through the wire 104. Here, the cup portion of the mount lead 105 is made of iron-containing copper whose surface is silver-plated, and the die bond resin 103 is made of a colorless and transparent epoxy resin composition.

また、特許文献2には、発光素子をマウントする基体接合材として、銀ペーストの銀パウダーの代わりにアルミパウダーが混入されたアルミペーストが用いられた、発光ダイオードが記載されている。   Patent Document 2 describes a light emitting diode in which an aluminum paste mixed with aluminum powder is used as a substrate bonding material for mounting a light emitting element instead of silver powder of silver paste.

特開2000−196151号公報JP 2000-196151 A 特開2003−69082号公報JP 2003-69082 A

特許文献1に記載されるように、従来、発光装置においては、発光素子と基板との接合のための透明なエポキシ樹脂からなる層と、基板表面上に施される銀めっきのような、発光素子から放出される光を反射するための光反射層との2つの層を設けることが必要であった。   As described in Patent Document 1, conventionally, in a light emitting device, a layer made of a transparent epoxy resin for joining a light emitting element and a substrate, and light emission such as silver plating applied on the substrate surface It was necessary to provide two layers, a light reflecting layer for reflecting light emitted from the device.

又、基板の銀めっきは、発光素子を使用し続けると100〜150℃に加熱されるため、銀の酸化が進行して黒色に変色する。その結果、発光素子を長時間使用すると、発光素子から放出される光の反射量が減少するとの問題点を有していた。   Moreover, since silver plating of a board | substrate will be heated to 100-150 degreeC if it continues using a light emitting element, oxidation of silver will advance and it will change to black. As a result, when the light emitting device is used for a long time, there is a problem that the amount of reflection of light emitted from the light emitting device is reduced.

同様に特許文献2における銀やアルミペーストを用いて、発光素子をマウントする場合においても、発光素子の使用が長くなると、これらペーストに含まれる銀やアルミパウダーが酸化して、光の反射量(率)が減少するとの問題点を有していた。   Similarly, in the case where a light emitting element is mounted using silver or aluminum paste in Patent Document 2, when the use of the light emitting element is prolonged, silver or aluminum powder contained in these pastes is oxidized, and the amount of reflected light ( Rate) was reduced.

本発明は、少なくとも可視波長領域で高い光反射率、並びに優れた熱的安定性及び光学的安定性を有し、また接着強度にも優れた光反射性樹脂組成物を提供することを目的とする。   An object of the present invention is to provide a light-reflective resin composition having high light reflectivity at least in the visible wavelength region, excellent thermal stability and optical stability, and excellent adhesive strength. To do.

本発明は、その1つの面において、炭素−炭素二重結合を有しないエポキシ樹脂、エポキシ樹脂100重量部を基準にして40〜400重量部の酸化チタン、及び硬化剤を含む、光反射性樹脂組成物にある。   In one aspect of the present invention, a light-reflective resin comprising an epoxy resin having no carbon-carbon double bond, 40 to 400 parts by weight of titanium oxide based on 100 parts by weight of the epoxy resin, and a curing agent. In the composition.

また、本発明は、そのもう1つの面において、基板と発光素子とを有し、基板と発光素子とが上記樹脂組成物を介して接合されている、発光装置にある。   Another aspect of the present invention is a light-emitting device that includes a substrate and a light-emitting element, and the substrate and the light-emitting element are bonded to each other through the resin composition.

また、本発明は、そのもう1つの面において、基板と、基板表面に設けられた上記樹脂組成物からなる光反射層と、発光素子とを有し、基板と発光素子とが光反射層を介して接合されている、発光装置にある。   In another aspect, the present invention includes a substrate, a light reflecting layer made of the resin composition provided on the substrate surface, and a light emitting element, and the substrate and the light emitting element have the light reflecting layer. In the light emitting device, which are joined together.

さらに、本発明は、そのもう1つの面において、上記樹脂組成物を用いて接合又はシールされた部材を含む、光学表示装置にある。   Furthermore, the present invention, in another aspect thereof, is an optical display device including a member bonded or sealed using the resin composition.

本発明によれば、以下の詳細な説明から理解されるように、高い光反射率、並びに優れた熱的安定性及び光学的安定性を有し、また接着強度にも優れた光反射性樹脂組成物を提供することができる。すなわち、本発明においては、酸化チタンで発光素子等からの光を反射することとし、特定量の当該酸化チタンを炭素−炭素不飽和結合を有しないエポキシ樹脂と組み合わせて樹脂組成物とすることにより、少なくとも可視波長領域ですぐれた光反射性と接着性との両機能を備えた樹脂組成物とすることが可能となる。   According to the present invention, as will be understood from the following detailed description, a light-reflective resin having high light reflectivity, excellent thermal stability and optical stability, and excellent adhesive strength. A composition can be provided. That is, in the present invention, titanium oxide reflects light from a light emitting element or the like, and a specific amount of the titanium oxide is combined with an epoxy resin having no carbon-carbon unsaturated bond to form a resin composition. Thus, it is possible to obtain a resin composition having both functions of light reflectivity and adhesiveness, which are excellent at least in the visible wavelength region.

本発明の光反射性樹脂組成物は、上記のような優れた特性を利用して、光学装置におけるいろいろな用途で有利に用いられる。例えば、本発明の樹脂組成物は、発光ダイオードなどの発光素子を、発光装置の下地基板などに接合する接合材として利用することができる。従来、先に説明したように、発光素子(LEDチップ等)固定用の接着には、透明のエポキシ樹脂が用いられている。かかる透明接着剤を使用した場合、発光素子の発光効率は、その接着剤における透明性の劣化度合いに加えて、光を反射する下地基板の平滑性、基板の劣化の度合いといったいろいろなファクタの影響を受ける。これに対して、本発明の樹脂組成物を接合材として使用して、発光素子を基板に固定すると、発光素子から放出される光の大半は、発光素子と基板との間に形成される本発明の樹脂組成物からなる層で反射されるので、下地基板の影響を受けることがなく、光を有効利用できるという効果がある。   The light-reflective resin composition of the present invention is advantageously used in various applications in an optical device by utilizing the excellent characteristics as described above. For example, the resin composition of the present invention can be used as a bonding material for bonding a light emitting element such as a light emitting diode to a base substrate of a light emitting device. Conventionally, as described above, a transparent epoxy resin is used for adhesion for fixing a light emitting element (LED chip or the like). When such a transparent adhesive is used, the luminous efficiency of the light emitting element is affected by various factors such as the smoothness of the base substrate that reflects light and the degree of deterioration of the substrate in addition to the degree of deterioration of transparency in the adhesive. Receive. In contrast, when the light emitting element is fixed to the substrate using the resin composition of the present invention as a bonding material, most of the light emitted from the light emitting element is formed between the light emitting element and the substrate. Since the light is reflected by the layer made of the resin composition of the invention, there is an effect that light can be effectively used without being influenced by the base substrate.

また、本発明の樹脂組成物は、その高い反射率に由来する良好な遮光性を利用して、液晶表示パネルなどの光学的画像表示装置の外周部材間の接合に、例えば遮光シール材として、利用することができる。本発明の樹脂組成物を用いることによって、外部の光が装置内に入り込むことや、装置内部の光が外部へ漏れるのを効果的に防止することができる。   In addition, the resin composition of the present invention utilizes a good light shielding property derived from its high reflectance, and for example, as a light shielding seal material for bonding between outer peripheral members of an optical image display device such as a liquid crystal display panel. Can be used. By using the resin composition of the present invention, it is possible to effectively prevent external light from entering the apparatus and light inside the apparatus from leaking to the outside.

引き続いて、本発明をその好ましい実施の形態について、添付の図面を参照しながら説明する。なお、本発明は、下記の実施の形態に限定されないことはもちろんである。   Subsequently, the present invention will be described with respect to preferred embodiments thereof with reference to the accompanying drawings. Needless to say, the present invention is not limited to the following embodiments.

本発明による樹脂組成物は、
(1)炭素−炭素不飽和結合を有しないエポキシ樹脂、
(2)該エポキシ樹脂100重量部を基準にして40〜400重量部の酸化チタン、及び
(3)硬化剤を含んでいる。
The resin composition according to the present invention is:
(1) an epoxy resin having no carbon-carbon unsaturated bond,
(2) 40 to 400 parts by weight of titanium oxide based on 100 parts by weight of the epoxy resin, and (3) a curing agent.

