JP2008140557A - ガス電界電離イオン源、及び走査荷電粒子顕微鏡 - Google Patents

ガス電界電離イオン源、及び走査荷電粒子顕微鏡 Download PDF

Info

Publication number
JP2008140557A
JP2008140557A JP2006322753A JP2006322753A JP2008140557A JP 2008140557 A JP2008140557 A JP 2008140557A JP 2006322753 A JP2006322753 A JP 2006322753A JP 2006322753 A JP2006322753 A JP 2006322753A JP 2008140557 A JP2008140557 A JP 2008140557A
Authority
JP
Japan
Prior art keywords
metal
gas
emitter
charged particle
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006322753A
Other languages
English (en)
Other versions
JP4982161B2 (ja
Inventor
Toru Ishitani
亨 石谷
Takeshi Onishi
毅 大西
Kaoru Umemura
馨 梅村
Hiroyasu Shichi
広康 志知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2006322753A priority Critical patent/JP4982161B2/ja
Publication of JP2008140557A publication Critical patent/JP2008140557A/ja
Application granted granted Critical
Publication of JP4982161B2 publication Critical patent/JP4982161B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

【課題】
ヘリウムあるいは水素のGFISにおいて、その先端に微細な突出部を持つイオンエミッタが重要部品ではあるが、その作製歩留まりの高い作製方法や構造は未だ確立されていない。また、この突起は不測の小さな放電などで破壊されることがあり、エミッタ構造においては簡便な手法で修復ができる観点からのニーズもある。
【解決手段】
GFIS用イオンエミッタにおいて、第1金属の針状基体と該針先端を第2金属で覆う構成とし、かつ、該第2金属はその蒸発電界強度がガスの電界電離イメージングの最適電界強度より高い金属を選択した。
【選択図】図1

