JP2008137872A - Honeycomb structure - Google Patents

Honeycomb structure Download PDF

Info

Publication number
JP2008137872A
JP2008137872A JP2006328255A JP2006328255A JP2008137872A JP 2008137872 A JP2008137872 A JP 2008137872A JP 2006328255 A JP2006328255 A JP 2006328255A JP 2006328255 A JP2006328255 A JP 2006328255A JP 2008137872 A JP2008137872 A JP 2008137872A
Authority
JP
Japan
Prior art keywords
honeycomb structure
honeycomb
cells
thickness
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006328255A
Other languages
Japanese (ja)
Inventor
Koji Tsuneyoshi
孝治 常吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP2006328255A priority Critical patent/JP2008137872A/en
Publication of JP2008137872A publication Critical patent/JP2008137872A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a honeycomb structure superior in the combustibility and regenerating efficiency of PM (particulate matter) when it is used as a filter. <P>SOLUTION: The honeycomb structure 1 of the invention is formed from a porous ceramic and has a plurality of cells extending in the axial direction, and characterised in that the distance c between the centers of neighboring cells is 1.0-3.0 mm, the thickness d of partition wall separating between the neighboring cells is 0.1-0.5 mm, the porosity P of the porous ceramic is 40-70%, and the value of d×(100-P)/c satisfies 2.0-30.0. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ハニカム構造体に関し、詳しくは、PMの燃焼性や再生効率に優れたフィルタを提供することができるハニカム構造体に関する。   The present invention relates to a honeycomb structure, and more particularly to a honeycomb structure that can provide a filter excellent in PM combustibility and regeneration efficiency.

内燃機関、ボイラー、化学反応機器、燃料電池用改質器等の触媒作用を利用する触媒用担体、排ガス中のスス等の微粒子(特にディーゼルエンジンからの排気ガス中の微粒子物質(PM))の捕集フィルタ(以下、DPFという)等には、セラミックス製のハニカム構造体が用いられている。   Catalytic carrier utilizing catalytic action of internal combustion engine, boiler, chemical reaction equipment, fuel cell reformer, etc., particulates such as soot in exhaust gas (particularly particulate matter (PM) in exhaust gas from diesel engine) A ceramic honeycomb structure is used for a collection filter (hereinafter referred to as DPF).

セラミックス製のハニカム構造体は、一般に、多孔質のセラミックスよりなり、流体の流路となる複数のセルを隔壁で区画する隔壁部と、端面が市松模様状を呈するように隣接するセルが互いに反対側となる端部を封止するセラミックスよりなる封止部と、を有している。   A honeycomb structure made of ceramic is generally made of porous ceramics, and partition walls that divide a plurality of cells that serve as fluid flow paths by partition walls, and adjacent cells are opposite to each other so that the end faces form a checkered pattern. And a sealing portion made of ceramics that seals the end portion on the side.

セラミックス製のハニカム構造体よりなるDPFは、隔壁部のセルを区画する隔壁を排気ガスが通過するウォールフロー型の触媒として用いられている。ウォールフロー型の触媒は、セル壁に形成された連続した細孔を排気ガスが通過し、細孔を通過できない排気ガス中のPMを捕集する。   A DPF made of a ceramic honeycomb structure is used as a wall flow type catalyst in which exhaust gas passes through partition walls that partition partition wall cells. The wall flow type catalyst collects PM in the exhaust gas through which the exhaust gas passes through the continuous pores formed in the cell wall and cannot pass through the pores.

DPFは、捕集したPMが堆積したままでは目詰まりを起こすため、捕集したPMを除去する必要がある。捕集したPMを除去する方法のひとつに燃焼等によりPMを分解・除去する方法がある。また、DPFに触媒活性を発揮する触媒金属を担持し、この触媒金属でPMを分解する方法もある。   Since the DPF is clogged when the collected PM is accumulated, it is necessary to remove the collected PM. One method of removing the collected PM is a method of decomposing and removing PM by combustion or the like. There is also a method in which a catalytic metal exhibiting catalytic activity is supported on the DPF and PM is decomposed with this catalytic metal.

燃焼によりPMを除去するときには、ハニカム構造体が昇温される。しかし、ハニカム構造体は、自身の熱容量が大きいことから、PMの燃焼温度までハニカム構造体の温度が上昇しないという問題があった。つまり、ハニカム構造体の昇温のしにくさから、PMの除去が不完全となり、DPFの再生性が低下するという問題があった。   When removing PM by combustion, the honeycomb structure is heated. However, since the honeycomb structure has a large heat capacity, there has been a problem that the temperature of the honeycomb structure does not rise to the combustion temperature of PM. That is, there is a problem that PM removal is incomplete due to the difficulty of raising the temperature of the honeycomb structure, and the regenerating property of the DPF is lowered.

このような問題に対して、捕集したPMを燃焼しやすくするために、ハニカム構造体の熱容量を小さくする方法がある。しかし、ハニカム構造体の熱容量を小さくすると、ハニカム構造体に割れを生じたり、ハニカム構造体自身が変質を生じるという問題が発生していた。これらの問題は、PMの燃焼のためにハニカム構造体自身が高温に晒されたり、PMの燃焼の燃焼熱により、ハニカム構造体の温度が過剰に上昇することにより発生していた。特にハニカム構造体の熱容量が小さくなるほど、ハニカム構造体の温度が過剰に上昇していた。   In order to make it easy to burn the collected PM against such a problem, there is a method of reducing the heat capacity of the honeycomb structure. However, when the heat capacity of the honeycomb structure is reduced, there is a problem that the honeycomb structure is cracked or the honeycomb structure itself is deteriorated. These problems occur because the honeycomb structure itself is exposed to a high temperature for PM combustion, or the temperature of the honeycomb structure rises excessively due to the combustion heat of PM combustion. In particular, the temperature of the honeycomb structure excessively increased as the heat capacity of the honeycomb structure decreased.

本発明は上記実情に鑑みてなされたものであり、フィルタとして使用したときにPMの燃焼性や再生効率に優れたハニカム構造体を提供することを課題とする。   This invention is made | formed in view of the said situation, and makes it a subject to provide the honeycomb structure excellent in PM combustibility and regeneration efficiency, when used as a filter.

上記課題を解決するために本発明者らはセラミックス製のハニカム構造体について検討を重ねた結果本発明をなすに至った。   In order to solve the above-mentioned problems, the present inventors have studied the ceramic honeycomb structure and have come to make the present invention.

