JP2008128729A - 形状測定装置 - Google Patents

形状測定装置 Download PDF

Info

Publication number
JP2008128729A
JP2008128729A JP2006311772A JP2006311772A JP2008128729A JP 2008128729 A JP2008128729 A JP 2008128729A JP 2006311772 A JP2006311772 A JP 2006311772A JP 2006311772 A JP2006311772 A JP 2006311772A JP 2008128729 A JP2008128729 A JP 2008128729A
Authority
JP
Japan
Prior art keywords
unit
measured
light
imaging
light projecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006311772A
Other languages
English (en)
Other versions
JP4924880B2 (ja
Inventor
Masataka Toda
昌孝 戸田
Koshi Kuno
耕嗣 久野
Satohiko Yoshikawa
聡彦 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2006311772A priority Critical patent/JP4924880B2/ja
Publication of JP2008128729A publication Critical patent/JP2008128729A/ja
Application granted granted Critical
Publication of JP4924880B2 publication Critical patent/JP4924880B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】被測定物の広い面積(例えば全体またはほぼ全体)を測定するのに有利な形状測定装置を提供する。
【解決手段】形状測定装置は、被測定物8を載せる載置面20をもちレーザ光を透過可能な透過部材2を保持する透過部材保持部3と、透過部材に載せられている被測定物8にレーザ光を投光する投光部4と、投光部4から投光されたレーザ光の照射部分の反射光を撮像する撮像部5と、撮像部5で撮像された撮像データを格納する撮像データ格納部6と、透過部材の載置面20の仮想線の回りに沿って投光部4を回動させ、回動に伴い被測定物8に対して投光部4を相対移動させる第1駆動部7とを備えている。
【選択図】図1

