JP2008117982A - Mounting device, plasma processing device, and plasma processing method - Google Patents

Mounting device, plasma processing device, and plasma processing method Download PDF

Info

Publication number
JP2008117982A
JP2008117982A JP2006300923A JP2006300923A JP2008117982A JP 2008117982 A JP2008117982 A JP 2008117982A JP 2006300923 A JP2006300923 A JP 2006300923A JP 2006300923 A JP2006300923 A JP 2006300923A JP 2008117982 A JP2008117982 A JP 2008117982A
Authority
JP
Japan
Prior art keywords
plasma
layer
electrostatic chuck
mounting
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006300923A
Other languages
Japanese (ja)
Other versions
JP4992389B2 (en
JP2008117982A5 (en
Inventor
Hiroharu Ito
弘治 伊藤
Kenichi Kato
健一 加藤
Takehiro Ueda
雄大 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2006300923A priority Critical patent/JP4992389B2/en
Priority to CNB200710168038XA priority patent/CN100543960C/en
Priority to US11/934,313 priority patent/US20080106842A1/en
Priority to KR1020070111908A priority patent/KR100964040B1/en
Priority to TW096141619A priority patent/TWI440124B/en
Publication of JP2008117982A publication Critical patent/JP2008117982A/en
Publication of JP2008117982A5 publication Critical patent/JP2008117982A5/ja
Application granted granted Critical
Publication of JP4992389B2 publication Critical patent/JP4992389B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32853Hygiene
    • H01J37/32862In situ cleaning of vessels and/or internal parts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mounting device in which there is no fear of causing any contamination of a heavy metal to a processed body and an electrostatic chuck doesn't cause any dielectric breakdown for a long period of time. <P>SOLUTION: The mounting device consists of a yttrium oxide frame spraying layer with a thickness of 200 to 280 μm in which an electrostatic chuck layer which is an insulating layer at a front surface side of an electrode layer is formed by a plasma frame spray, and has such a configuration that a front surface of the mounting device is formed to a surface roughness depending on a particle size of yttrium oxide by which a frame spraying is carried out. By making such a configuration, a durability to a plasma increases, and moreover there is no fear of causing any contamination of the heavy metal. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体ウエハ等の被処理体を静電吸着する静電チャック層を備えた載置装置、この載置装置を備えたプラズマ処理装置及びプラズマ処理方法に関する。   The present invention relates to a mounting apparatus including an electrostatic chuck layer that electrostatically attracts an object to be processed such as a semiconductor wafer, a plasma processing apparatus including the mounting apparatus, and a plasma processing method.

エッチングやCVD(Chemical Vapor Deposition)等のプラズマ処理を行うプラズマ処理装置に用いられる載置装置は、基板を載置装置に保持するための手段としてバキュームチャックを用いることができないことから一般的に静電チャックが使用されている。   Since a mounting apparatus used in a plasma processing apparatus that performs plasma processing such as etching or CVD (Chemical Vapor Deposition) cannot use a vacuum chuck as a means for holding the substrate on the mounting apparatus, it is generally static. An electric chuck is used.

静電チャックは載置体の表面部にシート状に設けられ、絶縁層内に箔状の電極を埋設すると共に、電極に例えば直流電圧を印加することで発生する静電力により基板が静電チャックの表面に吸着される機能を持っている。   The electrostatic chuck is provided in the form of a sheet on the surface of the mounting body, and the substrate is electrostatically chucked by an electrostatic force generated by, for example, applying a DC voltage to the electrode while embedding a foil-like electrode in the insulating layer. It has a function to be adsorbed on the surface of.

載置装置に載置されている基板に対して真空処理例えばプラズマ処理を行う時には、基板の裏面と静電チャックとの間に温調用のガス(バックサイドガス)を供給し、プラズマから基板に入熱される熱を、当該ガスを介して載置体側に放熱するようにして基板の温度を所定の温度に維持するようにしている。   When vacuum processing such as plasma processing is performed on the substrate placed on the mounting device, a temperature control gas (backside gas) is supplied between the back surface of the substrate and the electrostatic chuck, and the plasma is applied to the substrate. The heat input is radiated to the mounting body side through the gas so that the temperature of the substrate is maintained at a predetermined temperature.

ところで、一の基板のプラズマ処理が終了して次の基板のプラズマ処理が行われるまでの間において、プラズマ処理装置内に浮遊している僅かの反応生成物が載置装置の表面に付着する。このため例えば平行平板型のプラズマ処理装置においては、載置装置の上に基板を置かずに、クリーニングガスより得たプラズマにより載置装置の表面をクリーニングすることが行われている。その際、載置装置(下部電極)を電気的に浮遊状態にすることで、クリーニングガスから電離したイオンによる静電チャック表面への衝撃力を緩和し、当該表面の面粗度の悪化を抑えることも知られている(特許文献1)。   By the way, a slight reaction product floating in the plasma processing apparatus adheres to the surface of the mounting apparatus until the plasma processing of one substrate is completed and the plasma processing of the next substrate is performed. For this reason, for example, in a parallel plate type plasma processing apparatus, the surface of the mounting apparatus is cleaned with plasma obtained from a cleaning gas without placing a substrate on the mounting apparatus. At that time, by placing the mounting device (lower electrode) in an electrically floating state, the impact force on the surface of the electrostatic chuck caused by ions ionized from the cleaning gas is alleviated, and deterioration of the surface roughness of the surface is suppressed. This is also known (Patent Document 1).

しかしながら、従来の静電チャックを構成する絶縁層はAl2O3溶射膜を用いているため、静電チャック上に基板を置かずに(いわゆるウエハレス)クリーニングを行うと、Al2O3溶射膜がプラズマによりダメージを受けて、プラズマ処理装置内にアルミニウム(Al)粒子が飛散し、当該処理装置内がAlで汚染され、このAlがウエハ上に転写されて重金属汚染を引き起こすおそれがある。   However, since the insulating layer constituting the conventional electrostatic chuck uses an Al2O3 sprayed film, if the substrate is not placed on the electrostatic chuck (so-called waferless), the Al2O3 sprayed film is damaged by the plasma. Then, aluminum (Al) particles are scattered in the plasma processing apparatus, the inside of the processing apparatus is contaminated with Al, and this Al may be transferred onto the wafer to cause heavy metal contamination.

一方、特許文献2には、静電チャックを構成する絶縁膜としてY2O3溶射膜を用い、その膜厚を10μm〜100μmとすることが記載されている。   On the other hand, Patent Document 2 describes that a Y2O3 sprayed film is used as an insulating film constituting an electrostatic chuck and the film thickness is set to 10 [mu] m to 100 [mu] m.

ところで、静電チャックには基板と静電チャック表面との間に発生する静電力によって基板を吸着するジャンセン・ラーベック型(以下「JR型」という)と、基板と絶縁層内の電極との間に発生する静電力によって基板を吸着するクーロン型と、の2つのタイプがある。クーロン型の静電チャックでは電極に流れる電流値が小さく吸着力が安定しているが、電極に印加される電圧は2.5kV〜4.0kVもの高電圧である。そして既述のように静電チャックの表面に対してプラズマクリーニングを行うと(ウエハレスクリーニングを行うと)、溶射膜内のボイドやパーティクルの影響を受けて静電チャック内(溶射膜内)にピンホールや膜厚が局部的に薄くなるところが発生しやすい。   By the way, the electrostatic chuck has a Jansen-Rahbek type (hereinafter referred to as “JR type”) that attracts the substrate by electrostatic force generated between the substrate and the surface of the electrostatic chuck, and between the substrate and the electrode in the insulating layer. There are two types: a coulomb type that adsorbs a substrate by an electrostatic force generated in the substrate. In the coulomb-type electrostatic chuck, the value of current flowing through the electrode is small and the attractive force is stable, but the voltage applied to the electrode is as high as 2.5 kV to 4.0 kV. As described above, when the surface of the electrostatic chuck is plasma cleaned (wafer rescreening), it is affected by voids and particles in the sprayed film and is placed in the electrostatic chuck (in the sprayed film). Pinholes and places where the film thickness is locally thin are likely to occur.

従って、Y2O3溶射膜の膜厚が10μm〜100μmの場合には、ウエハレスクリーニングを行うプロセスが含まれると、薄い膜厚の中にピンホールが存在し、また極端に薄くなる部位が発生するので、クーロン型の静電チャックにおいて高電圧が印加されると短期間で絶縁破壊を起こしてしまう。また静電チャックの表面に対するプラズマによるクリーニングの回数を重ねると当該表面が荒れてくるため、その結果、基板を載置した際に、基板裏面と載置装置表面との間からバックサイドガスのリーク量が多くなり、温度分布の均一性が悪化したり、経時的に温度分布が変化してしまうという問題がある。これらの点については、特許文献2には何ら記載されていない。   Therefore, if the Y2O3 sprayed film has a thickness of 10 μm to 100 μm, pinholes exist in the thin film thickness and a part that becomes extremely thin is generated if the process of wafer rescreening is included. When a high voltage is applied to the coulomb electrostatic chuck, dielectric breakdown occurs in a short period of time. In addition, if the number of times of cleaning with the plasma on the surface of the electrostatic chuck is repeated, the surface becomes rough. As a result, when the substrate is placed, backside gas leaks from between the substrate back surface and the placement device surface. There is a problem that the amount increases, the uniformity of temperature distribution deteriorates, and the temperature distribution changes over time. These points are not described in Patent Document 2.

特開2006−019626号公報(段落0040〜0047、図2)JP 2006-019626 A (paragraphs 0040-0047, FIG. 2) 特開2004−349612号公報(段落0041〜段落0042、段落0052、図1)JP 2004-349612 A (paragraph 0041 to paragraph 0042, paragraph 0052, FIG. 1)

本発明はこのような事情に鑑みてなされたものであり、その目的は、被処理体に対する重金属汚染のおそれがなく、しかも長期に亘って静電チャックが絶縁破壊を起こさない載置装置を提供することにある。また他の目的は、この載置装置を備えたプラズマ処理装置及びプラズマ処理方法を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a mounting device that does not cause heavy metal contamination of the object to be processed and that does not cause dielectric breakdown of the electrostatic chuck over a long period of time. There is to do. Another object is to provide a plasma processing apparatus and a plasma processing method provided with the mounting apparatus.

本発明は、被処理体を載置するための載置体と、この載置体上に設けられ、絶縁層に埋設された電極に電圧印加することにより電極層と被処理体との間でクーロン力を生じさせて絶縁層の表面に被処理体を静電吸着する静電チャックと、を備えた載置装置において、
前記電極層の表面側の絶縁層である静電チャック層はプラズマ溶射により形成された、厚さが200μm〜280μmの酸化イットリウム(Y2O3)溶射層からなり、表面が、溶射される酸化イットリウムの粒径に依存した表面粗度に形成されたことを特徴とする。
The present invention provides a mounting body for mounting a processing object, and a voltage applied to an electrode embedded on the mounting body and embedded in an insulating layer, so that the electrode layer and the processing object An electrostatic chuck that electrostatically attracts the object to be processed to the surface of the insulating layer by generating a Coulomb force,
The electrostatic chuck layer, which is an insulating layer on the surface side of the electrode layer, is formed of plasma sprayed yttrium oxide (Y 2 O 3) spray layer having a thickness of 200 μm to 280 μm. The surface roughness depends on the diameter.

上述した載置装置において、前記静電チャック層の平均表面粗度は例えば0.6μm〜0.8μmであることが好ましい。また上述した載置装置では、静電チャック層の表面が被処理体を置かずにプラズマによりクリーニングされることになる。さらに前記電極層には例えば2.5kV以上の電圧が印加されることになる。   In the mounting apparatus described above, the average surface roughness of the electrostatic chuck layer is preferably, for example, 0.6 μm to 0.8 μm. In the mounting apparatus described above, the surface of the electrostatic chuck layer is cleaned by plasma without placing the object to be processed. Further, for example, a voltage of 2.5 kV or more is applied to the electrode layer.

また本発明のプラズマ処理装置は、気密な処理容器と、この処理容器内に設けられ、上述した載置装置と、前記処理容器内を真空排気する手段と、前記処理容器内にプラズマを発生させて被処理体に対してプラズマ処理を行うための手段と、を備えたことを特徴する。   In addition, the plasma processing apparatus of the present invention is provided with an airtight processing container, the mounting apparatus provided in the processing container, means for evacuating the processing container, and generating plasma in the processing container. And means for performing plasma processing on the object to be processed.

上述したプラズマ処理装置は、前記載置装置の上に被処理体を置かない状態でプラズマにより静電チャック層の表面をクリーニングする処理を行うように構成されている。   The plasma processing apparatus described above is configured to perform a process of cleaning the surface of the electrostatic chuck layer with plasma without placing an object to be processed on the placing apparatus.

また本発明のプラズマ処理方法は、上述した載置装置に被処理体を静電吸着させて当該被処理体に対してプラズマ処理を行う工程と、被処理体を載置装置の上から搬出した後、静電チャック層の表面をプラズマによりクリーニングする工程と、を含むことを特徴とする。   The plasma processing method of the present invention includes a step of electrostatically adsorbing an object to be processed on the mounting apparatus described above to perform plasma processing on the object to be processed, and an object to be processed is carried out of the mounting apparatus. And a step of cleaning the surface of the electrostatic chuck layer with plasma.

本発明の載置装置は、静電チャック層をY2O3(酸化イットリウム:イットリア)溶射層により構成しているため、プラズマに対する耐久性が高くなり、また重金属汚染を引き起こすおそれがない。また、上記静電チャック層の厚さを200μm〜280μmに設定しているので、高電圧を電極層に印加しても、当該静電チャック層が絶縁破壊を起こすおそれがなく、従ってクーロン型の静電チャックに適用できる。特に被処理体を載置せずに静電チャック層の表面をプラズマクリーニングする場合にも、耐プラズマ性が大きいことから静電チャック層内にピンホールや膜厚の局所的な減少が起こりにくく、膜厚を上述のように設定したことと相俟って長期間絶縁破壊が起こるおそれがない。   In the mounting apparatus of the present invention, since the electrostatic chuck layer is composed of a Y2O3 (yttrium oxide: yttria) sprayed layer, durability against plasma is increased and there is no possibility of causing heavy metal contamination. In addition, since the thickness of the electrostatic chuck layer is set to 200 μm to 280 μm, there is no risk of dielectric breakdown of the electrostatic chuck layer even when a high voltage is applied to the electrode layer. Applicable to electrostatic chuck. In particular, even when the surface of the electrostatic chuck layer is plasma-cleaned without placing an object to be processed, because of the high plasma resistance, pinholes and local reduction in film thickness are unlikely to occur in the electrostatic chuck layer. In combination with setting the film thickness as described above, there is no possibility that dielectric breakdown will occur for a long time.

また溶射膜は溶射される酸化イットリウムの粒径に表面粗度が依存しているため、表面粗度がプラズマ処理に見合った溶射膜を得ることができる。本発明者はY2O3溶射膜の表面がプラズマに曝されることにより平均表面粗さ(Ra)が0.7μm〜0.8μmであることを把握しており、従って平均表面粗さ(Ra)が0.6μm〜0.8μmとなるようにY2O3溶射膜を形成しておけば、Y2O3溶射膜に対してプラズマクリーニングを繰り返し行っても表面状態の経時変化が抑えられる。その結果、バックサイドガスによる温調効果が安定し、プロセス時の基板の温度が安定する。   Further, since the surface roughness of the sprayed film depends on the particle diameter of the yttrium oxide sprayed, a sprayed film having a surface roughness commensurate with the plasma treatment can be obtained. The present inventor has known that the average surface roughness (Ra) is 0.7 μm to 0.8 μm by exposing the surface of the Y 2 O 3 sprayed film to plasma, and therefore the average surface roughness (Ra) is If the Y2O3 sprayed film is formed to have a thickness of 0.6 [mu] m to 0.8 [mu] m, the surface condition can be prevented from changing over time even if the Y2O3 sprayed film is repeatedly subjected to plasma cleaning. As a result, the temperature adjustment effect by the backside gas is stabilized, and the temperature of the substrate during the process is stabilized.

本発明に係る載置装置をエッチング装置としてのプラズマ処理装置に適用した実施の形態について図1を参照しながら説明する。図1はRIE(Reactive Ion Etching)プラズマ処理装置1の一例を示している。プラズマ処理装置1は、例えば内部が密閉空間となっている真空チャンバーからなる処理容器11と、この処理容器11内の底面中央に配設された載置装置2と、当該載置装置2の上方にこの載置装置2と対向するように設けられた上部電極31とを備えている。   An embodiment in which a mounting apparatus according to the present invention is applied to a plasma processing apparatus as an etching apparatus will be described with reference to FIG. FIG. 1 shows an example of a RIE (Reactive Ion Etching) plasma processing apparatus 1. The plasma processing apparatus 1 includes, for example, a processing container 11 formed of a vacuum chamber whose inside is a sealed space, a mounting apparatus 2 disposed in the center of the bottom surface in the processing container 11, and an upper side of the mounting apparatus 2. And an upper electrode 31 provided so as to face the mounting device 2.

処理容器11は小径の円筒状の上部室11aと、大径の円筒状の下部室11bとからなる。上部室11aと下部室11bとは互に連通しており、処理容器11全体は気密に構成されている。上部室11a内には、載置装置2や上部電極31等が格納され、下部室11b内には載置装置2を支えると共に、配管等を収めた支持ケース17が格納されている。下部室11b底面の排気口12には、排気管13を介して排気装置14が接続されている。この排気装置14には図示しない圧力調整部が接続されており、この圧力調整部は図示しない制御部からの信号によって処理容器11内全体を真空排気して所望の真空度に維持するように構成されている。一方、上部室11aの側面には被処理体であるウエハWの搬入出口15が設けられており、この搬入出口15はゲートバルブ16によって開閉可能となっている。また処理容器11は、アルミニウム等の導電性の部材から構成され、接地されている。   The processing container 11 includes a small-diameter cylindrical upper chamber 11a and a large-diameter cylindrical lower chamber 11b. The upper chamber 11a and the lower chamber 11b communicate with each other, and the entire processing container 11 is configured to be airtight. In the upper chamber 11a, the mounting device 2, the upper electrode 31, and the like are stored. In the lower chamber 11b, the mounting device 2 is supported and a support case 17 in which piping and the like are stored is stored. An exhaust device 14 is connected to the exhaust port 12 on the bottom surface of the lower chamber 11b through an exhaust pipe 13. A pressure adjusting unit (not shown) is connected to the exhaust device 14, and the pressure adjusting unit is configured to evacuate the entire processing container 11 by a signal from a control unit (not shown) to maintain a desired degree of vacuum. Has been. On the other hand, a loading / unloading port 15 for a wafer W, which is an object to be processed, is provided on the side surface of the upper chamber 11a. The loading / unloading port 15 can be opened and closed by a gate valve 16. Moreover, the processing container 11 is comprised from electroconductive members, such as aluminum, and is earth | grounded.

前記上部電極31は中空状に形成され、下面に処理容器11内へ処理ガス及びクリーニングガスを分散供給するための多数のガス供給孔32が例えば均等に分散して形成されていることによりガスシャワーヘッドを構成している。上部電極31の上面中央にはガス導入管33が設けられ、このガス導入管33は処理容器11の上面中央を貫通して上流で処理ガス供給源35に接続されている。この処理ガス供給源35は、図示しない処理ガス供給量の制御機構を有しており、プラズマ処理装置1に対して処理ガスの供給量の給断及び増減の制御を行うことができるようになっている。また、上部電極31が上部室11aの壁部に固定されることによって、上部電極31と処理容器11との間には導電路が形成されている。   The upper electrode 31 is formed in a hollow shape, and a plurality of gas supply holes 32 for supplying a processing gas and a cleaning gas into the processing container 11 are formed on the lower surface, for example, by being evenly distributed. It constitutes the head. A gas introduction pipe 33 is provided at the center of the upper surface of the upper electrode 31, and the gas introduction pipe 33 passes through the center of the upper surface of the processing container 11 and is connected upstream to the processing gas supply source 35. The processing gas supply source 35 has a processing gas supply amount control mechanism (not shown), and can control supply / disconnection and increase / decrease of the processing gas supply amount to the plasma processing apparatus 1. ing. Further, a conductive path is formed between the upper electrode 31 and the processing container 11 by fixing the upper electrode 31 to the wall portion of the upper chamber 11a.

さらに、上部室11aの周囲には、搬入出口15の上下に二つのマルチポールリング磁石47a、47bが配置されている。マルチポールリング磁石47a、47bは、複数の異方性セグメント柱状磁石がリング状の磁性体のケーシングに取り付けられており、隣接する複数のセグメント柱状磁石同士の向きが逆向きになるように配置されている。これにより磁力線が隣接するセグメント柱状磁石間に形成され、上部電極31と載置体21(下部電極)との間の処理空間の周辺部に磁場が形成され、処理空間へプラズマを閉じ込めることができる。なお、マルチポールリング磁石47a、47bを有さない装置構成としてもよい。   Further, around the upper chamber 11a, two multipole ring magnets 47a and 47b are arranged above and below the loading / unloading port 15. The multi-pole ring magnets 47a and 47b are arranged such that a plurality of anisotropic segment columnar magnets are attached to a casing of a ring-shaped magnetic body, and a plurality of adjacent segment columnar magnets are oriented in opposite directions. ing. Thereby, magnetic field lines are formed between adjacent segment columnar magnets, a magnetic field is formed in the peripheral portion of the processing space between the upper electrode 31 and the mounting body 21 (lower electrode), and the plasma can be confined in the processing space. . In addition, it is good also as an apparatus structure which does not have the multipole ring magnets 47a and 47b.

次に載置装置2について説明する。載置装置2は、図1及び図2に示すように例えばアルミニウムにより上面の外周縁部がその中央部より低く形成された下部電極となる載置体21と、この載置体21の上面に形成された後述するシート状の静電チャック4と、この静電チャック4を囲むように配置されたフォーカスリング28とを備えている。前記載置体21は支持ケース17上に設置された支持台21aに固定されている。前記フォーカスリング28はウエハWの周縁の外方の領域のプラズマ状態を調整する役割、例えばウエハWよりもプラズマを広げ、ウエハ面内のエッチング速度の均一性を向上させる役割を果たす。前記支持台21aの下部外側には載置体21を取り囲むようにバッフル板18が設けられている。バッフル板18は、上部室11a内の処理ガスをバッフル板18と上部室11a壁部との間に形成された隙間を介して下部室11bへ通流させることにより、処理ガスの流れを整える整流板としての役割を果たす。   Next, the mounting device 2 will be described. As shown in FIGS. 1 and 2, the mounting device 2 includes a mounting body 21 that serves as a lower electrode in which the outer peripheral edge of the upper surface is formed lower than its central portion, for example, by aluminum, and the upper surface of the mounting body 21. A sheet-like electrostatic chuck 4 which will be described later is formed, and a focus ring 28 is disposed so as to surround the electrostatic chuck 4. The mounting body 21 is fixed to a support base 21 a installed on the support case 17. The focus ring 28 serves to adjust the plasma state in the outer region of the periphery of the wafer W, for example, to spread the plasma more than the wafer W and to improve the uniformity of the etching rate within the wafer surface. A baffle plate 18 is provided outside the support base 21a so as to surround the mounting body 21. The baffle plate 18 rectifies the flow of the processing gas by allowing the processing gas in the upper chamber 11a to flow to the lower chamber 11b through a gap formed between the baffle plate 18 and the wall of the upper chamber 11a. Play a role as a board.

また、図2に示すように載置体21の外周面はY2O3溶射によって形成されたY2O3溶射層23によって被覆されている。このY2O3溶射層23は静電チャック4と一体となっている。   As shown in FIG. 2, the outer peripheral surface of the mounting body 21 is covered with a Y2O3 sprayed layer 23 formed by Y2O3 spraying. This Y 2 O 3 sprayed layer 23 is integrated with the electrostatic chuck 4.

上記静電チャック4は、載置体21の表面に例えばアルミナ溶射によって形成されたAl2O3溶射層41と、タングステン(W)溶射によって形成されたW溶射層からなる電極層42と、Y2O3溶射によって形成されたY2O3溶射層43と、を下方からこの順番に積層したシート構造となっている。この静電チャック4の製造方法の詳細については後述する。また、前記静電チャック4の電極層42はスイッチ45を介して電源部である高圧直流電源46に接続されており、この高圧直流電源46から電極層42に例えば高圧直流電圧が印加されると、図3に示すようにウエハWと電極層42間で生じるクーロン力(静電分極力)によって、載置面である静電チャック4上面にウエハWが静電吸着されるようになっている。   The electrostatic chuck 4 is formed on the surface of the mounting body 21 by, for example, an Al2O3 sprayed layer 41 formed by alumina spraying, an electrode layer 42 made of a W sprayed layer formed by tungsten (W) spraying, and Y2O3 spraying. The Y2O3 sprayed layer 43 is laminated in this order from below. Details of the method of manufacturing the electrostatic chuck 4 will be described later. The electrode layer 42 of the electrostatic chuck 4 is connected to a high-voltage DC power supply 46 that is a power supply unit via a switch 45. When a high-voltage DC voltage is applied to the electrode layer 42 from the high-voltage DC power supply 46, for example. As shown in FIG. 3, the wafer W is electrostatically attracted to the upper surface of the electrostatic chuck 4 as a mounting surface by a Coulomb force (electrostatic polarization force) generated between the wafer W and the electrode layer 42. .

また、前記載置体21には、例えば周波数100MHzの高周波を供給する第1の高周波電源41aと、第1の高周波電源41aよりも周波数の低い例えば3.2MHzの高周波を供給する第2の高周波電源41bと、が夫々整合器42a、42bを介して接続されている。第1の高周波電源41aより供給される高周波は、後述する処理ガスをプラズマ化する役割を果たし、第2の高周波電源41bより供給される高周波は、ウエハWにバイアス電力を印加することでプラズマ中のイオンをウエハW表面に引き込む役割を果たす。さらに、前記載置体21内には冷媒を通流させるための冷媒流路26が形成されており、冷媒がこの冷媒流路26を流れることで載置体21が冷却され、載置面上に載置されたウエハWが所望の温度に冷却されるように構成されている。また図1中の27は載置体21、静電チャック4内を通ってウエハWの裏面側に伝熱媒体である例えばHeガス(バックサイドガス)を供給する伝熱媒体供給路である。この伝熱媒体供給路27は、プラズマからウエハWに入熱される熱を載置体21側へ伝熱してウエハWの温度を設定温度に維持する役割を持っている。なお、載置体21の内部には、図示しない搬送アームに対してウエハWの受け渡しを行うことが可能な昇降ピンが設けられている。   In addition, the first high frequency power supply 41a that supplies a high frequency of, for example, 100 MHz, and a second high frequency that supplies a high frequency of, for example, 3.2 MHz that is lower than the first high frequency power supply 41a are included in the mounting body 21. A power source 41b is connected via matching units 42a and 42b, respectively. The high frequency supplied from the first high frequency power supply 41a plays a role of converting a processing gas, which will be described later, into plasma, and the high frequency supplied from the second high frequency power supply 41b is generated in the plasma by applying bias power to the wafer W. Of ions to the surface of the wafer W. Further, a refrigerant flow path 26 for allowing the refrigerant to flow therethrough is formed in the mounting body 21 described above, and the mounting body 21 is cooled by the refrigerant flowing through the refrigerant flow path 26, and thus on the mounting surface. The wafer W placed on the substrate is cooled to a desired temperature. 1 is a heat transfer medium supply path for supplying, for example, He gas (backside gas), which is a heat transfer medium, to the back side of the wafer W through the mounting body 21 and the electrostatic chuck 4. The heat transfer medium supply path 27 has a role of maintaining the temperature of the wafer W at a set temperature by transferring heat input from the plasma to the wafer W to the mounting body 21 side. In addition, raising / lowering pins capable of delivering the wafer W to a transfer arm (not shown) are provided inside the mounting body 21.

次に図4及び図5を参照しながら上記載置装置2の製造方法について説明する。先ず、冷媒流路26及び伝熱媒体供給路27(図示せず)が形成された載置体21を準備する。この載置体21を例えば150℃まで加熱した状態で、載置体21上面の低い外周縁部をマスキングした後、アルミナを溶射し、例えば450μmのAl2O3溶射層41を形成する。その後、Al2O3溶射層41を層厚が例えば300μmになるまで研磨する(図4(a))。
次いで、Al2O3溶射層41の電極層42を形成する部分以外をマスキングした後、タングステンを溶射し、例えば50μmの電極層42を形成する(図4(b))。引き続き、載置体21を例えば150℃まで加熱した状態でプラズマ溶射法により所定の粒径例えば10μm〜20μmを有する酸化イットリウムをプラズマ溶射し、例えば450μmのY2O3溶射層43を形成する。このプラズマ溶射法とは溶射材料をプラズマ流によって加速して対象物の表面にコーティングするものである。その後、Y2O3溶射層43を例えば200μm〜280μm、好ましくは250μmになるまで研削する(図4(c))。この研削方法は、例えば載置体21を回転テーブル上に固定し、回転テーブルを回転させると共に、ダイヤモンド砥粒が付いた回転砥石を回転させながら載置体21に対して送り移動させることで、Y2O3溶射層43を研削する。ここでY2O3溶射層43の層厚の下限値を200μm以下とした理由は、クーロン型の静電チャックにおいて長期に亘って絶縁破壊が起こらないようにするためである。例えばクーロン型の静電チャックでは運用時に4.0kVの電圧を印加するものもあるが、この場合において、ウエハレスクリーニングを繰り返し行っても絶縁破壊が長期に亘って起こらないようにするためである。また電極層42に2.5kVの電圧を印加する仕様の静電チャックでは出荷時にマージンをみて例えば4.0kV程度の電圧を印加して試験を行うが、4.0kVもの高電圧を印加しても後述の耐圧試験のデータから分かるように絶縁破壊が起こらないようにするためである。
Next, a method for manufacturing the placement device 2 will be described with reference to FIGS. First, the mounting body 21 in which the refrigerant flow path 26 and the heat transfer medium supply path 27 (not shown) are formed is prepared. In a state where the mounting body 21 is heated to, for example, 150 ° C., the lower peripheral edge portion on the upper surface of the mounting body 21 is masked, and then alumina is sprayed to form an Al 2 O 3 sprayed layer 41 of 450 μm, for example. Thereafter, the Al 2 O 3 sprayed layer 41 is polished until the layer thickness becomes, for example, 300 μm (FIG. 4A).
Next, after masking the portion other than the portion where the electrode layer 42 of the Al2O3 sprayed layer 41 is formed, tungsten is sprayed to form, for example, a 50 μm electrode layer 42 (FIG. 4B). Subsequently, yttrium oxide having a predetermined particle diameter of, for example, 10 μm to 20 μm is plasma sprayed by a plasma spraying method while the mounting body 21 is heated to 150 ° C., for example, to form a Y 2 O 3 sprayed layer 43 of 450 μm, for example. In this plasma spraying method, a sprayed material is accelerated by a plasma flow to coat the surface of an object. Thereafter, the Y2O3 sprayed layer 43 is ground to, for example, 200 μm to 280 μm, preferably 250 μm (FIG. 4C). In this grinding method, for example, the mounting body 21 is fixed on a rotating table, the rotating table is rotated, and the rotating grindstone with diamond abrasive grains is rotated and fed to the mounting body 21. The Y2O3 sprayed layer 43 is ground. The reason why the lower limit value of the layer thickness of the Y2O3 sprayed layer 43 is set to 200 [mu] m or less is to prevent dielectric breakdown from occurring for a long time in a Coulomb type electrostatic chuck. For example, some Coulomb type electrostatic chucks apply a voltage of 4.0 kV during operation. In this case, even if wafer rescreening is repeated, dielectric breakdown does not occur for a long time. . In addition, the electrostatic chuck of the specification that applies a voltage of 2.5 kV to the electrode layer 42 is tested by applying a voltage of, for example, about 4.0 kV with a margin at the time of shipment, but a high voltage of 4.0 kV is applied. This is also to prevent dielectric breakdown from occurring, as can be seen from the data of the pressure test described later.

またプラズマ溶射により形成されたY2O3溶射層43の表面は酸化イットリウムの粒径に依存する表面粗度に形成されている。具体的にはY2O3溶射層43の平均表面粗さ(Ra)は例えば0.6μm〜0.8μmである。本発明者はY2O3溶射層43の表面がプラズマに曝されることにより平均表面粗さ(Ra)が0.7μm〜0.8μmであることを把握しており、従って平均表面粗さ(Ra)が0.6μm〜0.8μmとなるようにY2O3溶射層43を形成しておけば、Y2O3溶射層43に対してプラズマクリーニングを繰り返し行っても表面状態の経時変化が抑えられる。このような一連の操作によって図4(c)に示すようにAl2O3溶射層41とY2O3溶射層43との間に電極層42が介在する静電チャック4が載置体21と一体化した状態で形成される。   The surface of the Y2O3 sprayed layer 43 formed by plasma spraying has a surface roughness that depends on the particle size of yttrium oxide. Specifically, the average surface roughness (Ra) of the Y 2 O 3 sprayed layer 43 is, for example, 0.6 μm to 0.8 μm. The present inventor knows that the average surface roughness (Ra) is 0.7 μm to 0.8 μm by exposing the surface of the Y 2 O 3 sprayed layer 43 to plasma, and therefore the average surface roughness (Ra). If the Y2O3 sprayed layer 43 is formed so that the thickness becomes 0.6 [mu] m to 0.8 [mu] m, even if the Y2O3 sprayed layer 43 is repeatedly subjected to plasma cleaning, the change of the surface state with time can be suppressed. With such a series of operations, the electrostatic chuck 4 in which the electrode layer 42 is interposed between the Al2O3 sprayed layer 41 and the Y2O3 sprayed layer 43 is integrated with the mounting body 21 as shown in FIG. It is formed.

次いで、静電チャック4の上面部をマスキングした後、載置体21を例えば150℃まで加熱した状態でプラズマ溶射法により載置体21の外周面に酸化イットリウムをプラズマ溶射し、例えば400μmのY2O3溶射層23を形成する(図5(d))。この操作によって図5(d)に示すようにAl2O3溶射層41及びY2O3溶射層43とY2O3溶射層23とが一体化する。その後、静電チャック4からマスク材を除去する。
以上の各装置構成により、プラズマ処理装置1の処理容器11(上部室11a)内には、載置体(下部電極)21と上部電極31とからなる一対の平行平板電極が形成される。
Next, after masking the upper surface portion of the electrostatic chuck 4, yttrium oxide is plasma sprayed on the outer peripheral surface of the mounting body 21 by plasma spraying in a state where the mounting body 21 is heated to 150 ° C., for example, 400 μm of Y 2 O 3. The sprayed layer 23 is formed (FIG. 5D). By this operation, as shown in FIG. 5 (d), the Al2O3 sprayed layer 41, the Y2O3 sprayed layer 43 and the Y2O3 sprayed layer 23 are integrated. Thereafter, the mask material is removed from the electrostatic chuck 4.
With the above apparatus configuration, a pair of parallel plate electrodes including a mounting body (lower electrode) 21 and an upper electrode 31 are formed in the processing container 11 (upper chamber 11a) of the plasma processing apparatus 1.

次に本発明の実施の形態の作用について説明する。先ずゲートバルブ16を開き、搬入出口15を介して図示しない搬送アームにより、ウエハWが処理容器11内の、載置装置2上に載置される。そして搬送アームが退出してゲートバルブ16を閉じた後、排気装置14によって処理容器11内を減圧し、処理容器11内の圧力が所定の圧力、例えば26.7Pa(200mTorr)以下にする。しかる後、ガスシャワーヘッドのガス供給孔32から処理ガス、例えばC4F8ガスを所定の流量で載置装置2の上方側の空間に供給する。このとき静電チャック4の電極層42に高圧直流電源46から例えば2.5kV〜4.0kV例えば2.5kVの高圧直流電圧が印加され、図3に示すようにウエハWと電極層42間で生じるクーロン力(静電分極力)によって、載置面である静電チャック4上面にウエハWが静電吸着される。   Next, the operation of the embodiment of the present invention will be described. First, the gate valve 16 is opened, and the wafer W is mounted on the mounting apparatus 2 in the processing container 11 by a transfer arm (not shown) through the loading / unloading port 15. Then, after the transfer arm is retracted and the gate valve 16 is closed, the inside of the processing container 11 is depressurized by the exhaust device 14, and the pressure in the processing container 11 is set to a predetermined pressure, for example, 26.7 Pa (200 mTorr) or less. Thereafter, a processing gas, for example, C4F8 gas is supplied from the gas supply hole 32 of the gas shower head to the space above the mounting apparatus 2 at a predetermined flow rate. At this time, a high-voltage DC voltage of, for example, 2.5 kV to 4.0 kV, for example, 2.5 kV is applied to the electrode layer 42 of the electrostatic chuck 4 from the high-voltage DC power supply 46, and as shown in FIG. Due to the generated Coulomb force (electrostatic polarization force), the wafer W is electrostatically attracted to the upper surface of the electrostatic chuck 4 which is the mounting surface.

そして第1の高周波電源41aから載置体(下部電極)21に所定の高周波電力を供給する。この高周波は、載置体21から上部電極31を介して処理容器11に流れ、アースに落ち、こうして処理雰囲気に高周波電界が形成される。また上部電極31と載置体21との間にはマルチポールリング磁石47a,47bにより水平磁界が形成されているので、ウエハWが存在する電極間の処理空間には直交電磁界が形成され、これによって生じた電子のドリフトによりマグネトロン放電が形成される。そしてこのマグネトロン放電により処理ガスがプラズマ化し、イオンやラジカルが生成する。しかる後、第2の高周波電源41bから所定の高周波電力を載置体(下部電極)21に印加してセルフバイアスを発生させることで、載置装置2上に載置されたウエハWに対してエッチングが施される。   Then, predetermined high frequency power is supplied from the first high frequency power supply 41 a to the mounting body (lower electrode) 21. This high frequency flows from the mounting body 21 to the processing container 11 via the upper electrode 31 and falls to the ground, thus forming a high frequency electric field in the processing atmosphere. Further, since a horizontal magnetic field is formed between the upper electrode 31 and the mounting body 21 by the multipole ring magnets 47a and 47b, an orthogonal electromagnetic field is formed in the processing space between the electrodes on which the wafer W exists, Magnetron discharge is formed by the drift of electrons generated by this. The magnetron discharge turns the processing gas into plasma, generating ions and radicals. Thereafter, a predetermined high frequency power is applied to the mounting body (lower electrode) 21 from the second high frequency power supply 41b to generate a self-bias, so that the wafer W mounted on the mounting apparatus 2 is applied. Etching is performed.

上記プラズマ処理装置1は、ウエハWにエッチング処理を施したときに反応生成物が処理容器11内の処理雰囲気に浮遊するため、エッチング処理後、処理容器11内からウエハWを搬出する際、ウエハWが置かれていない載置装置2の表面、つまり静電チャック4の表面に反応生成物が付着してしまう。そのため載置装置2に付着した反応生成物を定期的に除去する必要がある。この反応生成物を除去するためのプラズマ処理装置の洗浄方法について説明する。例えば1ロットにおける最後のウエハWのエッチング処理が終了し、処理容器11内からウエハWを搬出した後、ゲートバルブ16を閉じ、排気装置14によって処理容器11内を減圧し、処理容器11内の圧力が所定の圧力、例えば26.7Pa(200mTorr)以下にする。しかる後、ガスシャワーヘッドのガス供給孔32からクリーニングガス、例えば酸素(O2)ガス及びSF6ガスを所定の流量、例えば夫々800sccmで載置装置2の上方側の空間に供給する。
そしてクリーニングガスも上述と同じようにしてプラズマ化する。このとき、第2の高周波電源41bをオフにした状態、つまり載置体(下部電極)21の電気状態をフローティング状態にして、このプラズマにより載置装置2の載置面に堆積した反応生成物を剥離する。剥離した反応生成物(ダスト)は、排気装置14によって処理容器11の外へ排出される。これにより載置装置2の載置面に堆積した反応生成物が除去される。
In the plasma processing apparatus 1, the reaction product floats in the processing atmosphere in the processing container 11 when the wafer W is etched. Therefore, when the wafer W is unloaded from the processing container 11 after the etching processing, The reaction product adheres to the surface of the mounting device 2 where W is not placed, that is, the surface of the electrostatic chuck 4. Therefore, it is necessary to periodically remove the reaction product attached to the mounting device 2. A method of cleaning the plasma processing apparatus for removing this reaction product will be described. For example, after the etching process of the last wafer W in one lot is completed and the wafer W is unloaded from the processing container 11, the gate valve 16 is closed, the inside of the processing container 11 is decompressed by the exhaust device 14, and The pressure is set to a predetermined pressure, for example, 26.7 Pa (200 mTorr) or less. Thereafter, cleaning gas such as oxygen (O2) gas and SF6 gas is supplied from the gas supply hole 32 of the gas shower head to the space above the mounting apparatus 2 at a predetermined flow rate, for example, 800 sccm.
The cleaning gas is also turned into plasma in the same manner as described above. At this time, when the second high frequency power supply 41b is turned off, that is, the electrical state of the mounting body (lower electrode) 21 is in a floating state, the reaction product deposited on the mounting surface of the mounting apparatus 2 by this plasma Peel off. The peeled reaction product (dust) is discharged out of the processing container 11 by the exhaust device 14. Thereby, the reaction product deposited on the mounting surface of the mounting apparatus 2 is removed.

上述の実施の形態によれば、載置装置2は、静電チャック4をY2O3溶射層43により構成しているため、アルミニウム(Al)等の重金属が飛散しない。また、上記Y2O3溶射層43の厚さを200μm〜280μmにしているので、2.5kV以上の高電圧を電極層42に印加しても当該Y2O3溶射層43が絶縁破壊を起こすおそれがない。従ってクーロン型の静電チャックに適用できる。そしてY2O3溶射層43はAl2O3溶射層よりもプラズマに対する耐久性が高いので、載置装置2上にウエハWを置かずにプラズマクリーニングを行っても、静電チャック4内(Y2O3溶射層43内)にピンホールや膜厚が局部的な減少が起こりにくく、その膜厚を上述のように設定したことと相俟って長期に亘って絶縁破壊が起こらない。またY2O3溶射層43の表面はプラズマ処理に見合った表面粗さにあるため、Y2O3溶射層43に対してプラズマクリーニングを繰り返し行っても膜厚の局所的な減少が起こらないのでウエハ汚染は全く無いといってもよい。   According to the above-described embodiment, since the mounting device 2 includes the electrostatic chuck 4 by the Y2O3 sprayed layer 43, heavy metals such as aluminum (Al) are not scattered. Further, since the thickness of the Y2O3 sprayed layer 43 is set to 200 [mu] m to 280 [mu] m, there is no possibility that the Y2O3 sprayed layer 43 causes dielectric breakdown even when a high voltage of 2.5 kV or higher is applied to the electrode layer 42. Therefore, it can be applied to a coulomb type electrostatic chuck. Since the Y2O3 sprayed layer 43 has higher durability against plasma than the Al2O3 sprayed layer, even if plasma cleaning is performed without placing the wafer W on the mounting apparatus 2, the electrostatic chuck 4 (in the Y2O3 sprayed layer 43). In addition, local reduction in pinholes and film thickness is unlikely to occur, and dielectric breakdown does not occur over a long period of time in combination with setting the film thickness as described above. Further, since the surface of the Y2O3 sprayed layer 43 has a surface roughness suitable for the plasma processing, even if the Y2O3 sprayed layer 43 is repeatedly subjected to plasma cleaning, the film thickness does not decrease locally, so there is no wafer contamination. It may be said.

本発明の効果を確認するために行った実験について説明する。
(耐プラズマ性の評価試験)
ウエハW上に、Y2O3溶射膜が表面に形成されているサンプルAとAl2O3溶射膜が表面に形成されているサンプルBとアルミナセラミックプレート(サンプルC)を夫々設置し、このウエハWをプラズマ処理装置の載置台の上に載置して、以下のプロセス条件でサンプルA,B,Cに対してプラズマを照射し、サンプルA,B,Cの消耗量を測定した。その結果を図6に示す。
処理容器内の圧力:5.3Pa(40mTorr)
処理ガス:CF4/Ar/O2=80/160/20sccm
高周波電源:1400W
図6に示すように、サンプルAでは消耗量が1.6μm/hであり、サンプルBでは消耗量が5.5μm/hであり、サンプルCでは消耗量が4.5μm/hであることが分かった。この結果からY2O3溶射膜はAl2O3溶射膜及びアルミナセラミックプレートよりもプラズマに対する耐久性が高いことが分かる。
An experiment conducted for confirming the effect of the present invention will be described.
(Plasma resistance evaluation test)
On the wafer W, a sample A having a Y2O3 sprayed film formed on the surface, a sample B having an Al2O3 sprayed film formed on the surface, and an alumina ceramic plate (sample C) are respectively installed. The samples A, B, and C were irradiated with plasma under the following process conditions, and the consumption amounts of the samples A, B, and C were measured. The result is shown in FIG.
Pressure in processing vessel: 5.3 Pa (40 mTorr)
Process gas: CF4 / Ar / O2 = 80/160/20 sccm
High frequency power supply: 1400W
As shown in FIG. 6, the consumption amount of Sample A is 1.6 μm / h, the consumption amount of Sample B is 5.5 μm / h, and the consumption amount of Sample C is 4.5 μm / h. I understood. From this result, it can be seen that the Y2O3 sprayed film has higher durability against plasma than the Al2O3 sprayed film and the alumina ceramic plate.

(絶縁破壊の評価試験)
Y2O3溶射膜について評価する前に、参考試験としてAl2O3の溶射膜における膜厚と絶縁耐圧との関係を調べた。その実験方法については、絶縁基板の表面に設けられた電極の上にAl2O3の溶射膜を成膜して、その上に電極を設けたサンプルを真空雰囲気に置き、Al2O3の溶射膜がブレークダウン(絶縁破壊)に至る電圧を測定することによって行った。このような試験を溶射膜の膜厚を種々変えて行った結果を図7に示す。この結果から特許文献2に記載されているように10μm〜100μmの膜厚では、4kVの電圧を印加すると絶縁破壊してしまい、クーロン型の静電チャックには到底使用できず、また印加電圧を少し低く設定したとしても、ウエハレスクリーニングを行う運用に対しては適用できないことは明白である。
このような参考試験を踏まえて、Y2O3溶射膜について、膜厚が200μm及び220μmのサンプルに対して同様の試験を行ったところ図8に示す結果が得られた。この結果から例えば印加電圧を4kVに設定したとすると、耐圧のマージンが2倍以上であり、ウエハレスクリーニングが繰り返し行われても、長期に亘って使用できることが分かる。
(Evaluation test for dielectric breakdown)
Before evaluating the Y2O3 sprayed film, as a reference test, the relationship between the film thickness of the Al2O3 sprayed film and the withstand voltage was examined. As for the experimental method, a sprayed film of Al2O3 is formed on the electrode provided on the surface of the insulating substrate, and the sample provided with the electrode is placed in a vacuum atmosphere, and the sprayed film of Al2O3 is broken down ( This was done by measuring the voltage leading to dielectric breakdown. FIG. 7 shows the results of performing such a test while changing the thickness of the sprayed film. From this result, as described in Patent Document 2, with a film thickness of 10 μm to 100 μm, dielectric breakdown occurs when a voltage of 4 kV is applied, and it cannot be used for a Coulomb electrostatic chuck. Even if it is set a little lower, it is obvious that it cannot be applied to the operation of performing wafer rescreening.
Based on such a reference test, a similar test was performed on samples having a film thickness of 200 μm and 220 μm with respect to the Y 2 O 3 sprayed film, and the result shown in FIG. 8 was obtained. From this result, for example, if the applied voltage is set to 4 kV, it can be seen that the withstand voltage margin is twice or more and can be used for a long period of time even if the wafer screening is repeated.

(ウエハ上の汚染評価試験)
A:実施例
図1に示すプラズマ処理装置1において、載置装置2にウエハWを置かずにその表面に対してプラズマクリーニングを以下の条件で行った。
処理容器内の圧力:26.7Pa(200mTorr)
クリーニングガス:O2/SF6=800/800sccm
第1の高周波電源:750W
第2の高周波電源:0W
処理時間:25秒
上述のクリーニングを実施した後、処理容器11内の載置装置2にベアウエハWを載置して、反応容器11内の汚染処理を行った。この汚染処理は汚染処理1〜汚染処理4からなり、この順番に連続して汚染処理を実施している。以下に汚染処理1〜汚染処理4の条件を示す。
(汚染処理1)
処理容器内の圧力:2.6Pa(20mTorr)
処理ガス:CF4/CHF3/He=150/250/400sccm
第1の高周波電源:450W
第2の高周波電源:75W
処理時間:5秒
(汚染処理2)
処理容器内の圧力:1.3Pa(10mTorr)
処理ガス:HBr/O2=330/3sccm
第1の高周波電源:250W
第2の高周波電源:250W
処理時間:10秒
(汚染処理3)
処理容器内の圧力:2.6Pa(20mTorr)
処理ガス:HBr/O2/N2/He=42/8/12/60sccm
第1の高周波電源:0W
第2の高周波電源:250W
処理時間:10秒
(汚染処理4)
処理容器内の圧力:13Pa(100mTorr)
処理ガス:O2=140sccm
第1の高周波電源:750W
第2の高周波電源:0W
処理時間:10秒
上述した汚染処理を行った後、処理容器11の外にベアウエハWを搬出し、ベアウエハW表面に付着している元素の定量分析を行った。
B:比較例
図2に示す載置装置2において、Y2O3溶射層43の代わりにAl2O3溶射層を用いた他は、実施例と同じ条件で静電チャックの表面をクリーニングした。その後、処理容器11内の載置装置2にベアウエハWを載置して、実施例と同じ条件で汚染処理を行い、処理後反応容器内のベアウエハを搬出して、当該ベアウエハW表面に付着している元素の定量分析を行った。
(Contamination evaluation test on wafer)
A: Example In the plasma processing apparatus 1 shown in FIG. 1, plasma cleaning was performed on the surface of the mounting apparatus 2 without placing the wafer W under the following conditions.
Pressure in the processing vessel: 26.7 Pa (200 mTorr)
Cleaning gas: O2 / SF6 = 800 / 800sccm
First high frequency power supply: 750 W
Second high frequency power supply: 0 W
Processing time: 25 seconds After performing the above-mentioned cleaning, the bare wafer W was mounted on the mounting apparatus 2 in the processing container 11, and the contamination process in the reaction container 11 was performed. This contamination processing is composed of contamination treatment 1 to contamination treatment 4, and the contamination treatment is carried out successively in this order. The conditions of contamination treatment 1 to contamination treatment 4 are shown below.
(Contamination treatment 1)
Pressure in processing vessel: 2.6 Pa (20 mTorr)
Process gas: CF4 / CHF3 / He = 150/250/400 sccm
First high frequency power supply: 450 W
Second high frequency power supply: 75 W
Processing time: 5 seconds (contamination processing 2)
Pressure in the processing vessel: 1.3 Pa (10 mTorr)
Process gas: HBr / O2 = 330/3 sccm
First high frequency power supply: 250 W
Second high frequency power supply: 250W
Processing time: 10 seconds (contamination processing 3)
Pressure in processing vessel: 2.6 Pa (20 mTorr)
Process gas: HBr / O2 / N2 / He = 42/8/12/60 sccm
First high frequency power supply: 0 W
Second high frequency power supply: 250W
Processing time: 10 seconds (contamination processing 4)
Pressure in the processing vessel: 13 Pa (100 mTorr)
Process gas: O2 = 140 sccm
First high frequency power supply: 750 W
Second high frequency power supply: 0 W
Processing time: 10 seconds After performing the above-described contamination processing, the bare wafer W was carried out of the processing container 11 and quantitative analysis of elements adhering to the surface of the bare wafer W was performed.
B: Comparative example
In the mounting apparatus 2 shown in FIG. 2, the surface of the electrostatic chuck was cleaned under the same conditions as in the example except that an Al 2 O 3 sprayed layer was used instead of the Y 2 O 3 sprayed layer 43. Thereafter, the bare wafer W is placed on the placement device 2 in the processing container 11, the contamination process is performed under the same conditions as in the embodiment, the bare wafer in the reaction container after the processing is unloaded, and is attached to the surface of the bare wafer W. Quantitative analysis of the elements is performed.

(結果及び考察)
上述の分析結果を表1〔単位:×1010atoms/cm2〕に示す。
(Results and discussion)
The above analysis results are shown in Table 1 [unit: × 10 10 atoms / cm 2 ].

Figure 2008117982
Figure 2008117982

この結果から分かるようにAl2O3溶射膜を用いた場合には、Alが100×1010(atoms/cm)であったが,Y2O3溶射膜を用いた場合には、8.2×1010(atoms/cm)であった。従って、Y2O3溶射膜を用いることにより、Al2O3溶射膜の場合に比べてAlの汚染量が格段に少なく、現在の半導体製造装置ではAlの汚染量が1×1011(atoms/cm)以下であれば特性に影響がないと言われていることから、ウエハWのAl汚染がなくなると言える。また上述の実験データから分かるようにY2O3溶射膜は耐プラズマ性が大きく、結果としてウエハWに付着するイットリウムの汚染量は実質ゼロと言えるものであり、イットリウムの影響は全くない。 As can be seen from this result, Al was 100 × 10 10 (atoms / cm 2 ) when the Al 2 O 3 sprayed film was used, but 8.2 × 10 10 (when the Y 2 O 3 sprayed film was used. atoms / cm 2 ). Therefore, by using the Y2O3 sprayed film, the amount of Al contamination is much smaller than that of the Al2O3 sprayed film, and in the current semiconductor manufacturing apparatus, the amount of Al contamination is 1 × 10 11 (atoms / cm 2 ) or less. If it is said that there is no influence on the characteristics, it can be said that Al contamination of the wafer W is eliminated. As can be seen from the above experimental data, the Y2O3 sprayed film has a high plasma resistance, and as a result, the amount of yttrium contamination adhering to the wafer W can be said to be substantially zero, and there is no influence of yttrium.

(表面粗さの評価試験)
図2に示す載置装置2において、図9に示すようにY2O3溶射層43表面の1〜4の4箇所の表面粗さRaについて、未使用時と、2年間運用を行った後について夫々調べたところ表2に示す結果が得られた。
(Surface roughness evaluation test)
In the mounting apparatus 2 shown in FIG. 2, as shown in FIG. 9, the surface roughness Ra at four locations 1 to 4 on the surface of the Y 2 O 3 sprayed layer 43 is examined when not in use and after operation for two years. As a result, the results shown in Table 2 were obtained.