本発明で使用される炭素−炭素不飽和結合を有しないエポキシ樹脂は、樹脂組成物中において主剤として使用される。「炭素−炭素不飽和結合」とは、「C=C」又は「C≡C」を指し、本発明においては、エポキシ樹脂中における直鎖状部分、環状部分、置換基等のいずれにも、炭素−炭素不飽和結合が存在しない。   The epoxy resin having no carbon-carbon unsaturated bond used in the present invention is used as a main agent in the resin composition. “Carbon-carbon unsaturated bond” refers to “C═C” or “C≡C”. In the present invention, any of a linear part, a cyclic part, a substituent, etc. in an epoxy resin, There are no carbon-carbon unsaturated bonds.

かかるエポキシ樹脂として、本発明においては、脂環式エポキシ樹脂、水素添加型エポキシ樹脂を使用することが好適である。本発明においては、脂環式エポキシ樹脂がとりわけ有用である。その理由は、脂環式エポキシ樹脂は、その硬化後の硬化物のガラス転位点が比較的高く、ガラス転位点が高いものを選択すれば、これにより高温使用下での接着力が確保しやすいことにある。又、これらのエポキシ樹脂は、単独で使用してもよく、2種類以上のエポキシ樹脂を組み合わせて使用してもよい。ここで、脂環式エポキシ樹脂又は水素添加型エポキシ樹脂といえども、工業的レベルで製造される市販品においては、炭素−炭素不飽和結合が全く含まれないものを入手することは難しく、実際上は、若干の炭素−炭素不飽和結合が含まれるものを使用せざるを得ない。したがって、本発明においては、脂環式エポキシ樹脂にあっては、ヨウ素価が0以上で2以下の値(ASTM 1959-97に規定するウィイス法による測定値)を示すもの、水素添加型エポキシ樹脂にあっては、水素添加されず炭素−炭素不飽和結合が樹脂中に残存している構造体(不純物)の量が、1000ppm以下の値(ガスクロマトグラフ質量分析装置を用いた測定値)であるものを、「炭素−炭素不飽和結合を有しないエポキシ樹脂」と定義する。すなわち、「ヨウ素価が0以上で2以下の脂環式エポキシ樹脂」及び「炭素−炭素不飽和結合が樹脂中に残存している構造体(不純物)の量が1000ppm以下である水素添加型エポキシ樹脂」は、本発明の「炭素−炭素不飽和結合を有しないエポキシ樹脂」として使用可能である。   In the present invention, it is preferable to use an alicyclic epoxy resin or a hydrogenated epoxy resin as the epoxy resin. In the present invention, alicyclic epoxy resins are particularly useful. The reason for this is that if an alicyclic epoxy resin has a relatively high glass transition point after curing and a resin having a high glass transition point is selected, it is easy to ensure adhesion under high temperature use. There is. Moreover, these epoxy resins may be used independently and may be used in combination of 2 or more types of epoxy resins. Here, even though it is an alicyclic epoxy resin or a hydrogenated epoxy resin, it is difficult to obtain a commercially available product that does not contain any carbon-carbon unsaturated bonds in the commercial level. In the above, the one containing some carbon-carbon unsaturated bonds must be used. Accordingly, in the present invention, the alicyclic epoxy resin has an iodine value of 0 or more and 2 or less (measured value according to the Wies method specified in ASTM 1959-97), a hydrogenated epoxy resin. In this case, the amount of the structure (impurity) in which the carbon-carbon unsaturated bond remains in the resin without being hydrogenated is a value of 1000 ppm or less (measured value using a gas chromatograph mass spectrometer). Are defined as "epoxy resins having no carbon-carbon unsaturated bonds". That is, “an alicyclic epoxy resin having an iodine value of 0 or more and 2 or less” and “hydrogenated epoxy having an amount of a structure (impurity) in which a carbon-carbon unsaturated bond remains in the resin is 1000 ppm or less The “resin” can be used as the “epoxy resin having no carbon-carbon unsaturated bond” in the present invention.

具体的には、脂環式エポキシ樹脂としては、例えば、3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレート(商品名「C2021」、ダイセル化学社)、1,4−シクロヘキサンジメタノールジグリシジルエーテル(商品名「DME−100」、新日本理化社)が、水素添加型エポキシ樹脂としては、水素添加型ビスフェノールA型エポキシ樹脂(商品名「YX−8000」、ジャパンエポキシレジン社)が商業的に入手可能である。   Specifically, as the alicyclic epoxy resin, for example, 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexenecarboxylate (trade name “C2021”, Daicel Chemical Industries), 1,4- Cyclohexane dimethanol diglycidyl ether (trade name “DME-100”, Shin Nippon Rika Co., Ltd.) is the hydrogenated epoxy resin. Hydrogenated bisphenol A type epoxy resin (trade name “YX-8000”, Japan Epoxy Resin) Are commercially available.

本発明で使用されるエポキシ樹脂は、優れた耐熱性を有しており、通常、約25℃よりも高い温度において安定(分解しない)であり、反射率の低下、変形や接着強度の低下などを生じることがない。   The epoxy resin used in the present invention has excellent heat resistance, and is usually stable (does not decompose) at a temperature higher than about 25 ° C., resulting in a decrease in reflectivity, a deformation or a decrease in adhesive strength, etc. Will not occur.

また、本発明で使用されるエポキシ樹脂は、耐熱性(特に変色)に加えて、耐候性(耐光性)にも優れている。すなわち、このエポキシ樹脂は、約100日間もしくはそれ以上の長期間にわたって過酷な発光条件や気候条件にさらされても、反射率の低下、黄変又はその他の変化を生じることがなく、変形や接着強度の低下などを生じることもない。   Moreover, the epoxy resin used in the present invention is excellent in weather resistance (light resistance) in addition to heat resistance (particularly discoloration). That is, this epoxy resin does not cause a decrease in reflectance, yellowing or other changes even when exposed to severe light emission conditions or climatic conditions for a long period of time of about 100 days or longer, and it does not cause deformation or adhesion. There is no reduction in strength.

なお、本発明で使用されるエポキシ樹脂における上記特性は、エポキシ樹脂のガラス転移温度(Tg)に関連すると考えられる。つまり、上記特性を満たすためには、かかるエポキシ樹脂のガラス転移温度が、約80〜200℃の範囲であることが好ましく、より好ましくは、約120〜180℃の範囲である。また、ガラス転移温度が80℃を下回ると、熱間接着強さが不十分になり、装置稼動中に被着体の脱落を生じることとなり、反対に200℃を上回ると、一般に樹脂が脆化し、衝撃強さが不十分となる場合もある。   In addition, it is thought that the said characteristic in the epoxy resin used by this invention is related to the glass transition temperature (Tg) of an epoxy resin. That is, in order to satisfy the above characteristics, the glass transition temperature of such an epoxy resin is preferably in the range of about 80 to 200 ° C, more preferably in the range of about 120 to 180 ° C. Further, when the glass transition temperature is lower than 80 ° C, the hot adhesive strength is insufficient, and the adherend is detached during operation of the apparatus. Conversely, when the glass transition temperature is higher than 200 ° C, the resin generally becomes brittle. In some cases, the impact strength is insufficient.

なお、従来、エポキシ系樹脂接着剤としては、一般に芳香族型エポキシ樹脂、例えばビスフェノールA型エポキシ樹脂(DGEBA)、ビスフェノールF型エポキシ樹脂(DGEBF)を主成分とした樹脂が使用されている。しかしながら、これらの樹脂は、ベンゼン環を主骨格に有しているため、時間の経過とともにベンゼン環の二重結合が開裂し樹脂の変色が生じる。また、このような芳香族エポキシ樹脂を使用した樹脂組成物に対して反射率に優れたフィラーを配合しても、樹脂自身の経時的な変色(黄変)により、光反射率が著しく低下してしまう。   Conventionally, as an epoxy resin adhesive, an aromatic epoxy resin, for example, a resin mainly composed of bisphenol A type epoxy resin (DGEBA) or bisphenol F type epoxy resin (DGEBF) is used. However, since these resins have a benzene ring in the main skeleton, the double bond of the benzene ring is cleaved with the passage of time, resulting in a discoloration of the resin. Moreover, even when a filler having excellent reflectance is blended with a resin composition using such an aromatic epoxy resin, the light reflectance is remarkably lowered due to discoloration (yellowing) of the resin itself over time. End up.

本発明においては、かかるエポキシ樹脂に追加して、本発明の作用効果に悪影響が出ない範囲で、1種類もしくはそれ以上のエポキシ樹脂あるいはその他の樹脂を補助的に添加することができる。適当な追加の樹脂として、例えば、トリス(2,3−エポキシプロピル)イソシアヌレート(商品名「TEPIC」、日産化学社)などを挙げることができる。これらの追加の樹脂は、例えば靭性、ガラス転移温度の向上などに寄与することができる。   In the present invention, in addition to such an epoxy resin, one or more types of epoxy resins or other resins can be supplementarily added within the range where the effects of the present invention are not adversely affected. Examples of suitable additional resins include tris (2,3-epoxypropyl) isocyanurate (trade name “TEPIC”, Nissan Chemical Co., Ltd.). These additional resins can contribute, for example, to improved toughness and glass transition temperature.

