JP2008120316A - Buoyancy adjusting device, underwater sailing body, and buoyancy adjusting method - Google Patents

Buoyancy adjusting device, underwater sailing body, and buoyancy adjusting method Download PDF

Info

Publication number
JP2008120316A
JP2008120316A JP2006308820A JP2006308820A JP2008120316A JP 2008120316 A JP2008120316 A JP 2008120316A JP 2006308820 A JP2006308820 A JP 2006308820A JP 2006308820 A JP2006308820 A JP 2006308820A JP 2008120316 A JP2008120316 A JP 2008120316A
Authority
JP
Japan
Prior art keywords
buoyancy
buoyancy adjustment
adjustment portion
axis
floating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006308820A
Other languages
Japanese (ja)
Inventor
Koji Hyodo
孝司 兵頭
Wataru Koderayama
亘 小寺山
Masahiko Nakamura
昌彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2006308820A priority Critical patent/JP2008120316A/en
Publication of JP2008120316A publication Critical patent/JP2008120316A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a buoyancy adjusting device mountable on an underwater sailing body, etc. capable of omnidirectionaly gliding, increasing or decreasing buoyancy without changing a gravity center position and a buoyancy center position in a plane or three-dimensionally, separately controlling buoyancy adjustment and gravity center moving, and easily performing a gliding control of the underwater sailing body, the underwater sailing body provided with the buoyancy adjusting device, and a buoyancy adjusting method. <P>SOLUTION: This buoyancy adjusting device 1 for adjusting buoyancy adjusts buoyancy by moving floating bodies 12 and 13 having buoyancy adjusting parts 12a and 13a exposed to underwater from a watertight division 11 and increasing or decreasing exposed amount of the buoyancy adjusting parts 12a and 13a to underwater outside the watertight division 11. Buoyancy is changed without entailing movement of the gravity center position and buoyancy center position. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、海洋調査を行う水中航走体等の浮力調整に用いる浮力調整装置とそれを備えた水中航走体、及び、浮力調整方法に関する。   The present invention relates to a buoyancy adjustment device used for buoyancy adjustment of an underwater vehicle or the like that conducts ocean surveys, an underwater vehicle equipped with the same, and a buoyancy adjustment method.

近年、全地球規模における環境変化の予測に関する研究や環境保全に関する研究が行われるようになってきている。これらの研究には地球環境に大きな影響を及ぼす海洋に関する時間的・空間的な観測データが必要となるため、観測機器を係留して観測が行われてきた。   In recent years, research on prediction of environmental change on a global scale and research on environmental conservation have been conducted. These studies require temporal and spatial observational data on the ocean, which has a major impact on the global environment, so observations have been carried out with mooring equipment.

しかしながら、係留方式では水深方向の離散的なデータしか得ることができないという問題や、係留された観測機器を回収するまで計測データを確認できず、係留終了までは観測の成否を確かめることができないという問題や、観測機器を係留するに際して、その設計から投入までに多大な労力、時間、費用が必要になるという問題等があった。   However, the mooring method can only obtain discrete data in the depth direction, and the measurement data cannot be confirmed until the moored observation equipment is collected, and the success or failure of the observation cannot be confirmed until the mooring is completed. There was a problem, and when mooring the observation equipment, there was a problem that a great deal of labor, time and cost were required from its design to introduction.

このような問題を解決し、観測対象水域において鉛直空間・時間連続データを取得するために、バーチャルモアリング(係留されることなく観測水域に留まる)用の水中ビークルと呼ばれる水中航走体が開発されつつある。この水中航走体は、長期間連続観測を行うためにエネルギー消費量を極力抑え、また、機械的信頼性を確保するために、潜降したり浮上したりする時はグライディング(滑走:gliding)により移動して、観測水域に留まるように構成される。   An underwater vehicle called an underwater vehicle for virtual mooring (which stays in the observation area without being moored) has been developed to solve such problems and to acquire continuous vertical space and time data in the observation area. It is being done. This underwater vehicle will minimize energy consumption for long-term continuous observation, and gliding when descending or ascending to ensure mechanical reliability. Configured to stay in the observation area.

この水中航走体は、その機体内部に各種の観測機器を搭載し、バーチャルモアリングを実施する水域の水面と水底とを往復しながら、観測データを収集する。この水中航走体の潜降時及び浮上時に計測された各種の観測データは、水中航走体が浮上した時に、人工衛星を介して電波により基地局に逐次送信される。また、水面浮上時にはGPSにより自機の位置を確認して、潮流等の影響により観測対象の設定水域から外れている場合には、潜降時に機体の運動を制御して設定水域の設定水深に帰還する。   This underwater vehicle is equipped with various observation devices inside its body and collects observation data while reciprocating between the water surface and the bottom of the water area where virtual mooring is performed. The various observation data measured when the underwater vehicle is descending and ascending are sequentially transmitted to the base station by radio waves via an artificial satellite when the underwater vehicle is ascending. In addition, the position of the aircraft is confirmed by GPS at the time of ascent of the water surface, and if it is out of the set water area to be observed due to the influence of tidal current etc., the movement of the aircraft is controlled at the time of descent to the set water depth of the set water area Return.

この水中航走体は、定期的に潜降と浮上を繰り返しながら、観測水域の計測を続けるが、計測と計測の間では、水底に機体を着底させて待機し、潮流等により機体が流されることを防ぐ。   This underwater vehicle continues to measure the observation water area while periodically descending and ascending, but between the measurements, the aircraft lands on the bottom of the water and waits, and the aircraft flows due to tidal currents, etc. To prevent it.

この水中航走体の一つとして、例えば、図6〜図8に示すような円盤形状の機体を持ち、機体においては、前後方向等の方向性を持たない全方位滑走可能な水中航走体が開発されている。この水中航走体は、中性浮力により水中に留まるように構成されると共に、搭載した浮力調整装置により浮力を減少又は増加して沈降又は浮上を選択し、この沈降時と浮上時において、搭載した重心移動装置により機体の重心位置を任意の方向に移動することにより、その方向にグライディングするように構成される。   As one of the underwater vehicles, for example, an underwater vehicle that has a disk-shaped aircraft as shown in FIGS. 6 to 8 and can be omnidirectionally slidable without any directionality in the front-rear direction or the like. Has been developed. This underwater vehicle is configured to stay in the water by neutral buoyancy, and the buoyancy is reduced or increased by the mounted buoyancy adjustment device to select settlement or levitation. By moving the position of the center of gravity of the airframe in an arbitrary direction by the center of gravity moving device, the gliding is performed in that direction.

即ち、潜降時には浮力調整装置により浮力を減少させ、重量よりも浮力を小さくすると共に、重心移動装置により機体の重心位置を機体の浮心位置からグライディング方向に移動することにより、機体を傾斜させるモーメントを発生し、機体の姿勢を頭下げの状態にしてその方向にグライディングさせる。また、浮上時には浮力調整装置により浮力を増加させ、重量よりも浮力を大きくすると共に、重心移動装置により重心位置を浮心位置からグライディング方向に移動することにより、機体を傾斜させるモーメントを発生し、機体の姿勢を頭上げの状態にしてその方向にグライディングさせる。この潜降時と浮上時のグライディングによる移動で、水中航走体は対象水域内に留まることができる。また、用途によっては目標位置に移動できる。   In other words, the buoyancy is reduced by the buoyancy adjustment device at the time of descent, and the buoyancy is made smaller than the weight, and the center of gravity of the aircraft is moved from the buoyancy position of the aircraft in the gliding direction by the center of gravity moving device to tilt the aircraft A moment is generated, and the attitude of the fuselage is lowered to gliding in that direction. Also, at the time of ascent, the buoyancy is increased by the buoyancy adjustment device, the buoyancy is made larger than the weight, and the moment of gravity is generated by moving the center of gravity position from the buoyancy position to the gliding direction by the center of gravity movement device, Glide in the direction of the aircraft with its head raised. The underwater vehicle can stay in the target water area due to gliding during descent and ascent. Moreover, it can move to a target position depending on the application.

