JP2008127665A - Method for producing aluminum alloy cylinder block - Google Patents

Method for producing aluminum alloy cylinder block Download PDF

Info

Publication number
JP2008127665A
JP2008127665A JP2006316554A JP2006316554A JP2008127665A JP 2008127665 A JP2008127665 A JP 2008127665A JP 2006316554 A JP2006316554 A JP 2006316554A JP 2006316554 A JP2006316554 A JP 2006316554A JP 2008127665 A JP2008127665 A JP 2008127665A
Authority
JP
Japan
Prior art keywords
cylinder block
temperature
cylinder
induction heating
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006316554A
Other languages
Japanese (ja)
Other versions
JP4755072B2 (en
Inventor
Yoshitaka Misaka
佳孝 三阪
Noriyoshi Takaoka
徳義 高岡
Yutaka Yamagata
裕 山縣
Hirotaka Kurita
洋敬 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Yamaha Motor Co Ltd
Original Assignee
Neturen Co Ltd
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd, Yamaha Motor Co Ltd filed Critical Neturen Co Ltd
Priority to JP2006316554A priority Critical patent/JP4755072B2/en
Publication of JP2008127665A publication Critical patent/JP2008127665A/en
Application granted granted Critical
Publication of JP4755072B2 publication Critical patent/JP4755072B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an aluminum alloy cylinder block where a cylinder bore is used as a cylinder as it is without specially producing a cylinder liner, and the required hardness at the inner face of the cylinder is secured by an efficient heat treatment stage. <P>SOLUTION: An alloy containing 15 to 25% Si, 2.0 to 4.0% Cu, 0.2 to 1.0% Mg and 0.2 to 1.0% Fe, and the balance Al is cast, so as to be a cylinder block, a coil is inserted into the cylinder bore of the cylinder block, is heated at 490 to 540°C by the first induction heating, is held for 0 to 60 s, and is rapidly cooled, so as to perform solution treatment. Further, the coil is inserted into the cylinder bore, is heated at 190 to 260°C by the second induction heating, and is held for 0 to 3,600 s. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はアルミニウム合金鋳物による自動車等のエンジンのシリンダブロックの製造方法に関するものである。   The present invention relates to a method for manufacturing a cylinder block of an engine such as an automobile using an aluminum alloy casting.

自動車やオートバイ等のエンジンのシリンダブロックとしてアルミニウム合金の鋳造品が近年使用されるようになってきている。このようなアルミニウム合金製のシリンダブロックにおいて、耐摩耗性が要求されるシリンダボアの部分については鋳鉄製や鋼製のシリンダライナを使用し、シリンダブロックの鋳造時に鋳ぐるむ方法が一般に使用されている。さらにはシリンダブロックをすべてアルミニウム合金とする方法として、ライナについても耐摩耗性を考慮したアルミニウム合金を使用する技術もある。   In recent years, aluminum alloy castings have been used as cylinder blocks for engines such as automobiles and motorcycles. In such an aluminum alloy cylinder block, a cylinder bore made of cast iron or steel is used for the cylinder bore portion where wear resistance is required, and a casting method is generally used when casting the cylinder block. . Furthermore, as a method of making all the cylinder blocks aluminum alloy, there is also a technique of using an aluminum alloy in consideration of wear resistance for the liner.

特開2003−33859には上記のようなアルミニウム合金製のライナを使用する技術が記載されている。この技術においてはアルミナと時効硬化型アルミニウム合金との複合材のライナを製作し、たとえば510〜530℃に2時間加熱したのち水冷する溶体化処理を行ない、このライナをシリンダボアの個所に置いてアルミニウム合金を鋳造することにより鋳ぐるんでシリンダブロックを製造する。その後シリンダブロックに対してたとえば180〜230℃に4時間保持する人工時効処理することにより、シリンダブロック本体についてはT5処理、ライナについてはT6処理が行なわれることになり、シリンダブロックについて必要な強度を確保すると共に、ライナの硬度を著しく上昇させることができる。   Japanese Patent Application Laid-Open No. 2003-33859 describes a technique using an aluminum alloy liner as described above. In this technique, a liner made of a composite material of alumina and age-hardened aluminum alloy is manufactured, for example, heated to 510 to 530 ° C. for 2 hours, and then subjected to a solution treatment that is cooled with water. The cylinder block is manufactured by casting the alloy. Thereafter, the cylinder block is subjected to, for example, an artificial aging treatment that is held at 180 to 230 ° C. for 4 hours, whereby the cylinder block body is subjected to T5 treatment, and the liner is subjected to T6 treatment. In addition, the hardness of the liner can be significantly increased.

上記のように全体をアルミニウム合金製としたシリンダブロックにおいても耐摩耗性が要求されるシリンダボアの部分についてはシリンダライナとして別途製造しておいて、シリンダブロック本体の鋳造時に鋳ぐるむのが普通である。またアルミニウム合金を硬化させるための熱処理としては溶体化処理をしたのち人工時効処理するT6処理が最も効果が確実であるが、シリンダブロック全体を加熱炉に入れて溶体化温度や時効温度に加熱するのは手間がかかる工程となっている。前記の特開2003−33859の技術は、高温の加熱を要する溶体化処理についてはシリンダライナだけシリンダブロックとは別個に行なうことにより、この問題を解決しようとするものである。
特開2003−33859号公報
As described above, even in a cylinder block made entirely of an aluminum alloy, the cylinder bore part that requires wear resistance is usually manufactured separately as a cylinder liner and casted when casting the cylinder block body. is there. As the heat treatment for hardening the aluminum alloy, the T6 treatment, in which the solution treatment is performed and then the artificial aging treatment is most effective, the whole cylinder block is put in a heating furnace and heated to the solution treatment temperature or the aging temperature. Is a time-consuming process. The technique disclosed in Japanese Patent Laid-Open No. 2003-33859 is intended to solve this problem by performing a solution treatment that requires high-temperature heating only on the cylinder liner separately from the cylinder block.
JP 2003-33859 A