本発明の樹脂組成物は、上記エポキシ樹脂に対して特定量の酸化チタンを含んでいる。酸化チタンは、樹脂組成物に分散して存在しており、好ましくは、ほぼ均一に分散した状態となっている。   The resin composition of the present invention contains a specific amount of titanium oxide with respect to the epoxy resin. Titanium oxide is present dispersed in the resin composition, and is preferably in a substantially uniformly dispersed state.

なお、酸化チタンは白色フィラーとして知られており、酸化チタン以外にも、酸化アルミニウム、硫酸バリウム等がある。本発明においては、可視光領域における光反射に優れているという観点からこのような白色フィラーのなかでも、酸化チタンが使用される。また、酸化チタンにはルチル型とアナターゼ型とがあるが、とりわけアナターゼ型酸化チタンが好適である。アナターゼ型酸化チタンは、ルチル型に比べて可視波長全領域で優れた反射性を有しており、高温経時後にもそれらの特性を維持することができる。   Titanium oxide is known as a white filler, and there are aluminum oxide, barium sulfate and the like in addition to titanium oxide. In the present invention, titanium oxide is used among such white fillers from the viewpoint of excellent light reflection in the visible light region. Titanium oxide includes rutile type and anatase type, and anatase type titanium oxide is particularly preferable. Anatase-type titanium oxide has excellent reflectivity in the entire visible wavelength region as compared with the rutile type, and can maintain these characteristics even after aging at high temperatures.

酸化チタンとしては、いろいろな形態のものを使用することができるが、分散性や反射性などを考慮した場合、球形や楕円形の粉末、粒子などの形態で使用されることが好ましい。粉末や粒子の直径は、広い範囲で変更することができるというものの、通常、約0.1〜20μmの範囲であり、好ましくは約0.2〜5μmの範囲である。また、粉末や粒子の直径は、反射性の改良のため、バラツキを抑えて、ほぼ一定であることが好ましい。   Titanium oxide can be used in various forms, but in consideration of dispersibility, reflectivity, etc., it is preferably used in the form of a spherical or elliptical powder or particle. Although the diameter of the powder or particle can be changed in a wide range, it is usually in the range of about 0.1 to 20 μm, and preferably in the range of about 0.2 to 5 μm. Moreover, it is preferable that the diameter of a powder or particle | grain is substantially constant, suppressing variation, for the improvement of reflectivity.

本発明の樹脂組成物において、酸化チタンは、エポキシ樹脂100重量部を基準にして40〜400重量部の範囲で使用され、好ましくは、100〜360重量部の範囲である。酸化チタンの配合量が40重量部を下回ると、得られる樹脂組成物において十分な反射率を確保できなくなり、反対に400重量部を上回ると、樹脂組成物の粘度が高くなり、良好な塗工性を確保できなくなる。   In the resin composition of the present invention, titanium oxide is used in the range of 40 to 400 parts by weight, preferably 100 to 360 parts by weight, based on 100 parts by weight of the epoxy resin. When the blending amount of titanium oxide is less than 40 parts by weight, sufficient reflectance cannot be secured in the obtained resin composition. Conversely, when the blending amount exceeds 400 parts by weight, the viscosity of the resin composition becomes high and good coating is achieved. It becomes impossible to secure the sex.

また、本発明の樹脂組成物は、上記の酸化チタンに追加して、適当量のフィラーを沈降防止材として含有してもよい。適当な沈降防止性フィラーとして、例えば、微細化シリカなどを挙げることができる。沈降防止性フィラーの配合量は、良好な塗布性確保の観点から、エポキシ樹脂100重量部を基準にして、約0.2〜10重量部の範囲が好ましい。   Further, the resin composition of the present invention may contain an appropriate amount of filler as an anti-settling material in addition to the above titanium oxide. Examples of suitable anti-settling fillers include refined silica. The blending amount of the anti-settling filler is preferably in the range of about 0.2 to 10 parts by weight based on 100 parts by weight of the epoxy resin from the viewpoint of ensuring good coating properties.

本発明の樹脂組成物は、エポキシ樹脂及び酸化チタンに加えて、硬化剤をさらに含む。かかる硬化剤は、エポキシ樹脂のエポキシ基の硬化に用いられる。本発明で使用可能な硬化剤としては、カチオン系硬化剤、アミン系硬化剤、イミダゾール系硬化剤、炭素−炭素不飽和結合を有しない硬化剤、又はこれらの組み合わせが挙げられる。これらのなかでも、炭素−炭素不飽和結合を有しない硬化剤を用いることが好ましい。なお、本発明において、「炭素−炭素不飽和結合を有しない硬化剤」とは、ヨウ素価が0以上で2以下の値(ASTM 1959-97に規定するウィイス法による測定値)を示すものを指す。   The resin composition of the present invention further includes a curing agent in addition to the epoxy resin and titanium oxide. Such a curing agent is used for curing an epoxy group of an epoxy resin. Examples of the curing agent that can be used in the present invention include a cationic curing agent, an amine curing agent, an imidazole curing agent, a curing agent having no carbon-carbon unsaturated bond, or a combination thereof. Among these, it is preferable to use a curing agent having no carbon-carbon unsaturated bond. In the present invention, the “curing agent having no carbon-carbon unsaturated bond” refers to one having an iodine value of 0 or more and 2 or less (measured value according to the Wies method specified in ASTM 1959-97). Point to.

「炭素−炭素不飽和結合を有しない硬化剤」は、酸無水物であることが好ましい。酸無水物としては、4−メチルヘキサヒドロ無水フタル酸又はそれを含むものを挙げることができる。酸無水物は、単独で使用してもよく、2種類以上の硬化剤を組み合わせて使用してもよい。   The “curing agent having no carbon-carbon unsaturated bond” is preferably an acid anhydride. Examples of the acid anhydride include 4-methylhexahydrophthalic anhydride and those containing it. An acid anhydride may be used independently and may be used in combination of 2 or more types of hardening | curing agents.

硬化剤は、通常、樹脂組成物のガラス転移温度(貯蔵安定性)の観点から、エポキシ樹脂100重量部を基準にして20〜160重量部の範囲が好ましい。   In general, the curing agent is preferably in the range of 20 to 160 parts by weight based on 100 parts by weight of the epoxy resin from the viewpoint of the glass transition temperature (storage stability) of the resin composition.

また、本発明においては、使用する硬化剤の種類に応じて、硬化触媒を併用することも可能である。硬化触媒は、硬化温度を低く抑えるのに有効であるので、硬化剤のみを硬化系として使用すると硬化温度が高くなってしまうような場合には、好適に使用される。硬化触媒としては、具体的に、アミン系硬化触媒、カチオン系硬化触媒などを使用することができる。これらの硬化触媒は、単独で使用してもよく、2種類以上の硬化触媒を組み合わせて使用してもよい。特に、アミン系硬化触媒は、長期間にわたって使用したあとでも反射率の低下が見られないという点で、好ましい。これらの硬化触媒は、樹脂組成物の硬化耐熱性・耐候性、及び硬化性(例えば、150℃)の観点から、通常、エポキシ樹脂100重量部を基準にして1〜15重量部の範囲が好ましく、さらに好ましくは、3〜7重量部の範囲である。   In the present invention, a curing catalyst can be used in combination depending on the type of curing agent to be used. Since the curing catalyst is effective for keeping the curing temperature low, it is preferably used when the curing temperature becomes high when only the curing agent is used as the curing system. As the curing catalyst, specifically, an amine curing catalyst, a cationic curing catalyst, or the like can be used. These curing catalysts may be used alone or in combination of two or more kinds of curing catalysts. In particular, an amine-based curing catalyst is preferable in that a decrease in reflectance is not observed even after use over a long period of time. These curing catalysts are usually preferably in the range of 1 to 15 parts by weight based on 100 parts by weight of the epoxy resin, from the viewpoint of curing heat resistance / weather resistance and curability (for example, 150 ° C.) of the resin composition. More preferably, it is in the range of 3 to 7 parts by weight.

本発明の樹脂組成物は、必要に応じて、添加剤を任意に含有することができる。適当な添加剤として、例えば、シランカップリング剤(接着向上剤)、ガンマ−グリシドキシプロピルトリメトキシシラン(商品名「A−187」、日本ユニカー社)などを挙げることができる。   The resin composition of this invention can contain an additive arbitrarily as needed. Examples of suitable additives include silane coupling agents (adhesion improvers), gamma-glycidoxypropyltrimethoxysilane (trade name “A-187”, Nihon Unicar).