すなわち、本発明のハニカム構造体は、多孔質セラミックスよりなり、軸方向にのびる多数のセルをもつハニカム構造体であって、隣接するセルの中心の間隔cが1.0〜3.0mm、隣接するセルを隔離する隔壁の厚さdが0.1〜0.5mm、多孔質セラミックスの気孔率Pが40〜70%であり、かつd×(100−P)/cの値が2.0〜30.0を満たすことを特徴とする。   That is, the honeycomb structure of the present invention is made of porous ceramics and has a large number of cells extending in the axial direction, and the interval c between adjacent cell centers is 1.0 to 3.0 mm. The partition wall thickness d for isolating the cell to be performed is 0.1 to 0.5 mm, the porosity P of the porous ceramic is 40 to 70%, and the value of d × (100−P) / c is 2.0. It is characterized by satisfying ~ 30.0.

本発明のハニカム構造体は、セルの間隔、隔壁の厚さおよび多孔質のセラミックスの気孔率を調節することで、ハニカム構造体の熱容量が所望の範囲内となっている。この結果、本発明のハニカム構造体は、ハニカム構造体が所定の加熱温度で加熱されることとなり、PMの燃焼性や再生効率に優れたハニカム構造体となった。   In the honeycomb structure of the present invention, the heat capacity of the honeycomb structure is within a desired range by adjusting the cell spacing, the partition wall thickness, and the porosity of the porous ceramic. As a result, the honeycomb structure of the present invention was heated at a predetermined heating temperature, and the honeycomb structure was excellent in PM combustibility and regeneration efficiency.

本発明のハニカム構造体は、多孔質セラミックスよりなり、軸方向にのびる多数のセルをもつハニカム構造体である。   The honeycomb structure of the present invention is a honeycomb structure made of porous ceramics and having a large number of cells extending in the axial direction.

そして、本発明のハニカム構造体は、隣接するセルの中心の間隔cが1.0〜3.0mmである。セルの中心の間隔は、ハニカム構造体の軸方向に垂直な断面での隣接するセルの中心の間隔である。隔壁の厚さが同じであるならば、セルの間隔cが長くなると、セルの形状が大きくなる。つまり、ハニカム構造体における多孔質セラミックスの使用量が相対的に減少し、ハニカム構造体の見かけの密度が小さくなる。この結果、ハニカム構造体が昇温しやすくなる。本発明においては、セルの中心の間隔cが1.0〜3.0mmとなることで、優れた昇温性と高い耐熱性を持つこととなる。   In the honeycomb structure of the present invention, the distance c between the centers of adjacent cells is 1.0 to 3.0 mm. The distance between the centers of the cells is the distance between the centers of adjacent cells in a cross section perpendicular to the axial direction of the honeycomb structure. If the partition walls have the same thickness, the cell shape increases as the cell spacing c increases. That is, the amount of porous ceramics used in the honeycomb structure is relatively reduced, and the apparent density of the honeycomb structure is reduced. As a result, the honeycomb structure is easily heated. In this invention, it will have the outstanding temperature rising property and high heat resistance because the space | interval c of the center of a cell will be 1.0-3.0 mm.

セル中心の間隔cが1.0mm未満では、間隔が短くなりすぎて、多孔質セラミックスの使用量が相対的に増加し、ハニカム構造体の見かけの密度が大きくなる。つまり、ハニカム構造体が昇温しにくくなる。セル中心の間隔cが3.0mmを超えると、ハニカム構造体の見かけの密度が過剰に小さくなる。つまり、ハニカム構造体の温度が過剰に上昇する。   If the distance c between the cell centers is less than 1.0 mm, the distance becomes too short, the amount of porous ceramic used is relatively increased, and the apparent density of the honeycomb structure is increased. That is, it becomes difficult for the honeycomb structure to increase in temperature. If the distance c between the cell centers exceeds 3.0 mm, the apparent density of the honeycomb structure becomes excessively small. That is, the temperature of the honeycomb structure increases excessively.

本発明のハニカム構造体は、隣接するセルを隔離する隔壁の厚さdが0.1〜0.5mmである。隔壁の厚さが厚くなると、ハニカム構造体に占める多孔質のセラミックスの割合が増加する。つまり、dが大きくなるほどハニカム構造体の見かけの密度が大きくなる。多孔質のセラミックスの割合が増加することで、ハニカム構造体が昇温しにくくなる。本発明においては、隔壁の厚さdが0.1〜0.5mmとなることで、優れた昇温性と高い耐熱性を持つこととなる。   In the honeycomb structure of the present invention, the thickness d of the partition wall that separates adjacent cells is 0.1 to 0.5 mm. As the partition wall thickness increases, the proportion of porous ceramics in the honeycomb structure increases. That is, as d increases, the apparent density of the honeycomb structure increases. An increase in the proportion of porous ceramics makes it difficult for the honeycomb structure to rise in temperature. In this invention, it will have the outstanding temperature rising property and high heat resistance because thickness d of a partition wall will be 0.1-0.5 mm.

隔壁の厚さdが0.1mm未満では、隔壁の厚さが薄くなりすぎて、多孔質セラミックスの使用量が少なくなりすぎ、ハニカム構造体の見かけの密度が過剰に小さくなる。つまり、ハニカム構造体の温度が過剰に上昇するようになる。隔壁の厚さdが0.5mmを超えると、隔壁の厚さが厚くなりすぎて、多孔質セラミックスの使用量が相対的に増加し、ハニカム構造体の見かけの密度が大きくなる。つまり、ハニカム構造体が昇温しにくくなる。   When the partition wall thickness d is less than 0.1 mm, the partition wall thickness is too thin, the amount of the porous ceramic used is too small, and the apparent density of the honeycomb structure becomes excessively small. That is, the temperature of the honeycomb structure increases excessively. When the partition wall thickness d exceeds 0.5 mm, the partition wall thickness becomes too thick, the amount of the porous ceramic used is relatively increased, and the apparent density of the honeycomb structure is increased. That is, it becomes difficult for the honeycomb structure to increase in temperature.

本発明のハニカム構造体は、多孔質セラミックスの気孔率Pが40〜70%である。気孔率が大きくなると、ハニカム構造体に占める多孔質のセラミックスの割合が減少する。つまり、Pが大きくなるほどハニカム構造体の見かけの密度が小さくなる。この結果、ハニカム構造体が昇温しやすくなる。本発明においては、気孔率Pが40〜70%となることで、優れた昇温性と高い耐熱性を持つこととなる。   In the honeycomb structure of the present invention, the porosity P of the porous ceramic is 40 to 70%. As the porosity increases, the proportion of porous ceramics in the honeycomb structure decreases. That is, as P increases, the apparent density of the honeycomb structure decreases. As a result, the honeycomb structure is easily heated. In this invention, it will have the outstanding temperature rising property and high heat resistance because the porosity P will be 40 to 70%.