Description

本発明は、被測定物の形状を測定する形状測定装置に関する。
従来、被測定物を粘土で固定する測定台と、レーザ光源から投光されたレーザ光を被測定物に導く出射光学系と、被測定物に照射されたレーザ光のスポット光を撮像する撮像部と、スポット光を被測定物の表面で走査する走査部と、撮像部で捉えたレーザ光のスポット光の像をもとに被測定物の表面のレーザ光のスポット光の位置を演算する制御系とを備える形状測定装置が知られている(特許文献1)。このものによれば、三角測量の原理により、被測定物の形状を測定することにしている。
更に、被測定物の長手方向の端部を掴んで保持する保持部と、保持部で保持されている被測定物にレーザスリット光を照射する投光部と、被測定物の形状を把握することが可能な撮像範囲を有する広域測定用撮像部と、被測定物を相対回動させる駆動部と、撮像部で撮像された撮像データから断面形状データを演算する演算部とを備えている断面形状測定装置が知られている(特許文献2)。このものにおいても、三角測量の原理により、被測定物の形状を測定することにしている。
ところで、考古学の現場において、発掘された石器等の遺物の形状の測定は、人の手作業によるスケッチにより行われている。この場合、できるだけ正確なスケッチとするため、多大な工数と時間がかけられている。更に、手作業故に、人によるバラツキがあり、スケッチの信頼性の向上には限界がある。例えば、定規、ノギスを用いて、石器等の遺物の表面、裏面、右側面、左側面、上面、下面の合計6面をスケッチして実測図とするが、人の手作業によるスケッチによると、多大な工数と時間がかけられており、更に、スケッチの信頼性の向上には限界がある。
特開2004−354136号公報 特開2001−304827号公報
上記した特許文献1,2に係る技術を石器等の被測定物の形状測定に適用しようとしても、石器等の被測定物の大きな面積(例えば全体またはほぼ全体)を測定するには限界がある。
本発明は上記した実状に鑑みなされてたものであり、被測定物の大きな面積(例えば全体またはほぼ全体)を測定するのに有利な形状測定装置を提供することを課題とする。
(1)様相1に係る形状測定装置は、被測定物を載せる載置面および載置面に背向する背向面をもちレーザ光を透過可能な透過部材を保持する透過部材保持部と、透過部材に載せられている被測定物にレーザ光を投光する投光部と、投光部から被測定物に投光されたレーザ光の照射部分の反射光を撮像する撮像部と、撮像部で撮像された撮像データを格納する撮像データ格納部と、撮像データ格納部の撮像データに基づいて被測定物の形状を求める演算部と、透過部材の載置面および背向面に投光部および撮像部が対向するように、透過部材の載置面上の仮想線の回りに沿って投光部と撮像部を回動させ、回動に伴い被測定物に対して投光部と撮像部を相対移動させる第1駆動部を具備することを特徴とする。
様相1によれば、透過部材保持部に保持されている透過部材の載置面に被測定物を載せる。この状態で、透過部材に載せられている被測定物に投光部はレーザ光を投光する。投光部から投光されたレーザ光の照射部分を撮像部は撮像する。撮像部で撮像された撮像データは撮像データ格納部に格納される。第1駆動部は、透過部材の載置面の仮想線の回りに沿って投光部と撮像部を回動させる。投光部と撮像部の回動に伴い、被測定物の回りで投光部と撮像部は相対移動する。このため投光部と撮像部を被測定物の全域またはほぼ全域で相対移動させれば、被測定物の大きな面積(例えば全域またはほぼ全域)での形状測定が可能となる。
透過部材保持部は、被測定物を載せる載置面をもつ透過部材を保持するものをいう。透過部材は無機ガラス、有機ガラスでも良く、要するにレーザ光が透過できれば良い。透過部材としては板状が好ましいが、これに限定されるものではない。被測定物としては、貝殻、石等の自然物、車両や産業機器に搭載される部品、石器等の遺物などが例示される。被測定物の材質としては特に限定されず、金属、セラミックス、樹脂、木材、天然鉱物が例示される。投光部は、透過部材に載せられている被測定物にレーザ光を投光する。投光部が被測定部に投光するレーザ光としては、測定時間の短縮等を考慮すると、ピンポイント光よりも、スリット状をなすレーザスリット光が好ましい。レーザ光としては、P偏光でも良いし、S偏光でも良い。P偏光は、光波の電場ベクトルが透過部材の入射面(載置面に垂直な面)に対して平行な光を意味する。S偏光は、光波の電場ベクトルが透過部材の入射面(載置面に垂直な面)に対して垂直な光を意味する。P偏光の反射率はS偏光の反射率よりも小さい特性を有するため、反射に起因するノイズを低減させるためには、P偏光が好ましい。撮像部は、投光部から投光されたレーザ光の照射部分を撮像する。撮像部としては、投光部を挟むように配置された2台の撮像素子を備えることが好ましい。撮像データ格納部は、撮像部で撮像された撮像データを格納するものである。演算部は、撮像データ格納部の撮像データに基づいて被測定物の形状を求めるものである。第1駆動部は、透過部材の載置面の仮想線の回りに沿って投光部と撮像部を回動させ、回動に伴い被測定物の回りで投光部と撮像部を相対移動させるものをいう。この場合、第1駆動部としては、透過部材の載置面の仮想線の回りに沿って投光部を300度以上、殊に360度回動させることが好ましい。第1駆動部は、モータ装置、シリンダ装置等を用いて形成できる。
(2)様相2に係る形状測定装置によれば、様相1において、透過部材に載せられている被測定物を投光部に対して相対移動させる第2駆動部が設けられていることを特徴とする。この場合、第2駆動部は、透過部材に載せられている被測定物を投光部に対して相対移動させる。このため、被測定物の全域またはほぼ全域を測定するのに有利となる。第2駆動部は、透過部材に載せられている被測定物を投光部に対して相対移動させるものであれば良く、モータ装置、シリンダ装置を用いたものが例示される。
(3)様相3に係る形状測定装置によれば、様相1または2において、X方向およびY方向を水平2次元方向とし、Z方向を高さ方向とするとき、第2駆動部は、被測定物を透過部材に載せたままX方向、Y方向、Z方向に移動させるXYZ駆動部と、被測定物を透過部材に載せたまま、X方向およびY方向で規定される面に沿って、少なくとも180度回動させる回動駆動部とを備えていることを特徴とする。この場合、XYZ駆動部は、被測定物を透過部材に載せたままX方向、Y方向、Z方向に移動させる。回動駆動部は、被測定物を透過部材に載せたまま少なくとも180度回動させる。このため、被測定物の大きな面積(例えば全域またはほぼ全域)を測定するのに有利となる。XYZ駆動部としては、被測定物を透過部材に載せたままZ方向に移動させるZ方向駆動部と、被測定物を透過部材に載せたままY方向に移動させるY方向駆動部と、被測定物を透過部材に載せたままX方向に移動させるX方向駆動部とをもつ形態が例示される。回動駆動部は、被測定物を透過部材に載せたまま少なくとも180度回動させるものであれば、何でも良い。
(4)様相4に係る形状測定装置によれば、様相1〜3において、投光部が被測定部に投光するレーザ光は、P偏光またはS偏光であることを特徴とする。
透過部材に対してレーザ光の入射角が増加するときには、P偏光の反射率がS偏光の反射率よりも小さい特性を有する。このためP偏光であれば、反射光ノイズの低減に有利である。またS偏光であれば、高い反射率を有するため、反射率の低い被測定物の反射像を撮像できるという利点が得られる。
(5)様相5に係る形状測定装置によれば、様相1〜4において、投光部から投光されるレーザ光が透過部材の載置面に斜め方向から入射する位置になるように、投光部は前記透過部材に対して回動することを特徴とする。P偏光の反射率はS偏光の反射率よりも小さい特性を有する。投光部から投光されるレーザ光が透過部材の載置面に斜め方向から入射するため、レーザ光がP偏光であれば、反射光ノイズの低減に有利である。