Description

本発明は、イオン生成するためのガス電界電離イオン源や、半導体デバイスや新材料などの試料表面の観察する荷電粒子顕微鏡に関する。
非特許文献1には、ガス電解電離イオン源(Gas Field Ionization Ion Source 、略してGFIS)を搭載し、水素(H2 ),ヘリウム(He),ネオン(Ne)などのガスイオンを用いた集束イオンビーム(Focused Ion Beam、略してFIB)装置が記載されている。これらのガスFIBは、現在よく使われている液体金属イオン源(Liquid Metal IonSource、略してLMIS)からのガリウム(Ga:金属)FIBのように、試料にGa汚染をもたらさない。また、GFISは、そこから引き出したガスイオンのエネルギー幅が狭いこと、およびイオン発生源サイズが小さいことから、Ga−FIBとくらべより微細なビームが形成できることが記載されている。特に、GFISにおいては、そのイオンエミッタ先端に微小な突出部を持たせる(あるいは、先端を丸めるのではなく数原子レベルまで突出させる)とイオン源の放射角電流密度が高くなるなどイオン源特性が良くなることが開示されている。イオンエミッタ先端の微小突出部がイオン放射角電流密度を高くすることは、特許文献1および3にも開示されている。この微小突出部として、第1金属のエミッタ材料とは異なる第2金属を用いることは、特許文献1,非特許文献3および4に開示されており、そこでは第1金属および第2金属がそれぞれWおよび貴金属(PtあるいはPd)であり、Neイオンを放出させている。しかし、Heおよび水素のイオンを得るために、第1および第2金属をどのように選択するかについては開示文献が無い。
非特許文献2および特許文献3には、軽元素Heをイオン放出するGFISを搭載した走査荷電粒子顕微鏡が開示されている。Heイオンは、照射粒子の重さ観点からは、電子の約7千倍重く、Gaイオンの約1/17と軽い。よって、照射Heイオンが試料原子に移送する運動量の大小に関係する試料損傷は、電子よりは少し多いが、Gaイオンに比べては非常に少ない。また、照射粒子の試料表面への侵入による二次電子の励起領域が電子照射に比べ試料表面により局在することから、その走査イオン顕微鏡(Scanning Ion
Microscope、略してSIM)画像が走査電子顕微鏡電子顕微鏡(Scanning Electron
Microscope、略してSEM)以上に極試料表面情報に敏感である特徴が期待されている。さらに、顕微鏡の観点では、イオンは電子に比べて重いため、そのビーム集束において回折効果が無視でき、焦点深度の非常に深い像が得られるという特徴がある。
公開特許公報昭58−85242号 公開特許公報2006−134638号 公開特許公報平7−192669号 K. Edinger, V. Yun, J. Melngailis, J. Orloff, and G. Magera,J. Vac. Sci. Technol. A 15 (No. 6) (1997) 2365 J. Morgan, J. Notte, R. Hill, and B. Ward, Microscopy Today July 14 (2006) 24 H.-S. Kuo, I.-S. Hwang, T.-Y. Fu, Y-C. Lin, C.-C. Chang, andT. T. Tsong, 16th Int. Microscopy Congress (IMC16), Sapporo (2006)1120 H.-S. Kuo, I.-S. Hwang, T.-Y. Fu, J.-Y. Wu, C.-C. Chang, andT. T. Tsong, Nano Letters 4 (2004) 2379.
GFISにおいて、その先端に微細な突出部を持つイオンエミッタが重要部品ではあるが、その作製歩留まりの高い作製方法や構造は未だ確立されていない。また、この突起は不測の小さな放電などで破壊されることがあり、エミッタ構造においては簡便な手法で修復ができる観点からのニーズもある。
本発明は、特に軽元素Heと水素(H2 )のイオン化を対象とし、高歩留まり作製ができ、かつ先端破壊時にはその先端修復プロセスが容易なイオンエミッタを採用したGFIS、および、これを搭載した高分解能でかつ大焦点深度の走査荷電粒子顕微鏡を提供することを目的とする。
本発明は、イオンエミッタを、針状形状の第1金属基体と、その先端を覆う第2金属により構成することに関する。第2金属は、その蒸発電解強度が所望イオンのガス種における電界電離イメージングの最適電界強度より高く、かつその被覆部に電界/熱エネルギーを与えることにより第1金属原子表面上を移動しやすい金属とする。