この全方位滑走可能な水中航走体の移動を可能にするためには、浮力調整装置が必要となる。この浮力調整装置として、円筒状のチャンバとピストンを有するシリンダ構造の浮力調整装置を水中に露出させて設けて、ピストンを軸線方向に移動させることにより、チャンバ内の浮力調整室の容積を変化させることにより、浮力を変化させる無人潜水機の浮力調整装置が用いられている(例えば、特許文献1参照。)。   In order to enable movement of the underwater vehicle capable of omnidirectional sliding, a buoyancy adjusting device is required. As this buoyancy adjustment device, a cylindrical buoyancy adjustment device having a cylindrical chamber and a piston is provided exposed in water, and the volume of the buoyancy adjustment chamber in the chamber is changed by moving the piston in the axial direction. Thus, a buoyancy adjustment device for an unmanned submersible that changes buoyancy is used (for example, see Patent Document 1).

また、船体の側壁に形成された孔部に排水シートを設け、この排水シートを船体の内部側と外部側に移動させたり、ゴム製の蛇腹を伸縮させたりして、船体の排水量を増減し、船体の浮力を調整する潜水玩具用の浮力調整装置が提案されている(例えば、特許文献2参照。)。   In addition, a drainage sheet is provided in the hole formed in the side wall of the hull, and this drainage sheet is moved to the inside and outside of the hull, or the rubber bellows is expanded and contracted to increase or decrease the drainage amount of the hull. A buoyancy adjustment device for a diving toy that adjusts the buoyancy of a hull has been proposed (see, for example, Patent Document 2).

しかしながら、このような浮力調整装置装置は、ピストンの移動に伴って浮心位置および重心位置が変化するため、浮力調整時に水中航走体の重心位置及び浮心位置が変化してしまうので、浮力と重心位置の変更とを独立に制御できず、水中航走体の制御が複雑になり、特に、図6〜図8に示すような可変翼を持たない円盤型の全方位滑走可能な水中航走体には適用が難しいという問題がある。
特開2001−247086号公報 特開2003−135865号公報
However, since the buoyancy position and the center of gravity position change with the movement of the piston in such a buoyancy adjustment device, the center of gravity position and the buoyancy position of the underwater vehicle change at the time of buoyancy adjustment. Control of the center of gravity and the change of the center of gravity can not be controlled independently, and the control of the underwater vehicle becomes complicated. In particular, the disk type omnidirectional underwater navigation with no variable wing as shown in FIGS. There is a problem that it is difficult to apply to the running body.
Japanese Patent Laid-Open No. 2001-247086 JP 2003-135865 A

本発明は、上記の問題を解決するためになされたものであり、その目的は、全方位滑走可能な水中航走体等に搭載可能で、重心位置と浮心位置を変化させることなく、浮力の増減を可能にして、浮力調整と重心移動を切り離して制御でき、水中航走体の滑走制御を簡便にすることができる浮力調整装置とそれを備えた水中航走体及び浮力調整方法を提供することにある。   The present invention has been made in order to solve the above-described problem, and its purpose is to be able to be mounted on an underwater vehicle capable of omnidirectional sliding, and the buoyancy without changing the position of the center of gravity and the buoyancy position. Provides a buoyancy adjustment device that can control the buoyancy adjustment and the center of gravity movement separately, making it easy to control the underwater vehicle's sliding control, and an underwater vehicle and buoyancy adjustment method provided with the same. There is to do.

上記の目的を達成するための本発明の浮力調整装置は、水密区画から水中へ露出する浮力調整部分を有する浮体を移動して、前記浮力調整部分が水密区画外の水中へ露出する量を増減することにより、浮力調整をおこなう浮力調整装置であって、重心位置と浮心位置の上下方向以外の方向の移動を伴わなずに浮力を変化させるように構成される。この構成によれば、水平方向に関して、浮力調整と重心移動を切り離して制御できるようになるので、水中航走体の滑走制御を簡便にすることができる。   In order to achieve the above object, the buoyancy adjustment device of the present invention moves a floating body having a buoyancy adjustment portion exposed to the water from the watertight compartment, and increases or decreases the amount of the buoyancy adjustment portion exposed to the water outside the watertight compartment. Thus, the buoyancy adjustment device performs buoyancy adjustment, and is configured to change the buoyancy without moving the center of gravity position and the buoyancy position in directions other than the vertical direction. According to this configuration, the buoyancy adjustment and the movement of the center of gravity can be controlled separately in the horizontal direction, so that the underwater vehicle's sliding control can be simplified.

なお、上記の上下方向と水平方向は理解し易くするために仮称しており、浮力調整装置に対して、また、この浮力調整装置を搭載する装置に対しても、特にその方向を特定されることはなく、単に移動を固定する方向を上下方向と称しているに過ぎない。以下も同じである。   Note that the above vertical direction and horizontal direction are tentatively named for ease of understanding, and the direction is specified particularly for the buoyancy adjusting device and also for the device on which the buoyancy adjusting device is mounted. The direction in which movement is fixed is simply referred to as the up-down direction. The same applies to the following.

また、上記の浮力調整装置において、水密区画から水中へ露出する浮力調整部分を有する浮体を移動して、前記浮力調整部分が水密区画外の水中へ露出する量を増減することにより、浮力調整をおこなう浮力調整装置であって、重心位置と浮心位置の上下方向も含む全方向の移動を伴わなずに浮力を変化させるように構成される。この構成によれば、水平方向だけでなく、上下方向に関しても浮力調整と重心移動を切り離して制御できるようになるので、水中航走体の滑走制御をより簡便にすることができる。   Further, in the above buoyancy adjustment device, the buoyancy adjustment is performed by moving a floating body having a buoyancy adjustment portion exposed to the water from the watertight section and increasing or decreasing the amount of the buoyancy adjustment portion exposed to the water outside the watertight section. A buoyancy adjustment device that performs buoyancy without omnidirectional movement including the vertical position of the center of gravity and buoyancy position. According to this configuration, the buoyancy adjustment and the gravity center movement can be separated and controlled not only in the horizontal direction but also in the vertical direction, so that the underwater vehicle's sliding control can be simplified.

上記の浮力調整装置において、互いに直交する3軸をX軸,Y軸,Z軸とし、該3軸の交点をOとした時に、水密区画から露出する浮力調整部分を有する浮体を、前記浮力調整部分を対にして交点Oに対して点対称に配置すると共に、前記浮力調整部分が出入りする前記水密区画における前記浮力調整部分と接触する出入口を交点Oに対して点対称になるように形成し、前記浮体の重心位置と前記浮力調整部分の浮心位置が前記交点Oに対して点対称となる状態を維持しながら、前記浮体を同時に移動して、前記浮力調整部分が水密区画外の水中へ露出する量を増減するように構成する。このX軸,Y軸,Z軸の3軸は必ずしもこの浮力調整装置を搭載する水中航走体の軸線と一致させる必要はなく、水中航走体の軸線とは関係無く別個に設けてよい。   In the above buoyancy adjustment device, the buoyancy adjustment is performed on a buoyant body having a buoyancy adjustment portion exposed from a watertight section when the three axes orthogonal to each other are defined as an X axis, a Y axis, and a Z axis, and an intersection of the three axes is O. A pair of portions are arranged symmetrically with respect to the intersection point O, and an entrance / exit that contacts the buoyancy adjustment portion in the watertight section where the buoyancy adjustment portion enters and exits is formed to be point symmetric with respect to the intersection point O. The buoyancy adjustment part is moved underwater outside the watertight compartment by simultaneously moving the floating body while maintaining a state where the center of gravity of the floating body and the buoyancy position of the buoyancy adjustment part are point-symmetric with respect to the intersection O. The amount of exposure is increased or decreased. The three axes, the X axis, the Y axis, and the Z axis, do not necessarily have to coincide with the axis of the underwater vehicle on which the buoyancy adjusting device is mounted, and may be provided separately regardless of the axis of the underwater vehicle.

この構成によれば、点対称に配置された浮体が点対称に移動するので、対になっている浮体の全体として重心位置と浮心位置とはこの点対称の中心Oから移動しないので、浮力が変化しても、浮力調整装置全体としての重心位置と浮心位置は変化しない。この点対称の構成は比較的容易に形成できるので、上記の重心位置と浮心位置の両方の移動を伴わなずに浮力を変化させる構成を実施できるようになる。   According to this configuration, since the floating body arranged in a point symmetry moves in a point symmetry, the centroid position and the buoyancy position as a whole of the paired floating bodies do not move from the point-symmetric center O. Even if changes, the position of the center of gravity and the position of the buoyancy as the whole buoyancy adjusting device do not change. Since this point-symmetric configuration can be formed relatively easily, it is possible to implement a configuration in which the buoyancy is changed without the movement of both the center of gravity position and the buoyancy position.

あるいは、前記の浮力調整装置において、互いに直交する3軸をX軸,Y軸,Z軸とし、該3軸の交点をOとした時に、水密区画から露出する浮力調整部分を有する浮体を、前記浮力調整部分を対にしてZ軸に対して線対称に配置すると共に、前記浮力調整部分が出入りする前記水密区画における前記浮力調整部分と接触する出入口をZ軸に対して線対称になるように形成し、前記浮体の重心位置と前記浮力調整部分の浮心位置がZ軸に対して線対称となる状態を維持しながら、前記浮体を同時に移動して、前記浮力調整部分が水密区画外の水中へ露出する量を増減するように構成する。このX軸,Y軸,Z軸の3軸は必ずしもこの浮力調整装置を搭載する水中航走体の軸線と一致させる必要はなく、水中航走体の軸線とは関係無く別個に設けてよい。   Alternatively, in the buoyancy adjusting device, a floating body having a buoyancy adjusting portion exposed from a watertight section when the three axes orthogonal to each other are defined as an X axis, a Y axis, and a Z axis, and an intersection of the three axes is O. A pair of buoyancy adjustment portions are arranged symmetrically with respect to the Z axis, and an entrance / exit in contact with the buoyancy adjustment portion in the watertight compartment where the buoyancy adjustment portion enters and exits is symmetrical with respect to the Z axis. Forming the center of gravity of the floating body and the center of buoyancy adjustment of the buoyancy adjustment portion while maintaining a state of being symmetrical with respect to the Z axis, and simultaneously moving the floating body so that the buoyancy adjustment portion is outside the watertight compartment. Configure to increase or decrease the amount of exposure to water. The three axes, the X axis, the Y axis, and the Z axis, do not necessarily have to coincide with the axis of the underwater vehicle on which the buoyancy adjusting device is mounted, and may be provided separately regardless of the axis of the underwater vehicle.

この構成によれば、線対称に配置された浮体がZ軸に対して線対称に移動するので、重心位置と浮心位置とはXY面に平行に移動するので、一対の浮体の全体としての重心位置と浮心位置はX軸とY軸の座標に関して変化せず、浮力調整装置全体としての重心位置と浮心位置はX軸とY軸の座標に関して変化しない。即ち、平面的な方位に関しては重心位置と浮心位置は変化しない。また、Z軸方向には移動しないので、全方向に対して移動しなくなる。この線対称の構成は比較的容易に形成できるので、上記の重心位置と浮心位置の両方の平面的な方位に関しての移動を伴わなずに浮力を変化させる構成を実施できるようになる。従って、全方位滑走可能な水中航走体への搭載に適した浮力調整装置となる。 According to this configuration, since the floating body arranged in line symmetry moves in line symmetry with respect to the Z axis, the center of gravity position and the floating center position move in parallel to the XY plane. The gravity center position and the buoyancy position do not change with respect to the coordinates of the X axis and the Y axis, and the gravity center position and the buoyancy position as the whole buoyancy adjusting device do not change with respect to the coordinates of the X axis and the Y axis. That is, the center of gravity position and the buoyancy position do not change with respect to the planar orientation. Moreover, since it does not move in the Z-axis direction, it does not move in all directions. Since this line-symmetric configuration can be formed relatively easily, it is possible to implement a configuration in which the buoyancy is changed without accompanying movement in the planar orientation of both the gravity center position and the buoyancy position. Therefore, the buoyancy adjustment device is suitable for mounting on an underwater vehicle capable of omnidirectional sliding.

あるいは、前記の浮力調整装置において、互いに直交する3軸をX軸,Y軸,Z軸とし、該3軸の交点をOとした時に、水密区画から露出する浮力調整部分を有する浮体を、前記浮力調整部分を対にしてYZ平面に対して面対称に配置すると共に、前記浮力調整部分が出入りする前記水密区画における前記浮力調整部分と接触する出入口をYZ平面に対して面対称になるように形成し、前記浮体の重心位置と前記浮力調整部分の浮心位置がYZ平面に対して面対称となる状態を維持しながら、前記浮体を同時に移動して、前記浮力調整部分が水密区画外の水中へ露出する量を増減するように構成する。このX軸,Y軸,Z軸の3軸は必ずしもこの浮力調整装置を搭載する水中航走体の軸線と一致させる必要はなく、水中航走体の軸線とは関係無く別個に設けてよい。   Alternatively, in the buoyancy adjusting device, a floating body having a buoyancy adjusting portion exposed from a watertight section when the three axes orthogonal to each other are defined as an X axis, a Y axis, and a Z axis, and an intersection of the three axes is O. A pair of buoyancy adjustment portions are arranged symmetrically with respect to the YZ plane, and an entrance / exit in contact with the buoyancy adjustment portion in the watertight compartment where the buoyancy adjustment portion enters and exits is symmetrical with respect to the YZ plane. Forming the center of gravity of the floating body and the center of buoyancy adjustment of the buoyancy adjustment portion while maintaining plane symmetry with respect to the YZ plane, and simultaneously moving the floating body so that the buoyancy adjustment portion is outside the watertight compartment. Configure to increase or decrease the amount of exposure to water. The three axes, the X axis, the Y axis, and the Z axis, do not necessarily have to coincide with the axis of the underwater vehicle on which the buoyancy adjusting device is mounted, and may be provided separately regardless of the axis of the underwater vehicle.

この構成によれば、面対称に配置された浮体がYZ平面に対して面対称に移動するので、重心位置と浮心位置とはX軸上又はX軸に平行に移動するので、一対の浮体の全体としての重心位置と浮心位置はX軸とY軸の座標に関して変化せず、浮力調整装置全体としての重心位置と浮心位置はX軸とY軸の座標に関して変化しない。即ち、平面的な方位に関しては重心位置と浮心位置は変化しない。この面対称の構成は比較的容易に形成できるので、上記の重心位置と浮心位置の両方の平面的な方位に関しての移動を伴わなずに浮力を変化させる構成を実施できるようになる。従って、全方位滑走可能な水中航走体への搭載に適した浮力調整装置となる。この場合はZ軸方向に関して浮心位置が移動する場合も含んでいる。   According to this configuration, since the floating body arranged in plane symmetry moves in plane symmetry with respect to the YZ plane, the gravity center position and the floating center position move on the X axis or parallel to the X axis. The center of gravity position and the buoyancy position as a whole do not change with respect to the coordinates of the X axis and the Y axis, and the center of gravity position and the buoyancy position as the whole buoyancy adjusting device do not change with respect to the coordinates of the X axis and the Y axis. That is, the center of gravity position and the buoyancy position do not change with respect to the planar orientation. Since this plane-symmetric configuration can be formed relatively easily, it is possible to implement a configuration in which the buoyancy is changed without accompanying movement in the planar orientation of both the gravity center position and the buoyancy position. Therefore, the buoyancy adjustment device is suitable for mounting on an underwater vehicle capable of omnidirectional sliding. This case includes a case where the buoyancy position moves in the Z-axis direction.

上記の浮力調整装置において、前記浮力調整部分をXY平面に対称かつZX平面に対称に形成すると、平面的な方位方向だけでなく、Z軸方向に関しての浮心位置の移動がなくなるので、Z軸方向に関しても浮力調整と重心移動を切り離して制御できるようになり、水中航走体の滑走制御をより簡便にすることができる。   In the above buoyancy adjustment device, if the buoyancy adjustment part is formed symmetrically with respect to the XY plane and symmetrical with respect to the ZX plane, the buoyancy position not only moves in the planar azimuth direction but also moves in the Z axis direction. The buoyancy adjustment and the movement of the center of gravity can be controlled separately with respect to the direction, and the underwater vehicle can be controlled more easily.

更に、上記の浮力調整装置において、前記浮力調整部分を円筒体、楕円筒体、四角柱体、円錐体、角錐のいずれか一つで形成する。これらの形状は比較的簡単に形成することができるので、浮力調整装置の構成が簡略化され、製造も容易となる。   Further, in the above buoyancy adjustment device, the buoyancy adjustment portion is formed of any one of a cylindrical body, an elliptic cylinder, a quadrangular prism, a cone, and a pyramid. Since these shapes can be formed relatively easily, the configuration of the buoyancy adjusting device is simplified and the manufacture is facilitated.

そして、上記の浮力調整装置を備えた水中航走体は、機体の重心位置と浮心位置を変化させることなく、浮力の増減を可能にして、浮力調整と重心移動を切り離して制御でき、水中航走体の滑走制御を簡便にすることができる水中航走体となる。   The underwater vehicle equipped with the buoyancy adjustment device described above can control the buoyancy adjustment and the movement of the center of gravity independently by making it possible to increase or decrease the buoyancy without changing the center of gravity position and buoyancy position of the aircraft. It becomes an underwater vehicle that can simplify the sliding control of the medium vehicle.

本発明の浮力調整方法は、上記の浮力調整装置において、前記浮体を移動させて、前記浮力調整部分が水密区画外の水中へ露出する量を増減することを特徴とする。この浮力調整方法、及び、この浮力調整方法を用いた水中航走体における浮力調整方法によると、非常に簡単に制御できるので、浮力調整装置の構成が単純化される。また、機体の重心位置と浮心位置を変化させることなく、浮力の増減を可能にして、浮力調整と重心移動を切り離して制御でき、水中航走体の滑走制御を簡便にすることができる。そのため、水中航走体の位置制御が容易となる。また、重心位置と浮心位置の移動が無く、方向性が無いので、全方位滑走可能な水中航走体への搭載に適した浮力調整方法となる。   The buoyancy adjustment method of the present invention is characterized in that, in the buoyancy adjustment apparatus, the floating body is moved to increase or decrease the amount of the buoyancy adjustment portion exposed to the water outside the watertight compartment. According to this buoyancy adjustment method and the buoyancy adjustment method in an underwater vehicle using this buoyancy adjustment method, control is very simple, so the configuration of the buoyancy adjustment device is simplified. In addition, the buoyancy can be increased or decreased without changing the center of gravity position and the buoyancy position of the airframe, and the buoyancy adjustment and the center of gravity movement can be separated and controlled. Therefore, the position control of the underwater vehicle becomes easy. In addition, since there is no movement between the center of gravity position and the buoyancy position and there is no directionality, the buoyancy adjustment method is suitable for mounting on an underwater vehicle capable of omnidirectional sliding.

本発明の浮力調整装置によれば、浮力調整装置の重心位置と浮心位置を平面的又は立体的に変化させることなく、浮力の増減が可能になる。そのため、全方位滑走可能な水中航走体への搭載に適した浮力調整装置となる。また、この浮力調整装置を備えた水中航走体は、機体の重心位置と浮心位置を平面的又は立体的に変化させることなく、浮力の増減が可能となるので、浮力調整と重心移動を切り離して制御でき、滑走制御を簡便なものにすることができる。   According to the buoyancy adjusting device of the present invention, the buoyancy can be increased or decreased without changing the center of gravity position and the buoyancy center position of the buoyancy adjusting device planarly or three-dimensionally. Therefore, it becomes a buoyancy adjustment device suitable for mounting on an underwater vehicle capable of omnidirectional sliding. In addition, the underwater vehicle equipped with this buoyancy adjustment device can increase or decrease buoyancy without changing the center of gravity and buoyancy position of the fuselage planarly or three-dimensionally. It can be controlled separately, and the sliding control can be simplified.

また、本発明の浮力調整方法によれば、浮力調整装置の重心位置と浮心位置を平面的又は立体的に変化させることなく、浮力の増減が可能になる。そのため、この浮力調整装置を備えた水中航走体において、機体の重心位置と浮心位置を平面的又は立体的に変化させることなく、浮力の増減ができるので、浮力調整と重心移動を切り離して制御できる。従って、水中航走体の制御が単純化し、容易となる。   Further, according to the buoyancy adjustment method of the present invention, the buoyancy can be increased or decreased without changing the center of gravity position and the buoyancy position of the buoyancy adjustment device in a planar or three-dimensional manner. Therefore, in an underwater vehicle equipped with this buoyancy adjustment device, the buoyancy can be increased or decreased without changing the center of gravity and buoyancy position of the aircraft in a plane or three-dimensionally. Can be controlled. Therefore, the control of the underwater vehicle is simplified and facilitated.

以下、本発明に係る浮力調整装置、水中航走体、及び、浮力調整方法の実施の形態について図面を参照しながら説明する。図1〜図3に示すように、この浮力調整装置10は、水密区画11から水中に露出する浮力調整部分12a,13aを有する浮体12,13を移動して、浮力調整部分12a,13aが水密区画11の外の水中へ露出する量を増減することにより、浮力調整を行なう。   Hereinafter, embodiments of a buoyancy adjusting device, an underwater vehicle, and a buoyancy adjusting method according to the present invention will be described with reference to the drawings. As shown in FIGS. 1 to 3, the buoyancy adjusting device 10 moves the floating bodies 12 and 13 having buoyancy adjusting portions 12 a and 13 a exposed from the watertight section 11 to the water so that the buoyancy adjusting portions 12 a and 13 a are watertight. Buoyancy adjustment is performed by increasing or decreasing the amount exposed to the water outside the compartment 11.

この浮力調整部分12a,13aは、任意の形状でよいが、図1、図2に示すように、互いに直交する3軸をX軸,Y軸,Z軸とし、この3軸の交点をOとした時に、この交点Oに対して、形状、浮心位置、重量、重心位置が同じ浮力調整部分12aと浮力調整部分13aを対にして交点Oに対して点対称に配置する。なお、この交点Oは必ずしも浮力調整装置1の中心や重心位置や浮心位置である必要は無い。   The buoyancy adjusting portions 12a and 13a may have any shape, but as shown in FIGS. 1 and 2, the three axes orthogonal to each other are the X axis, the Y axis, and the Z axis, and the intersection of these three axes is O. At this time, the buoyancy adjustment portion 12a and the buoyancy adjustment portion 13a having the same shape, buoyancy position, weight, and center of gravity position are arranged symmetrically with respect to the intersection point O with respect to the intersection point O. Note that the intersection point O does not necessarily need to be the center, the center of gravity position, or the buoyancy position of the buoyancy adjusting device 1.

また、これらの浮力調整部分12a,13aが出入りする水密区画11における浮力調整部分12a,13aと接触する出入口14、15を交点Oに対して点対称になるように形成する。この構成により、出入口14、15から水中に出る浮力調整部分12a,13aの水中露出部分を同じにする。   Moreover, the entrances 14 and 15 which contact the buoyancy adjustment parts 12a and 13a in the watertight compartment 11 where these buoyancy adjustment parts 12a and 13a enter and exit are formed so as to be point-symmetric with respect to the intersection O. With this configuration, the underwater exposed portions of the buoyancy adjusting portions 12a and 13a that go out into the water from the entrances 14 and 15 are made the same.

更に、浮体12、13の重心位置と浮力調整部分12a,13aの浮心位置が交点Oに対して点対称となる状態を維持しながら、浮体12、13を同時に移動して、浮力調整部分12a,13aが水密区画11の外の水中へ露出する量を増減するように構成する。この構成は、次のようにして実施できる。   Further, while maintaining the state where the center of gravity of the floating bodies 12 and 13 and the buoyancy adjusting portions 12a and 13a are symmetric with respect to the intersection point O, the floating bodies 12 and 13 are simultaneously moved to thereby adjust the buoyancy adjusting portion 12a. , 13a is configured to increase or decrease the amount exposed to the water outside the watertight compartment 11. This configuration can be implemented as follows.

図3及び図4に示すように、浮体12と浮体13の内部に雌ねじ部を設け、この雌ねじ部に雄ねじのスライド軸16とスライド軸17をそれぞれ螺合して、浮体12と浮体13とを支持すると共に、浮体12をガイド軸18,19Aで、浮体13をガイド軸18,19Bで支持する。これらのガイド軸18、19A,19Bは、浮体12と浮体13を滑らせて往復移動可能に支持すると共に、浮体12と浮体13がスライド軸16、17周りに回転するのを防止する役割を果たす。   As shown in FIG. 3 and FIG. 4, a female screw portion is provided inside the floating body 12 and the floating body 13, and a slide shaft 16 and a slide shaft 17 of the male screw are respectively screwed into the female screw portion, so that the floating body 12 and the floating body 13 are connected. The floating body 12 is supported by the guide shafts 18 and 19A, and the floating body 13 is supported by the guide shafts 18 and 19B. These guide shafts 18, 19 </ b> A, 19 </ b> B slide the floating body 12 and the floating body 13 so as to be able to reciprocate and prevent the floating body 12 and the floating body 13 from rotating around the slide shafts 16, 17. .

このスライド軸16とスライド軸17は、モータ21で駆動される歯車22により、同時に同じ回転速度で逆方向に回転するように構成される。この構成は傘歯車の組合せ機構20で容易に構成できる。このスライド軸16,17の回転により、浮体12と浮体13はスライド軸16、17上を逆方向に同じ速度で移動する。このスライド軸16,17をX軸上に配置することにより、浮体12、13の重心位置と浮力調整部分12a,13aの浮心位置が交点Oに対して点対称となる状態を維持しながら、浮体12、13がスライド軸16,17上(X軸上)を同時に移動することになる。   The slide shaft 16 and the slide shaft 17 are configured to simultaneously rotate in the opposite directions at the same rotational speed by a gear 22 driven by a motor 21. This configuration can be easily configured by the bevel gear combination mechanism 20. By the rotation of the slide shafts 16 and 17, the floating body 12 and the floating body 13 move on the slide shafts 16 and 17 in the opposite directions at the same speed. By arranging the slide shafts 16 and 17 on the X-axis, while maintaining the state where the gravity center positions of the floating bodies 12 and 13 and the buoyant position of the buoyancy adjusting portions 12a and 13a are point-symmetric with respect to the intersection point O, The floating bodies 12 and 13 are simultaneously moved on the slide shafts 16 and 17 (on the X axis).

この浮体12と浮体13が互いに遠ざかるXb方向に移動すると、図1に示すように、水密区画11から浮力調整部分12a,13aの露出量が共に増加し、浮力調整装置1の浮力が増加する。また、この浮体12と浮体13が互いに近づくXa方向に移動すると、図2に示すように、水密区画11から浮力調整部分12a,13aの露出量が共に減少し、浮力調整装置1の浮力が減少する。つまり、浮体12、13の移動によって、浮力調整部分12a,13aが水密区画11の外の水中へ露出する量が増減し、浮力調整装置1の浮力が増減する。   When the floating body 12 and the floating body 13 move in the Xb direction away from each other, as shown in FIG. 1, the exposure amount of the buoyancy adjustment portions 12 a and 13 a increases from the watertight compartment 11, and the buoyancy of the buoyancy adjustment device 1 increases. Further, when the floating body 12 and the floating body 13 move in the Xa direction approaching each other, as shown in FIG. 2, the exposure amount of the buoyancy adjustment portions 12 a and 13 a both decreases from the watertight section 11, and the buoyancy of the buoyancy adjustment device 1 decreases. To do. That is, as the floating bodies 12 and 13 move, the amount of the buoyancy adjusting portions 12a and 13a exposed to the water outside the watertight compartment 11 increases and decreases, and the buoyancy of the buoyancy adjusting device 1 increases and decreases.

これらの浮体12,13の移動に際して、浮体12の重心位置と浮力調整部分12aの浮心位置と浮体13の重心位置と浮力調整部分13aの浮心位置とは、それぞれ中心Oに対して点対称に移動するので、浮力調整装置1の全体としての重心位置と浮心位置は変化しない。従って、浮力調整装置1としては、装置全体としての重心位置と浮心位置を変化させることなく、浮力の増減を行なうことができる。   When the floating bodies 12 and 13 move, the center of gravity of the floating body 12, the buoyancy position of the buoyancy adjustment portion 12a, the center of gravity position of the buoyancy body 13 and the buoyancy adjustment position of the buoyancy adjustment portion 13a are point-symmetric with respect to the center O. Therefore, the center of gravity position and the buoyancy position as a whole of the buoyancy adjusting device 1 do not change. Therefore, the buoyancy adjusting apparatus 1 can increase or decrease the buoyancy without changing the center of gravity position and the buoyancy position of the entire apparatus.

次に、上記のような交点Oに対する点対称の構成とは、別の面対称の構成について説明する。図1〜図4の構成は、浮力調整部分12a,12bを円筒形状としているために、両方の構成を満たしている。従って、説明を簡単にするために、同じ図を用いて、説明する。なお、この構成においても、交点Oは必ずしも浮力調整装置1の中心や重心位置や浮心位置である必要は無く、X軸,Y軸,Z軸の各軸のいずれも浮力調整装置1の各軸方向と同一である必要は無い。   Next, a description will be given of a plane-symmetric configuration different from the point-symmetric configuration with respect to the intersection point O as described above. The configurations of FIGS. 1 to 4 satisfy both configurations because the buoyancy adjusting portions 12a and 12b are cylindrical. Therefore, in order to simplify the description, description will be made using the same diagram. Also in this configuration, the intersection point O does not necessarily have to be the center, the center of gravity position, or the buoyancy position of the buoyancy adjusting device 1, and any of the X-axis, Y-axis, and Z-axis axes It need not be the same as the axial direction.

この面対称の構成では、浮体12、13の浮力調整部分12a,13aをXY平面に対称かつZX平面に対称に形成する。この形状としては、円筒体、楕円筒体、四角柱体、円錐体、角錐等がある。これらの形状のいずれか一つで形成すると、これらの形状は比較的簡単に形成することができるので、浮力調整装置10の構成が簡略化され、製造も容易となる。   In this plane-symmetric configuration, the buoyancy adjusting portions 12a and 13a of the floating bodies 12 and 13 are formed symmetrically with respect to the XY plane and symmetrically with respect to the ZX plane. Examples of this shape include a cylinder, an elliptic cylinder, a quadrangular prism, a cone, and a pyramid. If formed in any one of these shapes, these shapes can be formed relatively easily, so that the configuration of the buoyancy adjusting device 10 is simplified and the manufacture is facilitated.

浮体12、13の浮力調整部分12a,13aをXY平面に対称に形成することにより、浮体12,13をYZ平面に対称に移動させた時に(例えば、浮体12,13をX軸上に移動させた時に)、浮心位置がZ軸方向に移動しなくなる。また、ZX平面に対称に形成することにより、浮体12,13をYZ平面に対称に移動させた時に(例えば、浮体12,13をX軸上に移動させた時に)、浮心位置がY軸方向に移動しなくなる。   By forming the buoyancy adjusting portions 12a, 13a of the floating bodies 12, 13 symmetrically on the XY plane, the floating bodies 12, 13 are moved symmetrically on the YZ plane (for example, the floating bodies 12, 13 are moved on the X axis). The buoyancy position does not move in the Z-axis direction. Further, by forming symmetrically in the ZX plane, when the floating bodies 12 and 13 are moved symmetrically in the YZ plane (for example, when the floating bodies 12 and 13 are moved on the X axis), the buoyancy position is Y axis. It will not move in the direction.

そして、この浮力調整部分12a,13aをYZ平面に対して対称に配置すると共に、この浮力調整部分12a,13aが出入りする水密区画11における浮力調整部分12a,13aと接触する出入口14、15をYZ平面に対して対称になるように形成する。この構成により、出入口14、15から水中に出る浮力調整部分12a,13aの水中露出部分を同じにする。   The buoyancy adjusting portions 12a and 13a are arranged symmetrically with respect to the YZ plane, and the entrances 14 and 15 in contact with the buoyancy adjusting portions 12a and 13a in the watertight compartment 11 where the buoyancy adjusting portions 12a and 13a enter and exit are provided as YZ. It is formed so as to be symmetric with respect to the plane. With this configuration, the underwater exposed portions of the buoyancy adjusting portions 12a and 13a that go out into the water from the entrances 14 and 15 are made the same.

そして、浮力調整部分12a,13aの浮心位置と浮体の重心位置がYZ平面に対して対称となる状態を維持しながら、浮体12、13を同時に移動して、浮力調整部分12a,13aが水密区画11の外の水中へ露出する量を増減するように構成する。この構成は、上記で説明した図1〜図4の構成で実施できる。つまり、図1〜図4の構成においては、浮体12,13の移動に際して、浮体12の重心位置と浮力調整部分12aの浮心位置と浮体13の重心位置と浮力調整部分13aの浮心位置とは、それぞれ中心Oに対して点対称に移動すると共に、YZ平面に対して面対称に移動するので、浮体12,13の全体としての重心位置と浮心位置は変化しない。従って、この面対称の構成であっても、浮力調整装置1は、装置全体としての重心位置と浮心位置を変化させることなく、浮力の増減を行なうことができる。   Then, while maintaining the state where the buoyancy adjustment portions 12a and 13a are in a symmetric state with respect to the YZ plane, the buoyancy adjustment portions 12a and 13a are watertight. The amount of exposure to the water outside the compartment 11 is increased or decreased. This configuration can be implemented by the configuration shown in FIGS. That is, in the configuration of FIGS. 1 to 4, when the floating bodies 12 and 13 are moved, the position of the center of gravity of the floating body 12, the position of the buoyancy adjustment part 12 a, the position of the center of gravity of the floating body 13, and the position of the buoyancy adjustment part 13 a Move symmetrically with respect to the center O and move symmetrically with respect to the YZ plane, so that the center of gravity and the floating position of the floating bodies 12 and 13 as a whole do not change. Therefore, even with this plane-symmetric configuration, the buoyancy adjusting device 1 can increase or decrease the buoyancy without changing the center of gravity position and the buoyancy position of the entire device.

そして、上記の点対称の構成と面対称の構成によれば、水密区画11から露出する浮力調整部分12a,13aを有する浮体12,13を移動して、浮力調整部分12a,13aが水密区画11外の水中へ露出する量を増減することにより、浮力調整を行なうことができ、しかも、浮力調整装置10としての重心位置と浮心位置の両方の移動を伴わなずに浮力を変化させる構成とすることができる。また、この点対称の構成及び面対称の構成は比較的容易に形成できるので、重心位置と浮心位置の両方の移動を伴わなずに浮力を変化させる浮力調整装置10を容易に提供できる。この浮力調整装置10は方向性が無いので、全方位滑走可能な水中航走体への搭載に適した浮力調整装置となる。   And according to said point symmetrical structure and plane symmetrical structure, the floating bodies 12 and 13 which have the buoyancy adjustment parts 12a and 13a exposed from the watertight division 11 are moved, and the buoyancy adjustment parts 12a and 13a are the watertight division 11 The buoyancy adjustment can be performed by increasing or decreasing the amount of exposure to the outside water, and the buoyancy is changed without moving both the center of gravity position and the buoyancy position as the buoyancy adjustment device 10. can do. Further, since the point-symmetric configuration and the plane-symmetric configuration can be formed relatively easily, it is possible to easily provide the buoyancy adjusting device 10 that changes the buoyancy without moving both the gravity center position and the buoyancy position. Since this buoyancy adjustment device 10 has no directionality, it becomes a buoyancy adjustment device suitable for mounting on an underwater vehicle capable of sliding in all directions.

そして、図5に示すように、この浮力調整装置10を備えて水中航走体1を構成する。この浮力調整装置10を用いると、機体の重心位置と浮心位置を変化させることなく、浮力の増減が可能であるので、浮力調整と重心移動を切り離して制御できるようになる。そのため、水中航走体の滑走制御を簡便にすることができ、特に水中航走体1が全方位滑走可能な水中航走体の場合にその効果を最大に発揮できる。   And as shown in FIG. 5, this buoyancy adjusting device 10 is provided, and the underwater vehicle 1 is comprised. When this buoyancy adjusting device 10 is used, the buoyancy can be increased or decreased without changing the center of gravity position and the buoyancy position of the airframe, so that buoyancy adjustment and center of gravity movement can be controlled separately. Therefore, the sliding control of the underwater vehicle can be simplified, and the effect can be maximized particularly when the underwater vehicle 1 is an underwater vehicle that can slide in all directions.

なお、この浮体12、13に関するX軸,Y軸,Z軸の3軸は、必ずしもこの浮力調整装置10を搭載する水中航走体1の軸線と一致させると、構成や制御で多くの座標系を使用しなくて済むので好ましいが、必ずしも、一致させる必要はなく、水中航走体1の各軸線とは関係無く設けてよい。   It should be noted that if the three axes X, Y and Z relating to the floating bodies 12 and 13 are not necessarily coincident with the axis of the underwater vehicle 1 on which the buoyancy adjusting device 10 is mounted, many coordinate systems can be used in the configuration and control. However, it is not always necessary to make them coincide with each other, and they may be provided regardless of the axes of the underwater vehicle 1.

次に、この浮力調整装置10及びこの浮力調整装置10を搭載した水中航走体における浮力調整方法について説明する。この浮力調整方法は、上記の浮力調整装置10において、浮体12,13を移動させて、浮力調整部分12a,13aが水密区画11外の水中へ露出する量を増減する。   Next, the buoyancy adjustment device 10 and a buoyancy adjustment method in an underwater vehicle equipped with the buoyancy adjustment device 10 will be described. In this buoyancy adjustment method, the floating bodies 12 and 13 are moved in the buoyancy adjustment apparatus 10 described above to increase or decrease the amount of exposure of the buoyancy adjustment portions 12 a and 13 a to the water outside the watertight compartment 11.

この浮力調整方法、及び、この浮力調整方法を用いた水中航走体1における浮力調整方法によれば、非常に簡単に制御できるので、浮力調整装置10の構成が単純化される。また、浮力調整装置10及び水中航走体1の重心位置及び浮心位置が変化しない状態のままで浮力を調整できるので、浮力調整中に、この浮力調整装置10を搭載した水中航走体1が目標の方向とは別の方向に移動するのを防止又は抑制できる。また、浮力調整と重心移動を切り離して制御できる。従って、水中航走体の滑走制御を簡便にすることができ、水中航走体の位置制御が容易となる。また、重心位置、浮心位置の移動が無く、方向性が無いので、全方位滑走可能な水中航走体への搭載に適した浮力調整方法となる。   According to this buoyancy adjustment method and the buoyancy adjustment method in the underwater vehicle 1 using this buoyancy adjustment method, the configuration of the buoyancy adjustment device 10 is simplified because it can be controlled very easily. Further, since the buoyancy can be adjusted while the center of gravity position and the buoyancy position of the buoyancy adjustment device 10 and the underwater vehicle 1 are not changed, the underwater vehicle 1 equipped with the buoyancy adjustment device 10 during the buoyancy adjustment. Can be prevented or suppressed from moving in a direction different from the target direction. Further, buoyancy adjustment and gravity center movement can be separated and controlled. Therefore, the sliding control of the underwater vehicle can be simplified, and the position control of the underwater vehicle is facilitated. Further, since there is no movement of the center of gravity position and the buoyancy position and no directionality, the buoyancy adjustment method is suitable for mounting on an underwater vehicle capable of omnidirectional sliding.

本発明の実施の形態の浮力調整装置の構成と、浮力調整部分を外側に移動させた状態を模式的に示す斜視図である。It is a perspective view which shows typically the state which moved the structure of the buoyancy adjustment apparatus of embodiment of this invention, and the buoyancy adjustment part outside. 図1の浮力調整装置において、浮力調整部分を内側に移動させた状態を示す模式的な斜視図である。FIG. 2 is a schematic perspective view showing a state where a buoyancy adjustment portion is moved inward in the buoyancy adjustment device of FIG. 1. 浮体を移動させる機構を示す斜視図である。It is a perspective view which shows the mechanism which moves a floating body. 図3の一部分を拡大して示す図である。It is a figure which expands and shows a part of FIG. 浮力調整装置を水中航走体に備えた状態を模式的に示す斜視図である。It is a perspective view which shows typically the state provided with the buoyancy adjustment apparatus in the underwater vehicle. 全方位滑走可能な水中航走体の側面図である。It is a side view of the underwater vehicle which can be omnidirectionally slidable. 全方位滑走可能な水中航走体の斜視図である。It is a perspective view of the underwater vehicle which can be omnidirectionally slidable. 全方位滑走可能な水中航走体の別の角度から見た斜視図である。It is the perspective view seen from another angle of the underwater vehicle which can omnidirectionally slide.

符号の説明Explanation of symbols

1 水中航走体(水中ビークル)
10 浮力調整装置
11 水密区画
12a,13a 浮力調整部分
12,13 浮体
14,15 浮力調整部分と接触する出入口
16,17 スライド軸
18,19A,19B ガイド軸
20 傘歯車の組合せ機構
21 モータ
22 歯車
1 Underwater vehicle (underwater vehicle)
DESCRIPTION OF SYMBOLS 10 Buoyancy adjustment apparatus 11 Watertight division 12a, 13a Buoyancy adjustment part 12, 13 Floating body 14, 15 Entrance / exit which contacts a buoyancy adjustment part 16, 17 Slide shaft 18, 19A, 19B Guide shaft 20 Bevel gear combination mechanism 21 Motor 22 Gear

Claims (8)

水密区画から水中へ露出する浮力調整部分を有する浮体を移動して、前記浮力調整部分が水密区画外の水中へ露出する量を増減することにより、浮力調整をおこなう浮力調整装置であって、重心位置と浮心位置の上下方向以外の方向の移動を伴わなずに浮力を変化させることを特徴とする浮力調整装置。   A buoyancy adjustment device for adjusting buoyancy by moving a floating body having a buoyancy adjustment portion exposed to water from a watertight compartment and increasing or decreasing the amount of the buoyancy adjustment portion exposed to water outside the watertight compartment, A buoyancy adjustment device characterized by changing buoyancy without moving the position and buoyancy position in a direction other than the vertical direction. 水密区画から水中へ露出する浮力調整部分を有する浮体を移動して、前記浮力調整部分が水密区画外の水中へ露出する量を増減することにより、浮力調整をおこなう浮力調整装置であって、重心位置と浮心位置の上下方向も含む全方向の移動を伴わなずに浮力を変化させることを特徴とする請求項1記載の浮力調整装置。   A buoyancy adjustment device for adjusting buoyancy by moving a floating body having a buoyancy adjustment portion exposed to water from a watertight compartment and increasing or decreasing the amount of the buoyancy adjustment portion exposed to water outside the watertight compartment, 2. The buoyancy adjusting device according to claim 1, wherein the buoyancy is changed without moving in all directions including the vertical direction of the position and the buoyancy position. 互いに直交する3軸をX軸,Y軸,Z軸とし、該3軸の交点をOとした時に、水密区画から露出する浮力調整部分を有する浮体を、前記浮力調整部分を対にして交点Oに対して点対称に配置すると共に、前記浮力調整部分が出入りする前記水密区画における前記浮力調整部分と接触する出入口を交点Oに対して点対称になるように形成し、前記浮体の重心位置と前記浮力調整部分の浮心位置が前記交点Oに対して点対称となる状態を維持しながら、前記浮体を同時に移動して、前記浮力調整部分が水密区画外の水中へ露出する量を増減するように構成したことを特徴とする請求項1又は2記載の浮力調整装置。   When three axes orthogonal to each other are defined as an X axis, a Y axis, and a Z axis, and an intersection of the three axes is O, a floating body having a buoyancy adjustment portion exposed from the watertight compartment is paired with the buoyancy adjustment portion as an intersection O And an inlet / outlet that contacts the buoyancy adjustment portion in the watertight compartment where the buoyancy adjustment portion enters and exits is formed to be point symmetric with respect to the intersection point O, While maintaining the state where the buoyancy position of the buoyancy adjustment portion is point-symmetric with respect to the intersection point O, the floating body is moved simultaneously to increase or decrease the amount of exposure of the buoyancy adjustment portion to the water outside the watertight compartment. The buoyancy adjustment device according to claim 1, wherein the buoyancy adjustment device is configured as described above. 互いに直交する3軸をX軸,Y軸,Z軸とし、該3軸の交点をOとした時に、水密区画から露出する浮力調整部分を有する浮体を、前記浮力調整部分を対にしてY軸に対して線対称に配置すると共に、前記浮力調整部分が出入りする前記水密区画における前記浮力調整部分と接触する出入口をY軸に対して線対称になるように形成し、前記浮体の重心位置と前記浮力調整部分の浮心位置がY軸に対して線対称となる状態を維持しながら、前記浮体を同時に移動して、前記浮力調整部分が水密区画外の水中へ露出する量を増減するように構成したことを特徴とする請求項1又は2記載の浮力調整装置。   When three axes orthogonal to each other are defined as an X axis, a Y axis, and a Z axis, and an intersection of the three axes is defined as O, a floating body having a buoyancy adjustment portion exposed from the watertight compartment is paired with the buoyancy adjustment portion as a Y axis. Are arranged symmetrically with respect to the buoyancy adjustment portion, and the inlet / outlet contact with the buoyancy adjustment portion in the watertight section where the buoyancy adjustment portion enters and exits is formed to be line symmetric with respect to the Y axis, While maintaining the state where the buoyancy position of the buoyancy adjustment portion is line-symmetric with respect to the Y axis, the floating body is moved simultaneously to increase or decrease the amount of exposure of the buoyancy adjustment portion to the water outside the watertight compartment. The buoyancy adjusting device according to claim 1, wherein the buoyancy adjusting device is configured as described above. 互いに直交する3軸をX軸,Y軸,Z軸とし、該3軸の交点をOとした時に、水密区画から露出する浮力調整部分を有する浮体を、前記浮力調整部分を対にしてYZ平面に対して面対称に配置すると共に、前記浮力調整部分が出入りする前記水密区画における前記浮力調整部分と接触する出入口をYZ平面に対して面対称になるように形成し、前記浮体の重心位置と前記浮力調整部分の浮心位置がYZ平面に対して面対称となる状態を維持しながら、前記浮体を同時に移動して、前記浮力調整部分が水密区画外の水中へ露出する量を増減するように構成したことを特徴とする請求項1又は2記載の浮力調整装置。   When the three axes orthogonal to each other are the X, Y, and Z axes and the intersection of the three axes is O, a floating body having a buoyancy adjustment portion exposed from the watertight compartment is paired with the buoyancy adjustment portion as a YZ plane. Are arranged in plane symmetry with respect to the YZ plane, and the inlet / outlet contact with the buoyancy adjustment part in the watertight section where the buoyancy adjustment part enters and exits is formed so as to be plane symmetric with respect to the YZ plane, While maintaining the state in which the buoyancy position of the buoyancy adjustment portion is plane-symmetric with respect to the YZ plane, the floating body is moved simultaneously to increase or decrease the amount of exposure of the buoyancy adjustment portion to the water outside the watertight compartment. The buoyancy adjusting device according to claim 1, wherein the buoyancy adjusting device is configured as described above. 請求項1、2、3、4又は5記載の浮力調整装置を備えた水中航走体。   An underwater vehicle equipped with the buoyancy adjusting device according to claim 1, 2, 3, 4 or 5. 請求項1、2、3、4又は5記載の浮力調整装置を備えた浮力調整装置において、前記浮体を移動させて、前記浮力調整部分が水密区画外の水中へ露出する量を増減することを特徴とする浮力調整方法。   6. The buoyancy adjustment device comprising the buoyancy adjustment device according to claim 1, wherein the amount of exposure of the buoyancy adjustment portion to water outside the watertight compartment is increased or decreased by moving the floating body. A characteristic buoyancy adjustment method. 請求項7の浮力調整方法を用いた水中航走体における浮力調整方法。   A buoyancy adjustment method for an underwater vehicle using the buoyancy adjustment method according to claim 7.
JP2006308820A 2006-11-15 2006-11-15 Buoyancy adjusting device, underwater sailing body, and buoyancy adjusting method Withdrawn JP2008120316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006308820A JP2008120316A (en) 2006-11-15 2006-11-15 Buoyancy adjusting device, underwater sailing body, and buoyancy adjusting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006308820A JP2008120316A (en) 2006-11-15 2006-11-15 Buoyancy adjusting device, underwater sailing body, and buoyancy adjusting method

Publications (1)

Publication Number Publication Date
JP2008120316A true JP2008120316A (en) 2008-05-29

Family

ID=39505535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006308820A Withdrawn JP2008120316A (en) 2006-11-15 2006-11-15 Buoyancy adjusting device, underwater sailing body, and buoyancy adjusting method

Country Status (1)

Country Link
JP (1) JP2008120316A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105730656A (en) * 2016-01-13 2016-07-06 中国计量学院 Drainage type buoyancy regulating device
WO2017066906A1 (en) * 2015-10-19 2017-04-27 浙江大学 Automatic oil discharging type buoyancy regulating device for underwater robot
CN110844032A (en) * 2019-11-19 2020-02-28 贵州电网有限责任公司 Spherical water sports device with adjustable center of gravity of floating center
CN113059968A (en) * 2021-04-01 2021-07-02 宿正国 Small-size amphibious exploration robot of sea and land
CN113581431A (en) * 2021-08-30 2021-11-02 喻昕蕾 Floating and diving regulator for regulating gravity center and specific gravity and underwater smart roaming vehicle
KR20220025754A (en) * 2020-08-11 2022-03-03 지앙수 유니버시티 오브 사이언스 앤드 테크놀로지 Bidirectional positive displacement buoyancy control device and its test device and test method
CN114506431A (en) * 2022-02-17 2022-05-17 江苏科技大学 Under-actuated buoyancy adjusting device and adjusting method thereof
CN115092367A (en) * 2022-04-24 2022-09-23 西北工业大学 Small-size AUV's buoyancy adjusting device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017066906A1 (en) * 2015-10-19 2017-04-27 浙江大学 Automatic oil discharging type buoyancy regulating device for underwater robot
CN105730656A (en) * 2016-01-13 2016-07-06 中国计量学院 Drainage type buoyancy regulating device
CN110844032A (en) * 2019-11-19 2020-02-28 贵州电网有限责任公司 Spherical water sports device with adjustable center of gravity of floating center
CN110844032B (en) * 2019-11-19 2023-10-27 贵州电网有限责任公司 Spherical water sports device with adjustable center of gravity of floating center
KR20220025754A (en) * 2020-08-11 2022-03-03 지앙수 유니버시티 오브 사이언스 앤드 테크놀로지 Bidirectional positive displacement buoyancy control device and its test device and test method
KR102592350B1 (en) 2020-08-11 2023-10-20 지앙수 유니버시티 오브 사이언스 앤드 테크놀로지 Two-way positive displacement buoyancy control device and its test device and test method
CN113059968A (en) * 2021-04-01 2021-07-02 宿正国 Small-size amphibious exploration robot of sea and land
CN113581431A (en) * 2021-08-30 2021-11-02 喻昕蕾 Floating and diving regulator for regulating gravity center and specific gravity and underwater smart roaming vehicle
CN113581431B (en) * 2021-08-30 2024-05-24 上海水琛科技服务有限公司 Floating and diving regulator for regulating gravity center and specific gravity and underwater smart roaming craft
CN114506431A (en) * 2022-02-17 2022-05-17 江苏科技大学 Under-actuated buoyancy adjusting device and adjusting method thereof
CN115092367A (en) * 2022-04-24 2022-09-23 西北工业大学 Small-size AUV's buoyancy adjusting device

Similar Documents

Publication Publication Date Title
JP2008120316A (en) Buoyancy adjusting device, underwater sailing body, and buoyancy adjusting method
Lu et al. Design, fabrication, and characterization of a multimodal hybrid aerial underwater vehicle
JP6527570B2 (en) Unmanned aerial vehicle, control system and method thereof
CN105346695B (en) A kind of quadrotor Minitype underground aircraft
JP5487289B2 (en) Dive vehicle
CN107600398B (en) Unmanned plane, unmanned aerial vehicle control system and unmanned aerial vehicle (UAV) control method
CN102862667B (en) Mixed type underwater navigation detector
US9682755B2 (en) Underwater vehicles configured to perform vertical profiling and diagonal profiling, and corresponding methods of operation
US20180015991A1 (en) Gliding robotic fish navigation and propulsion
JP6523568B2 (en) Underwater drone
CN109367738B (en) Underwater autonomous operation robot and operation method thereof
JP2009512591A5 (en)
JP2008120304A (en) Underwater sailing body and moving method for underwater sailing body
WO2014152068A1 (en) Autonomous sailing vessel
CN103612728A (en) Underwater three-dimensional detection gliding robot
CN105059505A (en) Disc-shaped underwater glider
US20090095208A1 (en) Water drift compensation method and device
CN110696574A (en) Rotor wing air-sea amphibious robot capable of switching sailing postures
CN114475989A (en) Ocean cluster observation method
CN114655404A (en) Small-scale observation system in ocean
JP2006248477A (en) Navigation controlling method of underwater vehicle, and underwater vehicle
US20120186507A1 (en) Towable buoy
KR102102804B1 (en) Actuators mounted docking station for docking of unmanned underwater vehicle
Liu et al. Design and preliminary evaluation of a biomimetic underwater robot with undulating fin propulsion
Pyo et al. Development of AUV (MI) for strong ocean current and zero-visibility condition

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100202