また、本発明の樹脂組成物は、いろいろな形態で使用することができる。一般的には、ペーストの形態で使用して、使用時に容器から取出し、接合個所に塗布したり、ポッティングしたりすることができる。ペーストの塗布には、例えば、バーコート法などを使用することができる。   The resin composition of the present invention can be used in various forms. In general, it can be used in the form of a paste, taken out from the container at the time of use, and applied to a joint or potted. For example, a bar coating method can be used for applying the paste.

また、本発明の樹脂組成物をシート状の成形物として使用することもできる。シート状にすることで、取扱い性などを改良することができる。シートの厚さは、使用目的や使用個所などのファクターに応じて変更することができるが、通常、50〜200μmであり、好ましくは、80〜120μmである。シートの成形は、例えばカレンダー成形法などを使用することができる。なお、得られたシート状の樹脂組成物に、この技術分野で一般的に実施されているように、例えばシリコーン処理紙のような剥離紙(リリースシート)を積層してもよい。さらに、得られたシート状の樹脂組成物をロールに巻き取り、保管あるいは運搬してもよい。   The resin composition of the present invention can also be used as a sheet-like molded product. By making it into a sheet shape, the handleability and the like can be improved. Although the thickness of a sheet | seat can be changed according to factors, such as a use purpose and a use place, Usually, it is 50-200 micrometers, Preferably, it is 80-120 micrometers. For forming the sheet, for example, a calendar forming method or the like can be used. In addition, you may laminate | stack release paper (release sheet) like a silicone processing paper, for example, as generally implemented in this technical field to the obtained sheet-like resin composition. Furthermore, the obtained sheet-shaped resin composition may be wound around a roll and stored or transported.

本発明の樹脂組成物は、約25〜270℃の温度において安定であり、いろいろな分野、特に光学発光装置の分野で接合目的に使用することができる。典型的には、図2に説明されるような、発光素子の接合材としての使用である。発光素子は、例えばLEDチップなどであるが、これらのものに限定されることはない。   The resin composition of the present invention is stable at a temperature of about 25 to 270 ° C., and can be used for bonding purposes in various fields, particularly in the field of optical light emitting devices. Typically, it is used as a bonding material of a light emitting element as illustrated in FIG. The light emitting element is, for example, an LED chip, but is not limited to these.

図2は、本発明の光反射性樹脂組成物をシート状の接合材1として使用した例である。接合材1の内部には、光反射性をもった酸化チタン2が含まれている。酸化チタン2は、ほぼ均一な状態で接合材1に分散している。接合材1は、発光素子4を基板3に接合し、固定することができる。発光素子4の周囲は、封止樹脂5で覆われている。例えば、発光装置10が発光ダイオードである場合、発光素子4はLEDチップである。図示の発光装置10では、接合材1が高い反射率を備えているので、発光素子4からの光は、光路Lに示すように直接的に発光素子4から放出される他に、接合材1に向かった光が、光路Lに示すように、接合材1の表面で反射されたり、図示しないが、接合材1内の酸化チタン2に衝突した後に反射されたりすることが可能となる。このようにして、本発明に従うと、発光素子4からの光のエネルギーを有効的に利用することができる。 FIG. 2 shows an example in which the light-reflective resin composition of the present invention is used as a sheet-like bonding material 1. The bonding material 1 includes titanium oxide 2 having light reflectivity. The titanium oxide 2 is dispersed in the bonding material 1 in a substantially uniform state. The bonding material 1 can bond and fix the light emitting element 4 to the substrate 3. The periphery of the light emitting element 4 is covered with a sealing resin 5. For example, when the light emitting device 10 is a light emitting diode, the light emitting element 4 is an LED chip. In the illustrated light emitting device 10, since the bonding material 1 has a high reflectance, the light from the light emitting element 4 is emitted directly from the light emitting element 4 as indicated by the optical path L 1. The light directed to 1 can be reflected on the surface of the bonding material 1 as shown in the optical path L 2 , or can be reflected after colliding with the titanium oxide 2 in the bonding material 1 (not shown). . Thus, according to the present invention, the energy of light from the light emitting element 4 can be used effectively.

ここで、本発明の樹脂組成物をLEDチップ等の発光素子の接合材として使用する場合、発光素子に対して耐衝撃性を付与するため、発光素子を基板等の下地に一定以上の接着強度で固定する必要がある。この場合、樹脂組成物のせん断接着強度は、1MPa以上であることが好ましい。   Here, when the resin composition of the present invention is used as a bonding material for a light emitting element such as an LED chip, in order to impart impact resistance to the light emitting element, the light emitting element is bonded to a base such as a substrate at a certain level or more. It is necessary to fix with. In this case, the shear adhesive strength of the resin composition is preferably 1 MPa or more.

また、本発明の光反射性樹脂組成物をLEDチップ等の発光素子の接合材として用いた場合、初期反射率が、全可視波長域(400nm〜760nm;JIS Z8120等)の少なくとも短波長域(近紫外線側;例えば400、460nm)で80%以上、好ましくは90%以上であり、又、所定時間加熱後の反射率が50%以上であることが好ましい。ここで、可視光域の反射特性について述べると、短波長光は、短波長になればなる程、長波長光に比べより、被射体に吸収されやすく、その結果、反射率が小さくなる傾向を有する。よって、全可視光の反射率を評価する場合、簡便に短波長光における反射率の値により行うことができる。例えば、短波長光400nmで、初期反射率が80%以上、好ましくは90%以上であるということは、全可視光域で反射率が80%以上、好ましくは90%以上であることを意味し、その反射光は、白色光に極めて近いものと評価できる。一方、短波長光400nmで80%以上、好ましくは90%以下であっても、短波長光460nmで80%以上、好ましくは90%以上であれば、その反射光は、460nm以上の波長域で、その反射が全て80%以上、好ましくは90%以上確保できることになるから、可視光の反射の使用可能効率としては、実用上問題ない反射光として評価できる。   When the light-reflective resin composition of the present invention is used as a bonding material for light-emitting elements such as LED chips, the initial reflectance is at least a short wavelength region (400 nm to 760 nm; JIS Z8120, etc.). In the near ultraviolet side (for example, 400, 460 nm), it is 80% or more, preferably 90% or more, and the reflectance after heating for a predetermined time is preferably 50% or more. Here, when describing the reflection characteristics in the visible light region, the shorter the wavelength, the shorter the wavelength, the easier it is to be absorbed by the subject than the long wavelength light, and as a result, the reflectance tends to decrease. Have Therefore, when evaluating the reflectance of all visible light, it can be simply performed by the reflectance value of short wavelength light. For example, when the short wavelength light is 400 nm, the initial reflectance is 80% or more, preferably 90% or more, which means that the reflectance is 80% or more, preferably 90% or more in the entire visible light region. The reflected light can be evaluated as being very close to white light. On the other hand, even if the short wavelength light is 400 nm, it is 80% or more, preferably 90% or less, but if the short wavelength light is 460 nm, it is 80% or more, preferably 90% or more, the reflected light is in the wavelength range of 460 nm or more. Since all the reflections can be secured at 80% or more, preferably 90% or more, the usable efficiency of reflection of visible light can be evaluated as reflected light having no practical problem.

また、本発明の光反射性樹脂組成物は、接合材としての使用の他に、図3に拡大して示すように、発光装置20における基板13の光反射層11としても利用することができる。この場合、基板上に、まず、光反射性樹脂組成物の光反射層11が設けられ、この光反射層11上にLEDチップ等の発光素子14が配置され、固定される。この場合、図3において示されるように、光反射層11と発光素子14との接合部の周辺部まで光反射層11が存在することになる。従来の技術では、先に説明したように基板に銀めっきを施したり、白色あるいは銀色のフィルム又は塗膜を配置することで、基板13の反射性を向上させていた。しかしながら、本発明によれば、樹脂組成物の塗膜もしくはシートにこの反射機能を付与することができる。発光装置20において、図示しないが、発光素子4からの光は、発光素子4と接合する光反射層11表面、発光素子4と接合していない光反射層11表面で反射されたり、光反射層11内の酸化チタン2に衝突した後に反射されることになる。基板13に光反射層11によって接合されている発光素子14は、ワイヤ16を有し、封止樹脂15で封止されている。   In addition to the use as a bonding material, the light reflective resin composition of the present invention can also be used as the light reflective layer 11 of the substrate 13 in the light emitting device 20, as shown in an enlarged view in FIG. . In this case, first, the light reflecting layer 11 of the light reflecting resin composition is provided on the substrate, and the light emitting element 14 such as an LED chip is disposed and fixed on the light reflecting layer 11. In this case, as shown in FIG. 3, the light reflection layer 11 exists up to the periphery of the joint portion between the light reflection layer 11 and the light emitting element 14. In the prior art, as described above, the substrate 13 is subjected to silver plating, or a white or silver film or coating film is disposed to improve the reflectivity of the substrate 13. However, according to the present invention, this reflection function can be imparted to the coating film or sheet of the resin composition. In the light emitting device 20, although not shown, light from the light emitting element 4 is reflected on the surface of the light reflecting layer 11 bonded to the light emitting element 4 or on the surface of the light reflecting layer 11 not bonded to the light emitting element 4. It will be reflected after colliding with the titanium oxide 2 in 11. The light emitting element 14 bonded to the substrate 13 by the light reflecting layer 11 has a wire 16 and is sealed with a sealing resin 15.