本発明によると、その先端に被覆による微細な突出部を持たせたイオンエミッタが高歩留まりで作製できる。また、別の側面としては、その被覆が剥がれた際、そこに電界/熱エネルギーを与えることにより、多くの剥がれを修復できる。また、別の側面としては、第2金属の蒸発電解強度はガスの電界電離イメージングの最適電界強度より高いため、そのエミッタ先端は電界蒸発により急速に消耗することなく、長時間のイオン放出が可能である。また、別の側面としては、GFISにこのイオンエミッタを採用することにより、所望ガス種の高輝度イオン源が提供できる。また、別の側面としては、このGFISを走査荷電粒子顕微鏡に搭載することにより、高分解能でかつ大焦点深度の顕微鏡特性を高い装置稼動率で提供できる。
以下、図面を参照して本発明の実施の形態を説明する。
図1は実施例1で用いたGFISの概略構成図である。エミッタ7はフィラメント6に固着されており、その両端は支持部5に固定されている。支持部5には電線14を接続してあり、エミッタ7への電圧Voの印加、また、フィラメント6の通電加熱により熱伝導を利用した昇温ができるようになっている。エミッタ7に対向してイオン8を引き出す小孔を持つ引き出し電極9が置かれ、引き出し電極はキャップ10の先端に取り付けられている。持つ引き出し電極9は、ガスをイオン化する電界をエミッタの先端近傍に形成する電極である。キャップ10には電線12を接続してあり、引き出し電極9に引き出し電圧Ve(ただし、エミッタ電圧Voを基準)が印加できる。エミッタ7の先端の電界は、エミッタ先端の曲率半径と電圧Veによって決まる。イオン化用のガス1は、エミッタの先端近傍にガスを供給するガス供給手段であるガラス製の細管2を用いて、エミッタ7の先端まで送られる。支持部5,キャップ10、およびガラス細管2を固定しているガラス容器3はエミッタ7を冷却する冷却手段13でもある。この容器内に冷却剤(例えば液体窒素など)4を入れることにより、エミッタ7ばかりでなく、キャップ10,引き出し電極9,電線12、およびガス1も冷却できる。ガラス容器3は、フランジ11に固定されており、後に説明する走査荷電粒子顕微鏡において、このGFISをイオン源として搭載する時にこのフランジ面で固定する。
エミッタ7先端の拡大概略図を図2に示す。エミッタ7は第1金属の針状基体20と該針先端を覆う第2金属からなる。第1金属は、高融点金属である単結晶のタングステン
(W),モリブデン(Mo)などであり、第2金属は高温において第1金属の原子表面上で原子表面上を移動しやすく、かつその蒸発電解強度の大きい白金(Pt),イリジウム(Ir),レニウム(Re),オスミウム(Os),パラジュウム(Pd),ロジュウム(Rh)などである。
ここで、エミッタ作製方法について述べる。第1金属の直径200−400μmの細線(軸方位は<111>)を電解研磨により先端曲率半径約100−400nmの針状基体を作製する。この針状基体20を、エミッタ作製装置に入れ、真空に排気する。エミッタ作製装置の概略図を図3に示す。エミッタ作製室30にて、この針状基体20を高温加熱と電界蒸発により先端曲率半径数10nmのエミッタ7に仕上げる。その後、真空蒸着源35にセットした第2金属をエミッタの側面(あるいは正面)から真空蒸着により被覆させる。図1の21はその部分的に被覆している原子を表したものである。その後、高温加熱(やく)により、第2金属の原子をエミッタ先端に移動させ、その一部がエミッタ先端でファセットを形成し、ピラミッド状の突起部22ができる。冷却手段に冷媒である液体窒素4を入れ、ガス1をエミッタ7近傍に導入する。エミッタ7近傍の圧力は推定1Paオーダである。試料室には、エミッタ先端曲率半径や突起部形成をモニタするための電界イオン顕微鏡(Field Ion Microscopy、略してFIM)像や電界放出顕微鏡Field
Emission Microscopy、略してFEM)あるいは電界電子顕微鏡(Field Electron
Microscopy、略してFEM)像を写す蛍光板33をエミッタに対向して置いてある。また、蛍光板33のエミッタ側直前には、FIM像の感度を上げるためにマイクロチャンネルプレート(MCP)32を置いてある。また、FIM/FEM像観察において、蛍光板
33を発光させるには、イオンより電子の照射の方が高効率であり、FEM像観察の場合はMCP32が無くともよい。図3は、FIMあるいはFEM像は、観察窓34を通して観察できる。FIM像あるいはFEM像の観察は、エミッタ7に印加する電圧の極性をそれぞれ正および負にすることにより行う。FIMおよびFEMの像観察における電界強度は前者の方が一桁程度高い。