多孔質セラミックスの気孔率Pが40%未満では、ハニカム構造体の見かけの密度が大きくなり、ハニカム構造体が昇温しにくくなる。多孔質セラミックスの気孔率Pが70%を超えると、ハニカム構造体の見かけの密度が過剰に小さくなる。つまり、ハニカム構造体の温度が過剰に上昇するようになる。   When the porosity P of the porous ceramic is less than 40%, the apparent density of the honeycomb structure becomes large, and the honeycomb structure becomes difficult to increase in temperature. When the porosity P of the porous ceramic exceeds 70%, the apparent density of the honeycomb structure becomes excessively small. That is, the temperature of the honeycomb structure increases excessively.

そして、本発明のハニカム構造体は、d×(100−P)/cの値が2.0〜30.0を満たす。上記したように、c、dおよびPは、それぞれハニカム構造体の熱容量に影響を及ぼす値である。dはハニカム構造体の隔壁の厚さであることから、その値が大きくなるほど隔壁の厚さが厚くなり、ハニカム構造体において隔壁の占める割合が増加する。この結果、ハニカム構造体の熱容量が増加する。また、cはセル中心の間隔(距離)であることから、その値が大きくなるほどセルの中空部が増加することとなる。Pは多孔質セラミックスの気孔率であることから、その値が大きくなるほど気孔量が多くなる。この結果、cおよびPの値が大きくなるほどハニカム構造体を構成するセラミックス量が減少し、ハニカム構造体の熱容量が減少する。つまり、d×(100−P)/cは、ハニカム構造体全体の熱容量を表す。そして、本発明のハニカム構造体は、d×(100−P)/cの値が2.0〜30.0の範囲内となることで、優れた昇温性と高い耐熱性を持つこととなる。より好ましいd×(100−P)/cの値は、2.0〜25.0であり、さらに好ましいd×(100−P)/cの値は、2.0〜20.0である。   In the honeycomb structure of the present invention, the value of d × (100−P) / c satisfies 2.0 to 30.0. As described above, c, d, and P are values that affect the heat capacity of the honeycomb structure. Since d is the thickness of the partition walls of the honeycomb structure, the larger the value, the thicker the partition wall, and the ratio of the partition walls in the honeycomb structure increases. As a result, the heat capacity of the honeycomb structure increases. Moreover, since c is the space | interval (distance) of a cell center, the hollow part of a cell will increase, so that the value becomes large. Since P is the porosity of the porous ceramic, the larger the value, the larger the amount of pores. As a result, as the values of c and P increase, the amount of ceramics constituting the honeycomb structure decreases, and the heat capacity of the honeycomb structure decreases. That is, d × (100−P) / c represents the heat capacity of the entire honeycomb structure. And the honeycomb structure of the present invention has an excellent temperature rise property and high heat resistance because the value of d × (100−P) / c is in the range of 2.0 to 30.0. Become. A more preferable value of d × (100−P) / c is 2.0 to 25.0, and a more preferable value of d × (100−P) / c is 2.0 to 20.0.

d×(100−P)/cの値が2.0未満では、ハニカム構造体全体の熱容量が小さすぎ、DPFとして使用したときに、捕集したPMを燃焼したときの燃焼熱がさらにPMを燃焼して一気に発熱して熱暴走を生じるようになる。熱暴走は、ハニカム構造体の割れや変質を生じさせる。   When the value of d × (100−P) / c is less than 2.0, the heat capacity of the entire honeycomb structure is too small, and when used as a DPF, the combustion heat when burning the collected PM further increases the PM. It burns and generates heat at a stretch, causing thermal runaway. Thermal runaway causes cracking and alteration of the honeycomb structure.

d×(100−P)/cの値が30.0を超えると、ハニカム構造体全体の熱容量が大きすぎ、DPFとして使用して捕集したPMを燃焼するときに、ハニカム構造体が十分に加熱されなくなり、PMの燃焼不良が発生することとなる。   When the value of d × (100−P) / c exceeds 30.0, the heat capacity of the entire honeycomb structure is too large, and when the PM collected using the DPF is burned, the honeycomb structure is sufficiently It will not be heated and PM combustion failure will occur.

本発明のハニカム構造体は、c、dおよびPの範囲が限定されること以外は、従来公知のハニカム構造体と同様な構成とすることができる。   The honeycomb structure of the present invention can have the same configuration as a conventionally known honeycomb structure except that the ranges of c, d, and P are limited.

本発明のハニカム構造体を形成する多孔質のセラミックスは、その材質が特に限定されるものではなく、従来公知のセラミックスを用いることができる。セラミックスは、チタン酸アルミニウム、炭化珪素、窒化珪素、コーディエライトより選ばれる一種を主成分とすることが好ましい。これらのセラミックスのうち、チタン酸アルミニウムを主成分とするセラミックスよりなることがより好ましい。チタン酸アルミニウムよりなるセラミックスは、その内部にマイクロクラックをもつ。そして、このマイクロクラックをもつことで、ハニカム構造体が熱膨張を生じても、このマイクロクラックの開口が開閉することで熱膨張により生じる応力を緩和し、形状変化や損傷が生じなくなる。   The material of the porous ceramic forming the honeycomb structure of the present invention is not particularly limited, and a conventionally known ceramic can be used. The ceramic is preferably mainly composed of one kind selected from aluminum titanate, silicon carbide, silicon nitride, and cordierite. Of these ceramics, it is more preferable to be made of a ceramic mainly composed of aluminum titanate. Ceramics made of aluminum titanate have microcracks inside. And even if the honeycomb structure undergoes thermal expansion by having these micro cracks, the stress caused by the thermal expansion is relaxed by opening and closing the openings of the micro cracks, so that shape change and damage do not occur.

ハニカム構造体は、多数のセルの一方の端部または他方の端部がセラミックスよりなる封止材に封止されていることが好ましい。セルの一方の端部または他方の端部が封止材で封止されることで、ウォールフロー型のハニカム構造体を形成できる。封止材を構成するセラミックスは、その材質が特に限定されるものではなく、ハニカム構造体を構成する多孔質のセラミックスと同じ材質であっても、異なる材質であっても、いずれでもよい。より好ましくは、多孔質のセラミックスを主成分としてなるセラミックスである。   In the honeycomb structure, one end or the other end of many cells is preferably sealed with a sealing material made of ceramics. A wall flow type honeycomb structure can be formed by sealing one end or the other end of the cell with a sealing material. The material of the ceramic constituting the sealing material is not particularly limited, and may be the same as or different from the porous ceramic constituting the honeycomb structure. More preferably, the ceramic is mainly composed of porous ceramics.

