JP2008115422A - Plasma nitriding device and nitriding method - Google Patents

Plasma nitriding device and nitriding method Download PDF

Info

Publication number
JP2008115422A
JP2008115422A JP2006299154A JP2006299154A JP2008115422A JP 2008115422 A JP2008115422 A JP 2008115422A JP 2006299154 A JP2006299154 A JP 2006299154A JP 2006299154 A JP2006299154 A JP 2006299154A JP 2008115422 A JP2008115422 A JP 2008115422A
Authority
JP
Japan
Prior art keywords
workpiece
plasma
plasma nitriding
nitriding
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006299154A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Hatano
和好 波多野
Toru Mogaki
透 藻垣
Akio Yokoo
晃央 横尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Parker Netsushori Kogyo KK
Original Assignee
Parker Netsushori Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Parker Netsushori Kogyo KK filed Critical Parker Netsushori Kogyo KK
Priority to JP2006299154A priority Critical patent/JP2008115422A/en
Publication of JP2008115422A publication Critical patent/JP2008115422A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma nitriding device and a nitriding method where a stable and uniform nitride surface layer can be formed onto a workpiece, e.g., with ultrasmall, spherical shape composed of various alloys. <P>SOLUTION: Regarding the plasma nitriding device and nitriding method for a workpiece, a workpiece using an iron alloy, an aluminum alloy or a titanium alloy as a base material is nitrided while being rocked or vibrated in a plasma atmosphere generated by glow discharge essentially consisting of gaseous nitrogen and gaseous hydrogen, and the nitride of iron, the nitride of aluminum or the nitride of titanium is uniformly formed on the outermost surface layer of the workpiece. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、各種合金からなる各種機器の各種部材のプラズマ窒化装置および窒化方法に関し、さらに詳しくは、一般産業機械、OA機器、医療機器などの微小慴動部材に、優れた低摩擦性、耐摩耗性、褪色性及び靭性を付与するためのプラズマ窒化装置および窒化方法に関する。   The present invention relates to a plasma nitriding apparatus and a nitriding method for various members of various devices made of various alloys. More specifically, the present invention relates to a fine peristaltic member such as a general industrial machine, an OA device, or a medical device. The present invention relates to a plasma nitriding apparatus and a nitriding method for imparting abrasion, fading and toughness.

鉄鋼部材や非鉄鋼部材の耐摩耗性および靭性などを向上させるために、数多くの表面改質処理方法が提案されている。これらのうち、グロー放電現象を利用したプラズマ表面処理法は、潤滑油膜切れにより、局部的に金属部材同士が直接接触することも起こり得る過酷な慴動状態を被る境界潤滑領域において、その慴動特性を改善する表面改質処理法である。   In order to improve the wear resistance and toughness of steel members and non-steel members, many surface modification treatment methods have been proposed. Among these, the plasma surface treatment method using the glow discharge phenomenon is performed in the boundary lubrication region where the metal member is in direct contact with each other due to running out of the lubricating oil film and suffers a severe peristaltic state. It is a surface modification treatment method that improves characteristics.

具体的なプラズマ表面処理法としては、数トールの真空状態の炉中に水素ガス(H2)と窒素ガス(N2)との混合ガスを導入し、炉壁(+)と被処理物(−)との間に、直流電圧を印加し、被処理物(−)周辺にグロー放電によるイオン化した窒素雰囲気で窒化を行う。この他、直流モノパルスやハイポーラパルス法、ホットウオール法、炉壁(+)とスクリーン(−)との間に電圧を印加し、形成されるグロー放電(プラズマ雰囲気)の中で被処理物を窒化する方法もある。 As a specific plasma surface treatment method, a mixed gas of hydrogen gas (H 2 ) and nitrogen gas (N 2 ) is introduced into a vacuum furnace of several torr, and the furnace wall (+) and the workpiece ( A direct current voltage is applied between the negative electrode (-) and nitridation is performed in the vicinity of the object (-) in an ionized nitrogen atmosphere by glow discharge. In addition to this, a DC monopulse, a hyperpolar pulse method, a hot wall method, a voltage is applied between the furnace wall (+) and the screen (−), and the object to be processed is formed in a glow discharge (plasma atmosphere) formed. There is also a method of nitriding.