エミッタの突起部が不測のマイクロ放電などにより破壊損傷した場合は、エミッタを加熱(1000℃程度)にして3−30分保持することにより、再度、第2金属が表面移動により突起部が形成できる。加熱温度や保持時間は第1金属と第2金属の組合せ、およびエミッタ軸方向からみた第1金属の結晶方位(111),(110)などに依存する。突起部形成の再現性の観点からは結晶方位(111)の方が優れている。このように、修復が簡便な手法にて可能となった。エミッタ作製室30は、真空排気用の真空ポンプが接続されているが、図3には省略してある。また、第2金属を第1金属のエミッタ基体に載せるに際し、本例では真空蒸着法により載せたが、電解研磨により針状基体を作製後にメッキ法などで載せても良い。
本イオン源における所望の放出イオン種は、HeあるいはH2 のイオンである。エミッタ7および引き出し電極9に適当な電圧を印加してエミッタ先端に強電界を作ると、イオン化ガス原子(あるいは分子)23の多くは、強電界でエミッタ面に引っ張られ、エミッタ面でジャンプ軌道25をとりながら、最も電界の強い突起部22の先端近傍に到達する。ガス原子(あるいは分子)23は優先的にそこで電界電離し、イオン24として放出される。そこからの放出イオンは、イオン放出角が数度と狭まり、イオン放射角電流密度が従来の微小突起の無いエミッタと比べ約一桁向上する。Heガスにおいて放出イオンは
He+ であり、H2 ガスにおいてはH+ とH2 +が混在する。
次に、放出イオン種と突起部を形成する第2金属の組合せについて述べる。エミッタ基体材の第1金属および第2金属の蒸発電界強度Fn を表1に示す。ここで、nは、電界蒸発イオンの価数であり、1,2,…の整数である。Fn の最小値Fn,min のnは材料により異なり、Fn,min 値に下線を引いてある。また、放出イオンガス種HeおよびH2 の電界電離イメージングの最適電界強度Fbest_imageをNeおよびArと共に表2に示す。イオン放出中のエミッタにおいて、電界強度の最も強い部分は、イオン放出にかかわっている突起部である。この突起部の電界蒸発を抑制する観点から、突起部を形成する第2金属はFn,min best_image の不等式条件を満足するべきである。よって、Heガスにおいては、第2金属はPt,Ir,Re又はOsである。第2金属としてPdの採用例が非特許文献4に開示されているが、PdはHeガスの電界イオン化には適さない。一方、H2 ガスにおいては、第2金属はPd,Pt,Ir,Rh,Re、又はOsが適している。
HeガスおよびH2 ガスイオン化のいずれにおいても、第2金属としてのOsは、表1の中でFn,min が最も大きく、不測の過電界による突起部の耐損傷性が最も優れている。
Figure 2008140557
Figure 2008140557
Heイオン放出におけるエミッタ基体の第1金属において、WはFn,min Fbest_imageの不等式条件を満足しており、過電界による電界蒸発が生じるまでの裕度が大きいことから、Wの方がMoより好ましい。エミッタ作製において、エミッタ突起部原子配列のFIM像観察用のガス種には、Heの他、Fbest_imageがHeより低いH2 ,Ne、あるいは
Arのガスも使うことができる。突起部作製過程前の、エミッタ先端の曲率半径が未だ大きい場合には、引き出し電圧(絶対値)が低くて済むFEM像が役立つ。また、FE放出電流の引き出し電圧依存性からその先端曲率半径を推定することもできる。
上記のGFISを搭載した走査荷電粒子顕微鏡の実施例について説明する。図4は走査荷電粒子顕微鏡の概略構成図である。GFIF40から放出された放出イオンビーム55は加速電極41で加速され、集束レンズ42と対物レンズ48で試料49上に集束される。加速電極41は、集束レンズ42構成の一電極として組込まれることもある。両レンズ間にはビーム偏向器/アライナー43,可動ビーム制限絞り44,ブランキング電極45,ブランクビーム停止板46,ビーム偏向器47がある。試料49から放出される二次電子50は二次電子検出器51で検出される。ビーム制御部52は、GFIS40,集束レンズ42,対物レンズ48,上段ビーム偏向器/アライナー43,下段ビーム偏向器47,二次電子検出器51などを制御する。PC53は、ビーム制御部52を制御し、かつ種々のデータの処理や保存を行う。画像表示手段54は、SIM像の表示やPC53での制御画面を表示する。エミッタ7の突起部22から放出されるイオンビームの放出角は数度程度と狭いが、その内、試料49まで導くビームとして利用するのは数度以下である。この利用対象のビーム放出軸の調整選択は、GFISを搭載した走査荷電粒子顕微鏡に特有の課題であり、以下のようにして行う。