前記の特開2003−33859の技術はシリンダライナとして耐摩耗性を確保するためにアルミナを含有させているが、このような硬質なセラミックスの粒子を含有させると、摩擦の相手であるピストンリングを磨耗させる、いわゆる攻撃性の問題を生ずるおそれがある。またシリンダライナを別途製作して鋳ぐるむために作業工程が複雑になる。本発明は上記のような従来技術に鑑み、別途シリンダライナを製作することなくシリンダブロックのシリンダボアをそのままシリンダとして使用し、効率的な熱処理工程により必要なシリンダ内面の硬度を確保する方法を提供することを目的とする。   The technology disclosed in Japanese Patent Application Laid-Open No. 2003-33859 contains alumina as a cylinder liner in order to ensure wear resistance. However, if such hard ceramic particles are contained, a piston ring which is a friction partner can be obtained. There is a risk of causing so-called aggression problems. In addition, since the cylinder liner is separately manufactured and cast, the work process becomes complicated. In view of the above-described conventional technology, the present invention provides a method of using a cylinder bore of a cylinder block as a cylinder as it is without producing a separate cylinder liner, and ensuring the necessary hardness of the cylinder inner surface by an efficient heat treatment process. For the purpose.

本発明は前記課題を解決するものであって、アルミニウム合金のシリンダブロックを製造する方法において、質量%で、Si:15〜25%、Cu:2.0〜4.0%、Mg:0.2〜1.0%、Fe:0.2〜1.0%、必要に応じてさらにP:0.01%以下、Ni:0.2〜2.0%の一方または両方を含有し、残部は不可避的不純物の他はAlからなる合金を鋳造してシリンダブロックとし、シリンダブロックのシリンダボア内にコイルを挿入して1回目の誘導加熱により490ないし540℃に加熱し、0ないし60秒保持した後急冷することにより溶体化処理を行ない、さらにシリンダボア内にコイルを挿入して2回目の誘導加熱により190ないし260℃に加熱し、0ないし3600秒保持することを特徴とするアルミニウム合金シリンダブロックの製造方法である。
ここにおいて、誘導加熱のうち、少なくとも2回目の誘導加熱においてはコイルの位置を固定した状態で加熱すること、また2回目の誘導加熱の後、シリンダブロックを保温装置に収容することも特徴とする。
This invention solves the said subject, In the method of manufacturing the cylinder block of aluminum alloy, Si: 15-25%, Cu: 2.0-4.0%, Mg: 0.0. 2 to 1.0%, Fe: 0.2 to 1.0%, further containing one or both of P: 0.01% or less and Ni: 0.2 to 2.0% as necessary, the balance In addition to inevitable impurities, an alloy made of Al is cast into a cylinder block. A coil is inserted into the cylinder bore of the cylinder block, heated to 490 to 540 ° C. by the first induction heating, and held for 0 to 60 seconds. Aluminium characterized in that solution treatment is performed by rapid cooling after that, and a coil is inserted into the cylinder bore, heated to 190 to 260 ° C. by second induction heating, and held for 0 to 3600 seconds. It is a manufacturing method of the alloy cylinder block.
Here, in induction heating, at least in the second induction heating, heating is performed with the position of the coil fixed, and after the second induction heating, the cylinder block is housed in a heat retaining device. .

本発明によれば、シリンダブロックをアルミニウム合金で製造するに当たりSi量を特に高くするなど耐摩耗性を高める組成としたので、ライナを別途用意することなく良好な耐摩耗性が得られる。また材料の強度向上と寸法安定化をのための溶体化処理および時効処理を高周波誘導加熱で行なうので、従来の炉加熱に比べて小さな設備で短時間に処理でき、生産コストの低減が可能となる。   According to the present invention, when the cylinder block is made of an aluminum alloy, it has a composition that enhances the wear resistance, such as by increasing the amount of Si in particular, so that a good wear resistance can be obtained without separately preparing a liner. In addition, solution treatment and aging treatment for improving material strength and dimensional stabilization are performed by high-frequency induction heating, so that it can be processed in a shorter time with smaller equipment than conventional furnace heating, and production costs can be reduced. Become.

本発明によるシリンダブロックはアルミニウム合金を鋳造し、その後熱処理することによって製造される。アルミニウム合金材としては溶湯の流動性が良く充填性が良好なAl−Si系で、耐摩耗性を良好にするためSi含有量を共晶点を超えて特に高くする。さらにAl相の強度を確保するためにCuおよびMgを添加する。鋳造方法としては作業能率が良好なダイカスト法が一般に使用されるが、減圧雰囲気中で行なう真空ダイカストやキャビティやスリ−ブ内に酸素を満たして行なう酸素置換式無孔性ダイカストなどが好ましい。また低圧鋳造法や溶湯鍛造法なども使用できる。以下に本発明に使用するアルミニウム合金の各成分について説明する。   The cylinder block according to the present invention is manufactured by casting an aluminum alloy followed by heat treatment. The aluminum alloy material is an Al—Si system with good melt fluidity and good filling properties, and the Si content is made particularly high beyond the eutectic point in order to improve wear resistance. Further, Cu and Mg are added to ensure the strength of the Al phase. As a casting method, a die casting method with good work efficiency is generally used, but vacuum die casting performed in a reduced pressure atmosphere, oxygen substitution type non-porous die casting performed by filling a cavity or a sleeve with oxygen, and the like are preferable. Also, a low pressure casting method or a molten metal forging method can be used. Below, each component of the aluminum alloy used for this invention is demonstrated.