Figure 2008117982
Figure 2008117982

未使用のデータは4点しかないが、使用後のものについては26点のデータを取っており(表2には記載していない)、使用後の平均表面粗さRaは0.52μm〜0.78μmの間に収まっている。従って表2の結果も考慮すると、ウエハレスクリーニングを行うことにより、Y2O3溶射膜の平均表面粗さRaが0.6μm〜0.8μmになることが把握でき、従って静電チャックの製造時にY2O3溶射膜の平均表面粗さRaを0.6μm〜0.8μmに設定すれば表面粗度の経時変化が抑えられる。   Although there are only four unused data, the data after use is 26 points (not shown in Table 2), and the average surface roughness Ra after use is 0.52 μm to 0 It is within .78 μm. Therefore, considering the results shown in Table 2, it can be understood that the average surface roughness Ra of the Y2O3 sprayed film is 0.6 μm to 0.8 μm by performing the wafer rescreening. Therefore, when the electrostatic chuck is manufactured, Y2O3 spraying is performed. If the average surface roughness Ra of the film is set to 0.6 μm to 0.8 μm, the change in surface roughness with time can be suppressed.

(吸着力の試験)
本発明に用いられる、250μmのY2O3溶射膜を形成した静電チャックに2インチウエハを用いて、大気雰囲気にて中央及び周縁部に順次吸着させ、脱離するときの吸引力を測定し、静電チャックの吸着力の評価を行った。その結果、現在実機に使用されている200mmアルミナセラミックプレートからなる静電チャックと同等の吸着力であり、吸着性能については何ら問題ないことを確認した。
(Adsorption power test)
Using a 2-inch wafer on an electrostatic chuck formed with a 250 μm Y 2 O 3 sprayed coating used in the present invention, the suction force is measured when it is sequentially adsorbed to the center and the periphery in an air atmosphere and detached. The adsorption force of the electric chuck was evaluated. As a result, it was confirmed that the adsorption force was equivalent to that of an electrostatic chuck made of a 200 mm alumina ceramic plate currently used in actual machines, and there was no problem with the adsorption performance.

本発明の実施の形態に係る載置装置を備えたプラズマ処理装置の一例を示す縦断側面図である。It is a vertical side view which shows an example of the plasma processing apparatus provided with the mounting apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る載置装置を示す縦断側面図である。It is a vertical side view which shows the mounting apparatus which concerns on embodiment of this invention. 静電吸着の様子を示す模式図である。It is a schematic diagram which shows the mode of electrostatic adsorption. 図2に示す載置装置の製造工程を示す図である。It is a figure which shows the manufacturing process of the mounting apparatus shown in FIG. 図2に示す載置装置の製造工程を示す図である。It is a figure which shows the manufacturing process of the mounting apparatus shown in FIG. 耐プラズマ性の評価試験の結果を示す説明図である。It is explanatory drawing which shows the result of the evaluation test of plasma resistance. Al2O3溶射層の層厚と耐電圧との関係を示す特性図である。It is a characteristic view which shows the relationship between the layer thickness of an Al2O3 sprayed layer, and withstand voltage. Y2O3溶射層の層厚と耐電圧との関係を示す特性図である。It is a characteristic view which shows the relationship between the layer thickness of a Y2O3 sprayed layer, and withstand voltage. 載置装置表面の測定箇所を示す平面図である。It is a top view which shows the measurement location on the mounting apparatus surface.

符号の説明Explanation of symbols

1 プラズマ処理装置
2 載置装置
11 処理容器
14 排気装置
21 載置体
23 Y2O3溶射層
24 絶縁部材
26 冷媒流路
28 フォーカスリング
31 上部電極
35 処理ガス供給源
4 静電チャック
41 Al2O3溶射層
42 電極層
43 Y2O3溶射層
45 スイッチ
46 高圧直流電源
DESCRIPTION OF SYMBOLS 1 Plasma processing apparatus 2 Mounting apparatus 11 Processing container 14 Exhaust apparatus 21 Mounting body 23 Y2O3 spraying layer 24 Insulating member 26 Refrigerant flow path 28 Focus ring 31 Upper electrode 35 Processing gas supply source 4 Electrostatic chuck 41 Al2O3 spraying layer 42 Electrode Layer 43 Y2O3 sprayed layer 45 Switch 46 High voltage DC power supply

Claims (7)

被処理体を載置するための載置体と、この載置体上に設けられ、絶縁層に埋設された電極に電圧印加することにより電極層と被処理体との間でクーロン力を生じさせて絶縁層の表面に被処理体を静電吸着する静電チャックと、を備えた載置装置において、
前記電極層の表面側の絶縁層である静電チャック層はプラズマ溶射により形成された、厚さが200μm〜280μmの酸化イットリウム溶射層からなり、表面が、溶射される酸化イットリウムの粒径に依存した表面粗度に形成されたことを特徴とする載置装置。
A Coulomb force is generated between the electrode layer and the object to be processed by applying a voltage to the object for mounting the object to be processed and an electrode provided on the object and embedded in the insulating layer. An electrostatic chuck that electrostatically attracts the object to be processed to the surface of the insulating layer, and a mounting device comprising:
The electrostatic chuck layer, which is an insulating layer on the surface side of the electrode layer, is composed of a yttrium oxide sprayed layer having a thickness of 200 μm to 280 μm formed by plasma spraying, and the surface depends on the particle diameter of the yttrium oxide to be sprayed. The mounting apparatus is characterized by being formed to have a rough surface.
前記静電チャック層の平均表面粗さは0.6μm〜0.8μmであることを特徴とする請求項1に記載の載置装置。   The mounting apparatus according to claim 1, wherein the electrostatic chuck layer has an average surface roughness of 0.6 μm to 0.8 μm. 前記静電チャック層の表面は、被処理体を置かずにプラズマによりクリーニングされることを特徴とする請求項1または2に記載の載置装置。   The mounting apparatus according to claim 1, wherein the surface of the electrostatic chuck layer is cleaned by plasma without placing an object to be processed. 前記電極層に印加される電圧は、2.5kV以上であることを特徴とする請求項1ないし3のいずれか一つに記載の載置装置。   The mounting apparatus according to claim 1, wherein a voltage applied to the electrode layer is 2.5 kV or more. 気密な処理容器と、この処理容器内に設けられ、請求項1ないし4のいずれか一つに記載の載置装置と、前記処理容器内を真空排気する手段と、前記処理容器内にプラズマを発生させて被処理体に対してプラズマ処理を行うための手段と、を備えたことを特徴するプラズマ処理装置。   An airtight processing container, a mounting device according to any one of claims 1 to 4, provided in the processing container, means for evacuating the processing container, and plasma in the processing container. Means for generating and performing plasma processing on the object to be processed. 前記載置装置の上に被処理体を置かない状態でプラズマにより静電チャック層の表面をクリーニングする処理を行うように構成されていることを特徴とする請求項5に記載のプラズマ処理装置。   The plasma processing apparatus according to claim 5, wherein the plasma processing apparatus is configured to perform a process of cleaning a surface of the electrostatic chuck layer with plasma in a state where an object to be processed is not placed on the mounting apparatus. 請求項1ないし4のいずれか一つに記載の載置装置に被処理体を静電吸着させて当該被処理体に対してプラズマ処理を行う工程と、被処理体を載置装置の上から搬出した後、静電チャック層の表面をプラズマによりクリーニングする工程と、を含むことを特徴とするプラズマ処理方法。   A process of performing a plasma treatment on the object to be processed by electrostatically adsorbing the object to be processed to the mounting apparatus according to any one of claims 1 to 4, and the object to be processed from above the mounting apparatus. And a step of cleaning the surface of the electrostatic chuck layer with plasma after unloading.
JP2006300923A 2006-11-06 2006-11-06 Mounting apparatus, plasma processing apparatus, and plasma processing method Active JP4992389B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006300923A JP4992389B2 (en) 2006-11-06 2006-11-06 Mounting apparatus, plasma processing apparatus, and plasma processing method
CNB200710168038XA CN100543960C (en) 2006-11-06 2007-11-02 Mounting apparatus, plasma processing apparatus and method of plasma processing
US11/934,313 US20080106842A1 (en) 2006-11-06 2007-11-02 Mounting device, plasma processing apparatus and plasma processing method
KR1020070111908A KR100964040B1 (en) 2006-11-06 2007-11-05 Mounting device, plasma processing apparatus and plasma processing method
TW096141619A TWI440124B (en) 2006-11-06 2007-11-05 A placing device, a plasma processing device, and a plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006300923A JP4992389B2 (en) 2006-11-06 2006-11-06 Mounting apparatus, plasma processing apparatus, and plasma processing method

Publications (3)

Publication Number Publication Date
JP2008117982A true JP2008117982A (en) 2008-05-22
JP2008117982A5 JP2008117982A5 (en) 2009-10-22
JP4992389B2 JP4992389B2 (en) 2012-08-08

Family

ID=39405226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006300923A Active JP4992389B2 (en) 2006-11-06 2006-11-06 Mounting apparatus, plasma processing apparatus, and plasma processing method

Country Status (4)

Country Link
JP (1) JP4992389B2 (en)
KR (1) KR100964040B1 (en)
CN (1) CN100543960C (en)
TW (1) TWI440124B (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010140944A (en) * 2008-12-09 2010-06-24 Tokyo Electron Ltd Plasma etching device and plasma cleaning method
JP2011529273A (en) * 2008-07-23 2011-12-01 アプライド マテリアルズ インコーポレイテッド Workpiece support for plasma reactor with controlled RF power distribution to process kit ring
JP2012134375A (en) * 2010-12-22 2012-07-12 Tokyo Electron Ltd Substrate processing apparatus and substrate processing method
JP2012204644A (en) * 2011-03-25 2012-10-22 Tokyo Electron Ltd Plasma processing apparatus and plasma processing method
JP2014036026A (en) * 2012-08-07 2014-02-24 Hitachi High-Technologies Corp Plasma processing apparatus, and plasma processing method
US8734664B2 (en) 2008-07-23 2014-05-27 Applied Materials, Inc. Method of differential counter electrode tuning in an RF plasma reactor
KR20140076495A (en) * 2012-12-12 2014-06-20 도쿄엘렉트론가부시키가이샤 Method for reforming electrostatic chuck, and plasma processing device
JP2016076711A (en) * 2008-11-10 2016-05-12 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Plasma resistant coatings for plasma chamber components
JP2016533039A (en) * 2013-09-16 2016-10-20 ぺムヴィックス コーポレーションFemvix Corp. Electrostatic chuck and method for manufacturing electrostatic chuck
JP2019016704A (en) * 2017-07-07 2019-01-31 東京エレクトロン株式会社 Method for manufacturing electrostatic chuck and electrostatic chuck
JP2019021708A (en) * 2017-07-13 2019-02-07 東京エレクトロン株式会社 Component for plasma processing device and spraying method thereof
JP2019151879A (en) * 2018-03-01 2019-09-12 株式会社アルバック Film deposition apparatus
JP2020167279A (en) * 2019-03-29 2020-10-08 東京エレクトロン株式会社 Plasma processing apparatus
US11217470B2 (en) 2018-12-27 2022-01-04 Tokyo Electron Limited Substrate placing table and substrate processing apparatus
CN114308907A (en) * 2022-02-23 2022-04-12 袭晓冰 Plasma cleaning device for precision analysis instrument

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101598465B1 (en) 2014-09-30 2016-03-02 세메스 주식회사 Apparatus and method for treating a subtrate
TWI593473B (en) * 2015-10-28 2017-08-01 漢辰科技股份有限公司 Method of cleaning an esc
KR101842124B1 (en) 2016-05-27 2018-03-27 세메스 주식회사 Support unit, Apparatus and method for treating a substrate
JP6854600B2 (en) * 2016-07-15 2021-04-07 東京エレクトロン株式会社 Plasma etching method, plasma etching equipment, and substrate mount
US20180190501A1 (en) * 2017-01-05 2018-07-05 Tokyo Electron Limited Plasma processing apparatus
CN110402481B (en) * 2017-10-17 2023-07-21 株式会社爱发科 Processing apparatus for object to be processed
CN111383986A (en) * 2018-12-27 2020-07-07 东京毅力科创株式会社 Substrate mounting table and substrate processing apparatus
KR102370471B1 (en) * 2019-02-08 2022-03-03 주식회사 히타치하이테크 plasma processing unit
CN112553592B (en) * 2019-09-25 2023-03-31 中微半导体设备(上海)股份有限公司 Method for processing electrostatic chuck by using ALD (atomic layer deposition) process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005012144A (en) * 2003-06-23 2005-01-13 Kyocera Corp Electrostatic chuck
JP2005072286A (en) * 2003-08-25 2005-03-17 Kyocera Corp Electrostatic chuck
JP2006019626A (en) * 2004-07-05 2006-01-19 Tokyo Electron Ltd Plasma treatment device and cleaning method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4104386B2 (en) * 2002-06-24 2008-06-18 太平洋セメント株式会社 Manufacturing method of electrostatic chuck
JP4642528B2 (en) * 2005-03-31 2011-03-02 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005012144A (en) * 2003-06-23 2005-01-13 Kyocera Corp Electrostatic chuck
JP2005072286A (en) * 2003-08-25 2005-03-17 Kyocera Corp Electrostatic chuck
JP2006019626A (en) * 2004-07-05 2006-01-19 Tokyo Electron Ltd Plasma treatment device and cleaning method thereof

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011529273A (en) * 2008-07-23 2011-12-01 アプライド マテリアルズ インコーポレイテッド Workpiece support for plasma reactor with controlled RF power distribution to process kit ring
US8734664B2 (en) 2008-07-23 2014-05-27 Applied Materials, Inc. Method of differential counter electrode tuning in an RF plasma reactor
JP2016076711A (en) * 2008-11-10 2016-05-12 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Plasma resistant coatings for plasma chamber components
JP2010140944A (en) * 2008-12-09 2010-06-24 Tokyo Electron Ltd Plasma etching device and plasma cleaning method
US9659756B2 (en) 2008-12-09 2017-05-23 Tokyo Electron Limited Plasma etching apparatus and plasma cleaning method
JP2012134375A (en) * 2010-12-22 2012-07-12 Tokyo Electron Ltd Substrate processing apparatus and substrate processing method
JP2012204644A (en) * 2011-03-25 2012-10-22 Tokyo Electron Ltd Plasma processing apparatus and plasma processing method
JP2014036026A (en) * 2012-08-07 2014-02-24 Hitachi High-Technologies Corp Plasma processing apparatus, and plasma processing method
KR102188404B1 (en) * 2012-12-12 2020-12-08 도쿄엘렉트론가부시키가이샤 Method for reforming electrostatic chuck, and plasma processing device
KR20140076495A (en) * 2012-12-12 2014-06-20 도쿄엘렉트론가부시키가이샤 Method for reforming electrostatic chuck, and plasma processing device
US9558919B2 (en) 2012-12-12 2017-01-31 Tokyo Electron Limited Method of modifying electrostatic chuck and plasma processing apparatus
JP2014116566A (en) * 2012-12-12 2014-06-26 Tokyo Electron Ltd Method for modifying electrostatic chuck and plasma processing device
JP2018129539A (en) * 2013-09-16 2018-08-16 ぺムヴィックス コーポレーションFemvix Corp. Manufacturing method of electrostatic chuck and electrostatic chuck
JP2016533039A (en) * 2013-09-16 2016-10-20 ぺムヴィックス コーポレーションFemvix Corp. Electrostatic chuck and method for manufacturing electrostatic chuck
JP2019016704A (en) * 2017-07-07 2019-01-31 東京エレクトロン株式会社 Method for manufacturing electrostatic chuck and electrostatic chuck
US11328905B2 (en) 2017-07-13 2022-05-10 Tokyo Electron Limited Thermal spraying method of component for plasma processing apparatus and component for plasma processing apparatus
JP2019021708A (en) * 2017-07-13 2019-02-07 東京エレクトロン株式会社 Component for plasma processing device and spraying method thereof
JP7224096B2 (en) 2017-07-13 2023-02-17 東京エレクトロン株式会社 Thermal spraying method for parts for plasma processing apparatus and parts for plasma processing apparatus
JP2019151879A (en) * 2018-03-01 2019-09-12 株式会社アルバック Film deposition apparatus
US11217470B2 (en) 2018-12-27 2022-01-04 Tokyo Electron Limited Substrate placing table and substrate processing apparatus
US11508603B2 (en) 2018-12-27 2022-11-22 Tokyo Electron Limited Substrate placing table and substrate processing apparatus
US11676847B2 (en) 2018-12-27 2023-06-13 Tokyo Electron Limited Substrate placing table and substrate processing apparatus
JP2020167279A (en) * 2019-03-29 2020-10-08 東京エレクトロン株式会社 Plasma processing apparatus
CN111755312A (en) * 2019-03-29 2020-10-09 东京毅力科创株式会社 Plasma processing apparatus
US11664198B2 (en) 2019-03-29 2023-05-30 Tokyo Electron Limited Plasma processing apparatus
CN114308907A (en) * 2022-02-23 2022-04-12 袭晓冰 Plasma cleaning device for precision analysis instrument
CN114308907B (en) * 2022-02-23 2023-11-28 深圳市震华等离子体智造有限公司 Plasma cleaning device for precise analysis instrument

Also Published As

Publication number Publication date
TW200837874A (en) 2008-09-16
CN101179045A (en) 2008-05-14
KR100964040B1 (en) 2010-06-16
TWI440124B (en) 2014-06-01
CN100543960C (en) 2009-09-23
JP4992389B2 (en) 2012-08-08
KR20080041116A (en) 2008-05-09

Similar Documents

Publication Publication Date Title
JP4992389B2 (en) Mounting apparatus, plasma processing apparatus, and plasma processing method
US20080106842A1 (en) Mounting device, plasma processing apparatus and plasma processing method
JP2008117982A5 (en)
JP5836419B2 (en) Plasma etching method
JP5317424B2 (en) Plasma processing equipment
TWI567862B (en) A particle adhesion control method and a processing device for the substrate to be processed
JP6552346B2 (en) Substrate processing equipment
US20050142873A1 (en) Plasma processing method and plasma processing apparatus
JP2008042116A (en) Mounting platform for plasma processing apparatus and its plasma processing apparatus
KR100782621B1 (en) Plasma processing method and plasma processing device
TW201301334A (en) Plasma processing apparatus
JP4642809B2 (en) Plasma processing method and plasma processing apparatus
KR101898079B1 (en) Plasma processing apparatus
JP2006165093A (en) Plasma processing device
KR20190085825A (en) Plasma processing apparatus
JP2007324154A (en) Plasma treating apparatus
JP3935850B2 (en) Plasma processing equipment
JP4098259B2 (en) Plasma processing equipment
JPH09289201A (en) Plasma treating apparatus
JP4659771B2 (en) Plasma processing equipment
JP2010161403A (en) Plasma processing apparatus and processing method
JP2020077654A (en) Mounting table and substrate processing apparatus
JPH06124998A (en) Plasma process equipment
JP2010267708A (en) Device and method for vacuum processing
JP2001230234A (en) Apparatus and method for plasma treatment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4992389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250