可動ビーム制限絞り44にはその絞り孔より大きい径のビームが照射されており、調整用の試料49にはこの絞り孔を通過したビームのみが到達する。上段ビーム偏向器/アライナー43の偏向作用によりビームを可動ビーム制限絞り44上で走査し、この走査信号と同期した信号をXY信号、二次電子検出強度をZ(輝度)信号としてSIM画像を作り、画像表示手段54にモニタ表示する。また、可動ビーム制限絞り44は光軸調整のため光軸に垂直な面内でXY微動調整できるようになっている。対物レンズ48は、上段ビーム偏向器/アライナー43の偏向支点を試料49上に投影するようにレンズ作用を調整する。この調整完了時には、上段ビーム偏向器/アライナー43でビーム偏向しても、試料上でのビームは走査されず、ビーム強度がエミッタ7からの放出イオン強度の放出角度分布を反映して変化する。よってモニタ画面のSIM像は、そのXY軸をイオン放出角とした放出イオン強度分布となる。FIM像がエミッタにおけるイオン放出部を原子レベルで投影した分解能をもっていることから、本SIM像は、可動ビーム制限絞り44の絞り孔に相当するイオン放射立体角でFIM像を畳み込みしてぼかした相当画像が得られる。このモニタSIM画像において、そのもっとも明るい点に上段ビーム偏向器/アライナー
43の偏向信号を合わせて固定すれば、ビーム偏向器/アライナー43は、放出イオン強度が最も強い放出軸に光軸をアライン(調整)したことになる。以後の集束イオンビームの利用には、このアラインしたビームを利用する。このビーム偏向器/アライナー43と可動ビーム制限絞り44のセットによるイオン放出軸調整は、GFISを搭載した走査荷電粒子顕微鏡に特有の課題である。つまりGFISのエミッタ突起部からのイオン放出サイトは1原子であったり、3原子であったりと通常、数原子以下となる。それらの原子からのイオン放出方向は、どの原子もある小さな立体角(πα2 のα=1−2度)を持って原子毎に放出方向が局在化している。よって、集束イオンビームとして利用するイオン放出サイトとしてどの原子を選択し、かつその選択した原子の中でどのイオン放出方向を最適なイオン放出軸として選択し、それをイオン光軸と合わせる調整が必要なのである。
上記のGFISを電界放出電子源として動作する様にし、GFISと電界放出電子源のいずれかを選択して用いることを特徴とする走査荷電粒子顕微鏡の実施例について説明する。この顕微鏡の概略構成図は、図4と似ているため省略する。ただし、GFIS40はGFIS/電界放出電子源に、放出イオンビーム55は放出イオンビーム/放出電子ビーム読み替える。GFISのエミッタの先端曲率半径は小さく、エミッタ先端の電界の極性を逆にすれば、電子を電界放出させることができる。つまり、GFISを電界放出電子源として動作させることができる。ただし、電子放出の電界強度は電界電離イオン放出の場合と比べ、1桁程度低くて良い。また、電界放出電子源の動作においては、ガス導入を止め、エミッタ周りを超高真空に保つ。さらに、エミッタの冷却は必要なく、室温とする。図4において、レンズや偏向器/アライナーなどの光学作用部品の全てが静電系(磁場系ではなく)であり、これらを逆極性にすることにより、イオンの場合と同様な集束電子ビームが得られる。ただし、電界電子放出では引き出し電圧Veの絶対値をイオン放出の場合と比べ低くするので、同じエミッタ電位Vo(ただし、絶対値)でもレンズ電位は変える必要がある。集束イオンビームと集束電子イオンビーム形成のそれぞれの光学条件を
PC53のメモリ内に記憶させておく。いずれかのビーム形成の選択に応じて、メモリ内から選択ビーム形成の光学条件を呼び出し、ビーム制御部52により光学系を制御する。
ガス電界電離イオン源(GFIS)の概略構成図。 エミッタ先端の拡大概略図。 エミッタ作製装置の概略図。 GFISを搭載した走査荷電粒子顕微鏡の概略構成図。
符号の説明
1 ガス
2 細管
3 ガラス容器
4 液体窒素
5 支持部
6 フィラメント
7 エミッタ
8 イオン
9 引き出し電極
10 キャップ
11 フランジ
12,14 電線
13 冷却手段
20 針状基体
21 針状基体を被覆している第2金属原子
22 突起部
23 ガス原子(あるいは分子)
24 イオン
30 エミッタ作製室
31 放出イオン
32 MCP
33 蛍光板
34 観察窓
35 蒸着源
40 ガス電界電離イオン源(GFIS)
41 加速電極
42 集束レンズ
43 ビーム偏向器/アライナー
44 可動ビーム制限絞り
45 ブランキング電極
46 ブランクビーム停止板
47 ビーム偏向器
48 対物レンズ
49 試料
50 二次電子
51 二次電子検出器
52 ビーム制御部
53 PC
54 画像表示手段
55 放出イオンビーム