本発明の樹脂組成物は、上記以外の用途にも使用することができる。本発明の樹脂組成物は、高い反射率、換言すると、優れた遮光性を有しているので、例えば液晶表示パネル、プラズマディスプレイパネルなどの光学的表示装置において、それらの心臓部である情報表示部に対して不所望な外部の光が侵入するのを防止するために、または、装置内部の光が外部に漏れるのを防止するために、使用することができる。具体的には、光学表示装置において、その外枠部分はいろいろな部材から構成されるが、それらの構成部材を接合する部材を本発明の樹脂組成物を用いて接合又はシールすることで、良好な遮光性を得ることができる。   The resin composition of this invention can be used also for uses other than the above. Since the resin composition of the present invention has high reflectance, in other words, excellent light-shielding properties, for example, in an optical display device such as a liquid crystal display panel or a plasma display panel, the information display that is the heart of them. It can be used to prevent unwanted external light from entering the unit or to prevent light inside the apparatus from leaking outside. Specifically, in the optical display device, the outer frame portion is composed of various members, but it is good by joining or sealing the members for joining those constituent members using the resin composition of the present invention. Can be obtained.

図4は、遮光目的での使用の一例を、液晶表示パネル30を参照して説明したものである。液晶表示パネル30は、この技術分野で一般的な構造を示したもので、液晶28の上面及び下面が、それぞれ、配向膜26、透明電極25、ガラス基板23、そして偏光板24で覆われている。また、液晶28は、所定の厚さを確保するため、スペーサ27を備えており、その露出した両端は、本発明の光反射性樹脂組成物からなる遮光シール材21によって塞がれている。遮光シール材21は、その内部に酸化チタン22が分散しているので、外部から液晶内に入り込もうとする不所望な光を反射し、遮断することができ、また、装置内部の光が外部に漏れるのを防止することができる。よって、本発明の樹脂組成物で、液晶28、配向膜26、ガラス基板23が接合又はシールされた液晶表示パネルは、色調の低下や濁りが生じ難くなり、鮮明な画像を安定に表示することができる。   FIG. 4 illustrates an example of use for light shielding purposes with reference to the liquid crystal display panel 30. The liquid crystal display panel 30 shows a general structure in this technical field, and the upper and lower surfaces of the liquid crystal 28 are covered with an alignment film 26, a transparent electrode 25, a glass substrate 23, and a polarizing plate 24, respectively. Yes. In addition, the liquid crystal 28 includes a spacer 27 in order to ensure a predetermined thickness, and both exposed ends are closed by the light shielding seal material 21 made of the light reflective resin composition of the present invention. Since the light shielding seal material 21 has titanium oxide 22 dispersed therein, it can reflect and block undesired light entering the liquid crystal from the outside. Leakage can be prevented. Therefore, the liquid crystal display panel in which the liquid crystal 28, the alignment film 26, and the glass substrate 23 are bonded or sealed with the resin composition of the present invention is less likely to cause a decrease in color tone or turbidity, and stably displays a clear image. Can do.

以上の記載から理解できるように、本発明においては、基板と発光素子とを有し、基板と発光素子とが本発明の光反射性樹脂組成物を介して接合されている、発光装置が提供される。また、基板と、基板表面に設けられた本発明の光反射性樹脂組成物からなる光反射層と、発光素子とを有し、基板と発光素子とが光反射層を介して接合されている発光装置も提供される。そして、かかる発光装置の典型例が発光ダイオードであり、その発光素子がLEDチップである。   As can be understood from the above description, the present invention provides a light-emitting device that includes a substrate and a light-emitting element, and the substrate and the light-emitting element are bonded via the light-reflective resin composition of the present invention. Is done. Further, the substrate has a light reflecting layer made of the light reflecting resin composition of the present invention provided on the surface of the substrate, and a light emitting element, and the substrate and the light emitting element are bonded via the light reflecting layer. A light emitting device is also provided. A typical example of such a light emitting device is a light emitting diode, and the light emitting element is an LED chip.

また、本発明においては、本発明の光反射性樹脂組成物を用いて接合された部材を含む、光学表示装置が提供される。かかる光学表示装置においては、該樹脂組成物によって外部の光の装置内への侵入が阻止され、また装置内部の光が外部に漏れるのを防止できるため、光学的に鮮明な情報を安定的に表示することが可能となる。このような光学表示装置の典型例が、液晶表示パネルやプラズマディスプレイパネルである。なお、その他の光学表示装置の例としては、例えばSED(表面電界ディスプレイ)、有機ELデバイスなどを挙げることができる。   Moreover, in this invention, the optical display apparatus containing the member joined using the light reflection resin composition of this invention is provided. In such an optical display device, the resin composition prevents external light from entering the device and prevents light inside the device from leaking to the outside, so that optically clear information can be stably output. It is possible to display. Typical examples of such an optical display device are a liquid crystal display panel and a plasma display panel. Examples of other optical display devices include SED (surface electric field display) and organic EL devices.

引き続いて、本発明をその実施例を参照して説明する。なお、本発明は、これらの実施例によって限定されるものでないことは言うまでもない。   Subsequently, the present invention will be described with reference to examples thereof. Needless to say, the present invention is not limited to these examples.

下記の実施例、比較例及び参考例において、樹脂組成物を調製するために使用した原材料は、それぞれ、下記の表に記載したものである。   In the following Examples, Comparative Examples, and Reference Examples, the raw materials used for preparing the resin compositions are those described in the following table, respectively.

Figure 2008143981
Figure 2008143981

実施例1
下記の第1表に記載のように、100重量部の脂環式エポキシ樹脂(C2021;ヨウ素価:2以下)、100重量部の4−メチルヘキサヒドロ無水フタル酸(MH700)、4重量部の硬化触媒(FXR1020)、240重量部のアナターゼ型酸化チタン(A220)及び4重量部の沈降防止剤である微粉化シリカ(TS720)を同表に記載の量(重量部)で計量し、混合容器(容量0.1L)内でコンディショニングミキサーで攪拌混合した。得られた樹脂組成物のペーストを0.1mmの厚さでガラスプレート状に塗布し、150℃で1時間にわたって硬化させた。約0.1mmの厚さをもった樹脂組成物シートが得られた。
Example 1
As shown in Table 1 below, 100 parts by weight of an alicyclic epoxy resin (C2021; iodine value: 2 or less), 100 parts by weight of 4-methylhexahydrophthalic anhydride (MH700), 4 parts by weight A curing catalyst (FXR1020), 240 parts by weight of anatase-type titanium oxide (A220) and 4 parts by weight of pulverized silica (TS720) as an anti-settling agent were weighed in the amounts (parts by weight) shown in the same table, and a mixing container The mixture was agitated and mixed with a conditioning mixer in a volume of 0.1 L. The obtained paste of the resin composition was applied in a glass plate shape with a thickness of 0.1 mm and cured at 150 ° C. for 1 hour. A resin composition sheet having a thickness of about 0.1 mm was obtained.

実施例2〜8
前記実施例1に記載の手法を繰り返したが、本例では、原材料の種類及び配合量を下記の第1表に記載するように変更した。実施例1と同様な手法に従って混合、塗布及び硬化を行い、約0.1mmの厚さをもった樹脂組成物シートを得た。
Examples 2-8
Although the method described in Example 1 was repeated, in this example, the type and amount of raw materials were changed as described in Table 1 below. Mixing, coating and curing were performed in the same manner as in Example 1 to obtain a resin composition sheet having a thickness of about 0.1 mm.