本発明によれば、透過部材の載置面に沿った仮想線の回りに沿って投光部と撮像部を回動させ、回動に伴い被測定物に対して投光部と撮像部を相対移動させる。このため被測定物の形状の大きな面積(例えば全体またはほぼ全体)を撮像して測定するのに有利となる。
本発明によれば、透過部材はレーザ光を透過可能である。このため透過部材のうち被測定物を載置している載置面の反対側である背向面に投光部および撮像部が対向するように投光部と撮像部を配置し、投光部から投光したレーザ光を透過部材に透過させることにより、被測定物の裏面をも撮像することができる。この意味においても、被測定物の大きな面積(例えば全体またはほぼ全体)を測定するのに有利となる。
(実施形態1)
本発明の実施形態1について図1〜図7を参照して説明する。図1は形状測定装置の概念を示す。図1に示すように、形状撮像装置として機能する形状測定装置は、脚1cを有する基台1と、被測定物8(被撮像物、ワーク)を載せる透過部材として機能する透過板2と、透過板2を保持する透過板保持部3と、透過板2に載せられている被測定物8にレーザ光を投光する投光部4と、投光部4から被測定物8に投光されたレーザ光の照射部分からの反射光を撮像する撮像部5と、撮像部5で撮像された撮像データを格納する撮像データ格納部として機能する画像メモリ6、透過板2の載置面20上に仮想的に規定された仮想線Mの回りに沿って投光部4を縦方向に沿って回動させる第1駆動部7とを備えている。
図2に示すように、投光部4は、半導体レーザ(波長:660ナノメートル)で構成された投光素子40と、投光素子40の先方(被測定物8側)に配置された透光レンズとして機能するシリンドリカルレンズ41と、シリンドリカルレンズ41の先方(被測定物8側)に設けられた1/2波長板42(光学波長板)とを備えている。1/2波長板42は、光の偏光面を回動させる機能をもつ電子工学的な複屈折板をいう。シリンドリカルレンズ41は透過面41aおよび屈折面41cをもつレンズであり、レーザ光のスポットの縦横のうち一方向を拡大でき、ポイント状のレーザ光からスリット状のレーザ光、つまり、レーザスリット光47を形成できる。屈折面41cは円筒形状の一部を形成する。レーザスリット光47は、光が進行するにつれてスリット扇状に拡開するスリット縁47a,47cを有する。
半導体レーザで形成されている投光素子40は楕円発光している。レーザスリット光47を生成する場合には、通常、より広い範囲でスリット幅を細くするため、発光楕円の長軸方向を、投光部4に装備されているシリンドリカルレンズ41で広げる。この状態ではレーザスリット光47はS偏光(光波の電場ベクトルが透過板2の入射面に対して垂直な光を意味する)となる。しかしながらレーザスリット光47は1/2波長板42を透過するため、レーザスリット光47はP偏光(光波の電場ベクトルが透過板2の入射面に対して平行な光を意味する)となる。
投光部4の投光素子40の出力(強度)はレーザ出力制御部330により制御される。特にレーザ出力制御部330は、投光素子40から投光されるレーザスリット光47の投光強度を制御する。上記したレーザスリット光47はP偏光とされている。
透過板2は透明板(厚み:5〜8ミリメートル、材質:フロートガラス)であり、外周25をもつ円板形状とされている。透過板2は投光素子40のレーザスリット光47を透過させることができる。透過板2は、上面である載置面20と、載置面20の背向する背向面22(図3参照)とを備えている。載置面20および背向面22は水平面に沿っており、平坦状をなしている。透過板2の載置面20には被測定物8が着脱可能に載せられる。透過板2は被測定物8よりも投影面積が大きいことが好ましい。載置面20は2次元的な水平面状であるため、粘土等で被測定物8を保持せずとも良く、透過板2の載置面20の適宜の位置に被測定物8を載せれば良い。なお、場合によっては、被測定物8の姿勢の安定性が悪いときには、必要に応じて、粘土等で被測定物8を透過板2の載置面20に保持しても良い。
図1において、撮像部5は、投光部4の投光素子40から投光されたレーザスリット光47の照射部分の反射光を撮像するものである。撮像部5は、被測定物8に凹凸があったとしても、被測定物8における測定死角を減らすように、投光素子40を挟む位置に配置されたCCD素子で形成された2個の撮像素子、つまり第1撮像素子51および第2撮像素子52を備えている。第1撮像素子51および第2撮像素子52の撮像方向は、透過板2上の被測定物8に向けて指向している。第1撮像素子51および第2撮像素子52の撮像信号はそれぞれ、画像メモリ6の所定のエリアに格納される。前記した投光部4および撮像部5はセンサー9のケース90に一体的に組み込まれており、一体的に同方向に同量移動することができる。センサー9のケース90は投光部4および撮像部5に共用されており、共通ケースとして機能する。
図1には、本形状測定装置の座標系におけるX方向、Y方向、Z方向が示されている。Z方向は重力方向とされている。X方向およびY方向は水平2次元方向を示す。第1駆動部7は、透過板2の載置面20上に仮想的に規定される仮想線Mの回りに沿って、センサ−9を相対移動させることにより、センサー9(投光部4および撮像素子)を透過板2および基台1に対して回動させる。
図1に示すように、第1駆動部7は、センサー9を回動させるように基台1に保持された回動機構部70と、回動機構部70に設けられた水平軸芯をもつ横軸形の回動軸71と、中央域である取付域72aが回動軸71に固定された回動盤72と、回動盤72に設けられたセンサー取付部73とを備えている。センサー取付部73にはセンサー9が取り付けられている。これにより、投光部4および撮像部5を備えるセンサー9は、回動盤72の外周側に取り付けられている。回動盤72において、センサー取付部73と反対側にはバランサ74が設けられている。バランサ74は、センサー取付部73による重量のアンバランスを低減させて、回動盤72の回動を円滑にさせるものである。これにより振動ノイズなどのノイズが低減される。
回動機構部70はセンサー回動制御部320により制御される。ここで、回動機構部70が駆動すると、回動軸71がこれの軸芯PBの回りで回動し、センサー9が軸芯PBの回りで回動し、ひいては、センサー9に保持されている投光部4および撮像部5が軸芯PBの回りで回動する。この結果、透過板2の載置面20の仮想線M(横軸型)の回りに沿って投光部4および撮像部5が回動(相対移動)する。このように横軸形の軸芯PBは、センサー9に保持されている投光部4および撮像部5の回動中心となる。軸芯PBの高さ位置は、透過板2の載置面20のやや上方に設定することが好ましい。なお軸芯PBは仮想線Mと平行とされている。
更に、図1に示すように第2駆動部100が設けられている。第2駆動部100は、透過板2に載せられている被測定物8を投光部4に対して相対移動させ、被測定物8の全域にレーザスリット光47を照射させるものである。第2駆動部100は、被測定物8を透過板2に載せたままX方向、Y方向、Z方向に移動させるXYZ駆動部120と、被測定物8を透過板2に載せたまま、透過板2の載置面20に対して直立する法線MCの回りで少なくとも180度回動させる回動駆動部150とを備えている。
図1に示すように、回動駆動部150は、被測定物8を透過板2に載せたまま、透過板2の中心域の法線MC(透過板2の載置面20に対して垂直な線)の回りで360度(少なくとも180度)回動させるものである。回動駆動部150は、透過板2を回動可能に保持する透過板保持部3と、透過板保持部3を保持する筐体152と、筐体152に内蔵された回動機構(図示せず)とを備えている。当該回動機構が駆動すると、透過板2が法線MCの回りで回動する。回動駆動部150は被測定物回動制御部300により制御される。以下、更に説明を加える。