Claims (10)

  1. 針状の第1金属と、該第1金属の先端を覆う第2金属とからなるエミッタと、
    エミッタの先端近傍にガスを供給するガス供給手段と、
    ガスをイオン化する電界をエミッタの先端近傍に形成する引き出し電極と、
    エミッタを冷却する冷却手段と、を含むガス電界電離イオン源であって、
    前記第2金属が、その蒸発電界強度が前記ガスの電界電離イメージングの最適電界強度より高い金属であり、
    前記ガスが、ヘリウム又は水素であることを特徴とするガス電界電離イオン源。
  2. 請求項1記載のガス電界電離イオン源であって、
    前記第1金属が、タングステン、又はモリブデンであり、
    前記第2金属が、白金,イリジウム,レニウム、又はオスミウムであり、
    前記ガスが、ヘリウムであることを特徴とするガス電界電離イオン源。
  3. 請求項1記載のガス電界電離イオン源であって、
    前記第1金属が、タングステン、又はモリブデンであり、
    前記第2金属が、パラジウム,白金,イリジウム,ロジウム,レニウム、又はオスミウムであり、
    前記ガスが、水素であることを特徴とするガス電界電離イオン源。
  4. 針状の第1金属と、該第1金属の先端を覆う第2金属とからなるエミッタと、エミッタの先端近傍にガスを供給するガス供給手段と、ガスをイオン化する電界をエミッタの先端近傍に形成する引き出し電極と、エミッタを冷却する冷却手段と、を含むガス電界電離イオン源と、
    ガス電界電離イオン源から引き出したイオンを集束するレンズ系と、
    イオンビームを走査するビーム偏向器と、
    二次粒子を検出する二次粒子検出器と、
    走査イオン顕微鏡像を表す画像表示手段と、を含む走査荷電粒子顕微鏡であって、
    前記第2金属が、その蒸発電界強度が前記ガスの電界電離イメージングの最適電界強度より高い金属であり、
    前記ガスが、ヘリウム又は水素であることを特徴とする走査荷電粒子顕微鏡。
  5. 請求項4記載の走査荷電粒子顕微鏡であって、
    前記第1金属が、タングステン、又はモリブデンであり、
    前記第2金属が、白金,イリジウム,レニウム、又はオスミウムであり、
    前記ガスが、ヘリウムであることを特徴とする走査荷電粒子顕微鏡。
  6. 請求項4記載の走査荷電粒子顕微鏡であって、
    前記第1金属が、タングステン、又はモリブデンであり、
    前記第2金属が、パラジウム,白金,イリジウム,ロジウム,レニウム、又はオスミウムであり、
    前記ガスが、水素であることを特徴とする走査荷電粒子顕微鏡。
  7. 請求項4記載の走査荷電粒子顕微鏡であって、
    前記ビーム偏向器より前記エミッタに近い側に、イオンビームを偏向走査する偏向器と、偏向走査されたビームの一部を通過させる孔を持つビーム制限絞りを備え、
    該偏向器が、特定の偏向に固定してアライナーとしても作用できることを特徴とした走査荷電粒子顕微鏡。
  8. 針状の第1金属と、該第1金属の先端を覆う第2金属とからなるエミッタと、エミッタの先端近傍にガスを供給するガス供給手段と、ガスをイオン化する電界をエミッタの先端近傍に形成する引き出し電極と、エミッタを冷却する冷却手段と、を含む荷電粒子源と、
    荷電粒子源から引き出した荷電粒子を集束するレンズ系と、
    集束した荷電粒子を走査するビーム偏向器と、
    二次粒子を検出する二次粒子検出器と、
    走査荷電粒子顕微鏡像を表す画像表示手段と、を含む走査荷電粒子顕微鏡であって、
    前記第2金属が、その蒸発電界強度が前記ガスの電界電離イメージングの最適電界強度より高い金属であり、
    前記ガスが、ヘリウム又は水素であり、
    前記エミッタ先端近傍の電界の極性を変更することにより、前記荷電粒子源を、ガス電界電離イオン源又は電界放出電子源のいずれかとして用いることを特徴とする走査荷電粒子顕微鏡。
  9. 請求項8記載の走査荷電粒子顕微鏡であって、
    前記第1金属が、タングステン、又はモリブデンであり、
    前記第2金属が、白金,イリジウム,レニウム、又はオスミウムであり、
    前記ガスが、ヘリウムであることを特徴とする走査荷電粒子顕微鏡。
  10. 請求項8記載の走査荷電粒子顕微鏡であって、
    前記第1金属が、タングステン、又はモリブデンであり、
    前記第2金属が、パラジウム,白金,イリジウム,ロジウム,レニウム、又はオスミウムであり、
    前記ガスが、水素であることを特徴とする走査荷電粒子顕微鏡。
JP2006322753A 2006-11-30 2006-11-30 ガス電界電離イオン源、及び走査荷電粒子顕微鏡 Expired - Fee Related JP4982161B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006322753A JP4982161B2 (ja) 2006-11-30 2006-11-30 ガス電界電離イオン源、及び走査荷電粒子顕微鏡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006322753A JP4982161B2 (ja) 2006-11-30 2006-11-30 ガス電界電離イオン源、及び走査荷電粒子顕微鏡