Siは耐摩耗性を向上させると共に合金の熱膨張係数を小さくして高温下における寸法増加を抑制する。また溶湯の流動性や鋳型充填性を向上させて鋳造欠陥の発生を防止する。さらにMgを添加することにより析出硬化に有効なMg2Siを生成する。Al−Si 系の共晶点は12.6質量%(以下、%という)であるが、本発明においてはSi量をこれよりできるだけ多くすることにより初晶のSiを多量に晶出させ、硬質の粒子を母相に分散させることにより耐摩耗性を向上させる。Si量が15%未満では初晶のSi粒子の量が不足し、耐摩耗性が不充分である。一方Si量が25%を超えると製品の材質が脆くなる。したがってSi量は15〜25%とする。 Si improves the wear resistance and decreases the thermal expansion coefficient of the alloy to suppress the increase in dimensions at high temperatures. In addition, the fluidity of the molten metal and mold filling properties are improved to prevent casting defects. Furthermore, Mg 2 Si effective for precipitation hardening is generated by adding Mg. The eutectic point of the Al—Si 2 system is 12.6% by mass (hereinafter referred to as “%”), but in the present invention, by increasing the amount of Si as much as possible, a large amount of primary Si is crystallized and hardened. Abrasion resistance is improved by dispersing the particles in the matrix. If the amount of Si is less than 15%, the amount of primary Si particles is insufficient and the wear resistance is insufficient. On the other hand, if the amount of Si exceeds 25%, the material of the product becomes brittle. Therefore, the Si amount is 15 to 25%.

CuはAl相を固溶強化すると共に高温強度の向上に有効である。またCu2Al相の 析出による硬化が生ずると共に、さらにMgが共存することによってさらに硬化の作用が著しいCu2AlMg相も析出する。Cu量が2.0%未満では高温強度が不足すると共 に時効硬化も不充分となる。一方4.0%を超えても効果が飽和すると共にポロシティなどの鋳造欠陥が発生し易くなる。したがってCu量は2.0〜4.0%とする。 Cu is effective for improving the high temperature strength while solid-solution strengthening the Al phase. In addition, hardening due to precipitation of the Cu 2 Al phase occurs, and the presence of Mg also causes precipitation of a Cu 2 AlMg phase with a remarkable hardening effect. If the amount of Cu is less than 2.0%, not only the high-temperature strength is insufficient, but also age hardening becomes insufficient. On the other hand, if it exceeds 4.0%, the effect is saturated and casting defects such as porosity are likely to occur. Therefore, the Cu amount is set to 2.0 to 4.0%.

MgはAl相を固溶強化すると共に靱性を向上させ、またMg2Siを析出させること により硬化させる。Mgが0.2%未満ではその効果が不充分であり、1.0%を超えると溶湯の流動性が悪化して鋳造欠陥が発生し易くなる。したがってMg量は0.2〜1.0%とする。 Mg hardens the Al phase by solid solution strengthening, improves toughness, and precipitates Mg 2 Si. If Mg is less than 0.2%, the effect is insufficient, and if it exceeds 1.0%, the fluidity of the molten metal deteriorates and casting defects are likely to occur. Therefore, the Mg content is 0.2 to 1.0%.

FeはAl3FeやAlFeSiなどの金属間化合物として晶出し、高温強度を向上さ せる。またダイカスト鋳造などにおける鉄の鋳型に対する鋳物の溶着を低減する効果もある。Feが0.2%未満ではその効果が不充分であり、1.0%を超えると晶出する金属間化合物が粗大になって靱性を害する。したがってFe量は0.2〜1.0%とする。 Fe crystallizes as an intermetallic compound such as Al 3 Fe and AlFeSi, and improves the high temperature strength. It also has the effect of reducing the welding of the casting to the iron mold in die casting and the like. If Fe is less than 0.2%, the effect is insufficient, and if it exceeds 1.0%, the intermetallic compound that crystallizes becomes coarse and impairs toughness. Therefore, the amount of Fe is set to 0.2 to 1.0%.

上記成分の残部はAlおよび不可避的不純物であるが、必要に応じてPを0.01%以下添加してもよい。Pは微量の添加で初晶Siの粗大化を防止し、微細なSi粒子を母相中に多数分散させることにより靱性を向上させることができる。しかしP量が0.01%を超えると鋳造組織が不均一となる。また必要に応じてNiを0.2〜2.0%添加してもよい。NiはAl3NiやAlCuNiを形成することにより高温強度を増大させる。 Ni量が0.2%未満ではその効果が少なく、2.0%を超えると靱性が低下する。 The balance of the above components is Al and inevitable impurities, but 0.01% or less of P may be added as necessary. P is added in a small amount to prevent coarsening of primary Si, and toughness can be improved by dispersing a large number of fine Si particles in the matrix. However, when the amount of P exceeds 0.01%, the cast structure becomes non-uniform. Moreover, you may add 0.2 to 2.0% of Ni as needed. Ni increases the high temperature strength by forming Al 3 Ni or AlCuNi. If the amount of Ni is less than 0.2%, the effect is small, and if it exceeds 2.0%, the toughness decreases.

本発明は上記のような成分の鋳物に対して所定の熱処理を行なうことにより、溶質元素の析出を制御し、材料の強度向上と寸法安定化を実現する。熱処理はまず溶体化処理を行なうが加熱方法として短時間で所定温度に昇温できる高周波誘導加熱を適用する。溶体化処理の加熱は従来は炉加熱で、溶体化処理温度での保持時間は3時間以上にするのが一般的であるが、本発明においては昇温後の温度保持時間を短くすることにより炉加熱よりもはるかに高能率の作業ができる。   In the present invention, the casting of the above components is subjected to a predetermined heat treatment to control the precipitation of solute elements, thereby realizing the improvement of material strength and dimensional stabilization. As the heat treatment, first, a solution treatment is performed. As a heating method, high-frequency induction heating capable of raising the temperature to a predetermined temperature in a short time is applied. The solution treatment is conventionally heated in a furnace, and the retention time at the solution treatment temperature is generally 3 hours or longer. In the present invention, however, the temperature retention time after the temperature rise is shortened. Work much more efficient than furnace heating.