図1に示すように、XYZ駆動部120は、被測定物8を透過板2に載せたままZスライダ121をZ方向(重力方向)に移動させるZ方向ガイド部122をもつZ方向駆動部123と、被測定物8を透過板2に載せたままZ方向駆動部123をY方向(被測定物5の幅方向)に移動させるY方向ガイド部124をもつY方向駆動部125と、被測定物8を透過板2に載せたままY方向駆動部125をX方向(被測定物8の長さ方向)に移動させるX方向ガイド部127をもつX方向駆動部128とを備えている。XYZ駆動部120はXYZ制御部310により制御される。XYZ駆動部120が駆動すると、透過板2上の被測定物8はX方向、Y方向、Z方向に適宜移動できる。
上記したXYZ制御部310、センサー回動制御部300、画像メモリ6、レーザ出力制御部330、被測定物回動制御部300により出力される信号は、演算部360(制御部)に入力される。センサー回動制御部300および被測定物回動制御部300から出力された信号により、演算部360は、被測定物8の位置を検知できる。この結果、演算部360は、撮像部5で撮像された撮像信号と、被測定物8の位置とを把握する。そして演算部360は、撮像部5で撮像された撮像信号と被測定物8の位置との関係に基づいて、被測定物8の形状データを演算で求める。また演算部360は、XYZ制御部310、センサー回動制御部300、レーザ出力制御部330、被測定物回動制御部300を制御する制御信号をそれぞれ出力する。
第1撮像素子51または第2撮像素子52により得られた撮像データに基づいて三角測量の原理により、演算部360により被測定物8の形状が測定される。ここで、三角測量法は、被測定物8と投光部4と第1撮像素子51との三角形状を利用し、投光部4から投光した光を被測定物8に照射し、その照射部分の位置を別の方向から第1撮像素子51により撮像して測定する測量法である。本実施形態では、被測定物8の面における凹凸が複雑であるため、第1撮像素子51だけであると、被測定物8における撮像の死角が発生するおそれがあるため、第1撮像素子51の他に第2撮像素子52が設けられている。
三角測量法の基本原理を第1撮像素子51を例にとって説明する。図4において、第1撮像部素子51の観測面と投光部4とを直線的に結ぶ基線をKとする。基線Kの長さLは既知である。基線Kと投光部4のレーザ光とがなす角度をθaとする。被測定物8で反射したレーザ光が観測光学系である第1撮像素子51へ入射する角度(第1撮像素子51へ入射するレーザ光と基線Kとが交わる角度)をωとする。ここで、第1撮像素子51の観測面における座標変化Δxが測定できれば、第1撮像素子51が照射した被測定物8におけるレーザ光の照射位置が決定できる。ここで、基線Kの長さLとレーザ光とのなす角度θa(投光部4から被測定物8への射出角)を固定すれば、被測定物8の面の形状に応じて変化する観測面上における座標変化Δxから被測定物8の面の形状を決定することができる。
使用時には、図3に示すように、透過板2の載置面20上に被測定物8を載せる。この状態で、図3に示すように、載置面20上の被測定物8の真上の位置U1にセンサ−9を回動させ、被測定物8の表面8aに投光部4からレーザスリット光47を投光させ、その反射光を第1撮像素子51および第2撮像素子52で撮像する。また、載置面20上の被測定物8の右横方の位置U2にセンサ−9を回動させ、被測定物8の右側面8bに投光部4からレーザスリット光47を投光させ、その反射光を第1撮像素子51および第2撮像素子52で撮像する。更に、図3に示すように、載置面20上の被測定物8の真下の位置U3にセンサ−9を回動させ、被測定物8の裏面8cを第1撮像素子51および第2撮像素子52で撮像する。このように被測定物8の裏面8cを撮像する場合には、被測定物8に投光されるレーザスリット光47は透過板2の背向面22から透過板2をこれの厚み方向に透過する。また、載置面20上の被測定物8の左横方の位置U4にセンサ−9を回動させ、被測定物8の左側面8dを第1撮像素子51および第2撮像素子52で撮像する。
本実施形態によれば、上記したように透過板2の被測定物8を撮像部5で撮像するにあたり、レーザスリット光47を透過板2に透過させずに被測定物8を撮像する場合(透過板2に載せられている被測定物8の表面8a、右側面8b、左側面8dを撮像する場合)と、レーザスリット光47を透過板2に透過させて被測定物8を撮像する場合(透過板2に載せられている被測定物8の裏面8cを撮像する場合)とがある。レーザスリット光47が透過板2を透過しない場合と、レーザスリット光47が透過板2をこれの厚み方向に透過する場合とでは、レーザスリット光47の透過形態が一様ではない。このため、撮像部5で撮像した実測値から形状データを求めるにあたり、補正することが好ましい。
図5は画像メモリ6に格納されているマップを示す。図5(A)は、レーザスリット光47が透過板2を透過しない場合において、第1撮像素子51が撮像した撮像データの実測値(α11,α12,α13,α14……α98,α99)から形状データ(A11,A12,A13,A14……)を抽出するマップを示す。更に図5(A)は、第2撮像素子52が撮像した撮像データの実測値(β11,β12,β13,β14……)から形状データ(B11,B12,B13,B14……B98,B99)を抽出するマップを示す。
また図5(B)は、レーザスリット光47が透過板2を透過する場合において、第1撮像素子51が撮像した撮像データの実測値(α11,α12,α13,α14……α98,α99)に、補正値(Δα11,Δα12,Δα13を加算して形状データA11,A12,A13,A14……)を抽出するマップを示す。また図5(B)は、第2撮像素子52が撮像した撮像データの実測値(β11,β12,β13,β14……)に、補正値(Δβ11,Δβ12,Δβ13…)を加算して形状データ(B11,B12,B13,B14……)を抽出するマップを示す。なお、上記した実測値と形状データとの関係は、形状および寸法が既知の試料にレーザスリット光を投光し、撮像することにより求められている。また、上記した実測値と補正値と形状データとの関係は、形状および寸法が既知の試料にレーザスリット光を投光し、撮像することにより求められている。
上記したマップが設けられているため、レーザスリット光47を透過板2を透過させずに被測定物8を撮像する場合と、レーザスリット光47を透過板2を透過させて被測定物8を撮像する場合とに良好に対応して形状データを求めることができる。
本実施形態によれば、被測定物8に投光されるレーザスリット光47として、S偏光(光波の電場ベクトルが透過板2の入射面に対して垂直な光を意味する)を使用しても良いし、あるいは、P偏光(光波の電場ベクトルが透過板2の入射面に対して平行な光を意味する)を使用しても良い。但し、P偏光を用いるときには、次のような優れた作用効果が得られる。
図6はレーザ光を透過板2の載置面20に入射させたときにおいて、入射角θ1と透過板2の載置面20における反射率(R)と透過率(T)との関係をあらわすグラフを示す(n1=1.0、n2=1.5)。n1は空気の屈折率、載置面20を構成するガラスの屈折率を意味する。図7に示すように、入射角θ1は、透過板2の載置面20の法線とレーザ光との角度として定義される。図6において横軸は入射角θ1を示し、縦軸は反射率(R)および透過率(T)を示す。図6に示すように、反射率については、入射角θ1が小さいときにはP偏光の反射率およびS偏光の反射率共に大差はないが、入射角θ1が増加するとき、S偏光の反射率よりもP偏光の反射率は低くなる。また図6に示すように、透過率については、入射角θ1が小さいときにはP偏光の透過率およびS偏光の透過率共に大差はないが、入射角θ1が増加するとき、S偏光の透過率よりもP偏光の透過率は高くなる。図6に示す特性を考慮すると、入射角θ1としては81度以下、殊に65度以下が好ましい。