Publications (2)

Publication Number Publication Date
JP2008140557A true JP2008140557A (ja) 2008-06-19
JP4982161B2 JP4982161B2 (ja) 2012-07-25

Family

ID=39601821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006322753A Expired - Fee Related JP4982161B2 (ja) 2006-11-30 2006-11-30 ガス電界電離イオン源、及び走査荷電粒子顕微鏡

Country Status (1)

Country Link
JP (1) JP4982161B2 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046116A1 (ja) * 2009-10-14 2011-04-21 株式会社日立ハイテクノロジーズ ガス電解電離イオン源、イオンビーム装置
WO2011055521A1 (ja) * 2009-11-06 2011-05-12 株式会社日立ハイテクノロジーズ 荷電粒子顕微鏡
JP2011210493A (ja) * 2010-03-29 2011-10-20 Sii Nanotechnology Inc 荷電粒子ビーム装置、チップ再生方法、及び試料観察方法
JP2012501448A (ja) * 2008-08-29 2012-01-19 カール ツァイス エヌティーエス エルエルシー イオンビーム安定化方法
US8115184B2 (en) 2008-01-07 2012-02-14 Hitachi High-Technologies Corporation Gas field ion source, charged particle microscope, and apparatus
JP2012079595A (ja) * 2010-10-04 2012-04-19 Hitachi High-Technologies Corp イオン源エミッタ
DE112011100476T5 (de) 2010-02-08 2012-12-27 Hitachi High-Technologies Corporation Ladungsteilchenmikroskop und Ionenmikroskop
DE112010002981T5 (de) 2009-06-30 2013-01-03 Hitachi High-Technologies Corporation Gasfeldionisations-Ionenquellenvorrichtung und damit ausgestattetesRasterladungsteilchenmikroskop
DE112011102643T5 (de) 2010-08-06 2013-06-06 Hitachi High-Technologies Corporation Gasfeld-Ionenquelle und Verfahren zur Verwendung derselben, Ionenstrahl-Vorrichtung und Ermitterspitze sowie Verfahren zur Herstellung derselben
US9087675B2 (en) 2011-09-05 2015-07-21 Hitachi High-Technologies Corporation Emitter, gas field ion source, and ion beam device
JPWO2015019665A1 (ja) * 2013-08-08 2017-03-02 株式会社日立ハイテクノロジーズ ナノチップとガス供給機構を備える荷電粒子線装置
US10304657B2 (en) 2015-02-09 2019-05-28 Hitachi, Ltd. Mirror ion microscope and ion beam control method
CN111048373A (zh) * 2018-10-12 2020-04-21 中国电子科技集团公司第三十八研究所 一种电子源再生方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62114226A (ja) * 1985-11-14 1987-05-26 Fujitsu Ltd イオンビ−ム露光装置
JPS63111750U (ja) * 1987-01-10 1988-07-18
JPH01143124A (ja) * 1987-11-27 1989-06-05 Jeol Ltd 集束イオンビーム装置
JP2000048759A (ja) * 1998-07-27 2000-02-18 Seiko Instruments Inc 集束イオンビームによる観察・加工方法およびその装置
WO2002093615A1 (en) * 2001-03-26 2002-11-21 Kanazawa Institute Of Technology Scanning atom probe and analysis method using scanning atom probe
JP2002334663A (ja) * 2001-03-09 2002-11-22 Vacuum Products Kk 荷電粒子発生装置及びその発生方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62114226A (ja) * 1985-11-14 1987-05-26 Fujitsu Ltd イオンビ−ム露光装置
JPS63111750U (ja) * 1987-01-10 1988-07-18
JPH01143124A (ja) * 1987-11-27 1989-06-05 Jeol Ltd 集束イオンビーム装置
JP2000048759A (ja) * 1998-07-27 2000-02-18 Seiko Instruments Inc 集束イオンビームによる観察・加工方法およびその装置
JP2002334663A (ja) * 2001-03-09 2002-11-22 Vacuum Products Kk 荷電粒子発生装置及びその発生方法
WO2002093615A1 (en) * 2001-03-26 2002-11-21 Kanazawa Institute Of Technology Scanning atom probe and analysis method using scanning atom probe