上記従来の方法の欠点は、炉内に孤立してセットができない超小型の被処理物や球状の被処理物に対して、安定かつ均一にグロー放電によるプラズマ雰囲気の形成が難しいという点である。   The disadvantage of the above-mentioned conventional method is that it is difficult to form a plasma atmosphere by glow discharge stably and uniformly for ultra-small workpieces or spherical workpieces that cannot be isolated and set in the furnace. .

例えば、非特許文献1に記載の静止型のプラズマ表面処理方法では、被処理物の全表面に亘り、均一なグロー放電(プラズマ雰囲気)の発生は不可能である。従って安定かつ均一な窒化は困難であった。
日本熱処理技術協会講演概要集(62回)平成18年6月 75頁
For example, in the stationary plasma surface treatment method described in Non-Patent Document 1, uniform glow discharge (plasma atmosphere) cannot be generated over the entire surface of the workpiece. Therefore, stable and uniform nitriding has been difficult.
Japan Heat Treatment Technology Association Lecture Summary Collection (62) June 2006, p. 75

従って、本発明の目的は、各種合金からなる微小な球状形状などの被処理物に対し、安定かつ均一な窒化物表面層を形成させることができるプラズマ窒化装置および窒化方法を提供することである。   Accordingly, an object of the present invention is to provide a plasma nitriding apparatus and a nitriding method capable of forming a stable and uniform nitride surface layer on an object to be processed such as a minute spherical shape made of various alloys. .

上記目的は以下の本発明によって達成される。すなわち、本発明は、処理部(B)に直流電圧を供給する電圧供給部(A)と、処理部(B)に窒素ガスと水素ガスとの混合ガスを供給するガス供給部(C)とからなり、上記処理部(B)が、密閉処理空間を区画する炉壁(2)を有する炉体(1)と、上記処理空間内に設けられた合金製被処理物(6)を保持する治具ベース(3)と、該治具ベース(3)を包囲している導電性スクリーン(14)と、上記治具ベース(3)を揺動または振動させる駆動源とからなり、上記治具ベース(3)内に載置された被処理物を揺動または振動させながら、上記被処理物の表面をプラズマ窒化させるためのプラズマ窒化装置を提供する。上記駆動源が、油圧装置、超音波装置または磁歪装置であり得る。   The above object is achieved by the present invention described below. That is, the present invention includes a voltage supply unit (A) that supplies a DC voltage to the processing unit (B), and a gas supply unit (C) that supplies a mixed gas of nitrogen gas and hydrogen gas to the processing unit (B). The processing section (B) holds a furnace body (1) having a furnace wall (2) defining a sealed processing space, and an alloy workpiece (6) provided in the processing space. The jig base (3), a conductive screen (14) surrounding the jig base (3), and a drive source for swinging or vibrating the jig base (3). Provided is a plasma nitriding apparatus for plasma nitriding the surface of a workpiece while swinging or vibrating the workpiece placed in a base (3). The drive source may be a hydraulic device, an ultrasonic device, or a magnetostrictive device.

また、本発明は、鉄合金、アルミニウム合金またはチタン合金を母材とした被処理物を、窒素ガスと水素ガスとを主成分とするグロー放電により発生させたプラズマ雰囲気中で、揺動または振動させつつ窒化し、上記被処理物の最表面層に鉄の窒化物、アルミニウムの窒化物またはチタンの窒化物を均一に生成させることを特徴とする被処理物のプラズマ窒化方法を提供する。該方法においては被処理物の揺動または振動を、油圧、超音波または磁歪により生じさせることができる。また、上記被処理物の母材が鉄の合金であるときに本発明は特に有用である。   In addition, the present invention is a method in which an object to be processed using an iron alloy, an aluminum alloy, or a titanium alloy as a base material is oscillated or vibrated in a plasma atmosphere generated by glow discharge mainly containing nitrogen gas and hydrogen gas. A plasma nitriding method for an object to be processed, wherein iron nitride, aluminum nitride, or titanium nitride is uniformly formed on the outermost surface layer of the object to be processed. In this method, the swing or vibration of the workpiece can be generated by hydraulic pressure, ultrasonic waves or magnetostriction. The present invention is particularly useful when the base material of the object to be processed is an iron alloy.