図6に示す結果を考慮すると、レーザスリット光47としてS偏光が用いられていると、透過板2の載置面20に入射されるレーザスリット光47の入射角θ1が増加する場合には、透過板2の載置面20における反射率が高くなり、反射率に起因するノイズが増加されるおそれがある。ここで、透過板2の載置面20上の被測定物8の表面、右側面、裏面、左側面を撮像するとき、投光部4の投光素子40から透過板2の載置面20に入射されるレーザスリット光47の入射角θ1が増加する傾向にある。この場合、入射角θ1が増加する場合には、入射角θ1の増加に起因するノイズが発生しやすいおそれがある。
この点について本実施形態によれば、上記した図6に示す特性を考慮して、レーザスリット光47としてP偏光を被測定物8に投光させることにしている。この結果、透過板2の載置面20に入射されるレーザスリット光47の入射角θ1が増加する場合であっても、即ち、透過板2の載置面20上の被測定物8に対して、被測定物8の横方からレーザスリット光47を入射させる場合であっても、反射率の増加が抑えられる。故に、反射率の増加に起因するノイズが低減され、被測定物8の形状を測定する測定精度を向上させることができる。なお本実施形態によれば、被測定物8に投光されるレーザスリット光47をP偏光とするにあたり、図2に示すように、1/2波長板42が投光部4に付加されている。
あるいは、レーザスリット光47をP偏光とするにあたり、上記した1/2波長板42に限らず、レーザスリット光47の偏光方向をスリット長手方向としてシリンドリカルレンズ41で広げてレーザスリット光47を生成させることにより、レーザスリット光47をS偏光からP偏光に変えることにしても良い。
以上説明したように本実施形態によれば、透過板2の載置面20に被測定物8を載せて摩擦力で透過板2上に保持することにしている。更に、透過板2の載置面20上に載置面20に沿って規定される仮想的な仮想線Mの回りに投光部4および撮像部5を回動させることにしている。このため透過板2の載置面20に載せられている被測定物8の表面8a(被測定物8のうち透過板2の載置面20に背向している面)、被測定物8の右側面8bおよび左側面8dばかりか、被測定物8の裏面8c(被測定物8のうち透過板2の載置面20に直接対面している面)までも撮像することができる。その理由としては、第1に、透明な透過板2にレーザスリット光47が透過できるため、第2に、投光部4および撮像部5を備えるセンサ−9が透過板2に対して相対移動可能であるためである。この結果、被測定物8の全域またはほぼ全域の形状を測定することができる。
更に本実施形態によれば、透過板2の載置面20は2次元的に広がっている平坦状である。このため、粘土で被測定物8を透過板2の載置面20に保持せずとも、被測定物8の姿勢を透過板2の載置面20に安定的に保持することができる。但し、場合によっては、被測定物8の形状がかなり異形であり、被測定物8の姿勢維持が困難であるときには、少量の粘土であれば用いても良い。粘土は撮像されるおそれがあるが、粘土の有無を理解できれば、別段の支障がない。更に本実施形態によれば、被測定物8のサイズがセンサー9の測定範囲よりも大きい場合には、透過板2上の被測定物8をXYZ駆動部120により適宜移動させれば、被測定物8の全域またはほぼ全域の形状を測定することができる。
(実施形態2)
次に、本発明の実施形態2について図8〜図11を参照して説明する。図8〜図10は本実施形態に係る形状測定装置の使用状態の概念を示す。本実施形態は実施形態1と基本的に同様の構成を有するため、構成説明は省略する。同一機能を有する部位には同一の符号を付する。但し、回動盤72は腕状とされている。センサー9を取り付けるセンサー取付部73はL字形状をなしている。センサー取付部73は図8(A)に示されているが、他の図では省略されている。
以下、本実施形態の形状測定装置の使用方法にについて説明を加える。
(1)被測定物8の表面8a(上面)の測定
図8(A)に示すように、被測定物8を透過板2の載置面20のほぼ中央付近に載せる。センサー9(投光部4および撮像部5)は、透過板2の載置面20と平行になるように、透過板2の載置面20上の被測定物8の真上に配置されている。本例では、センサー9が透過板2の真上にある状態を、センサー9の回動位相は0度とする。この状態では、図8(A)に示すように、センサー9に保持されている投光部4、撮像部5は被測定物8の真上に配置されている。この場合、図8(A)に示すように、上方から下方向に向かうにつれて、センサー9→被測定物8→透過板2の順に配置されている。
投光部4の投光素子40からレーザスリット光47を、透過板2上の被測定物8に向けて投光する。被測定物8の表面8aから反射された反射光をセンサー9の第1撮像素子51および第2撮像素子52で撮像する。得られた撮像データから演算部360は形状データを求める。なおX方向駆動部128を駆動させることにより、透過板2上の被測定物8をX方向(被測定物8の長手方向)に沿って所定のピッチで移動させながら、被測定物8の形状を測定し、被測定物8の表面8aの形状データとする。
(2)被測定物8の右側面8bの測定
次に図8(B)に示すように、矢印S方向(回動方向)にセンサー9を90度回動させて被測定物8の横方に配置させ、センサー9の回動位相を90度とする。この状態では、センサー9に保持されている投光部4、撮像部5は被測定物8の右側面8b側(右横方)に配置されている。投光部4の投光素子40からレーザスリット光47を、透過板2上の被測定物8に向けて投光する。被測定物8の右側面8bから反射された反射光をセンサー9の第1撮像素子51および第2撮像素子52で撮像する。得られた撮像データから演算部360は形状データを求める。なおX方向駆動部128を駆動させることにより、被測定物8をX方向(被測定物8の長手方向)に所定のピッチで移動させながら、被測定物8の断面形状を測定し、被測定物8の右側面8bの形状データとする。
(3)被測定物8の裏面8cの測定
次に図9(A)に示すように、矢印S方向(回動方向)にセンサー9を更に90度回動させて被測定物8、透過板2の真下に配置させ、センサー9の回動位相を180度とする。この状態では、センサー9に保持されている投光部4、撮像部5は、透過板2を介して、被測定物8の真下に配置されている。この場合、図9(A)に示すように、上方から下方向に向かうにつれて、被測定物8→透過板2→センサー9の順に配置されている。
図9(A)に示すように、投光部4の投光素子40からレーザスリット光47を、透過板2上の被測定物8に向けて、つまり上方に向けて投光する。この場合、レーザスリット光47は透過板2を透過して被測定物8に裏面8cに到達する。被測定物8の裏面8cで反射された反射光をセンサー9の撮像部5で撮像する。得られた撮像データから演算部360は形状データを求める。なおX方向駆動部128を駆動させることにより、被測定物8をX方向(被測定物8の長手方向)に所定のピッチで移動させながら、被測定物8の断面形状を測定し、被測定物8の裏面8cの形状データとする。
(4)被測定物8の左側面8dの測定
次に図9(B)に示すように、矢印S方向(回動方向)にセンサー9を更に90度回動させて被測定物8の左側面8d側(左側方)に配置させ、センサー9の回動位相を270度とする。この状態では、センサー9に保持されている投光部4、撮像素子51,52は被測定物8の左横方に配置されている。