比較例1〜4及び参考例1〜3
前記実施例1に記載の手法を繰り返したが、本例では、比較のため、原材料の種類及び配合量を下記の第1表に記載するように変更した。実施例1と同様な手法に従って混合、塗布及び硬化を行い、約0.1mmの厚さをもった樹脂組成物シートを得た。なお、参考例3では、白色フィラーを有しない例として、銀ペースト(商品名「ドータイトD−550」藤倉化成工業社)をそのまま使用した。また、比較例4で使用したアルミ粉は、東洋アルミニウム社製であり、その平均粒径は17μmであった。
Comparative Examples 1-4 and Reference Examples 1-3
Although the method described in Example 1 was repeated, in this example, the type and blending amount of raw materials were changed as shown in Table 1 below for comparison. Mixing, coating and curing were performed in the same manner as in Example 1 to obtain a resin composition sheet having a thickness of about 0.1 mm. In Reference Example 3, as an example having no white filler, a silver paste (trade name “Doutite D-550”, Fujikura Kasei Kogyo Co., Ltd.) was used as it was. Moreover, the aluminum powder used in Comparative Example 4 was manufactured by Toyo Aluminum Co., Ltd., and its average particle size was 17 μm.

Figure 2008143981
Figure 2008143981

Figure 2008143981
Figure 2008143981

試験例1
前記実施例1〜8、比較例1〜4及び参考例1〜3において調製した樹脂組成物シートを供試サンプルとして使用した。下記の手順に従って(1)せん断接着強さ(MPa)、(2)400nm及び460nmにおける初期反射率(%)、(3)400nm及び460nmにおける高温経時後の反射率(%)、及び(4)400nm及び460nmにおけるQUV試験による経時後の反射率(%)を測定した。
Test example 1
The resin composition sheets prepared in Examples 1 to 8, Comparative Examples 1 to 4, and Reference Examples 1 to 3 were used as test samples. According to the following procedure, (1) shear bond strength (MPa), (2) initial reflectivity (%) at 400 nm and 460 nm, (3) reflectivity (%) after high temperature aging at 400 nm and 460 nm, and (4) The reflectance (%) after aging was measured by the QUV test at 400 nm and 460 nm.

(1)せん断接着強さ(MPa)
JIS 6850に従ってせん断接着強さ試験(OLSS)を実施した。この試験で使用した試験片はアルミ5052、表面脱脂方法はメチルエチルケトン(MEK)脱脂、接着剤硬化条件は150℃で1時間、そして引張速度は5mm/分であった。せん断接着強さが3MPa以上であれば、接合材として用いた際に充分な接合強度が得られるので、せん断接着強さが3MPa以上の場合を「良」として評価した。結果を下記の第2表に示す。
(1) Shear bond strength (MPa)
A shear bond strength test (OLSS) was performed according to JIS 6850. The test piece used in this test was aluminum 5052, the surface degreasing method was methyl ethyl ketone (MEK) degreasing, the adhesive curing condition was 150 ° C. for 1 hour, and the tensile speed was 5 mm / min. If the shear bond strength is 3 MPa or more, sufficient bond strength can be obtained when used as a bonding material. Therefore, the case where the shear bond strength was 3 MPa or more was evaluated as “good”. The results are shown in Table 2 below.

(2)初期反射率(%)
以下に記載した方法に従って初期反射率の測定を実施した。ガラスプレート上で調製された厚さ0.1mmの樹脂組成物シートをサンプルとしてそのまま使用し、そして測定機器としては、スペクトロフォトメーターU−4100(日立社製)を用いた。なお、反射率の測定は、2種類の波長(400nm及び460nm)の光について実施した。下記の第2表に記載する測定結果が得られた。
(2) Initial reflectance (%)
The initial reflectance was measured according to the method described below. A resin composition sheet having a thickness of 0.1 mm prepared on a glass plate was directly used as a sample, and a spectrophotometer U-4100 (manufactured by Hitachi, Ltd.) was used as a measuring instrument. Note that the reflectance was measured for light of two types of wavelengths (400 nm and 460 nm). The measurement results described in Table 2 below were obtained.

(3)高温での経時後の反射率(%)
以下に記載した方法に従って高温(150℃)で1000時間経過経時後の反射率の測定を実施した。ガラスプレート上で調製された厚さ0.1mmの樹脂組成物シートをサンプルとしてそのまま使用し、そして測定機器としてはスペクトロフォトメーターU−4100(日立社製)を用いた。なお、反射率の測定は、2種類の波長(400nm及び460nm)の光について実施した。下記の第2表に記載する測定結果が得られた。
(3) Reflectance (%) after aging at high temperature
According to the method described below, the reflectance was measured after elapse of 1000 hours at a high temperature (150 ° C.). A resin composition sheet having a thickness of 0.1 mm prepared on a glass plate was directly used as a sample, and a spectrophotometer U-4100 (manufactured by Hitachi) was used as a measuring instrument. Note that the reflectance was measured for light of two types of wavelengths (400 nm and 460 nm). The measurement results described in Table 2 below were obtained.

(4)QUV試験による経時後の反射率(%)
以下に記載した方法に従ってQUV試験による経時後の反射率の測定を実施した。ガラスプレート上で調製された厚さ0.1mmの樹脂組成物シートをサンプルとしてそのまま使用し、そして測定機器としてはスペクトロフォトメーターU−4100(日立社製)を用いた。また、QUV試験は、アクセレーテッドウェザリングテスター、QUV試験機(The Q Panel Company)を用いて発光波長351nmにおいて行った。なお、反射率の測定は、2種類の波長(400nm及び460nm)の光について実施した。下記の第3表に記載する測定結果が得られた。
(4) Reflectance after time by QUV test (%)
According to the method described below, the reflectivity after aging was measured by the QUV test. A resin composition sheet having a thickness of 0.1 mm prepared on a glass plate was directly used as a sample, and a spectrophotometer U-4100 (manufactured by Hitachi) was used as a measuring instrument. The QUV test was performed at an emission wavelength of 351 nm using an accelerated weathering tester and a QUV tester (The Q Panel Company). Note that the reflectance was measured for light of two types of wavelengths (400 nm and 460 nm). The measurement results described in Table 3 below were obtained.

Figure 2008143981
Figure 2008143981

Figure 2008143981
Figure 2008143981

上記第2表に記載の測定結果から理解されるように、脂環式エポキシ樹脂と酸化チタンとを含む樹脂組成物は、460nmを含む短波長側の可視波長領域において、良好な初期反射率及び高温経時・QUV経時後の反射率を示した。特に、実施例1〜4の脂環式エポキシ樹脂とアナターゼ型酸化チタンを含む樹脂組成物は、さらに400nmを含む可視領域において良好な初期反射率及び高温経時・QUV経時後の反射率を示した。一方、比較例1に示すような芳香族エポキシ樹脂を主成分とする接着剤は、初期反射率が波長によって変化するばかりでなく、高温経時及びQUV経時後において反射率の大きな低下を示した。さらに、比較例2〜4の結果から、酸化チタン以外の白色フィラー(Al、BaSO)を用いた場合、また、アルミ粉末を用いた場合では、充分な初期反射率が達成できないことが分かった。 As understood from the measurement results described in Table 2 above, the resin composition containing an alicyclic epoxy resin and titanium oxide has a good initial reflectance and a good initial reflectance in the visible wavelength region on the short wavelength side including 460 nm. The reflectivity after high temperature aging and QUV aging was shown. In particular, the resin composition containing the alicyclic epoxy resin of Examples 1 to 4 and anatase-type titanium oxide further showed good initial reflectance and reflectance after high temperature aging / QUV aging in the visible region including 400 nm. . On the other hand, the adhesive mainly composed of an aromatic epoxy resin as shown in Comparative Example 1 not only changed the initial reflectivity depending on the wavelength, but also showed a significant decrease in reflectivity after high temperature aging and after QUV aging. Furthermore, from the results of Comparative Examples 2 to 4, when a white filler other than titanium oxide (Al 2 O 3 , Ba 2 SO 4 ) is used, or when aluminum powder is used, sufficient initial reflectance is achieved. I found it impossible.

試験例2
本例では、脂環式エポキシ樹脂に対するアナターゼ型酸化チタン(フィラー)の適正配合量について試験した。
Test example 2
In this example, the proper blending amount of anatase-type titanium oxide (filler) with respect to the alicyclic epoxy resin was tested.

前記実施例1に記載の手法を繰り返したが、本例では、原材料の種類及び配合量を下記の第4表に記載するように変更した。すなわち、脂環式エポキシ樹脂、酸無水物、アミン系硬化触媒及び沈降防止材の種類及び配合量を共通とし、アナターゼ型酸化チタンの配合量のみを変更した。実施例1と同様な手法に従って混合、塗布及び硬化を行い、約0.1mmの厚さをもった樹脂組成物シートを得た。   Although the method described in Example 1 was repeated, in this example, the types and blending amounts of raw materials were changed as described in Table 4 below. That is, the type and blending amount of the alicyclic epoxy resin, acid anhydride, amine-based curing catalyst and anti-settling material were made common, and only the blending amount of the anatase-type titanium oxide was changed. Mixing, coating and curing were performed in the same manner as in Example 1 to obtain a resin composition sheet having a thickness of about 0.1 mm.