本発明の最大の特徴は、被処理物を微小揺動または微小振動させることで、被処理物の全表面に安定かつ均一にグロー放電によるプラズマ雰囲気を発生させることである。前記非特許文献1に記載の静止型プラズマ窒化方法に比べ、本発明の装置および方法では、被処理物の最表面は、その窒化処理中、微視的に揺動または振動しているため、被処理物の表面は常に安定かつ均一なプラズマ雰囲気に曝される。これにより、これまで不可能とされていた複雑形状あるいは微小形状の被処理物の全表面に亘る均一プラズマ窒化が可能となった。   The greatest feature of the present invention is to generate a plasma atmosphere by glow discharge stably and uniformly on the entire surface of the object to be processed by minutely swinging or vibrating the object to be processed. Compared to the static plasma nitriding method described in Non-Patent Document 1, in the apparatus and method of the present invention, the outermost surface of the workpiece is microscopically oscillated or vibrated during the nitriding treatment. The surface of the workpiece is always exposed to a stable and uniform plasma atmosphere. As a result, it has become possible to perform uniform plasma nitriding over the entire surface of the object having a complicated shape or a minute shape, which has been impossible until now.

次に好ましい実施の形態を示す図面を参照して本発明をさらに詳しく説明する。まず、図1に示す方式は最も一般的な従来方式であり、窒素ガス供給源9と水素ガス供給源10とからマスフロー11を経由して、ガス導入口8から窒素ガスと水素ガスとの混合ガスが炉体1内に導入されている。   Next, the present invention will be described in more detail with reference to the drawings showing preferred embodiments. First, the method shown in FIG. 1 is the most general conventional method, in which nitrogen gas and hydrogen gas are mixed from the gas inlet 8 through the mass flow 11 from the nitrogen gas supply source 9 and the hydrogen gas supply source 10. Gas is introduced into the furnace body 1.

上記混合ガスが導入された状態で、電源5から炉壁2(+)と被処理物6(−)との間に直流電圧を印加し、被処理物6の周辺部をプラズマ雰囲気7とする。このことで、被処理物6の最表面でイオン化された窒素ガスが、被処理物6中に侵入して被処理物6の表面に窒化物層が形成される。   With the mixed gas introduced, a DC voltage is applied from the power source 5 between the furnace wall 2 (+) and the workpiece 6 (−), and the periphery of the workpiece 6 is set to a plasma atmosphere 7. . As a result, the nitrogen gas ionized on the outermost surface of the workpiece 6 enters the workpiece 6 and a nitride layer is formed on the surface of the workpiece 6.

図2に示す方式は、グロー放電(プラズマ)の安定、かつ均一発生を改善した従来方式であり、薄肉部やコーナー部の多い被処理物6に適用されている。この方式の最大の特徴は、炉壁2(+)と導電性スクリーン14(−)との間に、電源制御部4で制御された電圧が直流電源5から印加されて、被処理物6の最表面のみではなく、導電性スクリーン14廻りの広い範囲がプラズマ状態7となるため、前記のような従来法(図1)の弱点がカバーされている。   The method shown in FIG. 2 is a conventional method that improves the stable and uniform generation of glow discharge (plasma), and is applied to the workpiece 6 having many thin portions and corner portions. The biggest feature of this system is that a voltage controlled by the power supply control unit 4 is applied from the DC power supply 5 between the furnace wall 2 (+) and the conductive screen 14 (−), so that the workpiece 6 Since not only the outermost surface but also a wide range around the conductive screen 14 is in the plasma state 7, the weak points of the conventional method (FIG. 1) as described above are covered.