投光部4の投光素子40からレーザスリット光47を、透過板2上の被測定物8に向けて投光する。被測定物8の左側面で反射された反射光をセンサー9の撮像部5で撮像する。得られた撮像データから演算部360は形状データを求める。なお、X方向駆動部128を駆動させることにより、被測定物8をX方向(被測定物8の長手方向)に所定のピッチで移動させながら、被測定物8の断面形状を測定し、被測定物8の左側面8dの形状データとする。
(5)被測定物8の上面8e(被測定物8の長手方向の一端側)の測定
次に図10(A)に示すように、センサー9を一度、回転位相0度に戻し、矢印S方向(回動方向)にセンサー9を90度回動させて被測定物8の右方に配置させ、センサー9の回動位相を90度とする。更に、矢印E1方向に透過板2および被測定物8を90度回動させて被測定物8の上面8e(被測定物8の長手方向の一端側)をセンサー9に対面させる。そして、投光部4の投光素子40からレーザスリット光47を、透過板2上の被測定物8に向けて投光する。被測定物8の上面8eから反射された反射光をセンサー9の撮像素子51,52で撮像する。得られた撮像データから演算部360は形状データを求める。なお、X方向駆動部128を駆動させることにより、被測定物8をX方向(被測定物8の長手方向)に所定のピッチで移動させながら、被測定物8の断面形状を測定し、被測定物8の上面8eの形状データとすることができる。
(6)被測定物8の下面8f(被測定物8の長手方向の他端側)の測定
次に図10(B)に示すように、矢印S方向(回動方向)にセンサー9を更に180度回動させて被測定物8の右方に配置させ、センサー9の回動位相を270度とする。これにより被測定物8の長手方向の他端側、つまり、被測定物8の下面8fをセンサー9に対面させる。そして、投光部4の投光素子40からレーザスリット光47を、透過板2上の被測定物8の下面8fに向けて投光する。被測定物8の裏面から反射された反射光をセンサー9の第1撮像素子51および第2撮像素子52で撮像する。得られた撮像データから演算部360は形状データを測定する。なお、X方向駆動部128を駆動させることにより、被測定物8をX方向(被測定物8の長手方向)に所定のピッチで移動させながら、被測定物8の断面形状を測定し、被測定物8の下面8fの形状データとすることができる。
以上説明したように本実施形態においても、透過板2の載置面20に被測定物8を載せて摩擦で透過板2上に保持することにしている。このため透過板2の載置面20に載せられている被測定物8の全域またはほぼ全域の形状を測定することができる。透過板2の載置面20は2次元的に広がっているため、粘土で被測定物8を透過板2の載置面20に保持せずとも、被測定物8の姿勢を透過板2の載置面20に安定的に保持することができる。但し、場合によっては、被測定物8の形状がかなり異形であり、被測定物8の姿勢維持が困難であるときには、少量の粘土であれば用いても良い。粘土は撮像されるおそれがあるが、粘土の有無を理解できれば、別段の支障がない。
更に本実施形態によれば、被測定物8のサイズがセンサー9の測定範囲よりも大きい場合には、透過板2上の被測定物8をXYZ駆動部120により適宜移動させれば、被測定物8の全域またはほぼ全域の形状を測定することができる。
(実施形態3)
実施形態3は実施形態1,2と基本的には共通の構成および共通の作用効果を有する。従って、図1、図3〜図10を準用できる。但し、レーザスリット光47としてS偏光を被測定物8に投光させることにしている。
(その他)
上記した実施形態1,2では、投光部4は、1/2波長板42を備えており、P偏光を形成しているが、1/4波長板を2枚直列に配置しても良い。上記した実施形態1,2では、被測定物8の上面8eおよび下面8fの形状を測定するにあたり、透過板2上の被測定物8を基台1に対して相対移動させることにしているが、これに限らず、透過板2上の被測定物8を固定したままとしておき、センサー9を被測定物8の回りで回動させることにより、被測定物8の上面8eおよび下面8fの形状を測定することにしても良い。被測定物8の表面8a、右側面8b、裏面8c、左側面8d等についての撮像順序としては、特に限定されない。被測定物8としては、石器に限られるものではなく、石器以外の遺物でも良く、貝殻、石等の自然物、車両や産業機器に搭載される部品(例えばボルト、ナット、ワッシャを含む)、石器等の遺物などが例示される。被測定物8の材質としては特に限定されず、金属、セラミックス、樹脂、木材、天然鉱物が例示される。
上記した記載から次の技術的思想も把握できる。
[付記項1]被撮像物を載せる載置面および前記載置面に背向する背向面をもちレーザ光を透過可能な透過部材を保持する透過部材保持部と、前記透過部材に載せられている前記被撮像物にレーザ光を投光する投光部と、前記投光部から前記被撮像物に投光された前記レーザ光の照射部分の反射光を撮像する撮像部と、前記撮像部で撮像された撮像データを格納する撮像データ格納部と、前記透過部材の前記載置面および前記背向面に前記投光部および前記撮像部が対向するように、前記透過部材の前記載置面上の仮想線の回りに沿って前記投光部を回動させ、回動に伴い前記被撮像物に対して前記投光部と前記撮像部を相対移動させる第1駆動部を具備することを特徴とする形状撮像装置。透過部材の載置面に沿った仮想線の回りに沿って投光部と撮像部を回動させ、回動に伴い被測定物に対して投光部と撮像部を相対移動させる。このため被測定物の形状の大きな面積(例えば全体またたはほぼ全体)を撮像するのに有利となる。
[付記項2]付記項1において、前記透過部材に載せられている前記被撮像物を前記投光部に対して相対移動させる第2駆動部が設けられていることを特徴とする形状撮像装置。
本発明は石器、貝殻等の遺物(発掘品)、車両部品、産業部品等の被測定物(被撮像物)の形状を撮像する形状測定装置が挙げられる。
実施形態1に係り、形状測定装置の概念を模式的に示す構成図である。 実施形態1に係り、投光部を模式的に示す構成図である。 実施形態1に係り、使用形態を模式的に示す構成図である。 三角測量法の原理を示す図である。 実施形態1に係り、実測値と補正値とが画像メモリのエリアに格納されているマップを示す図である。 レーザ光を透過板の載置面に入射させたときにおいて、入射角θ1と透過板の載置面における反射率(R)と透過率(T)との関係をあらわすグラフである。 入射角θ1の定義を示す構成図である。 実施形態2に係り、(A)は形状測定装置で被測定物の表面を測定している状態を模式的に示す構成図であり、(B)は形状測定装置で被測定物の右側面を測定している状態を模式的に示す構成図である。 実施形態2に係り、(A)は形状測定装置で被測定物の裏面を測定している状態を模式的に示す構成図であり、(B)は形状測定装置で被測定物の左側面を測定している状態を模式的に示す構成図である。 実施形態2に係り、(A)は形状測定装置で被測定物の上面を測定している状態を模式的に示す構成図であり、(B)は形状測定装置で被測定物の下面を測定している状態を模式的に示す構成図である。 実施形態2に係り、被測定物として石器の表面、右側面、左側面、裏面、上面および下面を撮像した図である。
符号の説明
1は基台、2は透過板(透過部材)、20は載置面、22は背向面、3は透過板保持部(透過部材保持部)、4は投光部、40は投光素子、41はシリンドリカルレンズ、42は1/2波長板、5は撮像部、6は画像メモリ(撮像データ格納部)、7は第1駆動部、8は被測定物、9はセンサー、100は第2駆動部、120はXYZ駆動部、150は回動駆動部を示す。