本発明のハニカム構造体において、セルの形状(断面形状)は、特に限定されるものではなく、従来公知の断面形状とすることができる。従来公知のセル形状のうち、正方形状であることがより好ましい。   In the honeycomb structure of the present invention, the cell shape (cross-sectional shape) is not particularly limited, and may be a conventionally known cross-sectional shape. Of the conventionally known cell shapes, a square shape is more preferable.

本発明のハニカム構造体は、従来公知のハニカム構造体のように、複数部の分体を接合材で接合した構成としてもよい。このような構成は、分体ごとにその特性を変化させることができ、ハニカム構造体全体に所望の性能を付与できる。ハニカム構造体が複数部の分体よりなるときに、それぞれの分体の材質は同じであっても異なっていてもいずれでもよい。すなわち、ハニカム構造体は、複数のセラミックス分体が接着剤層を介して接合されてなることが好ましい。   The honeycomb structure of the present invention may have a configuration in which a plurality of parts are joined with a joining material, as in a conventionally known honeycomb structure. Such a structure can change the characteristic for every split body, and can give desired performance to the whole honeycomb structure. When the honeycomb structure is composed of a plurality of parts, the material of each part may be the same or different. That is, the honeycomb structure is preferably formed by bonding a plurality of ceramic segments through an adhesive layer.

本発明のハニカム構造体は、複数部の分体が接合されてなるときに、それぞれの分体のc、dおよびPならびにd×(100−P)/cの値が所定の範囲にあればよい。   In the honeycomb structure of the present invention, when a plurality of parts are joined, the values of c, d and P and d × (100−P) / c of each part are within a predetermined range. Good.

セラミックス分体を接合する接合材についても、従来公知の接合材を用いることができる。この接合材としては、例えば、SiC系接合材を用いることができる。セラミックス分体を接合材で接合したときにセラミックス分体の間に形成される接合材層は、0.5〜5.0mmの厚さで形成することが好ましい。   A conventionally known bonding material can also be used as the bonding material for bonding the ceramic body. As this bonding material, for example, a SiC-based bonding material can be used. The bonding material layer formed between the ceramic bodies when the ceramic bodies are joined with the joining material is preferably formed with a thickness of 0.5 to 5.0 mm.

なお、本発明のハニカム構造体が複数部の分体が接合されてなるときには、接合材層の厚さでハニカム分体の隔壁の厚さを補正し、補正値をdとして用いてd×(100−P)/cの値を求めることが好ましい。ハニカム分体の隔壁の厚さの補正は、まず、接合材層の気孔率とハニカム分体を構成する多孔質のセラミックスの気孔率とから、接合材層が多孔質のセラミックスと同じ気孔率である場合の接合材層の厚さ(d)を算出する。そして、算出された接合材層の厚さ(d)を隔壁の数で割る。これにより、隔壁ひとつあたりの接合材層の厚さ(d)が求められる。この隔壁ひとつあたりの接合材層の厚さ(d)を、ハニカム分体の隔壁の厚さ(d)に加えた値(d+d)を補正値d(=d+d)とし、d×(100−P)/cの値を求める。 When the honeycomb structure of the present invention is formed by joining a plurality of segments, the thickness of the partition walls of the honeycomb segment is corrected by the thickness of the bonding material layer, and the correction value is used as d × ( It is preferable to obtain a value of 100−P) / c. The correction of the thickness of the partition walls of the honeycomb body is based on the porosity of the bonding material layer and the porosity of the porous ceramics constituting the honeycomb body, with the same porosity as the porous ceramic material of the bonding material layer. The thickness (d 0 ) of the bonding material layer in a certain case is calculated. Then, the calculated thickness (d 0 ) of the bonding material layer is divided by the number of partition walls. Thereby, the thickness (d 1 ) of the bonding material layer per partition is obtained. The thickness of the partition wall, one per bonding material layer (d 1), and the partition walls of the honeycomb chromatid thickness (d 2) to the added value (d 2 + d 1) a correction value d (= d 2 + d 1 ) And the value of d × (100−P) / c is obtained.

ここで、本発明のハニカム構造体が複数部の分体が接合されてなるときに、ハニカム構造体の隔壁の厚さ方向における接合材層の厚さが非常に小さい場合には、接合材層の影響を無視してもよい。   Here, when the honeycomb structure of the present invention is formed by joining a plurality of segments, if the thickness of the bonding material layer in the thickness direction of the partition walls of the honeycomb structure is very small, the bonding material layer You can ignore the effects of.

さらに、ハニカム構造体が複数のセラミックス分体が接着剤層を介して接合されてなるときに、それぞれのセラミックス分体に形成されたセルの大きさ(セル形状)は、同じであっても、異なっていても、いずれでもよい。それぞれのセラミックス分体のセルの大きさ(セル形状)は、同じであることが好ましい。   Furthermore, when the honeycomb structure is formed by bonding a plurality of ceramic segments through an adhesive layer, the size of the cells (cell shape) formed in each ceramic segment is the same, It may be different or any. The size (cell shape) of each ceramic segment cell is preferably the same.

本発明のハニカム構造体は、周方向の外周面上に、0.5mm以上の厚さの外周材層を有することが好ましい。外周材層をもつことで、ハニカム構造体をDPFなどに使用したときに生じる形状変化が抑えられる。具体的には、ハニカム構造体をDPFなどの用途に使用したときに、ハニカム構造体は高熱にさらされる。そして、ハニカム構造体は、熱膨張を生じる。外周材層をもつことでこの熱膨張を抑えることができる。外周材層を構成する材質は、従来公知の材質を用いることができる。たとえば、SiC、シリカ系化合物、チタン酸アルミニウムなどのアルミナ系化合物などを用いることができる。   The honeycomb structure of the present invention preferably has an outer peripheral material layer having a thickness of 0.5 mm or more on the outer peripheral surface in the circumferential direction. By having the outer peripheral material layer, the shape change that occurs when the honeycomb structure is used for a DPF or the like can be suppressed. Specifically, when the honeycomb structure is used for applications such as DPF, the honeycomb structure is exposed to high heat. The honeycomb structure undergoes thermal expansion. This thermal expansion can be suppressed by having the outer peripheral material layer. A conventionally known material can be used as the material constituting the outer peripheral material layer. For example, SiC, silica compounds, alumina compounds such as aluminum titanate, and the like can be used.

また、外周材層は、ハニカム構造体の形状により異なるため、その厚さが一概に決定できるものではないが、たとえば、0.5mm以上の厚さで形成することが好ましい。さらに好ましくは、0.5〜5.0mmである。   In addition, since the thickness of the outer peripheral material layer varies depending on the shape of the honeycomb structure, the thickness thereof cannot be determined unconditionally. More preferably, it is 0.5-5.0 mm.

本発明のハニカム構造体は、DPFに用いることが好ましい。本発明のハニカム構造体は、セルを区画する隔壁を排気ガス(気体)が通過するウォールフロー型のフィルタ触媒として用いることができ、このようなフィルタ触媒のうち特に、DPFとして用いることが好ましい。   The honeycomb structure of the present invention is preferably used for a DPF. The honeycomb structure of the present invention can be used as a wall flow type filter catalyst in which exhaust gas (gas) passes through partition walls that partition cells, and among these filter catalysts, it is particularly preferable to use as a DPF.

本発明のハニカム構造体をDPFとして用いるときに、少なくとも隔壁部の細孔表面に、アルミナ等よりなる多孔質酸化物、Pt,Pd,Rh等の触媒金属の少なくともひとつを担持したことが好ましい。これらの物質を担持したことで、DPFとしてパティキュレートなどの浄化性能が向上する。   When the honeycomb structure of the present invention is used as a DPF, it is preferable to support at least one of a porous oxide made of alumina or the like and a catalyst metal such as Pt, Pd, or Rh on at least the pore surfaces of the partition walls. By carrying these substances, purification performance such as particulates as DPF is improved.

本発明のハニカム構造体は、その外周形状が特に限定されるものではなく、従来公知の形状とすることができる。たとえば、断面が真円や楕円の略円柱状、断面が方形や多角形の角柱状とすることができ、より好ましくは円柱形状である。   The outer peripheral shape of the honeycomb structure of the present invention is not particularly limited, and can be a conventionally known shape. For example, the cross section may be a substantially circular or elliptical cylinder, and the cross section may be a square or polygonal prism, and more preferably a cylinder.

以下、実施例を用いて本発明を説明する。   Hereinafter, the present invention will be described using examples.

本発明の実施例として、DPF用ハニカム構造体を製造した。   As an example of the present invention, a honeycomb structure for DPF was manufactured.

(実施例1)
実施例のDPF用ハニカム構造体の製造方法を以下に示す。
(Example 1)
The manufacturing method of the honeycomb structure for DPF of an Example is shown below.

まず、SiCを主成分とするハニカム体2のセラミックスの原料を秤量し、この原料を十分に混合(混練)した後に、軸方向に多数のセルが形成された柱状のSiCよりなる成形体を従来公知の製造方法である押出成形で製造した。この成形体は、断面が正方形状に区画されたセルをもつ。ここで、この成形体の外周形状(見かけの形状)は、本実施例のように角柱状だけでなく、ハニカム構造体を形成したときの外周形状と略一致する外周形状に形成することができる。   First, a ceramic body of the honeycomb body 2 containing SiC as a main component is weighed, and after thoroughly mixing (kneading) the raw material, a molded body made of columnar SiC having a large number of cells formed in the axial direction is conventionally obtained. It was manufactured by extrusion molding, which is a known manufacturing method. This molded body has cells having a square section. Here, the outer peripheral shape (apparent shape) of the formed body can be formed not only in the shape of a prism as in the present embodiment, but also in the outer peripheral shape that substantially matches the outer peripheral shape when the honeycomb structure is formed. .

つづいて、固形分がほぼSiC粒子よりなるスラリーを調製した。なお、このスラリーは、粘度調整材等の添加剤を含む。そして、このスラリーを、乾燥させた成形体の両端の端部から所定のセルに注入し、80℃で乾燥させた。ここで、所定のセルとは、スラリーが注入されたセルが市松模様状をなすようにもうけられている。また、セルの一方の端部または他方の端部のみにスラリーが注入された。   Subsequently, a slurry having a solid content substantially composed of SiC particles was prepared. In addition, this slurry contains additives, such as a viscosity modifier. And this slurry was inject | poured into the predetermined | prescribed cell from the edge part of the both ends of the dried molded object, and was dried at 80 degreeC. Here, the predetermined cell is provided so that the cell into which the slurry is injected has a checkered pattern. In addition, the slurry was injected only into one end or the other end of the cell.

そして、その後の工程で成形したときに、ハニカム構造体1の外周面を区画するセルには、その両端にスラリーを注入した。   And when it shape | molded at the subsequent process, the slurry was inject | poured into the cell which divides the outer peripheral surface of the honeycomb structure 1 into the both ends.

その後、2300℃でセルにスラリーが注入された成形体を熱処理して成形体を焼成するとともにスラリーを固化させて封止材3とし、封止材3で封止されたセル(封止部)をもつハニカム体2を形成した。セルの軸方向における封止材3の長さはそれぞれ3.0mmであった。封止部が形成された状態を図1に模式的に示した。   Thereafter, the molded body in which the slurry is injected into the cell at 2300 ° C. is heat-treated to fire the molded body, and the slurry is solidified to form the sealing material 3, and the cell sealed with the sealing material 3 (sealing part) A honeycomb body 2 having the structure was formed. The length of the sealing material 3 in the axial direction of the cell was 3.0 mm. The state in which the sealing part is formed is schematically shown in FIG.

そして、このハニカム体2を電動ノコギリを用いて切削して外周形状を成形した。電動ノコギリによる切削は、図1において破線で示された線に沿って、両端部に封止材が形成されたセルが外周面を形成する略円柱状をなすようになされた。成形後のハニカム体2(切削体)を図2に模式的に示した。   The honeycomb body 2 was cut using an electric saw to form an outer peripheral shape. The cutting with the electric saw was made into a substantially columnar shape in which the cells having the sealing material formed at both ends thereof formed the outer peripheral surface along the line indicated by the broken line in FIG. FIG. 2 schematically shows the honeycomb body 2 (cut body) after being formed.

そして、主成分がSiCよりなるスラリーを調製し、切削体の外周面に塗布し、80℃で乾燥した後に850℃で加熱してスラリーを固化させた。これにより、外周面上に外周材層4が形成できた。   And the slurry which a main component consists of SiC was prepared, it apply | coated to the outer peripheral surface of the cutting body, and it dried at 80 degreeC, Then, it heated at 850 degreeC and solidified the slurry. Thereby, the outer peripheral material layer 4 was able to be formed on the outer peripheral surface.

以上により、本実施例のハニカム構造体1を製造することができる。本実施例のハニカム構造体を図3〜5に示した。なお、図3はハニカム構造体1の端面を、図4はハニカム構造体1の端面の周縁部近傍を、図5はハニカム構造体1の軸方向での断面を、それぞれ示した。   As described above, the honeycomb structure 1 of this example can be manufactured. The honeycomb structure of the present example is shown in FIGS. 3 shows the end face of the honeycomb structure 1, FIG. 4 shows the vicinity of the peripheral edge of the end face of the honeycomb structure 1, and FIG. 5 shows the cross section of the honeycomb structure 1 in the axial direction.

図に示したように、本実施例のハニカム構造体1は、軸方向にのびる多数のセルを備えた多孔質のSiCセラミックスよりなるハニカム体2と、多数のセルのうち所定のセルの一方の端部または他方の端部に充填された封止材3と、隔壁部の周方向の外周面上に形成された外周材層4と、を備えた構成を有している。なお、本実施例のハニカム構造体1のハニカム体2は、外径:90.0mm、軸方向長さ:150.0mmの略円柱状に形成されている。   As shown in the figure, the honeycomb structure 1 of the present example includes a honeycomb body 2 made of porous SiC ceramics having a large number of cells extending in the axial direction, and one of predetermined cells among the large number of cells. It has the structure provided with the sealing material 3 with which the edge part or the other edge part was filled, and the outer peripheral material layer 4 formed on the outer peripheral surface of the circumferential direction of a partition part. Note that the honeycomb body 2 of the honeycomb structure 1 of the present example is formed in a substantially cylindrical shape having an outer diameter: 90.0 mm and an axial length: 150.0 mm.

本実施例においてハニカム構造体1は、セルの中心間隔c、セルを区画する隔壁の厚さdおよび隔壁の平均気孔率Pが表1に示した値となるように各試料が製造された。また、表1には、各試料のd×(100−P)/cの値を併せて示した。   In this example, each sample of the honeycomb structure 1 was manufactured so that the center distance c of the cells, the thickness d of the partition walls partitioning the cells, and the average porosity P of the partition walls were the values shown in Table 1. Table 1 also shows the value of d × (100−P) / c for each sample.

Figure 2008137872
Figure 2008137872

(評価)
各試料のハニカム構造体1の評価として、ハニカム構造体にスス(PM)を堆積させた状態で再生試験を行い、PMの酸化率とPMの残留割合(燃え残り率)を測定した。具体的な試験方法を以下に示す。
(Evaluation)
As an evaluation of the honeycomb structure 1 of each sample, a regeneration test was performed in a state where soot (PM) was deposited on the honeycomb structure, and a PM oxidation rate and a PM residual ratio (burn-out rate) were measured. Specific test methods are shown below.

まず、試験されるハニカム構造体の重量を測定し、その後、ハニカム構造体にPMを堆積させた。そして、ハニカム構造体に熱電対を挿入した。熱電対は、ハニカム構造体の一方の端面から10.0mmの位置に配置された。熱電対は、軸心部近傍、軸心と外周との中心部近傍および外周部近傍に設置された。   First, the weight of the honeycomb structure to be tested was measured, and then PM was deposited on the honeycomb structure. Then, a thermocouple was inserted into the honeycomb structure. The thermocouple was disposed at a position 10.0 mm from one end face of the honeycomb structure. The thermocouple was installed in the vicinity of the shaft center, in the vicinity of the center between the shaft and the outer periphery, and in the vicinity of the outer periphery.

熱電対がセットされたハニカム構造体を電気炉にセットし、ハニカム構造体のセル内に700℃に加熱した窒素ガスを流通させて、ハニカム構造体を昇温した。このとき、炉内は、PMに対して不活性な雰囲気となった。   The honeycomb structure in which the thermocouple was set was set in an electric furnace, and nitrogen gas heated to 700 ° C. was passed through the cells of the honeycomb structure to raise the temperature of the honeycomb structure. At this time, the atmosphere in the furnace was inert to PM.

熱電対で測定されるハニカム構造体の温度が安定したら、窒素ガスから空気に切り替えた。空気は0.4m/sで流された。ハニカム構造体が十分に加熱された状態で、ハニカム構造体に流されるガスを窒素ガスから空気に切り替えたことにより、空気中の酸素とPMとが反応してハニカム構造体に堆積したPMが燃焼した。PMの燃焼は発熱反応であり、ハニカム構造体の内部が昇温した。   When the temperature of the honeycomb structure measured by the thermocouple was stabilized, the gas was switched from nitrogen gas to air. Air was flowed at 0.4 m / s. With the honeycomb structure sufficiently heated, the gas flowing through the honeycomb structure is switched from nitrogen gas to air, so that oxygen in the air reacts with PM and PM deposited on the honeycomb structure burns. did. The combustion of PM was an exothermic reaction, and the temperature inside the honeycomb structure increased.

その後、熱電対で測定される温度が安定したら、PMの燃焼が終了したとして空気の供給を終了した。   After that, when the temperature measured by the thermocouple was stabilized, the supply of air was terminated because PM combustion was terminated.

PMの燃焼試験後のハニカム構造体の重量を測定し、試験の前後の重量からPMの燃え残り量およびPMの燃焼率を算出し、結果を表2に示した。ここで、表2に燃焼試験後のPMの燃え残り量はPM以外の物質の重量も含む。このため、PMの燃焼率は、実際には表2に示した値よりも大きいと推測される。   The weight of the honeycomb structure after the PM burning test was measured, the amount of unburned PM and the PM burning rate were calculated from the weight before and after the test, and the results are shown in Table 2. Here, in Table 2, the unburned amount of PM after the combustion test includes the weight of substances other than PM. For this reason, it is estimated that the PM combustion rate is actually larger than the value shown in Table 2.

また、PMの燃焼試験後のハニカム構造体を目視により観察を行った。観察結果を表2にあわせて示した。なお、表2のハニカム構造体の観察結果における○は外周面にひび割れ、クラック、溶損等の損傷が観察されない状態を示し、×は外周面にひび割れ、クラック、溶損等のハニカム構造体の損傷が観察された状態を示す。   Further, the honeycomb structure after the PM burning test was visually observed. The observation results are shown in Table 2. In the observation results of the honeycomb structure in Table 2, ○ indicates a state in which no damage such as cracks, cracks, and melting damage is observed on the outer peripheral surface, and × indicates a state of the honeycomb structure such as cracks, cracks, and melting damage on the outer peripheral surface. The state where damage was observed is shown.