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8115184B2 (en) 2008-01-07 2012-02-14 Hitachi High-Technologies Corporation Gas field ion source, charged particle microscope, and apparatus
US8530865B2 (en) 2008-01-07 2013-09-10 Hitachi High-Technologies Corporation Gas field ion source, charged particle microscope, and apparatus
JP2012501448A (ja) * 2008-08-29 2012-01-19 カール ツァイス エヌティーエス エルエルシー イオンビーム安定化方法
DE112010002981T5 (de) 2009-06-30 2013-01-03 Hitachi High-Technologies Corporation Gasfeldionisations-Ionenquellenvorrichtung und damit ausgestattetesRasterladungsteilchenmikroskop
JP2011086465A (ja) * 2009-10-14 2011-04-28 Hitachi High-Technologies Corp ガス電解電離イオン源、イオンビーム装置
US9196453B2 (en) 2009-10-14 2015-11-24 Hitachi High-Technologies Corporation Gas field ionization ion source and ion beam device
US8809801B2 (en) 2009-10-14 2014-08-19 Hitachi High-Technologies Corporation Gas field ionization ion source and ion beam device
WO2011046116A1 (ja) * 2009-10-14 2011-04-21 株式会社日立ハイテクノロジーズ ガス電解電離イオン源、イオンビーム装置
JP2015057801A (ja) * 2009-11-06 2015-03-26 株式会社日立ハイテクノロジーズ イオンビーム装置
DE112010004286T5 (de) 2009-11-06 2013-01-10 Hitachi High-Technologies Corporation Ladungsteilchenmikroskop
JP5677310B2 (ja) * 2009-11-06 2015-02-25 株式会社日立ハイテクノロジーズ 荷電粒子顕微鏡
JP2019114567A (ja) * 2009-11-06 2019-07-11 株式会社日立ハイテクノロジーズ イオンビーム装置および試料解析方法
WO2011055521A1 (ja) * 2009-11-06 2011-05-12 株式会社日立ハイテクノロジーズ 荷電粒子顕微鏡
DE112010004286B4 (de) * 2009-11-06 2021-01-28 Hitachi High-Tech Corporation Ladungsteilchenmikroskop
JP2017126570A (ja) * 2009-11-06 2017-07-20 株式会社日立ハイテクノロジーズ イオンビーム装置および試料解析方法
DE112011100476T5 (de) 2010-02-08 2012-12-27 Hitachi High-Technologies Corporation Ladungsteilchenmikroskop und Ionenmikroskop
JP2011210493A (ja) * 2010-03-29 2011-10-20 Sii Nanotechnology Inc 荷電粒子ビーム装置、チップ再生方法、及び試料観察方法
DE112011102643T5 (de) 2010-08-06 2013-06-06 Hitachi High-Technologies Corporation Gasfeld-Ionenquelle und Verfahren zur Verwendung derselben, Ionenstrahl-Vorrichtung und Ermitterspitze sowie Verfahren zur Herstellung derselben
US8847173B2 (en) 2010-08-06 2014-09-30 Hitachi High-Technologies Corporation Gas field ion source and method for using same, ion beam device, and emitter tip and method for manufacturing same
DE112011102643B4 (de) 2010-08-06 2023-05-17 Hitachi High-Tech Corporation Gasfeld-Ionenquelle, Ionenstrahl-Vorrichtung und Emitterspitze sowie Verfahren zur Herstellung derselben
JP2012079595A (ja) * 2010-10-04 2012-04-19 Hitachi High-Technologies Corp イオン源エミッタ
US9087675B2 (en) 2011-09-05 2015-07-21 Hitachi High-Technologies Corporation Emitter, gas field ion source, and ion beam device
JPWO2015019665A1 (ja) * 2013-08-08 2017-03-02 株式会社日立ハイテクノロジーズ ナノチップとガス供給機構を備える荷電粒子線装置
US10304657B2 (en) 2015-02-09 2019-05-28 Hitachi, Ltd. Mirror ion microscope and ion beam control method
CN111048373A (zh) * 2018-10-12 2020-04-21 中国电子科技集团公司第三十八研究所 一种电子源再生方法
US11315748B2 (en) 2018-10-12 2022-04-26 38Th Research Institute, China Electronics Technology Group Corporation Electron source regeneration method

Also Published As

Publication number Publication date
JP4982161B2 (ja) 2012-07-25

Similar Documents

Publication Publication Date Title
JP4982161B2 (ja) ガス電界電離イオン源、及び走査荷電粒子顕微鏡
JP4887344B2 (ja) ガス電界電離イオン源,走査荷電粒子顕微鏡,光軸調整方法、及び試料観察方法
JP6001292B2 (ja) エミッタの作製方法
JP5086105B2 (ja) ガス電界電離イオン源
JP5290238B2 (ja) 電子顕微鏡
JP2011210492A (ja) 集束イオンビーム装置
JP5559431B2 (ja) 粒子源及びその製造方法
US10658143B2 (en) Method of manufacturing emitter
JP2011171009A (ja) 集束イオンビーム装置
JP5989959B2 (ja) 集束イオンビーム装置
JP6112930B2 (ja) ガスイオン源、及び集束イオンビーム装置
JP5432028B2 (ja) 集束イオンビーム装置、チップ先端構造検査方法及びチップ先端構造再生方法
US11081312B2 (en) Method of manufacturing emitter, emitter, and focused ion beam apparatus
WO2017134817A1 (ja) 電界電離イオン源、イオンビーム装置、およびビーム照射方法
JP6121767B2 (ja) 集束イオンビーム装置、及び集束イオンビームの照射方法
JP6236480B2 (ja) エミッタの作製方法
JP6116303B2 (ja) 集束イオンビーム装置
JP5592136B2 (ja) チップ先端構造検査方法
US10790112B2 (en) Focused ion beam apparatus
JP2018163808A (ja) エミッターの作製方法
JP2010257854A (ja) イオンビーム装置
JP2012169297A (ja) ガス電界電離イオン源,荷電粒子顕微鏡、及び装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4982161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees