JP2008127270A - Method of treatment of granulated blast furnace slag - Google Patents

Method of treatment of granulated blast furnace slag Download PDF

Info

Publication number
JP2008127270A
JP2008127270A JP2006317879A JP2006317879A JP2008127270A JP 2008127270 A JP2008127270 A JP 2008127270A JP 2006317879 A JP2006317879 A JP 2006317879A JP 2006317879 A JP2006317879 A JP 2006317879A JP 2008127270 A JP2008127270 A JP 2008127270A
Authority
JP
Japan
Prior art keywords
blast furnace
slag
phosphoric acid
fluorine
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006317879A
Other languages
Japanese (ja)
Inventor
Yasuto Miyata
康人 宮田
Keiji Watanabe
圭児 渡辺
Naoaki Fujiyoshi
直明 藤吉
Katsumi Matsumoto
克美 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kurita Water Industries Ltd
Original Assignee
JFE Steel Corp
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Kurita Water Industries Ltd filed Critical JFE Steel Corp
Priority to JP2006317879A priority Critical patent/JP2008127270A/en
Publication of JP2008127270A publication Critical patent/JP2008127270A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • C04B5/06Ingredients, other than water, added to the molten slag or to the granulating medium or before remelting; Treatment with gases or gas generating compounds, e.g. to obtain porous slag

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of treatment of granulated blast furnace slag which effectively controls the elution of fluorine from granulated blast furnace slag and an increase in pH. <P>SOLUTION: The elution of fluorine and calcium from granulated blast furnace slag is controlled by bringing phosphoric acid components into contact with the granulated blast furnace slag to form sparingly soluble compounds from the phosphoric acid components and fluorine and calcium in the slag. The utilization of the calcium originally contained in the granulated blast furnace slag in forming the sparingly soluble compounds reduces the amount of elutable calcium in the treated granulated blast furnace slag. As a result, the invention not only restricts the elution of fluorine but also effectively hold down the increase in pH of water or soil caused by the elution of calcium. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高炉水砕スラグに含まれるフッ素を固定化し、高炉水砕スラグからのフッ素の溶出を効果的に抑制することができるスラグ処理方法に関するものである。   The present invention relates to a slag treatment method that can fix fluorine contained in granulated blast furnace slag and effectively suppress elution of fluorine from the granulated blast furnace slag.

鋼の製造工程のうち、銑鉄を製造する高炉で溶融された鉄鉱石や副原料から鉄以外の成分を回収したものを高炉スラグと呼び、1500℃程度の溶融状態の高炉スラグに加圧水を噴霧して急激に冷却し、ガラス質の粒状となったものを高炉水砕スラグと呼ぶ。
従来、高炉水砕スラグは、コンクリート骨材や砂代替の土木材料として広く利用されているが、高炉水砕スラグには、高炉装入原料を通じて不可避的にフッ素が混入することがある。
このようなフッ素含有高炉水砕スラグを骨材や土木材料として利用した場合、スラグが水(例えば、雨水、地下水など)に接するとスラグ中のフッ素が水に溶け出し、水質や土壌などを汚染する可能性がある。
Of the steel manufacturing processes, iron ore melted in a blast furnace that produces pig iron and those obtained by collecting components other than iron from secondary materials are called blast furnace slag, and pressurized water is sprayed onto the blast furnace slag in a molten state at about 1500 ° C. The one that is cooled rapidly and becomes a glassy granule is called blast furnace granulated slag.
Conventionally, blast furnace granulated slag has been widely used as a civil aggregate material for concrete aggregate and sand, but fluorine may be inevitably mixed into the blast furnace granulated slag through the raw material charged in the blast furnace.
When such fluorinated blast furnace granulated slag is used as an aggregate or civil engineering material, when the slag comes into contact with water (for example, rainwater, groundwater, etc.), the fluorine in the slag dissolves into the water, contaminating water quality and soil. there's a possibility that.

従来、スラグからのフッ素溶出を抑制するための方法が幾つか提案されている。
例えば、特許文献1には、スラグ融体にアルミニウム化合物を添加し、凝固過程において安定なCaO−Al23−F系化合物を生成させることでフッ素を固定するとともに、スラグの雨水や地下水などへの溶解に際して、スラグから溶出するカルシウムイオンやアルミニウムイオンを用いて、スラグから溶出するフッ素を捕捉する方法が提案されている。
Conventionally, several methods for suppressing fluorine elution from slag have been proposed.
For example, in Patent Document 1, an aluminum compound is added to a slag melt, and a stable CaO—Al 2 O 3 —F-based compound is generated in the solidification process to fix fluorine, slag rainwater, groundwater, etc. A method for capturing fluorine eluted from slag using calcium ions or aluminum ions eluted from slag has been proposed.

また、特許文献2には、フッ素を含むスラグに、カルシウムアルミネートを含む粉末からなるフッ素固定剤などを添加し、フッ素を固定化する方法が提案されている。
特開2000−247694号公報 特開2000−335946号公報
Patent Document 2 proposes a method for fixing fluorine by adding a fluorine fixing agent made of powder containing calcium aluminate to slag containing fluorine.
JP 2000-247694 A JP 2000-335946 A

しかしながら、特許文献1の方法は、スラグの凝固プロセスにおける処理であるため、アルミニウム化合物を添加するための設備が必要となるほか、生成するスラグ量も増加するため、経済性やスラグ処理の面で問題がある。
また、特許文献2の方法は、フッ素固定剤(カルシウムアルミネートを含む粉末)をかなり多量に混合しないと、フッ素の溶出量を環境基準値以下に抑えることができず、経済性に大きな問題がある。
However, since the method of Patent Document 1 is a treatment in a slag solidification process, an equipment for adding an aluminum compound is required, and the amount of slag to be generated increases, so that it is economical and slag treatment. There's a problem.
In addition, the method of Patent Document 2 has a large problem in terms of economy because the amount of fluorine eluted cannot be suppressed below the environmental standard value unless a fluorine fixing agent (powder containing calcium aluminate) is mixed in a considerably large amount. is there.

一方、特に水処理の分野におけるフッ素処理技術として、フッ素を含有する廃液などにカルシウムを添加してフッ素を固定化する方法、さらには、カルシウムとともにリン酸を添加してフッ素を固定化する方法が知られているが、これらの方法をフッ素含有スラグに適用した場合、後述するように溶出液のpHが著しく上昇して環境悪化や固結などの問題を生じるため、これら方法は事実上スラグには適用できないことが判った。   On the other hand, as a fluorine treatment technique particularly in the field of water treatment, there is a method of fixing fluorine by adding calcium to waste liquid containing fluorine, and a method of fixing fluorine by adding phosphoric acid together with calcium. As is known, when these methods are applied to fluorine-containing slag, the pH of the eluate rises significantly as described later, causing problems such as environmental deterioration and consolidation. Was found to be inapplicable.

したがって本発明の目的は、高炉水砕スラグからのフッ素溶出を効果的に抑制することができ、かつpHの上昇も抑えることができるスラグ処理方法を提供することにある。   Accordingly, an object of the present invention is to provide a slag treatment method that can effectively suppress fluorine elution from blast furnace granulated slag and also suppress an increase in pH.

上記課題を解決するための本発明の特徴は以下のとおりである。
[1]高炉水砕スラグにフッ素の溶出抑制処理を施す方法であって、
高炉水砕スラグにリン酸成分を接触させ、該リン酸成分とスラグ中のフッ素及びカルシウムにより難溶性化合物を生成させることで、高炉水砕スラグからのフッ素及びカルシウムの溶出が抑制されるようにすることを特徴とする高炉水砕スラグの処理方法。
The features of the present invention for solving the above-described problems are as follows.
[1] A method for applying fluorine elution suppression treatment to granulated blast furnace slag,
By bringing the phosphoric acid component into contact with the blast furnace granulated slag and generating a poorly soluble compound with the phosphoric acid component and fluorine and calcium in the slag, elution of fluorine and calcium from the blast furnace granulated slag is suppressed. A method for treating granulated blast furnace slag.

[2]上記[1]の処理方法において、高炉水砕スラグをリン酸系溶液と接触させることを特徴とする高炉水砕スラグの処理方法。
[3]上記[2]の処理方法において、高炉水砕スラグにリン酸系溶液を散布することを特徴とする高炉水砕スラグの処理方法。
[4]スラグ成分であるフッ素及びカルシウムと、スラグに添加されたリン酸成分とにより生成した難溶性化合物を含有することを特徴とする高炉水砕スラグ。
[2] A method for treating granulated blast furnace slag according to the above [1], wherein the granulated blast furnace slag is brought into contact with a phosphoric acid-based solution.
[3] A method for treating granulated blast furnace slag, wherein the phosphoric acid-based solution is sprayed on the granulated blast furnace slag in the method of [2] above.
[4] A blast furnace granulated slag comprising a sparingly soluble compound produced by fluorine and calcium as slag components and a phosphoric acid component added to the slag.

本発明の処理方法によれば、高炉水砕スラグと接触したリン酸成分が、スラグ中のフッ素及びカルシウムと反応して難溶性化合物が生成され、フッ素が固定される。この難溶性化合物は、Ca(POF(フルオロアパタイト)又はこれに類する化合物である。
本発明では、上記難溶性化合物を生成させるためのカルシウム成分として、高炉水砕スラグに元々含まれるカルシウムを利用するので、(i)スラグに対してカルシウムを添加しない、(ii)スラグに元々含まれるカルシウム成分も主にフルオロアパタイトやリン酸カルシウムなどとして固定される、という2つの理由で溶出可能なカルシウム量が少なく、このため高炉水砕スラグによる水や土壌のpH上昇が効果的に抑えられる。また、このようにpH上昇が抑えられることにより、高炉水砕スラグの固結も抑制できる。
According to the treatment method of the present invention, the phosphoric acid component in contact with the granulated blast furnace slag reacts with fluorine and calcium in the slag to form a hardly soluble compound, and the fluorine is fixed. This hardly soluble compound is Ca 5 (PO 4 ) 3 F (fluoroapatite) or a similar compound.
In the present invention, as the calcium component for generating the sparingly soluble compound, since calcium originally contained in the granulated blast furnace slag is used, (i) calcium is not added to the slag, (ii) originally contained in the slag. The amount of calcium that can be eluted is small for two reasons that the calcium component is also mainly fixed as fluoroapatite, calcium phosphate, and the like, so that an increase in the pH of water and soil due to blast furnace granulated slag can be effectively suppressed. In addition, by suppressing the pH increase in this way, consolidation of blast furnace granulated slag can also be suppressed.

従来、特に水処理の分野におけるフッ素処理技術(フッ素の固定化処理技術)としては、フッ素含有廃液などにカルシウムを添加し、難溶性のフッ化カルシウムを生成させることでフッ素を固定する方法(カルシウム添加法)が広く行われている。しかし、この方法で生成するフッ化カルシウムの溶解度では、近年のフッ素の溶出基準を満足することは難しくなりつつある。このため、フッ素をより安定的に固定化できる処理方法として、フッ素含有廃液などに対してカルシウムとともにリン酸を添加し、フッ化カルシウムよりも難溶性のフルオロアパタイトを生成させ、フッ素を固定する方法(カルシウム+リン酸添加法)が開発され、使用もされている。また、このカルシウム+リン酸添加法を汚泥や土壌などのフッ素含有固体廃棄物に適用したものとして、特開2002−331272号公報に記載された処理方法がある。   Conventionally, as a fluorine treatment technique (fluorine fixation treatment technique) particularly in the field of water treatment, a method of fixing fluorine by adding calcium to a fluorine-containing waste liquid or the like to produce hardly soluble calcium fluoride (calcium) Addition method) is widely used. However, with the solubility of calcium fluoride produced by this method, it is becoming difficult to satisfy recent elution standards for fluorine. Therefore, as a treatment method that can fix fluorine more stably, phosphoric acid is added to calcium-containing waste liquid etc. together with calcium to produce fluoroapatite that is less soluble than calcium fluoride and to fix fluorine. (Calcium + phosphoric acid addition method) has been developed and used. Moreover, there exists a processing method described in Unexamined-Japanese-Patent No. 2002-331272 as what applied this calcium + phosphoric acid addition method to fluorine-containing solid wastes, such as sludge and soil.

しかし、本発明者らがこれらの処理方法、特にフッ素固定効果が高いカルシウム+リン酸添加法をフッ素含有高炉水砕スラグに適用した場合について検討した結果、処理後の高炉水砕スラグが水や土壌のpHを上昇させるという問題があることが判った。このためさらに検討を進めた結果、フッ素含有高炉水砕スラグにリン酸だけを添加した場合、フッ素の溶出量が上記カルシウム+リン酸添加法並みに抑えられる一方で、高炉水砕スラグによるpH上昇が効果的に抑制されるだけでなく、未処理高炉水砕スラグよりもむしろpHが低減することが判った。このような結果が得られた理由について調査、検討した結果、フッ素を固定化する難溶性化合物(主にフルオロアパタイト)の生成に高炉水砕スラグ自身が持つカルシウムが利用されるためであることが判った。   However, as a result of studying the case where the present inventors applied these treatment methods, in particular, the calcium + phosphoric acid addition method having a high fluorine fixing effect to the fluorine-containing blast furnace granulated slag, the treated blast furnace granulated slag is water or It has been found that there is a problem of raising the pH of the soil. For this reason, as a result of further investigations, when only phosphoric acid was added to the fluorine-containing granulated blast furnace slag, the elution amount of fluorine was suppressed to the same level as the above calcium + phosphoric acid addition method, while the pH was raised by blast furnace granulated slag. It was found that not only is effectively suppressed, but the pH is reduced rather than untreated blast furnace granulated slag. As a result of investigating and examining the reason why such a result was obtained, it is because calcium contained in the granulated blast furnace slag itself is used to produce a poorly soluble compound (mainly fluoroapatite) that immobilizes fluorine. understood.

このため本発明の処理法では、リン酸系溶液などを用いることにより高炉水砕スラグにリン酸成分を接触させ、このリン酸成分とスラグ中のフッ素及びカルシウムにより難溶性化合物を生成させることで、高炉水砕スラグからのフッ素及びカルシウムの溶出が抑制されるようにするものである。
上記難溶性化合物は、Ca(POF(フルオロアパタイト)又はこれに類する化合物である。以下の説明では、難溶性化合物を便宜上「フルオロアパタイト」と呼ぶ。
For this reason, in the treatment method of the present invention, a phosphoric acid component is brought into contact with blast furnace granulated slag by using a phosphoric acid-based solution, and a poorly soluble compound is generated by the phosphoric acid component and fluorine and calcium in the slag. The elution of fluorine and calcium from the granulated blast furnace slag is suppressed.
The poorly soluble compound is Ca 5 (PO 4 ) 3 F (fluoroapatite) or a similar compound. In the following description, the hardly soluble compound is referred to as “fluoroapatite” for convenience.

フッ素含有量が0.098mass%の高炉水砕スラグAとフッ素含有量が0.100mass%の高炉水砕スラグB(いずれも、2mm篩の篩下粉)を処理対象とし、これらのスラグに対して種々の添加量でカルシウム系粉体(水酸化カルシウム)とリン酸系水溶液(正リン酸水溶液)を添加した試験体(比較例)と、同じく種々の添加量でリン酸系水溶液(正リン酸水溶液)を添加した試験体(本発明例)を調製した。これら試験体の調製では、ビーカーに入れられた高炉水砕スラグに上記添加剤(「カルシウム系粉体+リン酸系水溶液」又は「リン酸系水溶液」)を加え、スパーテルで均一になるように混合した。   Blast furnace granulated slag A with a fluorine content of 0.098 mass% and blast furnace granulated slag B with a fluorine content of 0.100 mass% (both sieving powder with a 2 mm sieve) are treated. The test sample (comparative example) to which calcium powder (calcium hydroxide) and phosphoric acid aqueous solution (normal phosphoric acid aqueous solution) were added in various addition amounts, and phosphoric acid aqueous solution (normal phosphorous) in the same various addition amounts. A test body (invention example) to which an acid aqueous solution was added was prepared. In the preparation of these test specimens, the above additives ("calcium powder + phosphoric acid aqueous solution" or "phosphoric acid aqueous solution") are added to the granulated blast furnace slag in a beaker so that it is uniform with a spatula. Mixed.

このようにして得られた試験体を、環境告知第46号に準拠した溶出試験に供し、フッ素溶出量及び溶出液のpHを測定した。それらの結果を図1(比較例の試験体)及び図2(本発明例の試験体)に示す。なお、図1及び図2に示すリン酸系水溶液の添加量(P換算量)、水酸化カルシウム粉の添加量は、いずれも高炉水砕スラグ100質量部に対する質量部である。
図1に示すカルシウム系粉体+リン酸系水溶液を添加した比較例の試験体では、それら添加成分が所定量以上になるとフッ素の溶出量が急激に低下し、フッ素溶出の顕著な抑制効果が得られている。しかし、それとともに溶出液のpHが非常に高くなり、水や土壌のアルカリ性を高めるとともに、スラグの固結が生じるおそれがある。
The specimen thus obtained was subjected to an elution test in accordance with Environmental Notification No. 46, and the fluorine elution amount and the pH of the eluate were measured. The results are shown in FIG. 1 (test body of comparative example) and FIG. 2 (test body of example of the present invention). In addition, both the addition amount (P conversion amount) of the phosphoric acid system aqueous solution shown in FIG.1 and FIG.2 and the addition amount of calcium hydroxide powder are a mass part with respect to 100 mass parts of blast furnace granulated slag.
In the test sample of the comparative example in which the calcium-based powder and the phosphoric acid-based aqueous solution shown in FIG. 1 are added, when the amount of these added components exceeds a predetermined amount, the amount of fluorine eluted rapidly decreases, and a remarkable suppression effect of fluorine elution is obtained. Has been obtained. However, along with this, the pH of the eluate becomes very high, which increases the alkalinity of water and soil and may cause slag consolidation.

これに対して、図2に示すリン酸系水溶液のみを添加した本発明例の試験体では、その添加成分が所定量以上になるとフッ素の溶出量が急激に低下し、図1とほぼ同等のフッ素溶出の抑制効果が得られている。また、それとともに溶出液のpHが大きく低下しており、pHについては図1と全く正反対の結果となっている。これは、本発明例の試験体では、スラグ自身が持つカルシウムを利用してフルオロアパタイトが生成されるので、この生成物にフッ素が固定されることでフッ素溶出が効果的に抑制される一方で、(i)比較例の試験体のようにスラグに対してカルシウムを添加しない、(ii)スラグ自身が持つカルシウム成分がフルオロアパタイトなどとして固定される、という2つの面で、比較例の試験体に較べて溶出可能なカルシウム成分の量が大幅に少なくなるためである。また、このようにpH上昇が抑えられることにより、スラグの固結が起きにくい環境となる。   On the other hand, in the test body of the present invention example to which only the phosphoric acid aqueous solution shown in FIG. The effect of suppressing fluorine elution is obtained. Further, along with this, the pH of the eluate is greatly reduced, and the pH is completely opposite to that shown in FIG. This is because, in the test sample of the present invention, fluoroapatite is generated using calcium contained in the slag itself, so that fluorine elution is effectively suppressed by fixing fluorine to this product. (I) Calcium is not added to the slag as in the test sample of the comparative example, and (ii) the calcium component of the slag itself is fixed as fluoroapatite, etc., and the test sample of the comparative example This is because the amount of calcium component that can be eluted is significantly reduced as compared with the above. In addition, by suppressing the increase in pH in this way, an environment in which slag does not easily consolidate is obtained.

以下、本発明の具体的な実施形態について説明する。
本発明において処理の対象となる高炉水砕スラグには、通常45mass%前後のCaO(又はCaOが変化したCa(OH))が含まれている。処理の対象となる高炉水砕スラグのフッ素含有量に特別な制限はなく、本発明の効果はスラグのフッ素含有量に拘りなく得られる。但し、フッ素の含有量が0.05mass%未満の高炉水砕スラグはそのままでもフッ素溶出量が少なく、したがって、本発明はフッ素の含有量が0.05mass%以上の高炉水砕スラグに対して特に有用であると言える。なお、高炉水砕スラグが含有するフッ素には、スラグ粒子からその表面に存在(付着)する水に溶出したフッ素分も含まれる。
Hereinafter, specific embodiments of the present invention will be described.
The granulated blast furnace slag to be treated in the present invention usually contains about 45 mass% of CaO (or Ca (OH) 2 in which CaO has changed). There is no special restriction | limiting in the fluorine content of the blast furnace granulated slag used as a process target, The effect of this invention is acquired irrespective of the fluorine content of slag. However, even if a blast furnace granulated slag having a fluorine content of less than 0.05 mass% is small, the amount of elution of fluorine is small. Therefore, the present invention is particularly suitable for a blast furnace granulated slag having a fluorine content of 0.05 mass% or more. It can be said that it is useful. Note that the fluorine contained in the granulated blast furnace slag includes the fluorine content eluted from the slag particles to the water existing (attached) on the surface.

本発明において、高炉水砕スラグに接触させるリン酸成分とは、当然のことながら、当該高炉水砕スラグに含まれているリン酸成分ではなく、外部から高炉水砕スラグに添加されるリン酸成分である。
高炉水砕スラグにリン酸成分を接触させる方法は任意であり、例えば、(1) 高炉水砕スラグにリン酸系溶液(リン酸水溶液などのようなリン酸イオンを含有する溶液)を接触させる方法、(2)高炉水砕スラグにリン酸化合物(粉体)を添加して混合する方法(この方法では、事後に高炉水砕スラグに水が加わった際にフルオロアパタイトが生成することになる)、(3)高炉水砕スラグにリン酸化合物(粉体)と水を添加して混練する方法、などの方法を採ることができるが、これらのなかでは処理の簡便性などの面から、上記(1)の高炉水砕スラグにリン酸系溶液を接触させる方法が特に好ましい。
In the present invention, the phosphoric acid component brought into contact with the blast furnace granulated slag is, of course, not the phosphoric acid component contained in the blast furnace granulated slag, but phosphoric acid added to the blast furnace granulated slag from the outside. It is an ingredient.
The method of bringing the phosphoric acid component into contact with the blast furnace granulated slag is arbitrary. For example, (1) bringing a phosphoric acid-based solution (a solution containing phosphate ions, such as a phosphoric acid aqueous solution) into contact with the blast furnace granulated slag Method, (2) Method of adding and mixing phosphoric acid compound (powder) to granulated blast furnace slag (this method will generate fluoroapatite when water is added to granulated blast furnace slag after the fact) ), (3) A method such as adding a phosphoric acid compound (powder) and water to the granulated blast furnace slag and kneading can be used. Among these, from the viewpoint of the ease of processing, The method of bringing the phosphoric acid solution into contact with the granulated blast furnace slag (1) is particularly preferable.

高炉水砕スラグにリン酸系溶液を接触させる方法では、高炉水砕スラグにリン酸成分を添加した後の撹拌や混練が基本的に不要であり、若干の撹拌が必要な場合でも、高炉水砕スラグに対して行われる通常の搬送やハンドリングに伴う軽度の撹拌作用で十分である。したがって、この方法は処理が簡便で経済的であるという利点がある。   In the method of bringing the phosphoric acid-based solution into contact with the blast furnace granulated slag, stirring and kneading after adding the phosphoric acid component to the blast furnace granulated slag are basically unnecessary, and even if some stirring is required, The mild stirring action associated with normal transport and handling performed on crushed slag is sufficient. Therefore, this method has an advantage that the processing is simple and economical.

高炉水砕スラグにリン酸系溶液を接触させる方法としては、リン酸系溶液を高炉水砕スラグに散布する方法、リン酸系溶液中に高炉水砕スラグを浸漬する方法、など任意の方法を採ることができるが、リン酸成分を添加するタイミングの自由度が高いという点で、高炉水砕スラグにリン酸系溶液を散布する方法が特に好ましい。すなわち、この方法では、例えば、(1)コンベアなどで搬送中の高炉水砕スラグにリン酸系溶液を散布する、(2)磨鉱機や粉砕機内で処理(形状調整や粒度調整のための処理)中の高炉水砕スラグにリン酸系溶液を散布する、(3)高炉水砕スラグに冷却水としてリン酸系溶液を散布する、(3)ヤードに山積みされた高炉水砕スラグにリン酸系溶液を散布する、など種々の形態でリン酸成分をスラグに添加することができる。   As a method of bringing the phosphoric acid solution into contact with the blast furnace granulated slag, any method such as a method of spraying the phosphoric acid solution onto the blast furnace granulated slag, a method of immersing the blast furnace granulated slag in the phosphoric acid solution, etc. Although it can be employed, a method of spraying a phosphoric acid-based solution onto the granulated blast furnace slag is particularly preferable in that the degree of freedom in adding the phosphoric acid component is high. That is, in this method, for example, (1) a phosphoric acid-based solution is sprayed on blast furnace granulated slag being conveyed by a conveyor, etc. (2) treatment in a grinding machine or pulverizer (for shape adjustment and particle size adjustment) (3) Sprinkle phosphoric acid-based solution on blast furnace granulated slag in the treatment), (3) Sprinkle phosphoric acid-based solution as cooling water on blast furnace granulated slag, (3) Phosphorous on granulated blast furnace granulated slag The phosphoric acid component can be added to the slag in various forms such as spraying an acid-based solution.

また、高炉水砕スラグにリン酸系溶液を接触させる方法(特に好ましくは高炉水砕スラグにリン酸系溶液を散布する方法)では、高炉水砕スラグに対して所定量のリン酸成分を添加できれば、溶液中でのリン酸の希釈倍率に関わりなく十分な効果が得られる。したがって、リン酸の希釈倍率をある程度高めたリン酸系溶液を用いれば、スラグ全体にリン酸成分をまんべんなく接触させ、特に高いフッ素溶出抑制効果を得ることができる。   In addition, in a method in which a phosphoric acid solution is brought into contact with blast furnace granulated slag (particularly preferably, a method in which a phosphoric acid solution is sprayed onto blast furnace granulated slag), a predetermined amount of phosphoric acid component is added to the blast furnace granulated slag. If possible, sufficient effects can be obtained regardless of the dilution ratio of phosphoric acid in the solution. Therefore, if a phosphoric acid solution in which the dilution ratio of phosphoric acid is increased to some extent is used, the phosphoric acid component can be uniformly contacted with the entire slag, and a particularly high fluorine elution suppression effect can be obtained.

図1及び図2の試験で用いた高炉水砕スラグA,Bを処理対象とし、これらのスラグに、種々の希釈倍率でリン酸(正リン酸)を添加したリン酸系水溶液を散布した試験体を調製した。この試験体の調製では、高炉水砕スラグに霧吹きでリン酸系水溶液を散布した。なお、高炉水砕スラグに対するリン酸成分の添加量は、各試験体とも高炉水砕スラグ100質量部に対してP換算で0.05質量部とした。   Tests in which blast furnace granulated slags A and B used in the tests of FIGS. 1 and 2 were treated, and phosphoric acid-based aqueous solutions to which phosphoric acid (normal phosphoric acid) was added at various dilution rates were sprayed on these slags. The body was prepared. In the preparation of this test body, a phosphoric acid aqueous solution was sprayed on the blast furnace granulated slag by spraying. In addition, the addition amount of the phosphoric acid component with respect to blast furnace granulated slag was 0.05 mass part in conversion of P with respect to 100 mass parts of blast furnace granulated slag with respect to each test body.

このようにして得られた試験体と、リン酸系水溶液を散布していない比較例の試験体を、環境告知第46号に準拠した溶出試験に供し、フッ素溶出量及び溶出液のpHを測定した。それらの結果を図3及び図4に示すが、リン酸の希釈倍率を5〜40倍の範囲で変化させても、フッ素溶出やpH上昇の抑制効果はそれほど大きく変化しないことが判る。   The test specimen obtained in this way and the test specimen of the comparative example in which the phosphoric acid aqueous solution is not sprayed are subjected to an elution test based on the environmental notice No. 46, and the fluorine elution amount and the pH of the eluate are measured. did. The results are shown in FIG. 3 and FIG. 4, and it can be seen that even if the dilution ratio of phosphoric acid is changed within the range of 5 to 40 times, the effect of suppressing fluorine elution and pH increase does not change so much.

本発明で用いるリン酸成分(リン酸類)としては、例えば、正リン酸、次亜リン酸、メタ亜リン酸、ピロ亜リン酸、正亜リン酸、次リン酸、メタリン酸、ピロリン酸、三リン酸、縮合リン酸などが挙げられるが、これらに限定されるものではない。また、リン酸化合物としては、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウムなど(いずれもリン酸塩)が挙げられるが、これらに限定されるものではない。以上のリン酸類やリン酸化合物は、1種を単独で又は2種以上を混合して用いてもよい。また、リン酸系溶液を用いる場合には、そのリン酸の一部又は全部はリン酸化合物を溶解させたものでもよい。   Examples of phosphoric acid components (phosphoric acids) used in the present invention include orthophosphoric acid, hypophosphorous acid, metaphosphorous acid, pyrophosphorous acid, orthophosphorous acid, hypophosphoric acid, metaphosphoric acid, pyrophosphoric acid, Examples thereof include, but are not limited to, triphosphoric acid and condensed phosphoric acid. Examples of phosphoric acid compounds include sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, and tripotassium phosphate (all of which are phosphates). Although it is mentioned, it is not limited to these. The above phosphoric acids and phosphoric acid compounds may be used singly or in combination of two or more. Further, when a phosphoric acid solution is used, a part or all of the phosphoric acid may be obtained by dissolving a phosphoric acid compound.

上記のリン酸類、リン酸化合物のなかでは、コストや大量入手の容易性などの観点から、特に、正リン酸(H3PO4)、リン酸二水素ナトリウム(NaH2PO4)、リン酸水素二ナトリウム(Na2HPO4)及び縮合リン酸が好ましい。
本発明法において、高炉水砕スラグに対するリン酸成分の添加量に特に制限はなく、高炉水砕スラグのフッ素含有量などに応じて適宜選択すればよいが、通常は高炉水砕スラグ100質量部に対してP換算で0.01〜1質量部程度が適当である。
Among the above phosphoric acids and phosphoric acid compounds, from the viewpoints of cost and ease of mass acquisition, in particular, orthophosphoric acid (H 3 PO 4 ), sodium dihydrogen phosphate (NaH 2 PO 4 ), phosphoric acid Disodium hydrogen (Na 2 HPO 4 ) and condensed phosphoric acid are preferred.
In the method of the present invention, the amount of the phosphoric acid component added to the blast furnace granulated slag is not particularly limited, and may be appropriately selected according to the fluorine content of the blast furnace granulated slag. Is about 0.01 to 1 part by mass in terms of P.

本発明の処理法では、添加されたリン酸成分と高炉水砕スラグ中のフッ素及びカルシウムとにより難溶性化合物(フルオロアパタイト又はこれを主成分とする化合物)が生成し、この生成物の一部として高炉水砕スラグ中のフッ素とカルシウムが固定される。これにより、スラグ成分であるフッ素及びカルシウムと、スラグに添加されたリン酸成分とにより生成した上記難溶性化合物を含有するフッ素溶出抑制処理スラグが得られる。   In the treatment method of the present invention, a poorly soluble compound (fluoroapatite or a compound mainly composed thereof) is generated by the added phosphoric acid component and fluorine and calcium in the blast furnace granulated slag, and a part of this product is produced. As mentioned above, fluorine and calcium in granulated blast furnace slag are fixed. Thereby, the fluorine elution suppression processing slag containing the said hardly soluble compound produced | generated with the fluorine and calcium which are slag components, and the phosphoric acid component added to slag is obtained.

軽破砕設備に搬送するためのベルトコンベアで搬送中の高炉水砕スラグ(10ton)に対して、ベルトコンベア上方に設置されたシャワー式のノズルから正リン酸水溶液(正リン酸の100倍希釈水溶液)を散布した。水溶液の散布量は、高炉水砕スラグ100質量部に対してP換算で0.05質量部とした。上記軽破砕設備で軽破砕処理した後の高炉水砕スラグから試料を採取し、本発明例とした。
また、高炉水砕スラグ(10ton)を上記のように正リン酸水溶液を散布することなく軽破砕設備に搬送して軽破砕処理し、この高炉水砕スラグから試料を採取し、比較例1とした。
With respect to blast furnace granulated slag (10 tons) being transported on a belt conveyor for transporting to a light crushing facility, a normal phosphoric acid aqueous solution (100-fold diluted aqueous solution of normal phosphoric acid) from a shower type nozzle installed above the belt conveyor ) Was sprayed. The application amount of the aqueous solution was 0.05 parts by mass in terms of P with respect to 100 parts by mass of the granulated blast furnace slag. A sample was taken from the blast furnace granulated slag after the light crushing treatment with the above light crushing equipment, and used as an example of the present invention.
In addition, blast furnace granulated slag (10 tons) was transported to a light crushing facility without spraying a normal phosphoric acid aqueous solution as described above, and subjected to light crushing treatment. did.

また、軽破砕設備に搬送するためのベルトコンベアで搬送中の高炉水砕スラグ(10ton)に対して、ベルトコンベア上方に設置されたシャワー式のノズルから、正リン酸水溶液(正リン酸の100倍希釈水溶液)に水酸化カルシウム粉を添加し分散させた懸濁液を散布した。水溶液の散布量は、高炉水砕スラグ100質量部に対してP換算で0.05質量部、水酸化カルシウム添加量:0.15質量部とした。上記軽破砕設備で軽破砕処理した後の高炉水砕スラグから試料を採取し、比較例2とした。
各試料を環境告知第46号に準拠した溶出試験に供し、フッ素溶出量及び溶出液のpHを測定した。また、各試料を3ヶ月野積み保管し、固結の有無を調べた。それらの結果を表1に示す。
In addition, with respect to blast furnace granulated slag (10 tons) being conveyed by a belt conveyor for conveyance to a light crushing facility, a normal phosphoric acid aqueous solution (100 of normal phosphoric acid) is supplied from a shower type nozzle installed above the belt conveyor. The suspension in which calcium hydroxide powder was added and dispersed in (double diluted aqueous solution) was sprayed. The application amount of the aqueous solution was 0.05 parts by mass in terms of P with respect to 100 parts by mass of granulated blast furnace slag, and the amount of calcium hydroxide added: 0.15 parts by mass. A sample was collected from the blast furnace granulated slag after the light crushing treatment by the light crushing equipment, and it was set as Comparative Example 2.
Each sample was subjected to an elution test based on Environmental Notification No. 46, and the fluorine elution amount and the pH of the eluate were measured. In addition, each sample was stored in a field for 3 months and examined for the presence of consolidation. The results are shown in Table 1.

Figure 2008127270
Figure 2008127270

高炉水砕スラグにカルシウム化合物粉+リン酸系水溶液を添加した比較例の試験体を溶出試験に供し、フッ素溶出量及び溶出液のpHを測定した結果を示すグラフThe graph which shows the result of having used the test body of the comparative example which added calcium compound powder + phosphoric acid system aqueous solution to granulated blast furnace slag for the elution test, and having measured the fluorine elution amount and pH of the eluate 高炉水砕スラグにリン酸系水溶液のみを添加した本発明例の試験体を溶出試験に供し、フッ素溶出量及び溶出液のpHを測定した結果を示すグラフThe graph which shows the result of having used the test body of the example of this invention which added only phosphoric acid system aqueous solution to granulated blast furnace slag, and having measured the amount of fluorine elution and pH of the elution liquid. 高炉水砕スラグにリン酸の希釈倍率が異なる種々のリン酸系水溶液を添加した本発明例の試験体と、リン酸系水溶液を添加していない比較例の試験体を溶出試験に供し、フッ素溶出量を測定した結果を示すグラフThe specimens of the present invention example in which various phosphoric acid aqueous solutions having different dilution ratios of phosphoric acid were added to the granulated blast furnace slag, and the test specimens of comparative examples to which no phosphoric acid aqueous solution was added were subjected to the elution test. Graph showing the results of measuring the elution amount 高炉水砕スラグにリン酸の希釈倍率が異なる種々のリン酸系水溶液を添加した本発明例の試験体と、リン酸系水溶液を添加していない比較例の試験体を溶出試験に供し、pHを測定した結果を示すグラフThe specimens of the present invention example in which various phosphoric acid aqueous solutions having different dilution ratios of phosphoric acid were added to the granulated blast furnace slag and the test specimens of comparative examples to which no phosphoric acid aqueous solution was added were subjected to an elution test, and pH Graph showing the results of measuring

Claims (4)

高炉水砕スラグにフッ素の溶出抑制処理を施す方法であって、
高炉水砕スラグにリン酸成分を接触させ、該リン酸成分とスラグ中のフッ素及びカルシウムにより難溶性化合物を生成させることで、高炉水砕スラグからのフッ素及びカルシウムの溶出が抑制されるようにすることを特徴とする高炉水砕スラグの処理方法。
A method of applying fluorine elution suppression treatment to granulated blast furnace slag,
By bringing the phosphoric acid component into contact with the blast furnace granulated slag and generating a poorly soluble compound with the phosphoric acid component and fluorine and calcium in the slag, elution of fluorine and calcium from the blast furnace granulated slag is suppressed. A method for treating granulated blast furnace slag.
高炉水砕スラグをリン酸系溶液と接触させることを特徴とする請求項1に記載の高炉水砕スラグの処理方法。   The method for treating granulated blast furnace slag according to claim 1, wherein the granulated blast furnace slag is brought into contact with a phosphoric acid-based solution. 高炉水砕スラグにリン酸系溶液を散布することを特徴とする請求項2に記載の高炉水砕スラグの処理方法。   The method for treating granulated blast furnace slag according to claim 2, wherein a phosphoric acid-based solution is sprayed on the granulated blast furnace slag. スラグ成分であるフッ素及びカルシウムと、スラグに添加されたリン酸成分とにより生成した難溶性化合物を含有することを特徴とする高炉水砕スラグ。   A blast furnace granulated slag characterized by containing a sparingly soluble compound produced by fluorine and calcium as slag components and a phosphoric acid component added to the slag.
JP2006317879A 2006-11-26 2006-11-26 Method of treatment of granulated blast furnace slag Pending JP2008127270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006317879A JP2008127270A (en) 2006-11-26 2006-11-26 Method of treatment of granulated blast furnace slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006317879A JP2008127270A (en) 2006-11-26 2006-11-26 Method of treatment of granulated blast furnace slag

Publications (1)

Publication Number Publication Date
JP2008127270A true JP2008127270A (en) 2008-06-05

Family

ID=39553475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006317879A Pending JP2008127270A (en) 2006-11-26 2006-11-26 Method of treatment of granulated blast furnace slag

Country Status (1)

Country Link
JP (1) JP2008127270A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189418A (en) * 2013-03-26 2014-10-06 Est Japan:Kk Metal ion elution inhibitor and metal corrosion inhibition method using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026472A (en) * 1999-07-15 2001-01-30 Nippon Steel Corp Production of blast furnace water granulated slag
JP2001026470A (en) * 1999-07-14 2001-01-30 Nkk Corp Method for controlling elution of slag component
JP2002331272A (en) * 2001-05-09 2002-11-19 Kurita Water Ind Ltd Method for treating fluorine-containing solid waste
JP2003226906A (en) * 2002-02-01 2003-08-15 Nippon Yakin Kogyo Co Ltd Method of suppressing elution of fluorine in steel making slag
JP2004359474A (en) * 2003-06-02 2004-12-24 Sumitomo Metal Ind Ltd Method of manufacturing blast furnace granulated slag

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026470A (en) * 1999-07-14 2001-01-30 Nkk Corp Method for controlling elution of slag component
JP2001026472A (en) * 1999-07-15 2001-01-30 Nippon Steel Corp Production of blast furnace water granulated slag
JP2002331272A (en) * 2001-05-09 2002-11-19 Kurita Water Ind Ltd Method for treating fluorine-containing solid waste
JP2003226906A (en) * 2002-02-01 2003-08-15 Nippon Yakin Kogyo Co Ltd Method of suppressing elution of fluorine in steel making slag
JP2004359474A (en) * 2003-06-02 2004-12-24 Sumitomo Metal Ind Ltd Method of manufacturing blast furnace granulated slag

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189418A (en) * 2013-03-26 2014-10-06 Est Japan:Kk Metal ion elution inhibitor and metal corrosion inhibition method using the same

Similar Documents

Publication Publication Date Title
JP6438888B2 (en) Insolubilizing material for specified hazardous substances and method for insolubilizing specified hazardous substances using the same
US5846178A (en) Stabilization of lead bearing waste
US5722928A (en) Stabilization of lead bearing waste
JP5018041B2 (en) Slag processing method
JP2012187517A (en) Detoxification method of solid waste containing heavy metal
JP5098505B2 (en) Steel slag treatment method
JP2008127270A (en) Method of treatment of granulated blast furnace slag
US20060047177A1 (en) Method for in-line stabilization of paint residue
JP4941635B2 (en) Solid waste treatment method and boron insolubilization agent
JP2008272591A (en) Method for treating ashes containing heavy metal
JPH10128273A (en) Treatment of heavy metal-containing ash
JP5088040B2 (en) Processing method of granulated blast furnace slag
TWI666303B (en) Insolubilizing material and insolubilizing method
JP5834380B2 (en) Method for treating lead-containing glass and treatment agent for lead-containing glass
JP4401374B2 (en) Detoxification method for fluorine-contaminated soil
JP3788161B2 (en) Shredder dust treatment method
KR20030045300A (en) A heavy metal stabilizing agent and a method to stabilize wastes containing heavy metals to use one
JP4543493B2 (en) Processing method for lead-containing glass waste
EP2062986B1 (en) Anticaking agent for iron and steel slag
JP4661732B2 (en) Stabilization technology for industrial waste containing fluorine
JP6835117B2 (en) Steel slag processing method and steel slag recycled product manufacturing method
JPH09141226A (en) Treatment of heavy metal-containing ash
JP4146260B2 (en) Treatment of selenium contaminated soil
JPH10174952A (en) Treatment of heavy metal-containing ash
JP2000189943A (en) Stabilizing method of soil in shooting field

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120619