溶体化処理は鋳造時に析出した溶質元素を短時間で充分に母材に固溶させるためにできるだけ高温で処理することが好ましいが、温度が高すぎると共晶が融解して材料表面に膨れ等の欠陥が発生する。本発明においては溶体化処理の温度は490ないし540℃とし、この温度に0ないし60秒保持した後急冷する。上記溶体化処理温度は炉加熱の場合に適用されるべき温度、たとえば480℃より高いものであって、これにより上記のような短時間の加熱であっても、その後に時効処理をしたときの硬さを炉加熱により溶体化した場合と同等にすることができる。溶体化処理の温度が490℃未満では時効後に充分な硬さが得られず、540℃を超えると融解により膨れ等の欠陥が発生するおそれがある。   The solution treatment is preferably performed at as high a temperature as possible in order to sufficiently dissolve the solute elements precipitated during casting in the base material in a short time. However, if the temperature is too high, the eutectic melts and swells on the surface of the material. Defects occur. In the present invention, the temperature of the solution treatment is 490 to 540 ° C., kept at this temperature for 0 to 60 seconds, and then rapidly cooled. The solution treatment temperature is higher than the temperature to be applied in the case of furnace heating, for example, 480 ° C., so that even when heating for a short time as described above, The hardness can be made equivalent to that obtained when the solution is formed by furnace heating. If the temperature of the solution treatment is less than 490 ° C., sufficient hardness cannot be obtained after aging, and if it exceeds 540 ° C., defects such as swelling may occur due to melting.

溶体化処理温度での保持時間は0ないし60秒が適当であって、保持時間が0、すなわち所定温度に昇温後直ちに焼入れすることもできる。一方、60秒より長くしても溶体化処理後に時効処理をしたときの硬さが格別向上せずエネルギーの無駄である。好ましくは保持時間は30秒以下が適当である。上記のように溶体化処理温度にした後、水または温水により焼入れして過飽和固溶体を形成するが、本発明で規定するCuの含有量のうちCuが多い範囲の材料の場合は、焼割れの防止のため温水焼入れが好ましい。なお高周波誘導加熱によって溶体化処理温度に達して上記保持時間(0秒を含む)が経過したら、加熱電源を切った状態である時間放置してから焼入れしても良い。この放置する時間は先に述べた炉加熱による溶体化処理温度より低温まで冷却しない範囲にする必要がある。   The holding time at the solution treatment temperature is suitably 0 to 60 seconds, and the holding time is 0, that is, it is possible to quench immediately after raising the temperature to a predetermined temperature. On the other hand, even when the time is longer than 60 seconds, the hardness when the aging treatment is performed after the solution treatment is not particularly improved, and energy is wasted. The holding time is preferably 30 seconds or less. After the solution treatment temperature as described above, quenching with water or warm water to form a supersaturated solid solution, but in the case of a material with a large amount of Cu in the Cu content specified in the present invention, Hot water quenching is preferred for prevention. When the solution treatment temperature is reached by high-frequency induction heating and the above holding time (including 0 seconds) has elapsed, the heating power may be left for a period of time before quenching. This standing time needs to be in a range that does not cool to a temperature lower than the solution treatment temperature by the furnace heating described above.

誘導加熱はシリンダの内面と所定の間隔を有するような径に成形された高周波誘導加熱コイルをシリンダブロックのボア内に挿入し、通電することにより行なう。高周波誘導加熱コイルの長さをシリンダのボア部の長さより短くして移動焼入れする方法も適用できるが、できるだけ能率よく加熱するためには高周波誘導加熱コイルをシリンダのボア部の長さとほぼ同じ長さにし、コイルを固定してシリンダボアの全長を同時に加熱した後、スプレーなどで冷却する一発焼入れが好ましい。   Induction heating is performed by inserting a high-frequency induction heating coil having a predetermined distance from the inner surface of the cylinder into the bore of the cylinder block and energizing it. The method of moving quenching by making the length of the high frequency induction heating coil shorter than the length of the bore part of the cylinder can also be applied, but in order to heat it as efficiently as possible, the high frequency induction heating coil is almost the same length as the length of the bore part of the cylinder. Further, it is preferable to perform a single quenching in which the coil is fixed and the entire length of the cylinder bore is heated at the same time and then cooled by spraying or the like.

上記のようにシリンダのボア部の長さに対応した長さの高周波誘導加熱コイルを使用する場合、部分的に加熱を強化することもできる。たとえばシリンダボアのある長さ位置のある方向、たとえば0度の方向の個所が形態上熱の吸収が大きく昇温が遅い場合には、この部分だけコイルのピッチを小さくして強く加熱されるようにし、0度の方向のコイルの残りの長さ部分は均一のピッチにすると共に、180度の方向はコイル全長に亘って均一のピッチにするといったこともできる。またシリンダ内面の昇温が遅い個所に対向するコイルの部分に珪素鋼板などの磁性材料を設けて、この個所が強く加熱されるようにすることもできる。   When the high frequency induction heating coil having a length corresponding to the length of the bore portion of the cylinder is used as described above, the heating can be partially strengthened. For example, when a cylinder bore has a certain length position, for example, a position of 0 °, the heat absorption is large and the temperature rises slowly, the coil pitch is reduced only in this part and the heat is strongly heated. The remaining length of the coil in the direction of 0 degrees can be a uniform pitch, and the direction of 180 degrees can be a uniform pitch over the entire length of the coil. It is also possible to provide a magnetic material such as a silicon steel plate in the portion of the coil facing the portion where the temperature rise on the cylinder inner surface is slow so that this portion is heated strongly.

焼入れを行なったシリンダブロックは次いで時効処理を行なう。時効処理はT6処理として加熱することにより行ない、Cu2Al相、Mg2Si相、Cu2AlMg相などを析 出させて硬度を上昇させる。また時効処理により永久伸びが発生し、シリンダブロックを使用中にエンジンの温度によって寸法変動が生ずるのを軽減することができる。 The cylinder block that has been quenched is then subjected to an aging treatment. The aging treatment is carried out by heating as a T6 treatment, and Cu 2 Al phase, Mg 2 Si phase, Cu 2 AlMg phase, etc. are deposited to increase the hardness. Further, permanent elongation is generated by the aging treatment, and it is possible to reduce the occurrence of dimensional variation due to the engine temperature while the cylinder block is in use.

時効処理は190ないし260℃に加熱し、0ないし3600秒保持するが、先に述べた溶体化処理のための1回目の誘導加熱と同様に、2回目の誘導加熱により行なう。炉加熱ではたとえば200℃に加熱する場合、この温度に達するまでに1時間程度かかるため時効温度における保持時間を充分長くとり、数時間以上掛けて時効硬化が進行するような温度条件にしないと昇温途中で過時効になって硬度が低下するといった問題が生ずる。したがって炉加熱で時効処理をする場合特に長時間を要することになる。   The aging treatment is heated to 190 to 260 ° C. and held for 0 to 3600 seconds, and is performed by the second induction heating as in the first induction heating for the solution treatment described above. For example, when heating to 200 ° C. in furnace heating, it takes about an hour to reach this temperature, so the holding time at the aging temperature is sufficiently long, and the temperature is not increased unless the temperature conditions are such that age hardening proceeds over several hours. There arises a problem that hardness is lowered due to overaging in the middle of temperature. Therefore, a long time is required particularly when aging treatment is performed by furnace heating.

一方、本発明のように誘導加熱により時効処理をすれば、短時間で時効温度に達するので昇温途中で過時効になるおそれが無く、時効温度での保持時間を容易に制御でき短時間で処理できる。このため時効処理の時間を短かくするのに対応して、温度を炉加熱で時効処理する場合よりも高くする。時効処理の温度が190℃未満では所定硬度に達するまでに長時間を要し、本発明に規定する処理温度での保持時間では硬度が不充分になる。一方260℃を超えると短時間に過時効になり硬度が低下するため、処理時間の制御が困難になる。したがって時効処理温度は190ないし260℃とする。   On the other hand, if the aging treatment is carried out by induction heating as in the present invention, the aging temperature is reached in a short time, so there is no risk of overaging during the temperature rise, and the holding time at the aging temperature can be easily controlled in a short time. It can be processed. For this reason, corresponding to shortening the time of aging treatment, the temperature is set higher than in the case of aging treatment by furnace heating. If the temperature of the aging treatment is less than 190 ° C., it takes a long time to reach the predetermined hardness, and the holding time at the treatment temperature specified in the present invention results in insufficient hardness. On the other hand, when the temperature exceeds 260 ° C., overaging occurs in a short time and the hardness decreases, so that it becomes difficult to control the processing time. Therefore, the aging treatment temperature is 190 to 260 ° C.

また時効処理温度での保持時間が3600秒を超えると作業時間が長くなり過ぎる。したがって時効処理温度での保持時間は0ないし3600秒とし、この時間範囲において時効処理温度が高いときには短時間、低いときには長時間として過時効にならないようにする。なお保持時間は作業能率などの事情が許すならば上記範囲において長時間の条件で行なう方が高い硬度が安定して得られ好ましい。   If the holding time at the aging treatment temperature exceeds 3600 seconds, the working time becomes too long. Therefore, the holding time at the aging treatment temperature is set to 0 to 3600 seconds, and in this time range, when the aging treatment temperature is high, the holding time is short, and when the aging treatment temperature is low, the holding time is long. It should be noted that if the holding time is allowed by circumstances such as work efficiency, it is preferable to perform the holding time under a long time condition within the above range because a high hardness can be stably obtained.

誘導加熱は溶体化処理におけると同様に高周波誘導加熱コイルをシリンダブロックのボア内に挿入し、通電することにより行なう。先に溶体化処理に関しても述べたように、高周波誘導加熱コイルの長さをシリンダのボア部の長さより短くしてコイルを移動しつつ行なう移動加熱する方法も適用できるが、シリンダのボア部の長さとほぼ同じ長さのコイルを固定してシリンダボア部の全長を同時に加熱する、いわば一発加熱が好ましい。特に時効処理の場合には溶体化処理よりも保持時間を長くとることが望まれるので、溶体化処理は移動加熱(移動焼入れ)の場合でも時効処理の方は一発加熱が好ましい。先に述べたようにシリンダブロックの形態上熱の吸収が大きく昇温が遅い個所に対して、コイルの形態を変えたり磁性材料を設けることにより他の個所より強く加熱する方法も一発加熱の場合には行なえる。   Induction heating is performed by inserting a high-frequency induction heating coil into the bore of the cylinder block and energizing the same as in the solution treatment. As described above with respect to the solution treatment, a method of moving and heating while moving the coil by making the length of the high frequency induction heating coil shorter than the length of the bore portion of the cylinder can be applied. A so-called single heating is preferable, in which a coil having a length substantially the same as the length is fixed and the entire length of the cylinder bore portion is heated simultaneously. In particular, in the case of an aging treatment, it is desired that the holding time be longer than that in the solution treatment. Therefore, even if the solution treatment is a moving heating (moving quenching), the aging treatment is preferably a single heating. As described above, the method of heating more strongly than other parts by changing the coil form or providing a magnetic material to the part where the heat absorption is large and the temperature rise is slow due to the form of the cylinder block. If you can do it.

2回目の誘導加熱の保持温度で経過した後の冷却は、時効処理の経過に応じて水冷や放冷など種々の方法で行なえる。また高周波誘導加熱装置とは別に設置された保温装置に、時効処理温度で保持した後のシリンダブロックを移送して時効処理時間を実質的に延長させることもできる。   Cooling after elapse of the holding temperature of the second induction heating can be performed by various methods such as water cooling or standing cooling according to the progress of the aging treatment. Moreover, the cylinder block after hold | maintaining at an aging treatment temperature can also be transferred to the heat retention apparatus installed separately from the high frequency induction heating apparatus, and aging treatment time can also be extended substantially.

(実施例1)
成分がSi:20.3%、Cu:2.5%、Mg:0.52%、Fe:0.47%、残部Alからなる合金をシリンダブロックの形状に鋳造した。このシリンダブロックのボアの個所から複数の熱処理用試験片を切出し、そのそれぞれについて条件を変えて熱処理を行なった。
(Example 1)
An alloy composed of Si: 20.3%, Cu: 2.5%, Mg: 0.52%, Fe: 0.47%, and the balance Al was cast into a cylinder block shape. A plurality of heat treatment test pieces were cut out from the bores of the cylinder block, and the heat treatment was performed under different conditions.