ところで、近年では、一般産業機械の要素部だけでなく、通信機器、OA機器、医療機器などの微小要素部でも耐摩耗性、耐食性、非磁性が強く要請されるようになってきた。これらの要素部は超小型や微小球状の形状のものが多い。このため、上記従来技術では、プラズマ窒化中に、治具ベース3にセットした微小な被処理物6同士が多数接触し、被処理物6の個々の全表面に正常かつ均一なグロー放電を発生させることができず、上記の如き微小被処理物表面を、プラズマ雰囲気中で安定して窒化することが不可能であった。   By the way, in recent years, wear resistance, corrosion resistance, and non-magnetism have been strongly demanded not only in element parts of general industrial machines but also in minute element parts such as communication equipment, OA equipment, and medical equipment. Many of these element portions are ultra-small or micro-spherical. For this reason, in the above prior art, during the plasma nitridation, a large number of minute objects 6 set on the jig base 3 come into contact with each other, and normal and uniform glow discharge is generated on each individual surface of the object 6 to be processed. Therefore, it was impossible to stably nitride the surface of the minute workpiece as described above in a plasma atmosphere.

本発明は、上記課題を解決するものである。図3は、本発明の装置の代表的な構成例を説明する図である。図3に示す本発明のプラズマ処理装置は、処理部Bに直流電圧を供給する電圧供給部Aと、処理部Bに窒素ガスと水素ガスとの混合ガスを供給するガス供給部Cとからなり、上記処理部Bが、密閉処理空間を区画する炉壁2を有する炉体1と、上記処理空間内に設けられた合金製被処理物6を保持する治具ベース3と、該治具ベース3を包囲している導電性スクリーン14と、上記治具ベース3を揺動または振動させる駆動源と、炉内を減圧する真空ポンプ経路20とからなり、上記治具ベース3内に載置された被処理物6を揺動または振動させながら、上記被処理物6の表面をプラズマ窒化させるプラズマ窒化装置である。   The present invention solves the above problems. FIG. 3 is a diagram illustrating a typical configuration example of the apparatus of the present invention. The plasma processing apparatus of the present invention shown in FIG. 3 includes a voltage supply unit A that supplies a DC voltage to the processing unit B, and a gas supply unit C that supplies a mixed gas of nitrogen gas and hydrogen gas to the processing unit B. The processing section B has a furnace body 1 having a furnace wall 2 defining a sealed processing space, a jig base 3 for holding an alloy workpiece 6 provided in the processing space, and the jig base. 3, a conductive screen 14 surrounding the jig 3, a drive source that swings or vibrates the jig base 3, and a vacuum pump path 20 that depressurizes the inside of the furnace, and is placed in the jig base 3. A plasma nitriding apparatus for plasma nitriding the surface of the object to be processed 6 while swinging or vibrating the object to be processed 6.

上記直流電圧供給部Aは、電源制御部4によって制御される直流電源4からなり、真空ポンプで炉体1内を約10-3トール程度に排気後、混合ガスを導入し、かつ炉体1内の混合ガス圧を約0.1〜20トールにしながら、処理部Bの炉壁2(+)と導電性スクリーン14(−)と間に約600〜800V程度の電圧を印加してグロー放電させ、被処理物6周辺に高加速化されたイオンを衝突させ、その衝撃エネルギーで被処理物6を400℃以上(通常、400〜600℃)に加熱することができる。 The DC voltage supply unit A is composed of a DC power source 4 controlled by the power source control unit 4, and after exhausting the inside of the furnace body 1 to about 10 −3 Torr with a vacuum pump, a mixed gas is introduced, and the furnace body 1 Glow discharge by applying a voltage of about 600 to 800 V between the furnace wall 2 (+) and the conductive screen 14 (−) of the processing section B while the mixed gas pressure is about 0.1 to 20 Torr. Then, highly accelerated ions are allowed to collide with the periphery of the object to be processed 6, and the object to be processed 6 can be heated to 400 ° C. or higher (usually 400 to 600 ° C.) with the impact energy.

上記ガス供給部Cは、窒素ガス源9と、水素ガス源10と、これらのガスの混合比や流量を制御するマスフロー11と、炉体1内に混合ガスを供給するガス導入口8と排気口12とから構成されている。窒素ガス(a)と水素ガス(b)とは、a:bが容量比a:b=20:80〜80:20になるように混合され、炉体1内に供給される。   The gas supply unit C includes a nitrogen gas source 9, a hydrogen gas source 10, a mass flow 11 for controlling the mixing ratio and flow rate of these gases, a gas inlet 8 for supplying a mixed gas into the furnace body 1, and an exhaust. It consists of a mouth 12. Nitrogen gas (a) and hydrogen gas (b) are mixed so that a: b is a volume ratio a: b = 20: 80 to 80:20, and supplied into the furnace body 1.

前記処理部Bは、密閉処理空間を区画する炉壁2を有する炉体1と、上記処理空間内に設けられた合金製被処理物6を保持する容器状の治具ベース3と、該治具ベース3を包囲している導電性スクリーン14とから構成されており、該治具ベース3は、該被処理物6を載置する治具ベース3を維持しつつ揺動または振動を伝達する耐熱セラミック管19と、磁性流体軸受15と、加振駆動部16と、偏心モータ18とからなる駆動源によって構成されている。   The processing section B includes a furnace body 1 having a furnace wall 2 that defines a sealed processing space, a container-shaped jig base 3 that holds an alloy workpiece 6 provided in the processing space, and the jig. The jig base 3 includes a conductive screen 14 surrounding the tool base 3, and the jig base 3 transmits swing or vibration while maintaining the jig base 3 on which the workpiece 6 is placed. The heat source includes a heat-resistant ceramic tube 19, a magnetic fluid bearing 15, a vibration drive unit 16, and an eccentric motor 18.

上記駆動源は、図3では、磁歪を利用した実施例が記載されているが、駆動源は、図示の例に限定されず、油圧装置や超音波装置などの他の手段であってもよい。   Although the embodiment using magnetostriction is described in FIG. 3 as the drive source, the drive source is not limited to the illustrated example, and may be other means such as a hydraulic device or an ultrasonic device. .

上記治具ベース3に、例えば、ボールベアリングなどの微小鋼球が多数載置され、治具ベース3を揺動または振動させつつ、炉内を真空ポンプで減圧しながら、前記ガス供給部Cから、混合ガスを供給しつつ、前記電圧供給部Aから、所定の電圧を炉壁2(+)および導電性スクリーン14(−)を印加すると、導電性スクリーン14内部にグロー放電によるプラズマ雰囲気7が発生する。   A large number of fine steel balls such as ball bearings are placed on the jig base 3, and the jig base 3 is oscillated or vibrated while the inside of the furnace is depressurized by a vacuum pump. When a predetermined voltage is applied to the furnace wall 2 (+) and the conductive screen 14 (−) from the voltage supply unit A while supplying the mixed gas, a plasma atmosphere 7 due to glow discharge is generated inside the conductive screen 14. appear.

プラズマ化された水素イオンが被処理物6を衝撃し、被処理物6の表面が洗浄されるとともに、表面に窒素イオンが浸透し、表面に窒化鉄の層が形成される。当該窒化処理中、被処理物は揺動または振動されている結果、個々の被処理物は一定個所に留まらず、流動状態にあることから、全表面がプラズマ雰囲気に曝され、被処理物の全表面が均一に窒化される。   Plasma-formed hydrogen ions bombard the workpiece 6 and the surface of the workpiece 6 is cleaned, and nitrogen ions penetrate into the surface, and an iron nitride layer is formed on the surface. During the nitriding treatment, the workpieces are oscillated or vibrated. As a result, the individual workpieces do not stay in a certain place and are in a fluid state, so that the entire surface is exposed to the plasma atmosphere, The entire surface is uniformly nitrided.

上記の実施例では、被処理物の例として微小鋼球を挙げたが、被処理物の母材はその他の金属、例えば、アルミニウム合金またはチタン合金などであってもよい。また、形状も球体に限られず、各種OA機器、医療機器、その他の機器に使用される微小な慴動部材、例えば、超・精密油圧機器のピストンやシリンダなどであっても同効である。   In the above embodiment, a fine steel ball is used as an example of the object to be processed. However, the base material of the object to be processed may be another metal such as an aluminum alloy or a titanium alloy. Further, the shape is not limited to a sphere, and the same effect can be obtained even with a minute peristaltic member used in various OA devices, medical devices, and other devices, such as pistons and cylinders of ultra-precision hydraulic devices.

従来の窒化装置において、上記の如き微小な慴動部材を窒化する場合、個々に窒化することは実際上あり得ず、多数個を纏めて窒化することになるが、纏めて(積み重ねて)窒化すると、全ての個々の部材の表面を均一に窒化することはできないが、本発明では、多数の微小な被処理物を容器状の治具ベース内に載置し、これらの被処理物に揺動または振動を与えつつ窒化することで、微小被処理物の全表面をプラズマ雰囲気に曝すことができる。   In the conventional nitriding apparatus, when nitriding the above-mentioned fine swing member, it is practically impossible to nitridize individually, and a large number of pieces are nitrided together, but nitriding together (stacking) Then, the surfaces of all the individual members cannot be uniformly nitrided. However, in the present invention, a large number of minute objects to be processed are placed in a container-like jig base and shaken on these objects to be processed. By performing nitriding while applying motion or vibration, the entire surface of the minute object can be exposed to a plasma atmosphere.

本発明によれば、微細な被処理物であっても、効率よく、安定的に均一なプラズマ窒化が可能である。   According to the present invention, even a fine workpiece can be efficiently and stably subjected to uniform plasma nitriding.

一般的な従来のプラズマ窒化方式を説明する図。The figure explaining the general conventional plasma nitriding system. グロー放電の安定、かつ均一発生を改善した従来方式を説明する図。The figure explaining the conventional system which improved the stable and uniform generation | occurrence | production of glow discharge. 本発明の装置および方法を説明する図。The figure explaining the apparatus and method of this invention.

符号の説明Explanation of symbols

1:炉体
2:炉壁
3:治具ベース
4:電源制御部
5:直流電源
6:被処理物
7:プラズマ雰囲気
8:ガス導入口
9:窒素ガス
10:水素ガス
11:マスフロー
12:排気口
13:ベース
14:導電性スクリーン
15:磁性流体軸受
16:加振駆動部
17:加振棒
18:偏心モータ
19:耐熱セラミック管
20:真空ポンプ経路
1: furnace body 2: furnace wall 3: jig base 4: power supply control unit 5: DC power supply 6: workpiece 7: plasma atmosphere 8: gas inlet 9: nitrogen gas 10: hydrogen gas 11: mass flow 12: exhaust Port 13: Base 14: Conductive screen 15: Magnetic fluid bearing 16: Excitation drive unit 17: Excitation bar 18: Eccentric motor 19: Heat-resistant ceramic tube 20: Vacuum pump path

Claims (5)

処理部(B)に直流電圧を供給する電圧供給部(A)と、処理部(B)に窒素ガスと水素ガスとの混合ガスを供給するガス供給部(C)とからなり、上記処理部(B)が、密閉処理空間を区画する炉壁(2)を有する炉体(1)と、上記処理空間内に設けられた合金製被処理物(6)を保持する治具ベース(3)と、該治具ベース(3)を包囲している導電性スクリーン(14)と、上記治具ベース(3)を揺動または振動させる駆動源とからなり、上記治具ベース(3)内に載置された被処理物を揺動または振動させながら、上記被処理物の表面をプラズマ窒化させるためのプラズマ窒化装置。   The processing unit includes a voltage supply unit (A) that supplies a DC voltage to the processing unit (B) and a gas supply unit (C) that supplies a mixed gas of nitrogen gas and hydrogen gas to the processing unit (B). (B) is a jig base (3) for holding a furnace body (1) having a furnace wall (2) defining a sealed processing space, and an alloy workpiece (6) provided in the processing space. And a conductive screen (14) surrounding the jig base (3) and a drive source for swinging or vibrating the jig base (3). A plasma nitriding apparatus for plasma nitriding the surface of a workpiece while swinging or vibrating the workpiece to be placed. 駆動源が、油圧装置、超音波装置または磁歪装置である請求項1に記載のプラズマ窒化装置。   The plasma nitriding apparatus according to claim 1, wherein the driving source is a hydraulic apparatus, an ultrasonic apparatus or a magnetostrictive apparatus. 鉄合金、アルミニウム合金またはチタン合金を母材とした被処理物を、窒素ガスと水素ガスとを主成分とするグロー放電により発生させたプラズマ雰囲気中で、揺動または振動させつつ窒化し、上記被処理物の最表面層に鉄の窒化物、アルミニウムの窒化物またはチタンの窒化物を均一に生成させることを特徴とする被処理物のプラズマ窒化方法。   An object to be treated using an iron alloy, aluminum alloy or titanium alloy as a base material is nitrided while being swung or vibrated in a plasma atmosphere generated by a glow discharge containing nitrogen gas and hydrogen gas as main components, A plasma nitriding method for an object to be processed, characterized in that iron nitride, aluminum nitride or titanium nitride is uniformly formed on the outermost surface layer of the object to be processed. 被処理物の揺動または振動を、油圧、超音波または磁歪により生じさせる請求項3に記載のプラズマ窒化方法。   4. The plasma nitriding method according to claim 3, wherein the swing or vibration of the workpiece is generated by hydraulic pressure, ultrasonic waves or magnetostriction. 被処理物の母材が、鉄の合金である請求項3に記載のプラズマ窒化方法。   4. The plasma nitriding method according to claim 3, wherein the base material of the object to be processed is an iron alloy.
JP2006299154A 2006-11-02 2006-11-02 Plasma nitriding device and nitriding method Pending JP2008115422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006299154A JP2008115422A (en) 2006-11-02 2006-11-02 Plasma nitriding device and nitriding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006299154A JP2008115422A (en) 2006-11-02 2006-11-02 Plasma nitriding device and nitriding method

Publications (1)

Publication Number Publication Date
JP2008115422A true JP2008115422A (en) 2008-05-22

Family

ID=39501615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006299154A Pending JP2008115422A (en) 2006-11-02 2006-11-02 Plasma nitriding device and nitriding method

Country Status (1)

Country Link
JP (1) JP2008115422A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102676984A (en) * 2012-01-13 2012-09-19 杭州市机械科学研究院有限公司 Power supply device for automatically controlling temperature rise and heat preservation of glow plasma nitriding furnace
WO2012153412A1 (en) * 2011-05-12 2012-11-15 トヨタ自動車 株式会社 Method for modifying surface of aluminum alloy and sliding member
WO2013150639A1 (en) * 2012-04-05 2013-10-10 株式会社東亜精機工作所 Hardened layer formation device
CN111850457A (en) * 2020-07-29 2020-10-30 扬州大学 Controllable surface nitriding device and using method thereof
CN113529010A (en) * 2020-04-14 2021-10-22 深圳市和胜金属技术有限公司 Vacuum ion nitriding equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603128A (en) * 1983-06-21 1985-01-09 Fuji Electric Corp Res & Dev Ltd Plasma oxidation device
JPH0368753A (en) * 1989-08-07 1991-03-25 Mazda Motor Corp Production of nitrided steel member
JPH03104881A (en) * 1989-09-14 1991-05-01 Ricoh Co Ltd Formation of thin film of iron-iron nitride
JPH03260050A (en) * 1990-03-09 1991-11-20 Seiko Epson Corp Plasma anode oxidation device
JP2003105525A (en) * 2001-09-26 2003-04-09 Toyota Motor Corp Nitriding treatment method
JP2004261747A (en) * 2003-03-03 2004-09-24 Kawasaki Heavy Ind Ltd Powder surface modifying method and apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603128A (en) * 1983-06-21 1985-01-09 Fuji Electric Corp Res & Dev Ltd Plasma oxidation device
JPH0368753A (en) * 1989-08-07 1991-03-25 Mazda Motor Corp Production of nitrided steel member
JPH03104881A (en) * 1989-09-14 1991-05-01 Ricoh Co Ltd Formation of thin film of iron-iron nitride
JPH03260050A (en) * 1990-03-09 1991-11-20 Seiko Epson Corp Plasma anode oxidation device
JP2003105525A (en) * 2001-09-26 2003-04-09 Toyota Motor Corp Nitriding treatment method
JP2004261747A (en) * 2003-03-03 2004-09-24 Kawasaki Heavy Ind Ltd Powder surface modifying method and apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012153412A1 (en) * 2011-05-12 2012-11-15 トヨタ自動車 株式会社 Method for modifying surface of aluminum alloy and sliding member
CN102676984A (en) * 2012-01-13 2012-09-19 杭州市机械科学研究院有限公司 Power supply device for automatically controlling temperature rise and heat preservation of glow plasma nitriding furnace
WO2013150639A1 (en) * 2012-04-05 2013-10-10 株式会社東亜精機工作所 Hardened layer formation device
JPWO2013150639A1 (en) * 2012-04-05 2015-12-14 株式会社東亜精機工作所 Hardened layer forming device
CN113529010A (en) * 2020-04-14 2021-10-22 深圳市和胜金属技术有限公司 Vacuum ion nitriding equipment
CN113529010B (en) * 2020-04-14 2024-06-11 深圳市和胜金属技术有限公司 Vacuum ion nitriding equipment
CN111850457A (en) * 2020-07-29 2020-10-30 扬州大学 Controllable surface nitriding device and using method thereof

Similar Documents

Publication Publication Date Title
JP2008115422A (en) Plasma nitriding device and nitriding method
JP2007227789A (en) Cooling block and plasma treatment device
CN105603358A (en) Titanium alloy ultrasonic knife surface strengthening method
CN111705197A (en) Metal surface strengthening device and method combining high-frequency pulse current and shot blasting
JPWO2013150639A1 (en) Hardened layer forming device
JP2003048152A (en) Recessed spherical face machining device by ultrasonic wave and method therefor
JP2008308759A (en) Low-current high-density plasma nitriding method and low-current high-density plasma nitriding device
US7892364B2 (en) Surface modifying jig of engine valve and surface modifying method employing it
JPWO2005098055A1 (en) Metal part cooling method, metal part manufacturing method, and metal part cooling apparatus
JP5930827B2 (en) Surface treatment apparatus and surface treatment method
JP4523547B2 (en) Discharge surface treatment method and discharge surface treatment apparatus
RU2291227C1 (en) Construction-steel parts surface hardening method
JP4963992B2 (en) Plasma processing equipment
ATE420457T1 (en) DEVICE AND METHOD FOR PLASMA TREATMENT OF OBJECTS
RU2664106C2 (en) Method of low-temperature ionic nitration of steel parts
RU2434074C1 (en) Procedure for low temperature nitriding in plasma of non-self-maintained arc discharge of low pressure of titanium alloys bt6 and bt16
RU2562187C1 (en) Method of modification of surface of products from titanic alloys in glow discharge
JP4610989B2 (en) High frequency vibration horn and manufacturing method thereof
RU2662518C2 (en) Macro-nonuniform structure creation method on the materials surface
RU2611003C1 (en) Method of ion nitration of titanium alloys
RU2682986C1 (en) Steel product strengthening method by ion-plasma carbonitriding
RU2434075C1 (en) Procedure for low temperature nitriding in plasma of non-self-maintained arc discharge of low pressure of technically pure titanium bt1-0
RU2821036C1 (en) Method for electrolytic-plasma polishing of part in alternating magnetic field
RU2239001C1 (en) Tool reinforcement method
JP2008045512A (en) Surface modification processing method of engine valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20091023

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A02 Decision of refusal

Effective date: 20100706

Free format text: JAPANESE INTERMEDIATE CODE: A02