次いで、得られた樹脂組成物シートを供試サンプルとして使用し、前記試験例1に記載の手順に従って初期反射率(%)を測定し、あわせて、シート形成前のペーストの塗工性を3段階:「優」、「良」及び「可」で評価した。下記の第4表に記載の評価結果が得られた。また、図5は、第4表の評価結果をグラフにプロットしたものである。   Next, using the obtained resin composition sheet as a test sample, the initial reflectance (%) was measured according to the procedure described in Test Example 1, and the coating property of the paste before sheet formation was 3 Stage: Evaluated as “excellent”, “good” and “good”. The evaluation results described in Table 4 below were obtained. FIG. 5 is a graph in which the evaluation results in Table 4 are plotted.

Figure 2008143981
Figure 2008143981

上記第4表に記載の測定結果及び図5のグラフから理解されるように、酸化チタンの配合量が、エポキシ樹脂100重量部に対して、約40〜400重量部であるときに、良好な初期反射率を示した。特に、酸化チタンの配合量が、エポキシ樹脂100重量部に対して、約100〜400重量部のときには、優れた初期反射率となった。また、樹脂組成物ペーストの塗工性については、エポキシ樹脂100重量部に対する酸化チタンの配合量が約40〜400重量部であれば、実際上問題がないことが確認された。   As understood from the measurement results shown in Table 4 and the graph of FIG. 5, when the compounding amount of titanium oxide is about 40 to 400 parts by weight with respect to 100 parts by weight of the epoxy resin, it is good. The initial reflectance was shown. In particular, when the compounding amount of titanium oxide was about 100 to 400 parts by weight with respect to 100 parts by weight of the epoxy resin, excellent initial reflectance was obtained. Moreover, about the applicability | paintability of the resin composition paste, when the compounding quantity of the titanium oxide with respect to 100 weight part of epoxy resins was about 40-400 weight part, it was confirmed that there is actually no problem.

試験例3
本例では、硬化触媒としてカチオン系硬化触媒を使用した場合の、初期反射率に及ぼす影響について試験した。
Test example 3
In this example, the effect on the initial reflectance when a cationic curing catalyst was used as the curing catalyst was tested.

前記実施例1に記載の手法を繰り返したが、本例では、下記の第5表に記載するように、硬化触媒として、4重量部のアミン系硬化触媒(FXR1020)に代えて、異なる量のカチオン系硬化触媒:U−CAT5003(サンアプロ社製)又はCP66(アデカ社製)を使用した。実施例1と同様な手法に従って混合、塗布及び硬化を行い、約0.1mmの厚さをもった樹脂組成物シートを得た。   The procedure described in Example 1 was repeated, but in this example, as shown in Table 5 below, instead of 4 parts by weight of amine-based curing catalyst (FXR1020), different amounts of curing catalyst were used. Cationic curing catalyst: U-CAT5003 (manufactured by Sun Apro) or CP66 (manufactured by Adeka) was used. Mixing, coating and curing were performed in the same manner as in Example 1 to obtain a resin composition sheet having a thickness of about 0.1 mm.

次いで、得られた樹脂シートを供試サンプルとして使用し、前記試験例1に記載の手順に従って初期反射率(%)を測定した。下記の第5表に記載の評価結果が得られた。   Next, the obtained resin sheet was used as a test sample, and the initial reflectance (%) was measured according to the procedure described in Test Example 1. The evaluation results described in Table 5 below were obtained.

Figure 2008143981
Figure 2008143981

従来の発光ダイオードの構成の一例を示した断面図である。It is sectional drawing which showed an example of the structure of the conventional light emitting diode. 本発明による光反射性樹脂組成物を発光素子の接合材に使用した発光装置、及びその光反射効果を説明した断面図である。It is sectional drawing explaining the light-emitting device which used the light-reflective resin composition by this invention for the joining material of a light emitting element, and its light reflection effect. 本発明による光反射性樹脂組成物を発光ダイオードの光反射層に使用した例を説明した断面図である。It is sectional drawing explaining the example which used the light reflective resin composition by this invention for the light reflection layer of a light emitting diode. 本発明による光反射性樹脂組成物を液晶表示装置の遮光シール材として使用した例を説明した断面図である。It is sectional drawing explaining the example which used the light-reflective resin composition by this invention as the light-shielding sealing material of a liquid crystal display device. 酸化チタン含有量と樹脂組成物の反射率との関係をプロットしたグラフである。It is the graph which plotted the relationship between titanium oxide content and the reflectance of a resin composition.

符号の説明Explanation of symbols

1 樹脂組成物
2 酸化チタン
3 基板
4 発光素子
5 封止樹脂
10 発光装置
11 光反射層
放射光
反射光
DESCRIPTION OF SYMBOLS 1 Resin composition 2 Titanium oxide 3 Substrate 4 Light emitting element 5 Sealing resin 10 Light emitting device 11 Light reflection layer L 1 Radiation light L 2 Reflection light

Claims (9)

炭素−炭素二重結合を有しないエポキシ樹脂、
エポキシ樹脂100重量部を基準にして40〜400重量部の酸化チタン、及び
硬化剤
を含む、光反射性樹脂組成物。
An epoxy resin having no carbon-carbon double bond,
A light-reflective resin composition comprising 40 to 400 parts by weight of titanium oxide and a curing agent based on 100 parts by weight of an epoxy resin.
前記エポキシ樹脂が脂環式エポキシ樹脂である、請求項1記載の樹脂組成物。   The resin composition according to claim 1, wherein the epoxy resin is an alicyclic epoxy resin. 前記硬化剤が炭素−炭素二重結合を有しない硬化剤である、請求項1又は2記載の樹脂組成物。   The resin composition according to claim 1 or 2, wherein the curing agent is a curing agent having no carbon-carbon double bond. 前記硬化剤が酸無水物である、請求項3記載の樹脂組成物。   The resin composition according to claim 3, wherein the curing agent is an acid anhydride. 前記酸化チタンがアナターゼ型酸化チタンである、請求項1〜4のいずれか1項に記載の樹脂組成物。   The resin composition according to any one of claims 1 to 4, wherein the titanium oxide is anatase-type titanium oxide. 基板と発光素子とを有し、基板と発光素子とが請求項1〜5のいずれか1項に記載の樹脂組成物を介して接合されている、発光装置。   The light-emitting device which has a board | substrate and a light emitting element, and the board | substrate and the light emitting element are joined via the resin composition of any one of Claims 1-5. 基板と、基板表面に設けられた請求項1〜5のいずれか1項に記載の樹脂組成物からなる光反射層と、発光素子とを有し、基板と発光素子とが光反射層を介して接合されている、発光装置。   It has a light reflection layer which consists of a substrate and the resin composition of any one of Claims 1-5 provided in the substrate surface, and a light emitting element, and a board | substrate and a light emitting element interpose a light reflection layer. The light emitting device is joined. 前記発光素子がLEDチップであり、前記発光装置が発光ダイオードである、請求項6又は7記載の発光装置。   The light emitting device according to claim 6 or 7, wherein the light emitting element is an LED chip, and the light emitting device is a light emitting diode. 請求項1〜5のいずれか1項に記載の樹脂組成物を用いて接合又はシールされた部材を含む、光学表示装置。   An optical display device comprising a member bonded or sealed using the resin composition according to claim 1.
JP2006330815A 2006-12-07 2006-12-07 Optically reflective resin composition, light-emitting device and optical display Pending JP2008143981A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006330815A JP2008143981A (en) 2006-12-07 2006-12-07 Optically reflective resin composition, light-emitting device and optical display
PCT/US2007/085171 WO2008073682A1 (en) 2006-12-07 2007-11-20 Light reflecting resin composition, light emitting apparatus and optical display apparatus
TW096146158A TW200838927A (en) 2006-12-07 2007-12-04 Light reflecting resin composition, light emitting apparatus and optical display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006330815A JP2008143981A (en) 2006-12-07 2006-12-07 Optically reflective resin composition, light-emitting device and optical display

Publications (1)

Publication Number Publication Date
JP2008143981A true JP2008143981A (en) 2008-06-26

Family

ID=39512082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006330815A Pending JP2008143981A (en) 2006-12-07 2006-12-07 Optically reflective resin composition, light-emitting device and optical display

Country Status (3)

Country Link
JP (1) JP2008143981A (en)
TW (1) TW200838927A (en)
WO (1) WO2008073682A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090201A (en) * 2008-10-03 2010-04-22 Three M Innovative Properties Co Light-reflective resin composition, light emitter, and optical display unit
JP2010168408A (en) * 2009-01-20 2010-08-05 Risho Kogyo Co Ltd White prepreg, white laminate, and metal foil-clad white laminate
JP2010235756A (en) * 2009-03-31 2010-10-21 Hitachi Chem Co Ltd Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element and method of producing the substrate, and optical semiconductor device
JP2010235753A (en) * 2009-03-31 2010-10-21 Hitachi Chem Co Ltd Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element and method of producing the substrate, and optical semiconductor device
JP2010287837A (en) * 2009-06-15 2010-12-24 Hitachi Chem Co Ltd Member for mounting optical semiconductor element, and optical semiconductor device
WO2010150880A1 (en) 2009-06-26 2010-12-29 株式会社朝日ラバー White color reflecting material and process for production thereof
JP2011057917A (en) * 2009-09-14 2011-03-24 Sony Chemical & Information Device Corp Light-reflective, anisotropic, electroconductive adhesive, and light-emitting device
JP4991957B1 (en) * 2011-07-14 2012-08-08 積水化学工業株式会社 White curable composition for optical semiconductor device and molded article for optical semiconductor device
WO2012132965A1 (en) * 2011-03-31 2012-10-04 三菱瓦斯化学株式会社 Resin composition, pre-preg, and metal foil clad laminate
JP2013168684A (en) * 2013-06-03 2013-08-29 Hitachi Chemical Co Ltd Member for mounting optical semiconductor element, and optical semiconductor device
US9574050B2 (en) 2010-03-23 2017-02-21 Asahi Rubber Inc. Silicone resin reflective substrate, manufacturing method for same, and base material composition used in reflective substrate
JP2017210625A (en) * 2017-08-09 2017-11-30 日立化成株式会社 Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element thereon and method for producing the same, and optical semiconductor device
JP2019157045A (en) * 2018-03-15 2019-09-19 株式会社タムラ製作所 White resin composition

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100080423A (en) * 2008-12-30 2010-07-08 삼성엘이디 주식회사 Light emitting device package and method of fabricating thereof
US8431423B2 (en) * 2009-07-16 2013-04-30 Koninklijke Philips Electronics N.V. Reflective substrate for LEDS
JP6425945B2 (en) * 2014-08-21 2018-11-21 東洋アルミニウム株式会社 Light diffusing member for interconnector, interconnector for solar cell including the same, and solar cell module
DE102016113969A1 (en) * 2016-07-28 2018-02-01 Osram Opto Semiconductors Gmbh A radiation-emitting semiconductor chip, method for producing a plurality of radiation-emitting semiconductor chips, radiation-emitting component and method for producing a radiation-emitting component

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612786A (en) * 1979-07-12 1981-02-07 Toshiba Corp Photo coupling semiconductor device
JPS63240082A (en) * 1987-03-27 1988-10-05 Nec Corp Photo-interrupter
JPH02105586A (en) * 1988-10-14 1990-04-18 Nec Corp Photocoupler
JP3618238B2 (en) * 1998-12-25 2005-02-09 日亜化学工業株式会社 Light emitting diode
JP2003069082A (en) * 2001-08-27 2003-03-07 Toyoda Gosei Co Ltd Ultraviolet-ray emitting diode

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090201A (en) * 2008-10-03 2010-04-22 Three M Innovative Properties Co Light-reflective resin composition, light emitter, and optical display unit
JP2010168408A (en) * 2009-01-20 2010-08-05 Risho Kogyo Co Ltd White prepreg, white laminate, and metal foil-clad white laminate
JP2010235756A (en) * 2009-03-31 2010-10-21 Hitachi Chem Co Ltd Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element and method of producing the substrate, and optical semiconductor device
JP2010235753A (en) * 2009-03-31 2010-10-21 Hitachi Chem Co Ltd Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element and method of producing the substrate, and optical semiconductor device
JP2010287837A (en) * 2009-06-15 2010-12-24 Hitachi Chem Co Ltd Member for mounting optical semiconductor element, and optical semiconductor device
WO2010150880A1 (en) 2009-06-26 2010-12-29 株式会社朝日ラバー White color reflecting material and process for production thereof
US8704258B2 (en) 2009-06-26 2014-04-22 Asahi Rubber Inc. White color reflecting material and process for production thereof
US9548141B2 (en) 2009-09-14 2017-01-17 Dexerials Corporation Light-reflective anisotropic conductive adhesive and light-emitting device
JP2011057917A (en) * 2009-09-14 2011-03-24 Sony Chemical & Information Device Corp Light-reflective, anisotropic, electroconductive adhesive, and light-emitting device
US11326065B2 (en) 2010-03-23 2022-05-10 Asahi Rubber Inc. Silicone resin reflective substrate, manufacturing method for same, and base material composition used in reflective substrate
US10533094B2 (en) 2010-03-23 2020-01-14 Asahi Rubber Inc. Silicone resin reflective substrate, manufacturing method for same, and base material composition used in reflective substrate
US9574050B2 (en) 2010-03-23 2017-02-21 Asahi Rubber Inc. Silicone resin reflective substrate, manufacturing method for same, and base material composition used in reflective substrate
WO2012132965A1 (en) * 2011-03-31 2012-10-04 三菱瓦斯化学株式会社 Resin composition, pre-preg, and metal foil clad laminate
JPWO2012132965A1 (en) * 2011-03-31 2014-07-28 三菱瓦斯化学株式会社 Resin composition, prepreg and metal foil-clad laminate
CN103459493A (en) * 2011-03-31 2013-12-18 三菱瓦斯化学株式会社 Resin composition, pre-preg, and metal foil clad laminate
JP4991957B1 (en) * 2011-07-14 2012-08-08 積水化学工業株式会社 White curable composition for optical semiconductor device and molded article for optical semiconductor device
JP2013168684A (en) * 2013-06-03 2013-08-29 Hitachi Chemical Co Ltd Member for mounting optical semiconductor element, and optical semiconductor device
JP2017210625A (en) * 2017-08-09 2017-11-30 日立化成株式会社 Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element thereon and method for producing the same, and optical semiconductor device
JP2019157045A (en) * 2018-03-15 2019-09-19 株式会社タムラ製作所 White resin composition

Also Published As

Publication number Publication date
WO2008073682A1 (en) 2008-06-19
TW200838927A (en) 2008-10-01

Similar Documents

Publication Publication Date Title
JP2008143981A (en) Optically reflective resin composition, light-emitting device and optical display
JP6361761B2 (en) LIGHT EMITTING DEVICE, MANUFACTURING METHOD THEREOF, AND MOLDED BODY
TWI529981B (en) A light reflective anisotropic conductive adhesive and a light emitting device
KR20150032519A (en) Light-reflective anisotropic conductive adhesive and light-emitting device
JP4802667B2 (en) Epoxy resin adhesive composition and optical semiconductor adhesive using the same
JP4802666B2 (en) Epoxy resin adhesive composition and optical semiconductor adhesive using the same
JP5368048B2 (en) Light reflecting resin composition, light emitting device, and optical display device
TW201233726A (en) Curable epoxy resin composition
TWI506058B (en) Curable silicone resin composition
WO2014069546A1 (en) Thermosetting resin composition, light-reflective anisotropic electroconductive adhesive, and light-emitting device
JP5557770B2 (en) Thermosetting epoxy resin composition, reflecting member for optical semiconductor device, and optical semiconductor device
JP2012017368A (en) Sealing agent for optical device
JP2009021580A (en) Conductive die-bonding agent for led (light emitting diode)
WO2014013984A1 (en) Light-reflective anisotropic electro-conductive adhesive agent, and light-emitting device
JP5544819B2 (en) Epoxy group-containing adhesive resin composition and optical semiconductor adhesive using the same
JP6115457B2 (en) Process for producing glycidyl isocyanuryl-modified polysiloxane
JP4433876B2 (en) Epoxy resin composition and adhesive for optical semiconductor using the same
JP5193685B2 (en) Conductive die bonding agent for LED
JP2010059283A (en) Adhesive composition
JP5544843B2 (en) Epoxy resin adhesive composition and optical semiconductor adhesive using the same
TW201522568A (en) Light reflecting anisotropic conductive adhesive, manufacturing method for diglycidyl isocyanuryl group modified cyclic polysiloxane and light-emitting apparatus
JP6805546B2 (en) Thermosetting resin composition, cured product, substrate for mounting optical semiconductor element and its manufacturing method, optical semiconductor device, and printed wiring board
JP5718777B2 (en) Thermosetting white ink composition
KR20230057928A (en) Curable transparent resin composition, and articles derived therefrom
WO2017168649A1 (en) Thermosetting resin composition, substrate for mounting optical semiconductor element and method for manufacturing same, and optical semiconductor device