Figure 2008137872
Figure 2008137872

表2に示したように、c,d,P,d×(100−P)/cのそれぞれの値が請求項に規定の範囲内にある試料1〜5のハニカム構造体は、PMの燃焼試験後にハニカム構造体の損傷が観察されなかった。また、試料1〜5のハニカム構造体は、PM燃焼率が60%以上と高いことが確認できた。   As shown in Table 2, the honeycomb structures of Samples 1 to 5 in which the respective values of c, d, P, and d × (100−P) / c are within the range specified in the claims are the combustion of PM. No damage to the honeycomb structure was observed after the test. Moreover, it was confirmed that the honeycomb structures of Samples 1 to 5 had a high PM combustion rate of 60% or more.

これに対し、dおよびd×(100−P)/cの値が所定の範囲を超えて大きな試料6のハニカム構造体は、PMの燃焼試験後にハニカム構造体の損傷は観察されなかったが、PM燃焼率が26.3%と、試料1〜5のハニカム構造体の場合と比較して大きく低いことが確認できた。   On the other hand, in the honeycomb structure of the sample 6 in which the values of d and d × (100−P) / c exceeded the predetermined range, damage to the honeycomb structure was not observed after the PM combustion test. It was confirmed that the PM burning rate was 26.3%, which was significantly lower than that of the honeycomb structures of Samples 1 to 5.

また、cまたはPとd×(100−P)/cの値が所定の範囲よりも小さな試料7〜8のハニカム構造体は、PM燃焼率は80%以上と試料1〜5のハニカム構造体と同等の値を示したが、PMの燃焼試験後にハニカム構造体の損傷が観察された。   Further, the honeycomb structures of Samples 7 to 8 in which the values of c or P and d × (100−P) / c are smaller than a predetermined range have a PM combustion rate of 80% or more and the honeycomb structures of Samples 1 to 5 The honeycomb structure was observed to be damaged after the PM combustion test.

このように、試料1〜5のハニカム構造体は、PMの燃焼性と耐熱衝撃性にすぐれたハニカム構造体となっていることがわかる。   Thus, it can be seen that the honeycomb structures of Samples 1 to 5 have a honeycomb structure excellent in PM combustibility and thermal shock resistance.

(実施例2)
実施例2のDPF用ハニカム構造体の製造方法を以下に示す。
(Example 2)
A method for manufacturing the DPF honeycomb structure of Example 2 will be described below.

まず、実施例1のハニカム体の製造と同様の方法でハニカム分体5を製造した。このハニカム分体5は、軸方向に垂直な断面での断面積が実施例1のハニカム体よりも小さい(区画されたセル数が少ない)こと以外は、実施例1のハニカム体2と同様な構成である。製造されたハニカム分体5は、セル中に封止材3よりなる封止部が形成されている。ハニカム分体5を図6に示した。なお、図6においては、封止材3は省略した。   First, the honeycomb segment 5 was manufactured by the same method as that for manufacturing the honeycomb body of Example 1. This honeycomb segment 5 is the same as the honeycomb body 2 of Example 1 except that the cross-sectional area in the cross section perpendicular to the axial direction is smaller than the honeycomb body of Example 1 (the number of partitioned cells is small). It is a configuration. In the manufactured honeycomb body 5, a sealing portion made of the sealing material 3 is formed in a cell. The honeycomb segment 5 is shown in FIG. In FIG. 6, the sealing material 3 is omitted.

そして、ハニカム分体5同士をSiC系接合材で接合した。接合材による接合は、厚さが1.0±0.5mmとなるように接合材をハニカム分体5の外周面に塗布した後、別のハニカム分体5をこの面にすりあわせて接合した。この接合を繰り返して、断面が正方形をなすように16個のハニカム分体5を接合し、80℃で乾燥した。ハニカム分体5の接合体の端面を図7に示した。   Then, the honeycomb bodies 5 were bonded to each other with a SiC bonding material. In the bonding with the bonding material, the bonding material was applied to the outer peripheral surface of the honeycomb body 5 so as to have a thickness of 1.0 ± 0.5 mm, and then another honeycomb body 5 was bonded to the surface. . This joining was repeated, and the 16 honeycomb bodies 5 were joined so that the cross section was a square, and dried at 80 ° C. The end face of the joined body of the honeycomb body 5 is shown in FIG.

そして、この接合体を電動ノコギリを用いて切削して外周形状を成形した。電動ノコギリによる切削は、両端部に封止材が形成されたセルが外周面を形成する略円柱状をなすようになされた。この切削時に、封止材のセルからの剥離がみられなかった。   Then, this joined body was cut using an electric saw to form an outer peripheral shape. Cutting with an electric saw was made so that a cell having a sealing material formed at both ends formed a substantially cylindrical shape forming an outer peripheral surface. During this cutting, no peeling of the sealing material from the cell was observed.

そして、主成分がSiCよりなるスラリーを調製し、成形体の外周面に塗布し、80℃で乾燥した後に850℃で加熱して接合材およびスラリーを固化させた。これにより、外周面上に外周材層4が形成できた。   And the slurry which a main component consists of SiC was prepared, and it apply | coated to the outer peripheral surface of a molded object, and after drying at 80 degreeC, it heated at 850 degreeC and solidified the joining material and the slurry. Thereby, the outer peripheral material layer 4 was able to be formed on the outer peripheral surface.

以上により、本実施例のハニカム構造体1を製造することができる。本実施例のハニカム構造体をその端面で図8に示した。   As described above, the honeycomb structure 1 of this example can be manufactured. The honeycomb structure of the present example is shown in FIG.

図に示したように、本実施例のハニカム構造体1は、複数の多孔質のSiCセラミックスよりなるハニカム分体5が接合材層6を介して接合されてなるハニカム構造体と、多数のセルのうち所定のセルの一方の端部または他方の端部に充填された封止材3と、隔壁部の周方向の外周面上に形成された外周材層4と、を備えた構成を有している。   As shown in the figure, the honeycomb structure 1 of the present example is composed of a honeycomb structure in which a plurality of honeycomb bodies 5 made of porous SiC ceramics are bonded via a bonding material layer 6, and a large number of cells. And a sealing material 3 filled in one end or the other end of a predetermined cell, and an outer peripheral material layer 4 formed on the outer peripheral surface in the circumferential direction of the partition wall. is doing.

本実施例のハニカム構造体1においても、セルの中心間隔c、セルを区画する隔壁の厚さd(接合材層の厚さに起因する補正済みの値)、隔壁の平均気孔率Pおよびd×(100−P)/cの値が所定の範囲内となることで、実施例1のハニカム構造体と同様な効果を発揮した。   Also in the honeycomb structure 1 of the present example, the center distance c of the cells, the thickness d of the partition walls partitioning the cells (corrected values due to the thickness of the bonding material layer), the average porosity P and d of the partition walls When the value of x (100-P) / c was within a predetermined range, the same effect as the honeycomb structure of Example 1 was exhibited.

実施例1のハニカム構造体に用いられるハニカム体を示した図である。1 is a view showing a honeycomb body used for a honeycomb structure of Example 1. FIG. 実施例1のハニカム体の切削体を示した図である。1 is a view showing a cut body of a honeycomb body of Example 1. FIG. 実施例1のハニカム構造体の端面を示した図である。3 is a view showing an end face of a honeycomb structure of Example 1. FIG. 実施例1のハニカム構造体の端面の周縁部近傍を示した図である。3 is a view showing the vicinity of the peripheral edge portion of the end face of the honeycomb structure of Example 1. FIG. 実施例1のハニカム構造体の軸方向の断面を示した図である。3 is a view showing a cross section in the axial direction of a honeycomb structure of Example 1. FIG. 実施例2のハニカム構造体に用いられるハニカム分体を示した図である。6 is a view showing a honeycomb segment used in the honeycomb structure of Example 2. FIG. 実施例2のハニカム分体の接合体の端面を示した図である。6 is a view showing an end face of a joined body of honeycomb bodies of Example 2. FIG. 実施例2のハニカム構造体の端面を示した図である。6 is a view showing an end face of a honeycomb structure of Example 2. FIG.

符号の説明Explanation of symbols

1:ハニカム構造体
2:ハニカム体
3:封止材
4:外周材層
5:ハニカム分体
6:接合材層
1: Honeycomb structure 2: Honeycomb body 3: Sealing material 4: Peripheral material layer 5: Honeycomb segment 6: Bonding material layer

Claims (3)

多孔質セラミックスよりなり、軸方向にのびる多数のセルをもつハニカム構造体であって、
隣接する該セルの中心の間隔cが1.0〜3.0mm、隣接する該セルを隔離する隔壁の厚さdが0.1〜0.5mm、該多孔質セラミックスの気孔率Pが40〜70%であり、
かつd×(100−P)/cの値が2.0〜30.0を満たすことを特徴とするハニカム構造体。
A honeycomb structure made of porous ceramics and having a large number of cells extending in the axial direction,
The distance c between the centers of the adjacent cells is 1.0 to 3.0 mm, the thickness d of the partition wall separating the adjacent cells is 0.1 to 0.5 mm, and the porosity P of the porous ceramic is 40 to 40 mm. 70%,
And the value of dx (100-P) / c satisfy | fills 2.0-30.0, The honeycomb structure characterized by the above-mentioned.
前記多孔質セラミックスは、チタン酸アルミニウム、炭化珪素、窒化珪素、コーディエライト、ムライトより選ばれる一種を主成分としてなる請求項1記載のハニカム構造体。   The honeycomb structure according to claim 1, wherein the porous ceramic is mainly composed of one kind selected from aluminum titanate, silicon carbide, silicon nitride, cordierite, and mullite. 前記ハニカム構造体は、多数の前記セルの一方の端部または他方の端部がセラミックスよりなる封止材に封止されている請求項1記載のハニカム構造体。   The honeycomb structure according to claim 1, wherein one end portion or the other end portion of the plurality of cells is sealed with a sealing material made of ceramics.
JP2006328255A 2006-12-05 2006-12-05 Honeycomb structure Pending JP2008137872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006328255A JP2008137872A (en) 2006-12-05 2006-12-05 Honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006328255A JP2008137872A (en) 2006-12-05 2006-12-05 Honeycomb structure

Publications (1)

Publication Number Publication Date
JP2008137872A true JP2008137872A (en) 2008-06-19

Family

ID=39599739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006328255A Pending JP2008137872A (en) 2006-12-05 2006-12-05 Honeycomb structure

Country Status (1)

Country Link
JP (1) JP2008137872A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167582A (en) * 2010-02-16 2011-09-01 Ngk Insulators Ltd Honeycomb catalyst body
JP2011194317A (en) * 2010-03-19 2011-10-06 Ngk Insulators Ltd Honeycomb catalyst and exhaust gas cleaning apparatus
CN104056666A (en) * 2013-03-22 2014-09-24 株式会社电装 Honeycomb structural body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167582A (en) * 2010-02-16 2011-09-01 Ngk Insulators Ltd Honeycomb catalyst body
JP2011194317A (en) * 2010-03-19 2011-10-06 Ngk Insulators Ltd Honeycomb catalyst and exhaust gas cleaning apparatus
CN104056666A (en) * 2013-03-22 2014-09-24 株式会社电装 Honeycomb structural body
JP2014184371A (en) * 2013-03-22 2014-10-02 Denso Corp Honeycomb structure

Similar Documents

Publication Publication Date Title
JP3983117B2 (en) Honeycomb structure and manufacturing method thereof
JP5185616B2 (en) Honeycomb structure
JP4293753B2 (en) Honeycomb filter
JP5209315B2 (en) Honeycomb filter
JP4408183B2 (en) Honeycomb filter for exhaust gas purification
KR100595769B1 (en) Honeycomb structure
JP2007260595A (en) Honeycomb structure
WO2003072913A1 (en) Honeycomb filter
US20070196248A1 (en) Honeycomb filter
JP4421858B2 (en) Honeycomb structure and manufacturing method thereof
CN107489493B (en) Honeycomb filter
JP2003227327A (en) Honeycomb structure
EP1870573A1 (en) Diesel particulate filter having improved thermal durability
CN108625932B (en) Sealed honeycomb structure
JP5124177B2 (en) Honeycomb structure
JP2008043850A (en) Honeycomb structure
JP4402732B1 (en) Honeycomb structure
JP2008100408A (en) Ceramic honeycomb structure
JP2008104944A (en) Honeycomb filter
JP2008137872A (en) Honeycomb structure
JP2008136981A (en) Honeycomb structure
JP7052093B2 (en) Honeycomb structure
JP6485162B2 (en) Exhaust gas purification filter
JP6398572B2 (en) Exhaust gas purification filter
JP6314783B2 (en) Exhaust gas purification filter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091015