溶体化処理の条件による影響を調べるために温度と時間を変えて溶体化処理を行ない、その後一定の条件で時効処理したのち硬度を調べた。時効処理の条件は誘導加熱により60秒で200℃に加熱して3600秒保持したのち空冷するものである。図1は溶体化温度での保持時間は一定で溶体化温度を変化させた場合の時効処理後の硬さを示すグラフであるが、溶体化処理直後の硬さも併せて示している。グラフの各データは6回測定の平均値とばらつきの範囲を示している。溶体化処理は高周波誘導加熱を60秒行なうことにより所定の溶体化温度にしてその温度に15秒間保持し、その後水冷することにより行なった。図1によると溶体化温度は本発明の範囲内でも比較的高い方が時効処理後の硬度が高いことが判る。また図2は溶体化温度は523℃で一定にして保持時間を0秒から120秒まで変化させたときの硬度を示すグラフである。溶体化温度がこのように比較的高い条件では保持時間は長くしても時効処理後の硬度が特に向上することはないことが判る。   In order to investigate the influence of the solution treatment conditions, the solution treatment was carried out at different temperatures and times, and after aging treatment under certain conditions, the hardness was examined. The condition of the aging treatment is to heat to 200 ° C. in 60 seconds by induction heating, hold for 3600 seconds, and then cool by air. FIG. 1 is a graph showing the hardness after the aging treatment in the case where the holding time at the solution treatment temperature is constant and the solution treatment temperature is changed, and the hardness immediately after the solution treatment is also shown. Each data of the graph shows an average value of six measurements and a range of variation. The solution treatment was performed by performing high-frequency induction heating for 60 seconds to obtain a predetermined solution temperature and holding at that temperature for 15 seconds, followed by water cooling. According to FIG. 1, it can be seen that the solution treatment temperature is relatively high even within the range of the present invention, and the hardness after aging treatment is high. FIG. 2 is a graph showing the hardness when the solution temperature is constant at 523 ° C. and the holding time is changed from 0 seconds to 120 seconds. It can be seen that the hardness after the aging treatment is not particularly improved even if the holding time is increased under such a relatively high solution temperature.

時効処理の条件による影響を調べるため、一定の条件で溶体化処理したのち時効処理の温度と時間を変えて硬度を調べた。溶体化処理は高周波誘導加熱を60秒行なうことにより525℃にしてその温度に15秒間保持し、その後水冷することにより行なった。図3と図4は時効処理での保持時間は一定で温度を変化させた場合の硬度を示すグラフである。時効処理は高周波誘導加熱を60秒行なうことにより所定の時効温度にし、図3の場合は直ちに空冷、図4の場合はその温度に1800秒間保持してその後空冷した。硬度HRBの平均値が70以上で最低値が65以上を良好な範囲の目安とすると、保持時間なしの図3では260℃の場合に良好な範囲に入っている。一方、保持時間1800秒の図4では200℃の場合に良好な範囲に入っており、これより高温になると過時効になることがわかる。なお図4においてBの記号をつけた260℃における硬度上昇は、200℃前後での時効硬化におけるものとは別の析出相によるものと考えられる。   In order to investigate the influence of the aging treatment conditions, after the solution treatment under certain conditions, the hardness was examined by changing the temperature and time of the aging treatment. The solution treatment was performed by high-frequency induction heating for 60 seconds to reach 525 ° C. and hold at that temperature for 15 seconds, followed by water cooling. 3 and 4 are graphs showing the hardness when the temperature is changed with the holding time in the aging treatment being constant. In the aging treatment, high-frequency induction heating was performed for 60 seconds to obtain a predetermined aging temperature. In the case of FIG. 3, the air was immediately cooled, and in the case of FIG. Assuming that the average value of hardness HRB is 70 or more and the minimum value is 65 or more is an indication of a good range, FIG. 3 without a holding time is in the good range at 260 ° C. On the other hand, in FIG. 4 where the holding time is 1800 seconds, it is in a favorable range at 200 ° C., and it is understood that overaging occurs at higher temperatures. In FIG. 4, the increase in hardness at 260 ° C. indicated by the symbol B is considered to be due to a precipitate phase different from that in age hardening at around 200 ° C.

また図5は時効温度は200℃で一定にして保持時間を0から3600秒まで変化させたときの硬度を示すグラフである。図4と図5においてAの記号を付けたデータは同じものであるが、時効温度が200℃では保持時間が900秒でも硬度HRBの平均値が70以上で最低値が65以上の良好な範囲に入っている。しかし保持時間が長い方が硬度が高くなり、2700秒以上の保持時間では硬度HRBの平均値が75以上で最低値が70以上の高い硬度が得られる。なお図3ないし図5における各データはビッカース硬さ(HV0.5)による15回の測定値をロックウェル硬さ(HRB)に換算し、平均値とばらつきの範囲を示している。   FIG. 5 is a graph showing the hardness when the aging temperature is constant at 200 ° C. and the holding time is changed from 0 to 3600 seconds. 4 and 5, the data with the symbol A are the same, but the aging temperature is 200 ° C., the holding time is 900 seconds, the average value of hardness HRB is 70 or more, and the minimum value is 65 or more. In. However, the longer the holding time is, the higher the hardness is. When the holding time is 2700 seconds or more, a high hardness with an average hardness HRB of 75 or more and a minimum value of 70 or more can be obtained. Each of the data in FIG. 3 to FIG. 5 shows the average value and the range of variation by converting 15 measured values by Vickers hardness (HV0.5) into Rockwell hardness (HRB).

(実施例2)
表1の組成の各種アルミニウム合金溶湯を溶製した。各アルミニウム合金溶湯を750℃から30mm径、150mm長さの丸棒に鋳造した。得られた鋳塊に対して高周波誘導加熱を60秒行なうことにより525℃にしてその温度に15秒間保持し、その後60℃の温水に焼入れすることにより溶体化処理を施した。さらに誘導加熱により60秒で200℃に加熱して1800秒保持したのち空冷することにより時効処理を行なった。
(Example 2)
Various aluminum alloy melts having the compositions shown in Table 1 were melted. Each molten aluminum alloy was cast from 750 ° C. to a round bar having a diameter of 30 mm and a length of 150 mm. The obtained ingot was subjected to high-frequency induction heating for 60 seconds to reach 525 ° C. and held at that temperature for 15 seconds, and then subjected to solution treatment by quenching in warm water at 60 ° C. Furthermore, it was heated to 200 ° C. in 60 seconds by induction heating, held for 1800 seconds, and then air-cooled to perform aging treatment.

Figure 2008127665
Figure 2008127665

時効処理された試験片の表面近傍から引張試験片を切出し、180℃で引張試験を行なった。また潤滑剤を使用しての常温での摩耗試験を、相手材を鋳鉄として加重50kgf/mm2、摺動速度0.3mm/秒の条件で、摺動距離を3kmとして行なった。これら の結果も表1に併せて示す。 A tensile test piece was cut out from the vicinity of the surface of the aged test piece, and a tensile test was performed at 180 ° C. In addition, a wear test at normal temperature using a lubricant was performed at a sliding distance of 3 km under conditions of a load of 50 kgf / mm 2 and a sliding speed of 0.3 mm / sec using cast iron as the counterpart material. These results are also shown in Table 1.

番号1から4までの本発明の合金成分の試料はいずれも良好な高温引張試験結果と摩耗試験結果を示している。これに対し番号5の試料はSiが低いので摩耗試験結果が不満足であった。また番号6の試料はSiが高いので引張試験の伸びが小さく靱性が劣る結果になった。   Samples of the alloy components of the present invention numbered 1 to 4 all show good high temperature tensile test results and wear test results. On the other hand, the sample No. 5 was unsatisfactory in the abrasion test result because of low Si. Moreover, since the sample of No. 6 had high Si, the elongation of the tensile test was small and the toughness was inferior.

番号7の試料はCuが低いので引張試験の強度が低かった。また番号8の試料はCuが高いので鋳造時にポロシティが発生したので、その後の試験を中止した。番号9の試料はMgが低いので引張試験の強度が低かった。また番号10の試料はMgが高いので鋳造時に湯境の欠陥が発生し、その後の試験を中止した。   Sample No. 7 had low Cu, so the tensile test strength was low. Moreover, since the sample of No. 8 had high Cu, porosity was generated during casting, so the subsequent test was stopped. Sample No. 9 had low Mg, so the tensile test strength was low. In addition, since the sample of No. 10 had high Mg, a defect in the hot water boundary occurred during casting, and the subsequent test was stopped.

番号11の試料はFeが低いので引張試験の強度が低かった。また番号12の試料はFeが高いので引張試験の伸びが小さく靱性が劣る結果になった。   Sample No. 11 had low tensile strength due to low Fe. Sample No. 12 was high in Fe, so the tensile test elongation was small and the toughness was poor.

溶体化処理温度と溶体化処理後の硬度および時効処理後の硬度との関係を示すグラフGraph showing the relationship between solution treatment temperature, hardness after solution treatment, and hardness after aging treatment 溶体化処理温度での保持時間と時効処理後の硬度との関係を示すグラフGraph showing the relationship between retention time at solution treatment temperature and hardness after aging treatment 時効処理温度と時効処理後の硬度との関係を示すグラフ(保持時間なし)Graph showing the relationship between aging temperature and hardness after aging (no holding time) 時効処理温度と時効処理後の硬度との関係を示すグラフ(保持時間1800秒)A graph showing the relationship between the aging temperature and the hardness after aging (holding time 1800 seconds) 時効処理温度での保持時間と時効処理後の硬度との関係を示すグラフGraph showing the relationship between holding time at aging temperature and hardness after aging treatment

Claims (5)

アルミニウム合金のシリンダブロックを製造する方法において、質量%で、Si:15〜25%、Cu:2.0〜4.0%、Mg:0.2〜1.0%、Fe:0.2〜1.0%、残部は不可避的不純物の他はAlからなる合金を鋳造してシリンダブロックとし、シリンダブロックのシリンダボア内にコイルを挿入して1回目の誘導加熱により490ないし540℃に加熱し、0ないし60秒保持した後急冷することにより溶体化処理を行ない、さらにシリンダボア内にコイルを挿入して2回目の誘導加熱により190ないし260℃に加熱し、0ないし3600秒保持することを特徴とするアルミニウム合金シリンダブロックの製造方法。 In the method for producing a cylinder block of an aluminum alloy, in mass%, Si: 15-25%, Cu: 2.0-4.0%, Mg: 0.2-1.0%, Fe: 0.2- 1.0%, the balance is inevitable impurities other than unavoidable impurities, cast an alloy made of Al to form a cylinder block, insert a coil into the cylinder bore of the cylinder block and heat to 490-540 ° C. by the first induction heating, The solution is treated by rapid cooling after holding for 0 to 60 seconds, and the coil is inserted into the cylinder bore, heated to 190 to 260 ° C. by the second induction heating, and held for 0 to 3600 seconds. A method for manufacturing an aluminum alloy cylinder block. 合金はさらにP:0.01%以下を含有することを特徴とする請求項1記載のアルミニウム合金シリンダブロックの製造方法。 2. The method for producing an aluminum alloy cylinder block according to claim 1, wherein the alloy further contains P: 0.01% or less. 合金はさらにNi:0.2〜2.0%を含有することを特徴とする請求項1または2記載のアルミニウム合金シリンダブロックの製造方法。 3. The method for producing an aluminum alloy cylinder block according to claim 1, wherein the alloy further contains Ni: 0.2 to 2.0%. 誘導加熱のうち、少なくとも2回目の誘導加熱においてはコイルの位置を固定した状態で加熱することを特徴とする請求項1ないし3のいずれかに記載のアルミニウム合金シリンダブロックの製造方法。 4. The method of manufacturing an aluminum alloy cylinder block according to claim 1, wherein the induction heating is performed in a state where the position of the coil is fixed in at least the second induction heating. 2回目の誘導加熱の後、シリンダブロックを保温装置に収容することを特徴とする請求項1ないし4のいずれかに記載のアルミニウム合金シリンダブロックの製造方法。 The method of manufacturing an aluminum alloy cylinder block according to any one of claims 1 to 4, wherein the cylinder block is accommodated in a heat retaining device after the second induction heating.
JP2006316554A 2006-11-24 2006-11-24 Method for manufacturing aluminum alloy cylinder block Active JP4755072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006316554A JP4755072B2 (en) 2006-11-24 2006-11-24 Method for manufacturing aluminum alloy cylinder block

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006316554A JP4755072B2 (en) 2006-11-24 2006-11-24 Method for manufacturing aluminum alloy cylinder block

Publications (2)

Publication Number Publication Date
JP2008127665A true JP2008127665A (en) 2008-06-05
JP4755072B2 JP4755072B2 (en) 2011-08-24

Family

ID=39553804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006316554A Active JP4755072B2 (en) 2006-11-24 2006-11-24 Method for manufacturing aluminum alloy cylinder block

Country Status (1)

Country Link
JP (1) JP4755072B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008470A1 (en) * 2010-07-16 2012-01-19 日本軽金属株式会社 Aluminum alloy with excellent high-temperature strength and thermal conductivity, and process for production thereof
FR2980215A1 (en) * 2011-09-20 2013-03-22 Peugeot Citroen Automobiles Sa Thermal treatment of aluminum alloy casting part e.g. cap housing under pressure, comprises providing portion of part in isothermal solution by electromagnetic induction, hardening the part, and obtaining the hardened part
CN109609813A (en) * 2018-12-19 2019-04-12 江苏豪然喷射成形合金有限公司 A kind of System of Silica/Aluminum Microparticle alloy and preparation method thereof
KR20190066235A (en) * 2017-12-05 2019-06-13 현대자동차주식회사 Heat treatment method for aluminium cylinder block and heat treatment coil member for aluminium cylinder block
JP2019173078A (en) * 2018-03-28 2019-10-10 ダイハツ工業株式会社 Manufacturing method of aluminum alloy casting member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0967615A (en) * 1995-06-19 1997-03-11 Mazda Motor Corp Induction hardening method and device therefor
JP2005273654A (en) * 2004-02-27 2005-10-06 Yamaha Motor Co Ltd Engine component part and method for producing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0967615A (en) * 1995-06-19 1997-03-11 Mazda Motor Corp Induction hardening method and device therefor
JP2005273654A (en) * 2004-02-27 2005-10-06 Yamaha Motor Co Ltd Engine component part and method for producing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008470A1 (en) * 2010-07-16 2012-01-19 日本軽金属株式会社 Aluminum alloy with excellent high-temperature strength and thermal conductivity, and process for production thereof
US9222151B2 (en) 2010-07-16 2015-12-29 Nippon Light Metal Company, Ltd. Aluminum alloy excellent in high temperature strength and heat conductivity and method of production of same
FR2980215A1 (en) * 2011-09-20 2013-03-22 Peugeot Citroen Automobiles Sa Thermal treatment of aluminum alloy casting part e.g. cap housing under pressure, comprises providing portion of part in isothermal solution by electromagnetic induction, hardening the part, and obtaining the hardened part
KR20190066235A (en) * 2017-12-05 2019-06-13 현대자동차주식회사 Heat treatment method for aluminium cylinder block and heat treatment coil member for aluminium cylinder block
KR102452692B1 (en) * 2017-12-05 2022-10-11 현대자동차주식회사 Heat treatment coil member for aluminium cylinder block
JP2019173078A (en) * 2018-03-28 2019-10-10 ダイハツ工業株式会社 Manufacturing method of aluminum alloy casting member
CN109609813A (en) * 2018-12-19 2019-04-12 江苏豪然喷射成形合金有限公司 A kind of System of Silica/Aluminum Microparticle alloy and preparation method thereof

Also Published As

Publication number Publication date
JP4755072B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP6432070B2 (en) Hot die steel for long-life die casting excellent in high-temperature thermal conductivity and method for producing the same
CN103459630B (en) The aluminium alloy of hot properties excellence
US20050199318A1 (en) Castable aluminum alloy
CN101220431A (en) Aluminum alloy for engine components
JPS61117204A (en) High-strength al alloy member for structural purpose
JP2007197784A (en) Alloy steel
JP4755072B2 (en) Method for manufacturing aluminum alloy cylinder block
US6074501A (en) Heat treatment for aluminum casting alloys to produce high strength at elevated temperatures
JPS6239212B2 (en)
EP1143021A1 (en) Copper base alloy and methods for producing casting and forging employing copper base alloy
WO2011145194A1 (en) Heat-resistant cast iron type metallic short fiber, and process for production thereof
Pezda Effect of the T6 heat treatment on change of mechanical properties of the AlSi12CuNiMg alloy modified with strontium
JP5273952B2 (en) Hot forging die and manufacturing method thereof
JP2007092125A (en) Aluminum alloy, aluminum alloy bar, method for manufacturing aluminum alloy ingot for forging, and forged and formed article
KR101571665B1 (en) Aluminum alloy composition for die casting and method for heat treatment of manufacturing aluminum alloy using thereof
JP2004099923A (en) High strength ductile cast iron
JP5282546B2 (en) High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance
JP5282547B2 (en) High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance
Fatemi-Jahromi et al. An investigation into high temperature tensile behavior of hot-extruded Al–15wt% Mg 2 Si composite with Cu-P addition
JP2006137994A (en) Aluminum alloy, heat-resistant high-strength aluminum alloy part, and manufacturing method therefor
JP2006161103A (en) Aluminum alloy member and manufacturing method therefor
JP4704720B2 (en) Heat-resistant Al-based alloy with excellent high-temperature fatigue properties
JP5779749B2 (en) Cast iron material manufacturing method, cast iron material and die casting machine sleeve
Mandal et al. Development of a novel hypereutectic aluminum-siliconmagnesium alloy for die casting
JPH055148A (en) Aluminum alloy casting having high strength and high toughness and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110526

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4755072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250