Claims (5)

  1. 被測定物を載せる載置面および前記載置面に背向する背向面をもちレーザ光を透過可能な透過部材を保持する透過部材保持部と、
    前記透過部材に載せられている前記被測定物にレーザ光を投光する投光部と、
    前記投光部から前記被測定物に投光された前記レーザ光の照射部分の反射光を撮像する撮像部と、
    前記撮像部で撮像された撮像データを格納する撮像データ格納部と、
    前記撮像データ格納部の前記撮像データに基づいて前記被測定物の形状を求める演算部と、
    前記透過部材の前記載置面および前記背向面に前記投光部および前記撮像部が対向するように、前記透過部材の前記載置面上の仮想線の回りに沿って前記投光部を回動させ、回動に伴い前記被測定物に対して前記投光部と前記撮像部を相対移動させる第1駆動部とを具備することを特徴とする形状測定装置。
  2. 請求項1において、前記透過部材に載せられている前記被測定物を前記投光部に対して相対移動させる第2駆動部が設けられていることを特徴とする形状測定装置。
  3. 請求項1または2において、X方向およびY方向を水平2次元方向とし、Z方向を高さ方向とするとき、前記第2駆動部は、前記被測定物を前記透過部材の前記載置面に載せたままX方向、Y方向、Z方向に移動させるXYZ駆動部と、前記被測定物を前記透過部材に載せたまま、X方向およびY方向で規定される面に沿って少なくとも180度回動させる回動駆動部とを備えていることを特徴とする形状測定装置。
  4. 請求項1〜3のうちの一項において、前記投光部が前記被測定部に投光する前記レーザ光は、P偏光またはS偏光であることを特徴とする形状測定装置。
  5. 請求項1〜4のうちの一項において、前記投光部から投光される前記レーザ光が前記透過部材の前記載置面または前記背向面に斜め方向から入射する位置になるように、前記投光部は前記透過部材に対して回動することを特徴とする形状測定装置。
JP2006311772A 2006-11-17 2006-11-17 形状測定装置 Expired - Fee Related JP4924880B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006311772A JP4924880B2 (ja) 2006-11-17 2006-11-17 形状測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006311772A JP4924880B2 (ja) 2006-11-17 2006-11-17 形状測定装置

Publications (2)

Publication Number Publication Date
JP2008128729A true JP2008128729A (ja) 2008-06-05
JP4924880B2 JP4924880B2 (ja) 2012-04-25

Family

ID=39554713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006311772A Expired - Fee Related JP4924880B2 (ja) 2006-11-17 2006-11-17 形状測定装置

Country Status (1)

Country Link
JP (1) JP4924880B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014106094A (ja) * 2012-11-27 2014-06-09 Keyence Corp 形状測定装置
CN107478163A (zh) * 2017-08-01 2017-12-15 兰州兰石集团有限公司 基于旋转模式的波纹板片质量检测装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0476410A (ja) * 1990-07-17 1992-03-11 Mitsubishi Electric Corp 光学式形状測定装置
JPH05288536A (ja) * 1992-04-14 1993-11-02 Toshiba Corp 異物検査装置
JPH07120237A (ja) * 1993-10-22 1995-05-12 Nichiden Mach Ltd 画像認識装置
JP2000298011A (ja) * 1999-04-15 2000-10-24 Hitachi Maxell Ltd 形状測定方法および装置
JP2001304827A (ja) * 2000-04-27 2001-10-31 Aisin Seiki Co Ltd 断面形状測定装置および断面形状測定方法
JP2001317924A (ja) * 2000-05-11 2001-11-16 Aisin Seiki Co Ltd 形状測定装置およびその光軸測定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0476410A (ja) * 1990-07-17 1992-03-11 Mitsubishi Electric Corp 光学式形状測定装置
JPH05288536A (ja) * 1992-04-14 1993-11-02 Toshiba Corp 異物検査装置
JPH07120237A (ja) * 1993-10-22 1995-05-12 Nichiden Mach Ltd 画像認識装置
JP2000298011A (ja) * 1999-04-15 2000-10-24 Hitachi Maxell Ltd 形状測定方法および装置
JP2001304827A (ja) * 2000-04-27 2001-10-31 Aisin Seiki Co Ltd 断面形状測定装置および断面形状測定方法
JP2001317924A (ja) * 2000-05-11 2001-11-16 Aisin Seiki Co Ltd 形状測定装置およびその光軸測定方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014106094A (ja) * 2012-11-27 2014-06-09 Keyence Corp 形状測定装置
CN107478163A (zh) * 2017-08-01 2017-12-15 兰州兰石集团有限公司 基于旋转模式的波纹板片质量检测装置

Also Published As

Publication number Publication date
JP4924880B2 (ja) 2012-04-25

Similar Documents

Publication Publication Date Title
CN100498416C (zh) 双重(共焦和干涉)技术光学轮廓曲线仪
US7869060B2 (en) Jig for measuring an object shape and method for measuring a three-dimensional shape
JP5782786B2 (ja) 形状測定装置
JPH0599617A (ja) 光学走査ヘツドによつて縁部及び孔を検出する方法及び装置
JP2014181912A (ja) 形状測定装置
TWI731992B (zh) 厚度測量裝置
JP5776282B2 (ja) 形状測定装置、形状測定方法、及びそのプログラム
JP6288280B2 (ja) 表面形状測定装置
JP6392044B2 (ja) 位置計測装置
JP4924880B2 (ja) 形状測定装置
JP2015072197A (ja) 形状測定装置、構造物製造システム、形状測定方法、構造物製造方法、及び形状測定プログラム
JP2010256151A (ja) 形状測定方法
CN107677210B (zh) 测量装置
JP2012088149A (ja) 表面性状測定機の直角度誤差算出方法および校正用治具
JPH03264804A (ja) 表面形状測定装置
CN209416661U (zh) 一种基于psd的镜头fov测量装置
JP3607821B2 (ja) 面傾斜角度測定機
JPWO2014038601A1 (ja) 塗膜の表面粗度分布測定装置
JP7120247B2 (ja) 表面形状測定装置、表面形状測定方法、構造物製造システム、構造物製造方法、及び表面形状測定プログラム
JP2007178309A (ja) 非接触変位計測装置、並びにそのエッジ検出方法及びエッジ検出プログラム
JP5728753B2 (ja) X線回折測定装置
JP4922905B2 (ja) 回転中心線の位置変動測定方法および装置
JP4670700B2 (ja) 3次元形状測定装置
TWI843904B (zh) 厚度計測裝置
JP4995041B2 (ja) 印刷はんだ検査方法、及び印刷はんだ検査装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4924880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees