JP2008115359A - Fireproof rubber composition, fireproof covering material comprising the same, and fireproof covering method using the covering material - Google Patents

Fireproof rubber composition, fireproof covering material comprising the same, and fireproof covering method using the covering material Download PDF

Info

Publication number
JP2008115359A
JP2008115359A JP2007184139A JP2007184139A JP2008115359A JP 2008115359 A JP2008115359 A JP 2008115359A JP 2007184139 A JP2007184139 A JP 2007184139A JP 2007184139 A JP2007184139 A JP 2007184139A JP 2008115359 A JP2008115359 A JP 2008115359A
Authority
JP
Japan
Prior art keywords
mass
fireproof
rubber composition
parts
coating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007184139A
Other languages
Japanese (ja)
Other versions
JP4021934B1 (en
Inventor
Kiyotaka Saito
清高 斉藤
Katsuhiko Sato
克彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
CRK KK
Original Assignee
Denki Kagaku Kogyo KK
CRK KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK, CRK KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2007184139A priority Critical patent/JP4021934B1/en
Priority to CN2007101811812A priority patent/CN101161715B/en
Application granted granted Critical
Publication of JP4021934B1 publication Critical patent/JP4021934B1/en
Publication of JP2008115359A publication Critical patent/JP2008115359A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Building Environments (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fireproof rubber composition that can retain sufficient shape stability in the fine foam state, even when exposed to baking heat, and provide a fireproof rubber composition that can give excellent working efficiency to the fireproof covering material obtained by molding the fireproof covering material. <P>SOLUTION: This invention provide an unvulcanized fireproof rubber composition comprises 10 to 60 pts.mass of an adhesive, 10 to 100 pts.mass of a thermally expandable graphite, 50-170 pts.mass of aluminum phosphite, 50 to 170 pts.mass of inorganic filler, 0.1 to 10 pts.mass of vulcanizer, 0.1 to 10 pts.mass of a vulcanization accelerator, per 100 pts.mass of the base rubber composed of 30 to 50 pts.mass of liquid rubber and 50 to 70 pts.mass of butyl rubber and is to be kneaded at 60 to 100°C. Further, the fireproof covering material obtained by molding the fireproof rubber composition, the fireproof covering method using the fireproof covering material, and the like are also provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、鉄骨の耐火被覆材や区画体貫通部の目地材等に使用される耐火ゴム組成物、該耐火ゴム組成物からなる耐火被覆材、及び該耐火被覆材を用いた耐火被覆処理方法などに関する。より詳しくは、炎熱に曝された場合にも、発泡体が十分な形状安定性を保持し、かつ、施工作業性に優れる耐火ゴム組成物、該耐火ゴム組成物からなる耐火被覆材、及び該耐火被覆材を用いた耐火被覆処理方法などに関する。   The present invention relates to a fire-resistant rubber composition used for a fire-resistant coating material for steel frames, joint materials for partitioning parts, a fire-resistant coating material comprising the fire-resistant rubber composition, and a fire-resistant coating treatment method using the fire-resistant coating material And so on. More specifically, even when exposed to flame heat, the foam retains sufficient shape stability and is excellent in construction workability, a fireproof coating material comprising the fireproof rubber composition, and the The present invention relates to a fireproof coating method using a fireproof coating material.

鉄骨は通常その温度が約550℃以上になると強度が急激に低下するため、集合住宅や立体駐車場等の鉄骨造の建築物で火災が発生すると倒壊の危険が生じる。そのため、火災時には鉄骨の表面を保護して、温度を上記550℃より低く保つ必要があり、これを目的として種々の耐火被覆処理法が考案されている。   Since the strength of steel frames usually drops sharply when the temperature rises above about 550 ° C, there is a risk of collapse if a fire occurs in a steel structure such as an apartment house or a multi-storey parking lot. Therefore, in the event of a fire, it is necessary to protect the surface of the steel frame and keep the temperature lower than the above-mentioned 550 ° C. Various fireproof coating methods have been devised for this purpose.

従来用いられてきた耐火被覆処理法としては、鉄骨表面をケイ酸カルシウム板や石膏ボード等の無機系耐火材料で被覆する方法や、ロックウールなどの無機系繊維を鉄骨に吹き付ける方法がある。しかし、ケイ酸カルシウム板や石膏ボード等による被覆では、被覆部分の厚みが大きくなるため、被覆された鉄骨全体の体積が大きくなってしまい、施工上効率的でない。また、ロックウール等を吹き付ける方法では厚みにムラが生じやすく、鉄骨各所の耐火性にバラつきが生じ易い。さらに、施工時にミストが飛散したり、養生に長時間必要であったりと、効率の良い方法ではなかった。   Conventionally used fireproof coating methods include a method of coating the surface of a steel frame with an inorganic fireproof material such as a calcium silicate plate or a gypsum board, and a method of spraying inorganic fibers such as rock wool onto the steel frame. However, coating with a calcium silicate plate or a gypsum board increases the thickness of the coated portion, which increases the volume of the entire coated steel frame and is not efficient in construction. In addition, the method of spraying rock wool or the like tends to cause unevenness in thickness, and tends to cause variations in the fire resistance of various parts of the steel frame. Furthermore, it was not an efficient method, such as mist scattering at the time of construction or long time required for curing.

また、近年の耐火被覆処理においては、単に材料自体が燃えにくいという耐火性能ばかりでなく、火炎の延焼を防ぐ機能、すなわち防火性能も要求されるようになっている。そこで、防火用膨張材料を用いた耐火被覆処理法が採用されるようになっている。防火用膨張材料とは、火災が発生した時に炎熱に曝されると瞬時に膨張(熱膨張)し、発泡断熱層(発泡体)を形成する材料である。この発泡体により、防火壁と電源ケーブル等の隙間を閉塞させて延焼しようとする火炎を遮断したり、鉄骨等の表面を高温から保護する断熱効果を発揮するのである。   Further, in recent fire-resistant coating treatments, not only the fire resistance performance that the material itself is difficult to burn but also the function of preventing the spread of flame, that is, the fire resistance performance is required. Therefore, a fireproof coating method using an expansion material for fireproofing has been adopted. The expansion material for fire prevention is a material that expands instantaneously (thermal expansion) and forms a foam heat insulating layer (foam) when exposed to flame heat when a fire occurs. With this foam, the gap between the fire wall and the power cable or the like is closed to block the flame that is going to spread, and the heat insulating effect of protecting the surface of the steel frame or the like from the high temperature is exhibited.

このような防火用膨張材料として、従来、ゴム成分に熱膨張性黒鉛や無機物等を配合した耐火性組成物が用いられている。しかし、ゴム成分や熱膨張性黒鉛は、本質的にそれ自体が燃焼したり熱溶融する性質を有するので、いかに長時間、熱膨張した発泡体の熱溶解を防止できるか、あるいは、無機成分を脱落させずに保持させることができるか、が耐火性組成物の性能を決する上で重要な要素となる。   As such an expansion material for fire prevention, a fire-resistant composition in which a heat-expandable graphite or an inorganic substance is blended with a rubber component has been conventionally used. However, the rubber component and the thermally expandable graphite have the property that they inherently combust and heat melt, so that it is possible to prevent the foam that has been thermally expanded for a long time from being melted, or the inorganic component. Whether it can be held without falling off is an important factor in determining the performance of the refractory composition.

そこで、出願人は特許文献1に、熱膨張した後も熱融解を起こさずに所定の形状を長時間保持することができる防火用膨張材料として、ゴム成分に熱可塑性エラストマーを配合し、膨張性黒鉛、ホウ酸及び無機充填材を添加した防火用目地材を開示している。しかし、この防火用目地材は、炎熱に曝された場合の形状安定性に優れるものの、防火用目地材自体は粘着性を有しないため、耐火被覆材として用いる際には、接着剤により鉄骨等に貼り付ける必要があった。   Therefore, the applicant, in Patent Document 1, blends a thermoplastic elastomer into a rubber component as a fireproof expansion material capable of maintaining a predetermined shape for a long time without causing thermal melting even after thermal expansion, and expandability Disclosed is a fireproof joint material to which graphite, boric acid and an inorganic filler are added. However, although this fireproof joint material is excellent in shape stability when exposed to flame heat, the fireproof joint material itself has no adhesiveness, so when used as a fireproof coating material, an It was necessary to stick to.

一方、粘着性を有する耐火性組成物として、特許文献2には、粘着性を有するゴム組成物、リン化合物、中和処理された熱膨張性黒鉛、含水無機物及び金属炭酸塩を混成した耐火性樹脂組成物が開示されている。この耐火性樹脂組成物は、成形性に優れると共に十分な耐火性能を発揮するものである。
特開2006−87819号公報 特開2000−34365号公報
On the other hand, as a fire-resistant composition having adhesiveness, Patent Document 2 discloses a fire-resistant composition in which an adhesive rubber composition, a phosphorus compound, neutralized thermally expandable graphite, a hydrous inorganic substance, and a metal carbonate are mixed. A resin composition is disclosed. This fire-resistant resin composition is excellent in moldability and exhibits sufficient fire resistance.
JP 2006-87819 A JP 2000-34365 A

特許文献2に開示される耐火性樹脂組成物は粘着性を有するため、耐火被覆材として鉄骨や壁に貼り付ける際に接着剤を必要としない。しかし、耐火性樹脂組成物の有する粘着力だけでは、接着性が不十分であるため、耐火被覆材を鉄骨や壁に貼り付けた後に、外側から不織布、金網、セラミック材料等の面材を釘やピン、ネジ等によって固定し、補強される場合が多かった(特許文献2段落0051参照)。このような補強固定は、施工後に炎熱に曝された場合の耐火被覆材の剥離、脱落を防止するためにも必要な工程であるが、大変手間のかかる作業であるため、作業効率を大きく低下させる要因となっていた。   Since the fire-resistant resin composition disclosed in Patent Document 2 has adhesiveness, an adhesive is not required when it is attached to a steel frame or a wall as a fire-resistant coating material. However, since the adhesiveness is not sufficient with only the adhesive strength of the fire-resistant resin composition, after attaching the fire-resistant coating material to the steel frame or wall, the surface material such as non-woven fabric, wire mesh, ceramic material is nail from the outside. In many cases, it is fixed and reinforced by a pin, a screw, or the like (see paragraph 0051 of Patent Document 2). Such reinforcement and fixing are necessary steps to prevent the fireproof coating material from peeling off and falling off when exposed to flame heat after construction. It was a factor to make.

そこで、本発明は、炎熱に曝された場合にも、発泡体が十分な形状安定性を保持する耐火ゴム組成物であって、これを成形して得た耐火被覆材に対して優れた作業効率を付与し得る耐火ゴム組成物を提供することを主な目的とする。   Therefore, the present invention is a fire resistant rubber composition in which the foam retains sufficient shape stability even when exposed to flame heat, and an excellent work for the fire resistant coating material obtained by molding the foam. The main object is to provide a fire resistant rubber composition capable of imparting efficiency.

上記の課題を解決するため、本発明者らは鋭意検討を重ねた結果、十分な形状安定性を保持する耐火ゴム組成物であって、これを成形して得られる耐火被覆材に、施工時の優れた「粘着性」と、施工後の強固な「固着性」を付与し得る耐火ゴム組成物として、以下の耐火ゴム組成物を完成させるに至った。   In order to solve the above-mentioned problems, the present inventors have conducted intensive studies, and as a result, are fire-resistant rubber compositions that retain sufficient shape stability. As a refractory rubber composition capable of imparting excellent “adhesiveness” and strong “adhesiveness” after construction, the following refractory rubber composition has been completed.

すなわち、本願発明は、まず、液状ゴム30〜50質量部、ブチルゴム50〜70質量部からなるベースゴム成分100質量部に対して、粘着剤を10〜60質量部、熱膨張性黒鉛を10〜100質量部、亜リン酸アルミニウムを50〜170質量部、無機充填剤を50〜170質量部、加硫剤を0.1〜10質量部、加硫促進剤を0.1〜10質量部を含有し、60〜100℃にて混錬するための未加硫の耐火ゴム組成物を提供するものである。   That is, in the present invention, first, 10 to 60 parts by mass of an adhesive and 10 to 10 parts of thermally expandable graphite with respect to 100 parts by mass of a base rubber component composed of 30 to 50 parts by mass of liquid rubber and 50 to 70 parts by mass of butyl rubber. 100 parts by mass, 50-170 parts by mass of aluminum phosphite, 50-170 parts by mass of inorganic filler, 0.1-10 parts by mass of vulcanizing agent, 0.1-10 parts by mass of vulcanization accelerator An unvulcanized refractory rubber composition for containing and kneading at 60 to 100 ° C. is provided.

ここで、本発明において、耐火被覆材の「粘着性」とは、鉄骨等の基材の表面へ耐火被覆材を施工する際に、耐火被覆材が自身の有する粘着力に基づいて基材表面へ接着し、保持される性質をいうものとする。また、この接着状態を、単に「粘着」又は「粘着状態」というものとする。
粘着状態の耐火被覆処理材は、柔軟性を維持しているため、一旦基材表面へ貼り付けた後も再度剥すことが可能である。
これに対し、耐火被覆材の「固着性」とは、後述する「自然加硫性」によって耐火被覆処理材が硬度を増し、基材表面へ強固に固着化する性質をいうものとする。また、この接着状態を、単に「固着」又は「固着状態」というものとする。
固着状態の耐火被覆処理材は、硬度を増し柔軟性を喪失しているため、もはや基材表面から容易に剥離することはできない。
なお、「接着」は、上記の「粘着」及び「固着」を包含する概念として用いるものとする。
Here, in the present invention, the “adhesiveness” of the fireproof coating material refers to the surface of the base material based on the adhesive strength of the fireproof coating material when the fireproof coating material is applied to the surface of the base material such as a steel frame. The property of adhering to and holding the material. Further, this adhesion state is simply referred to as “adhesion” or “adhesion state”.
Since the fire-resistant coating material in an adhesive state maintains flexibility, it can be peeled off again after being applied to the surface of the substrate.
On the other hand, the “adhesiveness” of the fireproof coating material refers to the property that the fireproof coating material increases its hardness by “natural vulcanizability” described later, and firmly adheres to the substrate surface. Further, this adhesion state is simply referred to as “fixed” or “fixed state”.
Since the fireproof coating material in the fixed state has increased hardness and lost flexibility, it can no longer be easily peeled off from the substrate surface.
“Adhesion” is used as a concept including the above “adhesion” and “adhesion”.

以下、液状ゴム、ブチルゴム、粘着剤、熱膨張性黒鉛、亜リン酸アルミニウム、無機充填剤、加硫剤、加硫促進剤の各成分の含有比率を上記範囲に特定した意義について、主として、この耐火ゴム組成物を成形して得られる耐火被覆材への施工時の優れた粘着性と、施工後の強固な固着性の付与の観点から、以下にそれぞれ説明を加える。   Hereinafter, the significance of specifying the content ratio of each component of liquid rubber, butyl rubber, pressure-sensitive adhesive, thermal expansive graphite, aluminum phosphite, inorganic filler, vulcanizing agent, and vulcanization accelerator within the above range is mainly described below. From the viewpoint of imparting excellent adhesiveness during construction to a fireproof coating obtained by molding a fireproof rubber composition and providing strong adhesion after construction, explanations will be given below.

ベースゴム成分は、液状ゴム30〜50質量部に、ブチルゴム50〜70質量部を混合してなる。液状ゴムが30質量部未満の場合、ベースゴム成分は硬く(針入度は小さく)なりすぎ、耐火ゴム組成物の加工性が低下し、また得られる耐火被覆材の粘着性が不十分となる。また、液状ゴムが50質量部を超えると、ベースゴム成分は柔らかく(針入度が大きく)なりすぎ、得られる耐火被覆材が取り扱いづらくなり、操作性が低下する。従って、液状ゴム及びブチルゴムを上記特定質量比で配合してベースゴム成分とすることにより、好適な加工性を供えた耐火ゴム組成物が得られ、さらに操作性と、特に粘着性に優れた耐火被覆材を得ることができる。   The base rubber component is obtained by mixing 50 to 70 parts by mass of butyl rubber with 30 to 50 parts by mass of liquid rubber. When the liquid rubber is less than 30 parts by mass, the base rubber component is too hard (the penetration is too small), the processability of the fireproof rubber composition is lowered, and the tackiness of the resulting fireproof coating is insufficient. . On the other hand, if the liquid rubber exceeds 50 parts by mass, the base rubber component becomes too soft (the penetration is too high), making it difficult to handle the resulting fireproof coating material, resulting in a decrease in operability. Therefore, by blending liquid rubber and butyl rubber with the above specific mass ratio as a base rubber component, a fire resistant rubber composition having suitable processability can be obtained, and further, fire resistance excellent in operability and particularly adhesiveness. A covering material can be obtained.

さらに、粘着剤をベースゴム成分に配合することにより、得られる耐火被覆材の粘着性を一層向上させることが可能である。粘着剤の含有量は、ベースゴム成分100質量部に対して10〜60質量部であり、好ましくは15〜40質量部である。10質量部より少ないと耐火被覆材の粘着性が不十分となり、60質量部を超えて使用すると耐火被覆材の強度が低くなるためである。   Furthermore, it is possible to further improve the adhesiveness of the resulting fireproof coating material by blending an adhesive into the base rubber component. Content of an adhesive is 10-60 mass parts with respect to 100 mass parts of base rubber components, Preferably it is 15-40 mass parts. If the amount is less than 10 parts by mass, the adhesiveness of the fireproof coating material becomes insufficient, and if it exceeds 60 parts by mass, the strength of the fireproof coating material is lowered.

熱膨張性黒鉛の含有量は、ベースゴム成分100質量部に対して10〜100質量部であり、好ましくは20〜70質量部である。熱膨張性黒鉛の含有量が10質量部より少ないと、耐火ゴム組成物(又は耐火被覆材)が充分熱膨張しない(熱膨張倍率が小さい)場合があり、100質量部を超えると耐火ゴム組成物(又は耐火被覆材)の熱膨張倍率は大きくなるものの、熱膨張後の発泡体の形状安定性が低下するためである。   The content of the heat-expandable graphite is 10 to 100 parts by mass, preferably 20 to 70 parts by mass with respect to 100 parts by mass of the base rubber component. When the content of the heat-expandable graphite is less than 10 parts by mass, the fire-resistant rubber composition (or fire-resistant coating material) may not be sufficiently thermally expanded (the thermal expansion ratio is small), and when it exceeds 100 parts by mass, the fire-resistant rubber composition This is because, although the thermal expansion magnification of the object (or fireproof coating material) is increased, the shape stability of the foam after the thermal expansion is lowered.

また、亜リン酸アルミニウムの含有量は、ベースゴム成分100質量部に対して50〜170質量部であり、好ましくは50〜130質量部である。50質量部より少ないと耐火ゴム組成物(又は耐火被覆材)の形状安定性が不十分となり、170質量部を超えると耐火ゴム組成物の加工性が低下するためである。   Moreover, content of aluminum phosphite is 50-170 mass parts with respect to 100 mass parts of base rubber components, Preferably it is 50-130 mass parts. When the amount is less than 50 parts by mass, the shape stability of the fire resistant rubber composition (or fire resistant coating material) becomes insufficient, and when it exceeds 170 parts by mass, the workability of the fire resistant rubber composition is lowered.

無機充填材の含有量は、ベースゴム成分100質量部に対して50〜170質量部であり、好ましくは70〜160質量部である。50質量部より少ないと耐火ゴム組成物(又は耐火被覆材)の発泡体の強度が不足し、耐熱性、難燃性が発揮されず、170質量部を超えると耐火ゴム組成物の加工性が低下するためである。   Content of an inorganic filler is 50-170 mass parts with respect to 100 mass parts of base rubber components, Preferably it is 70-160 mass parts. When the amount is less than 50 parts by mass, the strength of the foam of the refractory rubber composition (or fireproof coating material) is insufficient, and heat resistance and flame retardancy are not exhibited. It is because it falls.

ベースゴム成分に、熱膨張性黒鉛及び亜リン酸アルミニウム、無機充填剤を上記の特定質量比で配合することにより、好適な熱膨張倍率と加工性を備え、長時間高温に曝され熱膨張してもその発泡体が脆弱化し難く十分な形状安定性を有する耐火ゴム組成物(又はこれを成形した耐火被覆材)を得ることができる。   By blending thermally expandable graphite, aluminum phosphite, and inorganic filler with the above specific mass ratio into the base rubber component, it has suitable thermal expansion ratio and workability, and is exposed to high temperature for a long time and thermally expands. However, the fire-resistant rubber composition (or the fire-resistant coating material obtained by molding the foam-resistant rubber composition) having sufficient shape stability that is difficult to weaken the foam can be obtained.

ここで、本件発明者は、各成分を60〜100℃にて混錬処理し、耐火ゴム組成物の加硫反応の進行を抑制することで、環境下で太陽光の輻射熱等により自然に加硫(自然加硫)し、次第に強度を増す特性を備えた未加硫の耐火ゴム組成物が得られることを見出した。
本発明では、この太陽光の輻射熱等による環境下での耐火ゴム組成物(又は耐火被覆材)の加硫を「自然加硫」というものとする。この自然加硫により、耐火ゴム組成物は、次第に硬度を増すこととなる。
Here, the present inventor kneads each component at 60 to 100 ° C. and suppresses the progress of the vulcanization reaction of the refractory rubber composition, so that it can be naturally added by radiant heat of sunlight in the environment. It has been found that an unvulcanized refractory rubber composition having a characteristic of being vulcanized (natural vulcanization) and gradually increasing in strength can be obtained.
In the present invention, vulcanization of the refractory rubber composition (or refractory coating material) under an environment caused by radiant heat of sunlight is referred to as “natural vulcanization”. This natural vulcanization gradually increases the hardness of the fire resistant rubber composition.

従って、上記混練処理後の耐火ゴム組成物から成型した耐火処理材は、当初は優れた柔軟性と粘着性を有し、施工時における優れた粘着性を発揮する。そして、施工後は環境下で太陽光の輻射熱等により自然加硫して次第に強度を増し、固着化することとなる。   Therefore, the fireproofing material molded from the fireproof rubber composition after the kneading treatment initially has excellent flexibility and adhesiveness, and exhibits excellent adhesiveness during construction. And after construction, it will naturally vulcanize by radiant heat of sunlight under the environment, and the strength will gradually increase and become fixed.

本件発明者は、このような自然加硫性に基づく耐火ゴム組成物(又は耐火被覆材)の特性を最適化するため、加硫剤及び加硫促進剤の含有比率を、それぞれベースゴム成分100質量部に対して0.1〜10質量部の範囲に特定した。これは、さらに好ましくは1〜5質量部範囲である。加硫剤及び加硫促進剤がそれぞれベースゴム成分100質量部に対して0.1質量部より少ないと、自然加硫性が発揮されなかったり、自然加硫の進行(自然加硫速度)が遅すぎたりして耐火ゴム組成物(又は耐火被覆材)の強度が不十分となり、10質量部を超えて使用すると、自然加硫速度が速くなりすぎて保管時の安定性が劣ることが判明したためである。   In order to optimize the characteristics of the refractory rubber composition (or refractory coating material) based on such natural vulcanizability, the present inventor has determined the content ratio of the vulcanizing agent and the vulcanization accelerator as the base rubber component 100, respectively. It specified in the range of 0.1-10 mass parts with respect to the mass part. This is more preferably in the range of 1 to 5 parts by mass. If the vulcanizing agent and the vulcanization accelerator are less than 0.1 parts by mass with respect to 100 parts by mass of the base rubber component, natural vulcanizability is not exhibited, or natural vulcanization progress (natural vulcanization rate) It turns out that the strength of the fire-resistant rubber composition (or fire-resistant coating material) becomes insufficient due to being too slow, and if it is used in excess of 10 parts by mass, the natural vulcanization rate becomes too fast and the stability during storage is inferior. This is because.

液状ゴム、ブチルゴム、粘着剤、熱膨張性黒鉛、亜リン酸アルミニウム、無機充填剤の各成分と、加硫剤、加硫促進剤を上記の特定比率で含有する耐火ゴム組成物は、60〜100℃にて混錬することにより、上述の通り好適な柔軟性と粘着性を有する耐火被覆材を成形し得るものとなる。さらに、得られる耐火被覆材は好適な自然加硫性を備え、適切な加硫速度と十分な加硫後の強度を発揮するものとなる。   The fire-resistant rubber composition containing each component of liquid rubber, butyl rubber, pressure-sensitive adhesive, heat-expandable graphite, aluminum phosphite, inorganic filler, vulcanizing agent, and vulcanization accelerator in the above specific ratio is 60 to By kneading at 100 ° C., a fireproof coating material having suitable flexibility and adhesiveness can be formed as described above. Furthermore, the obtained fireproof coating material has suitable natural vulcanization properties, and exhibits an appropriate vulcanization speed and sufficient strength after vulcanization.

より具体的には、例えば、ツーローター式混錬装置を用いて80℃にて40回転/分の回転速度で5分間混練し、加硫剤および加硫促進剤を添加し、更に100℃にて前記回転数で5分間混練する混錬処理工程を行なったのちの、耐火ゴム組成物の針入度は30〜65であり、好適な柔軟性を具備するものとなる。
さらに、同様の条件で混練処理を行ったのちの耐火ゴム組成物の加硫度は5%以下となる。
ここで、仮に100℃を超えた温度で混練処理を行った場合には、混練中に加硫反応が進行してしまい、得られる耐火ゴム組成物の柔軟性に支障をきたしたり、以下に示す適切な自然加硫性が発揮されない可能性が生じる。
More specifically, for example, using a two-rotor kneading apparatus, kneading at a rotation speed of 40 rotations / minute at 80 ° C. for 5 minutes, adding a vulcanizing agent and a vulcanization accelerator, and further increasing to 100 ° C. After the kneading treatment step of kneading for 5 minutes at the above rotational speed, the penetration of the refractory rubber composition is 30 to 65, and it has suitable flexibility.
Furthermore, the degree of vulcanization of the refractory rubber composition after kneading under the same conditions is 5% or less.
Here, if the kneading treatment is performed at a temperature exceeding 100 ° C., the vulcanization reaction proceeds during the kneading, which may hinder the flexibility of the resulting refractory rubber composition. There is a possibility that appropriate natural vulcanizability may not be exhibited.

すなわち、上記混練処理ののちの耐火ゴム組成物は、50℃雰囲気下120日後において70%以上にまで加硫し、好適な自然加硫性を発揮するものとなっている。   That is, the refractory rubber composition after the kneading treatment is vulcanized to 70% or more after 120 days in a 50 ° C. atmosphere and exhibits suitable natural vulcanizability.

なお、上記混錬処理工程に用いることができるツーローター式混錬装置は、例えば、80℃ないしは100℃において回転速度40回転/分での混錬を可能とする装置であれば特に限定されず用いることができるが、本発明においては、現在広く普及している株式会社モリヤマ製の混合容量3リットルの加圧ニーダー(機器名:DS3−10MWB−S型)を用いた。   The two-rotor kneading apparatus that can be used for the kneading treatment step is not particularly limited as long as the apparatus can knead at 80 ° C. or 100 ° C. at a rotation speed of 40 rpm. In the present invention, a pressure kneader (equipment name: DS3-10MWB-S type) having a mixing volume of 3 liters manufactured by Moriyama Co., Ltd., which is currently widely used, was used.

以上に説明した耐火ゴム組成物から耐火被覆材を製造する場合には、該耐火ゴム組成物を60〜100℃にて混錬処理したのち、成形処理を行なう。この際、成形処理温度を60〜100℃に保つことにより、上記混錬処理後の耐火ゴム組成物の加硫度(5%以下)が維持されるようにする。成形処理温度が100℃を超えると、耐火ゴム組成物の加硫反応が進行してしまい、得られる耐火被覆材の粘着性及び柔軟性が低下したり、適切な自然加硫性が発揮されない可能性が生じるためである。さらに、成形処理温度は、混錬処理の温度よりも低く保つことがより望ましい。   When manufacturing a fireproof coating material from the fireproof rubber composition described above, the fireproof rubber composition is kneaded at 60 to 100 ° C. and then molded. At this time, the vulcanization degree (5% or less) of the refractory rubber composition after the kneading treatment is maintained by maintaining the molding treatment temperature at 60 to 100 ° C. If the molding process temperature exceeds 100 ° C, the vulcanization reaction of the refractory rubber composition proceeds, and the adhesiveness and flexibility of the resulting refractory coating material may be reduced, or appropriate natural vulcanizability may not be exhibited. This is because sex occurs. Furthermore, it is more desirable to keep the molding process temperature lower than the kneading process temperature.

このようにして成形された耐火被覆材は、成形後は優れた粘着性を有するので、基材の表面に耐火被覆材を施工する際、耐火被覆材は自身の有する粘着力に基づいて基材表面へ接着し、保持される。従って、従来の防火用膨張材料と異なり、鉄骨や壁等へ貼り付ける際に、不織布、金網、セラミック材料等の面材を釘やピン、ネジ等によって補強固定する必要がない。また、粘着状態の耐火被覆材は、柔軟性を維持しているので、一旦基材表面へ貼り付けて位置決めを行なった後にも、再度剥がして貼り替えることが可能である。   The fire-resistant coating material molded in this way has excellent adhesiveness after molding. Therefore, when the fire-resistant coating material is applied to the surface of the base material, the fire-resistant coating material is based on the adhesive strength of the base material. Adhere to the surface and hold. Therefore, unlike conventional fire-resistant expansion materials, it is not necessary to reinforce and fix face materials such as non-woven fabrics, wire meshes, and ceramic materials with nails, pins, screws, and the like when affixing to steel frames or walls. In addition, since the fire-resistant coating material in an adhesive state maintains flexibility, it can be peeled off and pasted again after it is once pasted and positioned on the substrate surface.

さらに、鉄骨や壁等に貼り付けられた耐火被覆材は、自然加硫により次第に硬度を増して、貼り付け当初の粘着状態から、次第に固着状態へと変化し、鉄骨や壁等の表面に強固な被覆を形成する。このように強固な被覆を形成するに至った耐火被覆材は、もはや容易に剥離、脱落することがないので、従来の防火用膨張材料のように、鉄骨や壁等へ貼り付けた後、外側から不織布、金網、セラミック材料等の面材を釘やピン、ネジ等によって補強固定する必要がなく、炎熱に曝された場合にも剥離、脱落しにくい。   In addition, fireproof coatings applied to steel frames and walls gradually increase in hardness due to natural vulcanization, and gradually change from an adhesive state at the time of application to an adhering state, and firmly adhere to the surfaces of steel frames and walls. A smooth coating. Since the fireproof coating material that has led to the formation of such a strong coating can no longer be easily peeled off and dropped off, after being attached to a steel frame or wall, etc. Therefore, it is not necessary to reinforce and fix face materials such as non-woven fabrics, wire meshes, and ceramic materials with nails, pins, screws, and the like, and even when exposed to flame heat, they do not easily peel off or fall off.

本発明に係る耐火被覆処理方法は、このような耐火被覆材の特性を利用したものであり、施工時には、耐火被覆材自身が有する粘着力によって基材表面へ貼り付けて粘着させ、その後は、耐火被覆材の自然加硫によって基材表面に固着化させることにより、強固な被膜を得ることを特徴とする。
この耐火被覆処理方法では、上述のように、従来必要であった不織布、金網、セラミック材料等の面材を釘やピン、ネジ等によって補強固定の必要がないため、作業効率を格段に向上させることが可能となる。
The fire-resistant coating treatment method according to the present invention utilizes the characteristics of such a fire-resistant coating material.At the time of construction, the fire-resistant coating material itself is adhered and adhered to the substrate surface by the adhesive force that the fire-resistant coating material has, and thereafter, It is characterized in that a strong coating is obtained by fixing to the surface of the substrate by natural vulcanization of the fireproof coating material.
In this fireproof coating method, as described above, since it is not necessary to reinforce and fix face materials such as non-woven fabrics, wire meshes, and ceramic materials that have been conventionally required with nails, pins, screws, etc., work efficiency is greatly improved. It becomes possible.

また、この際、耐火被覆材を、テープ状あるいはシート状に成形することにより、鉄骨や壁等により簡便に貼り付けることができ、さらに作業効率を高めることが可能となる。   At this time, by forming the fireproof covering material into a tape shape or a sheet shape, it can be simply attached to a steel frame or a wall, and the working efficiency can be further increased.

本発明に係る耐火ゴム組成物は、炎熱に曝された場合も十分な形状安定性を保持するため、火災時の延焼を効果的に抑止することができるとともに、この耐火ゴム組成物から成形した耐火処理材は、施工時の優れた粘着性と、施工後の強固な固着性を発揮するため、鉄骨や壁等へ貼り付ける際に補強固定が不要となり、耐火被覆処理作業の効率を飛躍的に高めることが可能である。   The fire resistant rubber composition according to the present invention retains sufficient shape stability even when exposed to flame heat, so that it is possible to effectively suppress the spread of fire at the time of fire, and the fire resistant rubber composition is molded from this fire resistant rubber composition. The fireproofing material exhibits excellent adhesiveness during construction and strong adhesiveness after construction, so there is no need for reinforcement and fixing when pasting on steel frames or walls, dramatically improving the efficiency of fireproofing treatment work. It is possible to increase it.

以下、本発明を実施するための好適な形態について説明する。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。   Hereinafter, preferred embodiments for carrying out the present invention will be described. In addition, embodiment described below shows an example of typical embodiment of this invention, and, thereby, the range of this invention is not interpreted narrowly.

本発明で用いられる液状ゴムとしては、例えば、ポリブタジエン、ポリイソプレン、ポリブテンを用いることができ、耐火ゴム組成物(又は耐火被覆材)に粘着性を付与できる液状ゴムであれば、これらに限定されず採用が可能である。これらの液状ゴムを1種又は2種以上を、ブチルゴムと混合しベースゴム成分とする。   As the liquid rubber used in the present invention, for example, polybutadiene, polyisoprene, polybutene can be used, and the liquid rubber is limited to these as long as it is a liquid rubber capable of imparting tackiness to the fire resistant rubber composition (or fire resistant coating material). Adoption is possible. One or more of these liquid rubbers are mixed with butyl rubber to form a base rubber component.

粘着剤は、耐火ゴム組成物(又は耐火被覆材)の粘着性をより向上させるために用いる。粘着剤としては、例えば、クマロン−インデン樹脂、フェノール−ホルムアルデヒド樹脂、テルペン−フェノール樹脂、ポリテルペン樹脂、石油系炭化水素樹脂等が挙げられる。粘着剤は1種類又は2種類以上を組み合わせて用いることが出来る。   An adhesive is used in order to improve the adhesiveness of a fireproof rubber composition (or fireproof coating material) more. Examples of the pressure-sensitive adhesive include coumarone-indene resin, phenol-formaldehyde resin, terpene-phenol resin, polyterpene resin, and petroleum hydrocarbon resin. The pressure-sensitive adhesive can be used alone or in combination of two or more.

熱膨張性黒鉛は、220℃程度以上の温度に曝されると100倍以上に熱膨張し、火災発生時には鉄骨等の被覆表面に強固な発泡断熱層を形成して鉄骨等の温度上昇を防止し、また、防火壁と電源ケーブル等の隙間を閉塞させて火炎の流入を防止する機能を発揮する。熱膨張性黒鉛には、天然グラファイト、熱分解グラファイト等の粉末を、硫酸や硝酸等の無機酸と、濃硝酸や過マンガン酸塩等の強酸化剤とで処理したもので、グラファイト層状構造を維持した結晶化合物が用いられる。なお、天然グラファイト、熱分解グラファイト等の粉末には、脱酸処理や中和処理等を行なった各種品種があるが、いずれを使用してもよい。熱膨張性黒鉛の粒度は、20〜400メッシュ程度が好ましい。400メッシュより粒度が小さくなると熱膨張性黒鉛の膨張度が小さく、得られた耐火ゴム組成物(又は耐火被覆材)が火災時に充分熱膨張しない場合があり、また20メッシュより粒度が大きくなると分散性が悪くなり耐火ゴム組成物の弾性が低下するためである。   Thermally expandable graphite expands more than 100 times when exposed to temperatures of about 220 ° C or higher, and in the event of a fire, forms a strong foam insulation layer on the surface of the steel frame to prevent temperature rise of the steel frame, etc. In addition, the gap between the fire wall and the power cable is closed to exert the function of preventing the inflow of flame. Thermally expandable graphite is a powder of natural graphite, pyrolytic graphite, etc., treated with an inorganic acid such as sulfuric acid or nitric acid and a strong oxidizing agent such as concentrated nitric acid or permanganate. A maintained crystalline compound is used. There are various types of powders such as natural graphite and pyrolytic graphite, which have been deoxidized or neutralized, and any of them may be used. The particle size of the thermally expandable graphite is preferably about 20 to 400 mesh. When the particle size is smaller than 400 mesh, the expansion coefficient of the heat-expandable graphite is small, and the obtained fire-resistant rubber composition (or fire-resistant coating material) may not be sufficiently thermally expanded at the time of fire, and dispersed when the particle size is larger than 20 mesh. This is because the properties of the refractory rubber composition deteriorate and the elasticity of the refractory rubber composition decreases.

亜リン酸アルミニウムは、熱膨張後の発泡体の型崩れ防止のための形状安定化剤として用いる。亜リン酸アルミニウムの平均粒径は、分散性の観点からレーザー回折法の測定値で1〜100μmが好ましい。   Aluminum phosphite is used as a shape stabilizer for preventing the foam from being deformed after thermal expansion. The average particle size of aluminum phosphite is preferably 1 to 100 μm as measured by a laser diffraction method from the viewpoint of dispersibility.

無機充填剤は、無機充填剤は、耐火ゴム組成物(又は耐火被覆材)中で骨材的な働きをし、耐火ゴム組成物(又は耐火被覆材)が火災で熱膨張した後は、その発泡体の強度を向上したり、熱容量の増大に寄与し耐熱性を増強する。無機充填剤としては、限定はされないが、例えば、赤リン、リン酸金属塩、ポリリン酸アンモニウム類(ポリリン酸アンモニウム、メラミン変性ポリリン酸アンモニウム等)等の無機リン化合物;アルミナ、酸化亜鉛、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化錫、酸化アンチモン、フェライト類等の金属酸化物;水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、ハイドロタルサイト等の含水無機物;塩基性炭酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、炭酸ストロンチウム、炭酸バリウム等の金属炭酸塩;硫酸カルシウム、石膏繊維、ケイ酸カルシウム等のカルシウム塩;シリカ、珪藻土、ドーソナイト、硫酸バリウム、タルク、クレー、マイカ、モンモリロナイト、ベントナイト、活性白土、セピオライト、イモゴライト、セリサイト、ガラス繊維、ガラスビーズ、シリカ系バルン、窒化アルミニウム、窒化ホウ素、窒化ケイ素、カーボンブラック、グラファイト、炭素繊維、炭素バルン、木炭粉末、各種金属粉、チタン酸カリウム、硫酸マグネシウム、チタン酸ジルコン酸鉛、アルミニウムボレート、硫化モリブデン、炭化ケイ素、ステンレス繊維、ホウ酸亜鉛、各種磁性粉、スラグ繊維、フライアッシュ等が挙げられる。これらは、単独で用いても、2種以上を併用してもよい。   The inorganic filler functions as an aggregate in the fire resistant rubber composition (or fire resistant coating material), and after the fire resistant rubber composition (or fire resistant coating material) is thermally expanded by a fire, Improves the strength of the foam and contributes to an increase in heat capacity to enhance heat resistance. Examples of inorganic fillers include, but are not limited to, inorganic phosphorus compounds such as red phosphorus, metal phosphates, ammonium polyphosphates (ammonium polyphosphate, melamine-modified ammonium polyphosphate, etc.); alumina, zinc oxide, titanium oxide , Calcium oxide, magnesium oxide, iron oxide, tin oxide, antimony oxide, ferrites and other metal oxides; calcium hydroxide, magnesium hydroxide, aluminum hydroxide, hydrotalcite and other hydrous minerals; basic magnesium carbonate, carbonic acid Metal carbonates such as calcium, magnesium carbonate, zinc carbonate, strontium carbonate, barium carbonate; calcium salts such as calcium sulfate, gypsum fiber, calcium silicate; silica, diatomaceous earth, dosonite, barium sulfate, talc, clay, mica, montmorillonite, Bentonai , Activated clay, sepiolite, imogolite, sericite, glass fiber, glass beads, silica balun, aluminum nitride, boron nitride, silicon nitride, carbon black, graphite, carbon fiber, carbon balun, charcoal powder, various metal powders, titanic acid Examples include potassium, magnesium sulfate, lead zirconate titanate, aluminum borate, molybdenum sulfide, silicon carbide, stainless steel fiber, zinc borate, various magnetic powders, slag fiber, fly ash and the like. These may be used alone or in combination of two or more.

加硫剤及び加硫促進剤は、耐火ゴム組成物(又は耐火被覆材)に自然加硫性を付与するため配合される。加硫剤は、加硫ゴムを架橋できれば特に制限されるものではないが、例えば、硫黄、ポリスルフィド等の硫黄系化合物、p−キノンジオキシム、p−p−ジベンゾイルキノンオキシム等のオキシム系化合物、t−ブチルハイドロパーオキサイド、アセチルアセトンパーオキサイド、クメンハイドロパーオキサイド等の有機過酸化物系化合物等がある。加硫剤は硫黄系化合物が好ましく、その硫黄系化合物と、それ以外のものを組み合せて使用してもよい。加硫促進剤は、加硫ゴムの加硫の促進を目的に使用されるものであって、特に制限されるものではないが、例えば、テトラメチルチウラムジスルフィドやテトラブチルチウラムジスルフィド、テトラメチルチウラムモノスルフィド、ジペンタメチレンチウラムテトラスルフィド等のチウラム系化合物、2−メルカプトベンゾチアゾールやジベンゾチアゾールジスルフィド等のチアゾール系化合物、ジメチルジチオカルバミン酸亜鉛、ジエチルジチオカルバミン酸亜鉛ジ−n−ブチルジチオカルバミン酸亜鉛等のジチオカルバミン酸塩系化合物、n−ブチルアルデヒドアニリン等のアルデヒドアミン系化合物、N−シクロヘキシル−2−ベンゾチアジルスルフェンアミド等のスルフェンアミド系化合物、ジオルソトリルグアニジンやジオルソニトリルグアニジン等のグアニジン系化合物、チオカルバニリドやジエチルチオユリア、トリメチルチオユリア等のチオユリア系化合物、亜鉛華などの化合物が挙げられる。加硫促進剤は、これらの単体だけでなく、2種以上のものを組合せて使用してもよい。   The vulcanizing agent and the vulcanization accelerator are blended in order to impart natural vulcanization properties to the fire resistant rubber composition (or fire resistant coating material). The vulcanizing agent is not particularly limited as long as it can crosslink the vulcanized rubber. For example, sulfur-based compounds such as sulfur and polysulfide, and oxime-based compounds such as p-quinonedioxime and pp-dibenzoylquinoneoxime. Organic peroxide compounds such as t-butyl hydroperoxide, acetylacetone peroxide, cumene hydroperoxide, and the like. The vulcanizing agent is preferably a sulfur compound, and the sulfur compound may be used in combination with other compounds. The vulcanization accelerator is used for the purpose of accelerating the vulcanization of the vulcanized rubber and is not particularly limited. For example, tetramethylthiuram disulfide, tetrabutylthiuram disulfide, tetramethylthiuram mono Dithiocarbamic acids such as sulfides, thiuram compounds such as dipentamethylene thiuram tetrasulfide, thiazole compounds such as 2-mercaptobenzothiazole and dibenzothiazole disulfide, zinc dimethyldithiocarbamate, zinc diethyldithiocarbamate zinc di-n-butyldithiocarbamate Salt compounds, aldehyde amine compounds such as n-butyraldehyde aniline, sulfenamide compounds such as N-cyclohexyl-2-benzothiazylsulfenamide, diorthotrilguanidine and diorthoni Guanidine-based compounds such as Lil guanidine, Chiokarubanirido and diethyl thio urea, Chioyuria compound of trimethyl thio urea, etc., compounds such as zinc oxide and the like. Vulcanization accelerators may be used in combination of not only these simple substances but also two or more kinds.

液状ゴム、ブチルゴム、粘着剤、熱膨張性黒鉛、亜リン酸アルミニウム、無機充填剤、加硫剤、加硫促進剤の上記各成分を、請求の範囲記載の特定含有比率で混成した本発明にかかる未加硫の耐火ゴム組成物は、好適な熱膨張倍率と加工性を備え、高温に曝されてもその発泡体は十分な形状安定性を発揮する。さらに、60〜100℃にて混錬したのちの針入度は30〜65であって、好適な柔軟性をも具備するものとなっている。また、該耐火ゴム組成物は好適な自然加硫性をも備え、適切な自然加硫速度と、十分な自然加硫後の強度を発揮する。より具体的には、60〜100℃にて混錬したのちの加硫度は5%以下であり、その後50℃雰囲気下120日ののち、70%以上にまで加硫する。ここで、自然加硫速度を、異なる温度及び期間において評価することも当然に可能である。   In the present invention, the above components of liquid rubber, butyl rubber, pressure-sensitive adhesive, thermally expandable graphite, aluminum phosphite, inorganic filler, vulcanizing agent, and vulcanization accelerator are mixed in the specific content ratio described in the claims. Such an unvulcanized refractory rubber composition has a suitable thermal expansion ratio and processability, and the foam exhibits sufficient shape stability even when exposed to high temperatures. Furthermore, the penetration after kneading at 60 to 100 ° C. is 30 to 65, and it has suitable flexibility. The refractory rubber composition also has suitable natural vulcanizability, and exhibits an appropriate natural vulcanization rate and sufficient strength after natural vulcanization. More specifically, the degree of vulcanization after kneading at 60 to 100 ° C. is 5% or less, and then vulcanized to 70% or more after 120 days in a 50 ° C. atmosphere. Here, it is naturally possible to evaluate the natural vulcanization rate at different temperatures and periods.

耐火ゴム組成物にはその効果を阻害しない範囲で、可塑剤、軟化剤、老化防止剤、加工助剤、滑剤等を併用して用いてもよい。加工性の調整に有効な軟化剤や可塑剤の例としては、パラフィン系やナフテン系等のプロセスオイル、流動パラフィンやその他のパラフィン類、ワックス類、フタル酸やアジピン酸系、セバシン酸系やリン酸系等のエステル系可塑剤類、ステアリン酸やそのエステル類などがあげられる。   In the fire resistant rubber composition, plasticizers, softeners, anti-aging agents, processing aids, lubricants and the like may be used in combination as long as the effects thereof are not impaired. Examples of softeners and plasticizers that are effective in adjusting processability include paraffinic and naphthenic process oils, liquid paraffin and other paraffins, waxes, phthalic acid, adipic acid, sebacic acid and phosphorus. Examples include acid-based ester plasticizers, stearic acid and esters thereof.

耐火ゴム組成物を混練する装置としては、従来公知のツーローター式混錬装置、例えば、バンバリーミキサー、ニーダーミキサー等がある。耐火ゴム組成物から耐火被覆材を成形する際には、従来のプレス成形、押出成形、カレンダー成形等の方法がある。ここで、混錬工程及び成形工程における温度が100℃を超えると、耐火ゴム組成物の加硫が進行してしまい、得られた耐火被覆材の粘着性及び柔軟性が低下してしまう可能性がある。従って、混錬・成形工程の温度は100℃以下に保つ必要があり、これにより加硫度を5%以下に維持して、粘着性と柔軟性を備え、好適な自然加硫性を発揮する耐火被覆材を得ることが可能となる。なお、混練・成形温度の下限は、混練装置の運転可能な温度や成形工程の成形可能の温度であるが、例えば、それぞれ60℃である。また、加硫を進行させないために成形工程の成形温度は、混練温度より低いことが好ましい。   As a device for kneading the refractory rubber composition, there are conventionally known two-rotor kneading devices such as a Banbury mixer and a kneader mixer. When molding a fireproof coating material from a fireproof rubber composition, there are conventional methods such as press molding, extrusion molding, and calendar molding. Here, when the temperature in the kneading step and the molding step exceeds 100 ° C., the vulcanization of the refractory rubber composition proceeds, and the adhesiveness and flexibility of the obtained refractory coating material may be reduced. There is. Therefore, it is necessary to keep the temperature of the kneading / molding process at 100 ° C. or less, thereby maintaining the degree of vulcanization at 5% or less, providing adhesiveness and flexibility, and exhibiting suitable natural vulcanizability. It becomes possible to obtain a fireproof coating material. The lower limit of the kneading / molding temperature is a temperature at which the kneading apparatus can be operated or a temperature at which molding can be performed in the molding process. In order to prevent vulcanization from proceeding, the molding temperature in the molding step is preferably lower than the kneading temperature.

以下、本発明を実施例及び比較例により具体的に説明するが、これらの実施例は本発明を限定するものでない。なお、以下の説明における部は質量基準に基づく。実施例において使用した材料は、それぞれ以下に示したものである。
(1)液状ゴム:ポリブテン;BP Japan(株)製、「H−300」
(2)ブチルゴム:JSR(株)製、「ブチル268」
(3)粘着剤:テルペン系樹脂;ヤスハラケミカル(株)製、「YSレジンPX−100」)、フェノール−ホルムアルデヒド樹脂:日立化成工業(株)製、「ヒタノール#1501」
(4)熱膨張性黒鉛:エア・ウォーター・ケミカル(株)製、「SS−3」(膨張開始温度220℃)
(5)亜リン酸アルミニウム:太平化学産業(株)、「APA―100」
(6)無機充填剤:クレー;(株)群馬長石御座入鉱山製、「FA−80」、カーボンブラック;旭カーボン(株)製、「#80」、水酸化アルミニウム;昭和電工(株)製、「ハイジライトH31」
(7)加硫剤:粉末硫黄;細井化学工業(株)製
(8)加硫促進剤:ジメチルジチオカルバミン酸亜鉛;大内新興(株)製、「ノクセラーPZ」、ジ−n−ブチルジチオカルバミン酸亜鉛;大内新興(株)製、「ノクセラーBZ」、n−ブチルアルデヒドアニリン;大内新興(株)製、「ノクセラー8N」
実施例1〜6及び比較例1〜9において、下記の特性を評価した。各特性の測定方法を以下に示す。なお、試験片には耐火ゴム組成物を縦25mm×横100mm×厚み2mmのテープ状に加工した耐火被覆材を用いた。
(1)熱膨張倍率:試験片を300℃で保持された雰囲気内に0.5時間放置した後の膨張倍率を測定した。
(2)加工性:カレンダー成形機で試験片を成形する際に、問題なく成形できたものを「良」、外観不良発生あるいは安定した成形が出来なかったものを「不可」と評価した。
(3)形状安定性:熱膨張倍率測定後の試験片の形状を目視と指触で評価した。型崩れせず指で触っても崩れないものを「良」、指触ですぐ崩れるか、あるいは既に崩れてしまったものを「不可」と評価した。
(4)針入度:JIS−K2207に準拠し荷重100g、温度25℃において測定を行なった。
(5)加硫度:JIS−K6300記載の方法で、キュラストメーターIII型(JSRトレーディング社製)でトルクを測定。加硫度(%)=(MX−ML)/(MM−ML)×100(MXはある期間を経た材料のトルク値、MLは測定曲線におけるトルクの最小値、MMは測定曲線におけるトルクの最大値)
(6)T型剥離接着強さ:JIS K6854の剥離接着強さ試験方法に準拠して接着強度を測定した。大きさが縦25mm×横150mm×厚み2mmのSUS板に試験片を挟んでハンドローラーで圧着した。貼り付け直後及び50℃オーブン中に4ヶ月放置後において、剥離速度を50mm/minとし、T型剥離接着強さ試験を行なった。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, these Examples do not limit this invention. In addition, the part in the following description is based on a mass reference | standard. The materials used in the examples are as shown below.
(1) Liquid rubber: polybutene; “H-300” manufactured by BP Japan
(2) Butyl rubber: “Butyl 268” manufactured by JSR Corporation
(3) Adhesive: Terpene resin; Yasuhara Chemical Co., Ltd., “YS Resin PX-100”), Phenol-formaldehyde resin: Hitachi Chemical Co., Ltd., “Hitanol # 1501”
(4) Thermally expandable graphite: “SS-3” manufactured by Air Water Chemical Co., Ltd. (expansion start temperature: 220 ° C.)
(5) Aluminum phosphite: Taihei Chemical Industry Co., Ltd., “APA-100”
(6) Inorganic filler: clay; Gunma Nagaishi Gozairi Mine, “FA-80”, carbon black: Asahi Carbon Co., “# 80”, aluminum hydroxide: Showa Denko Co., Ltd. , "Heidilite H31"
(7) Vulcanizing agent: Powdered sulfur; manufactured by Hosoi Chemical Industry Co., Ltd. (8) Vulcanizing accelerator: Zinc dimethyldithiocarbamate; Zinc: Ouchi Shinsei Co., Ltd., “Noxeller BZ”, n-butyraldehyde aniline; Ouchi Shinsei Co., Ltd., “Noxeller 8N”
In Examples 1-6 and Comparative Examples 1-9, the following characteristics were evaluated. The measuring method of each characteristic is shown below. In addition, the fireproof coating material which processed the fireproof rubber composition into the tape shape of 25 mm long x 100 mm wide x 2 mm thickness was used for the test piece.
(1) Thermal expansion ratio: The expansion ratio after the test piece was left in an atmosphere maintained at 300 ° C. for 0.5 hours was measured.
(2) Workability: When a test piece was molded with a calender molding machine, those that could be molded without any problem were evaluated as “good”, and those that had poor appearance or could not be stably molded were evaluated as “impossible”.
(3) Shape stability: The shape of the test piece after the measurement of the thermal expansion ratio was evaluated by visual observation and finger touch. Those that did not lose shape and did not collapse even when touched with a finger were evaluated as “good”, and those that immediately collapsed with a finger touch or that had already collapsed were evaluated as “impossible”.
(4) Penetration: Measurement was performed at a load of 100 g and a temperature of 25 ° C. in accordance with JIS-K2207.
(5) Degree of vulcanization: Torque was measured with a curast meter type III (manufactured by JSR Trading) according to the method described in JIS-K6300. Vulcanization degree (%) = (MX−ML) / (MM−ML) × 100 (MX is the torque value of the material after a certain period, ML is the minimum torque value in the measurement curve, MM is the maximum torque value in the measurement curve) value)
(6) T-type peel adhesion strength: Adhesive strength was measured according to the peel adhesion strength test method of JIS K6854. A test piece was sandwiched between SUS plates having a size of 25 mm in length, 150 mm in width, and 2 mm in thickness, and pressed with a hand roller. Immediately after pasting and after leaving in an oven at 50 ° C. for 4 months, a peeling rate was set to 50 mm / min, and a T-type peeling adhesion strength test was performed.

表1及び表2は、液状ゴム、ブチルゴム、粘着剤、熱膨張性黒鉛、亜リン酸アルミニウム、無機充填剤、加硫剤、加硫促進剤の配合比率を変化させて成形した試験片の各特性を示す。試験片は、液状ゴム、ブチルゴム、粘着剤、熱膨張性黒鉛、亜リン酸アルミニウム、無機充填剤を、株式会社モリヤマ製の混合容量3リットルの加圧ニーダー(機器名:DS3−10MWB−S型)を用いて80℃にて40回転/分の回転速度で5分間混練し、加硫剤および加硫促進剤を添加し更に100℃にて同じ回転数で5分間混練した後、カレンダー成形機を用い80℃にて試験片を成形した。   Tables 1 and 2 show each of test pieces molded by changing the blending ratio of liquid rubber, butyl rubber, pressure-sensitive adhesive, thermally expandable graphite, aluminum phosphite, inorganic filler, vulcanizing agent, and vulcanization accelerator. Show properties. The test piece is liquid rubber, butyl rubber, adhesive, thermally expandable graphite, aluminum phosphite, inorganic filler, a pressure kneader (equipment name: DS3-10MWB-S type, manufactured by Moriyama Co., Ltd.). ) At 80 ° C. at a rotation speed of 40 rpm for 5 minutes, a vulcanizing agent and a vulcanization accelerator are added, and the mixture is further kneaded at 100 ° C. at the same rotational speed for 5 minutes. A test piece was molded at 80 ° C.

表1に示す通り、本発明の実施例1〜6は、十分な熱膨張倍率と良好な加工性を保持しながら、優れた形状安定性をも具備するものとなっている。また、針入度が30〜65、貼り付け直後のT型剥離接着強さが5N/25mm以上であって、好適な柔軟性と十分な粘着性を備えるものとなっている。   As shown in Table 1, Examples 1 to 6 of the present invention have excellent shape stability while maintaining a sufficient thermal expansion ratio and good workability. Further, the penetration is 30 to 65, the T-type peel adhesion strength immediately after pasting is 5 N / 25 mm or more, and it has suitable flexibility and sufficient tackiness.

さらに、自然加硫性の評価においては、実施例1〜6とも、50℃雰囲気下4ヶ月後における加硫度が70%以上となり、針入度が10%以上低下している。具体的な針入度の低下率は、実施例1〜3及び6では13〜17%、実施例4及び5では25%程度となっている。これにより、実施例1〜6においてT型剥離接着強さは、貼り付け直後の5N/25mm程度から39〜55N/25mmへ8倍程度増加している。これらの数値は、実施例1〜6にかかる耐火被覆材が、好適な加硫速度と加硫後の固着性を具備することを示すものである。   Furthermore, in the evaluation of natural vulcanizability, in all of Examples 1 to 6, the vulcanization degree after 4 months at 50 ° C. was 70% or more, and the penetration was reduced by 10% or more. The specific decrease rate of penetration is 13 to 17% in Examples 1 to 3 and 6, and about 25% in Examples 4 and 5. Thereby, in Examples 1-6, the T-type peeling adhesive strength is increasing about 5 times from about 5N / 25mm immediately after sticking to 39-55N / 25mm. These numerical values indicate that the fireproof coating materials according to Examples 1 to 6 have a suitable vulcanization speed and adhesiveness after vulcanization.

次に表2に掲げる比較例について説明する。   Next, comparative examples listed in Table 2 will be described.

比較例1は、粘着剤、熱膨張性黒鉛、亜リン酸アルミニウム、無機充填剤が配合されないため、接着性が不十分(T型剥離接着強さ 貼り付け直後参照)で、熱膨張性を欠き、形状安定性も不良となる。   In Comparative Example 1, since adhesive, thermally expandable graphite, aluminum phosphite, and inorganic filler are not blended, adhesiveness is insufficient (see T-type peel adhesion strength immediately after application) and lacks thermal expansion. Also, the shape stability becomes poor.

比較例2は、粘着剤が配合されないため、接着性が不十分となる。   In Comparative Example 2, since no pressure-sensitive adhesive is blended, the adhesiveness is insufficient.

比較例3は、膨張製黒鉛が配合されないため、熱膨張性を欠く。   Comparative Example 3 lacks thermal expansibility because it does not contain expanded graphite.

比較例4は、ベースゴム成分100質量部に対して、亜リン酸アルミニウムを20質量部とした。この場合、形状安定性が不良となった。   In Comparative Example 4, aluminum phosphite was 20 parts by mass with respect to 100 parts by mass of the base rubber component. In this case, the shape stability was poor.

比較例5は、加硫剤、加硫促進剤が配合されないため、自然加硫性を欠く。具体的な自然加硫性の評価としては、50℃雰囲気下4ヵ月後においても、加硫せず、接着強度の上昇がみられない(T型剥離接着強さ 貼り付け直後及び50℃4ヵ月後参照)。   Comparative Example 5 lacks natural vulcanizability because it contains no vulcanizing agent or vulcanization accelerator. As a specific evaluation of natural vulcanizability, there was no vulcanization and no increase in adhesive strength even after 4 months in a 50 ° C atmosphere (T-type peel adhesion strength immediately after application and at 50 ° C for 4 months) See later).

比較例6は、ベースゴム成分100質量部に対して、熱膨張性黒鉛を110質量部にまで配合した。この場合、熱膨張倍率は向上するものの、形状安定性が不良となる。   In Comparative Example 6, thermally expandable graphite was blended to 110 parts by mass with respect to 100 parts by mass of the base rubber component. In this case, the thermal expansion ratio is improved, but the shape stability is poor.

比較例7は、液状ゴムを60質量部、ブチルゴムを40質量部としたベースゴム成分100質量部に対して、亜リン酸アルミニウムを190質量部まで、また無機充填剤を180質量部(水酸化アルミニウム、カーボンブラックの合計)まで配合した。この場合、加工性が不良となり、針入度は80と柔軟性が過度となった。   In Comparative Example 7, 60 parts by mass of liquid rubber and 40 parts by mass of butyl rubber, 100 parts by mass of the base rubber component, up to 190 parts by mass of aluminum phosphite, and 180 parts by mass of inorganic filler (hydroxylated) Up to a total of aluminum and carbon black). In this case, the workability was poor, and the penetration was 80 and the flexibility was excessive.

比較例8は、ベースゴム成分100質量部に対して加硫剤を7質量部配合し、さらに加硫促進剤を10.5質量部(ノクセラーPZ,BZ,8Nの合計)にまで配合した。この場合、加工性が不良となる。これは自然加硫速度が速くなりすぎて、混錬・成形工程中に加硫反応が進み、柔軟性が失われたためである。   In Comparative Example 8, 7 parts by mass of the vulcanizing agent was blended with 100 parts by mass of the base rubber component, and further the vulcanization accelerator was blended to 10.5 parts by mass (the total of Noxeller PZ, BZ, 8N). In this case, workability becomes poor. This is because the natural vulcanization speed becomes too fast, the vulcanization reaction proceeds during the kneading and molding process, and flexibility is lost.

表3は、加硫剤および加硫促進剤を添加した後の混練工程(5分間)及びカレンダー成形機にて成形する際の温度を変化させて得た試験片の各特性を示す。実施例1及び比較例9は、液状ゴム、ブチルゴム、粘着剤、熱膨張性黒鉛、亜リン酸アルミニウム、無機充填剤、加硫剤、加硫促進剤の配合比率は同じであるが、実施例1においては混練工程及び成形工程の温度がそれぞれ100℃,80℃であるのに対して、比較例9においてはともに130℃に設定されている。   Table 3 shows the characteristics of the test pieces obtained by changing the kneading step (5 minutes) after adding the vulcanizing agent and the vulcanization accelerator and the temperature at the time of molding with a calendar molding machine. In Example 1 and Comparative Example 9, the blending ratios of liquid rubber, butyl rubber, adhesive, thermally expandable graphite, aluminum phosphite, inorganic filler, vulcanizing agent, and vulcanization accelerator are the same. In Example 1, the temperatures of the kneading step and the forming step are 100 ° C. and 80 ° C., respectively, whereas in Comparative Example 9, both are set to 130 ° C.

比較例1では、混練・成形工程の温度を100℃以下に維持することで、試験片の加硫度は3%に抑制されるのに対して、比較例9では混練・成形工程の温度を130℃と高く設定したことにより、試験片の加硫が12%にまで進んでいる。比較例9では、このように加硫が進行してしまうことにより、針入度が58にまで低下して柔軟性が失われ、接着性の低下が引き起こされている。   In Comparative Example 1, the vulcanization degree of the test piece is suppressed to 3% by maintaining the temperature of the kneading / molding step at 100 ° C. or lower, whereas in Comparative Example 9, the temperature of the kneading / molding step is By setting the temperature as high as 130 ° C., the vulcanization of the test piece has progressed to 12%. In Comparative Example 9, the vulcanization proceeds in this manner, so that the penetration is reduced to 58, the flexibility is lost, and the adhesiveness is lowered.

最後に、実施例1〜6と同様の配合比率とした試験片を用いて、角柱型鉄骨へ耐火被覆処理を行った際の施工作業成績について説明する。   Finally, the construction work results when the fireproof coating treatment is performed on the prismatic steel frame using test pieces having the same blending ratio as in Examples 1 to 6 will be described.

試験片は縦1000mm×横1500mm×厚み2mmのテープ状に加工し、片面をアルミ箔で被覆し、反対面(接着面)を角柱型鉄骨(幅300mm×奥行き300mm×高さ1500mm、鉄板厚み6mm)に貼り付けた。 The test piece is processed into a tape of 1000 mm length × 1500 mm width × 2 mm thickness, one side is covered with aluminum foil, and the opposite side (adhesion surface) is a prismatic steel frame (width 300 mm × depth 300 mm × height 1500 mm, iron plate thickness 6 mm) ).

いずれの配合比率の試験片においても、他の補強固定を要することなく、試験片は鉄骨表面に粘着、保持され、剥れ落ちることはなかった。   In any test piece of any blending ratio, the test piece was adhered and held on the surface of the steel frame without requiring other reinforcement and fixation, and did not peel off.

これにより、従来の防火用膨張材料とは異なり、本発明に係る耐火被覆材では、貼り付け後に外側から不織布、金網、セラミック材料等の面材を釘やピン、ネジ等によって補強固定する必要がないことが確認でき、施工時間を大幅に短縮できることが明らかとなった。また、接着剤を用いる必要がないため、接着剤に起因した臭気がなく、補強固定に必要な工具類を運搬する必要がないため、施工者の負担を軽減できることも明らかとなった。   Thus, unlike conventional fireproof expansion materials, the fireproof coating material according to the present invention needs to reinforce and fix a face material such as a nonwoven fabric, a wire mesh, a ceramic material from the outside with a nail, a pin, a screw, or the like after application. It was confirmed that the construction time can be significantly reduced. Moreover, since it is not necessary to use an adhesive, there is no odor due to the adhesive, and it is not necessary to transport tools necessary for reinforcing and fixing, and it has become clear that the burden on the installer can be reduced.

本発明に係る耐火ゴム組成物、該耐火ゴム組成物からなる耐火被覆材、及び該耐火被覆材を用いた耐火被覆処理方法は、鉄骨等の耐火被覆処理に用いることができる。さらに、防火壁と電源ケーブル間等の間隙の防火用目地材として電源ケーブルに巻きつけ開口部に挿入することで、火災時の延焼防止や建造物の倒壊防止に有用である。   The fire-resistant rubber composition according to the present invention, the fire-resistant coating material comprising the fire-resistant rubber composition, and the fire-resistant coating treatment method using the fire-resistant coating material can be used for fire-resistant coating treatment of steel frames and the like. Furthermore, it is useful for preventing the spread of fire in the event of a fire and preventing the collapse of the building by wrapping around the power cable as a fireproof joint material in the gap between the fire wall and the power cable and inserting it into the opening.

Claims (9)

液状ゴム30〜50質量部、ブチルゴム50〜70質量部からなるベースゴム成分100質量部に対して、粘着剤を10〜60質量部、熱膨張性黒鉛を10〜100質量部、亜リン酸アルミニウムを50〜170質量部、無機充填剤を50〜170質量部、加硫剤を0.1〜10質量部、加硫促進剤を0.1〜10質量部を含有し、60〜100℃にて混錬されるための未加硫の耐火ゴム組成物。   10 to 60 parts by mass of adhesive, 10 to 100 parts by mass of thermally expandable graphite, and aluminum phosphite with respect to 100 parts by mass of base rubber component consisting of 30 to 50 parts by mass of liquid rubber and 50 to 70 parts by mass of butyl rubber 50 to 170 parts by mass, inorganic filler 50 to 170 parts by mass, vulcanizing agent 0.1 to 10 parts by mass, vulcanization accelerator 0.1 to 10 parts by mass, and 60 to 100 ° C. An unvulcanized refractory rubber composition for kneading. ツーローター式混錬装置を用い80℃にて40回転/分の回転速度で5分間混錬し、前記加硫剤及び前記加硫促進剤を添加し、さらに100℃にて前記回転数で5分間混錬する混錬処理工程ののち、針入度が30〜65であり、かつ、加硫度が5%以下であることを特徴とする請求項1記載の耐火ゴム組成物。   Using a two-rotor kneading apparatus, kneading is carried out at 80 ° C. at a rotation speed of 40 rotations / minute for 5 minutes, and the vulcanizing agent and the vulcanization accelerator are added. The refractory rubber composition according to claim 1, wherein the penetration is 30 to 65 and the vulcanization degree is 5% or less after the kneading treatment step for kneading for 1 minute. 前記混錬処理工程後、50℃雰囲気下で120日ののち、加硫度が70%以上であることを特徴とする請求項1又は2記載の耐火ゴム組成物。   3. The refractory rubber composition according to claim 1, wherein the vulcanization degree is 70% or more after 120 days in an atmosphere of 50 ° C. after the kneading treatment step. 4. 請求項1から3のいずれか一項に記載の耐火ゴム組成物から成形した耐火被覆材。   A fireproof coating material formed from the fireproof rubber composition according to any one of claims 1 to 3. テープ状又はシート状の形状を有することを特徴とする請求項4記載の耐火被覆材。   The fireproof coating material according to claim 4, which has a tape-like or sheet-like shape. 請求項1から3のいずれか一項に記載の耐火ゴム組成物を、60〜100℃にて混練したのち成形する耐火被覆材の製造方法。   The manufacturing method of the fireproof coating material which shape | molds, after knead | mixing the fireproof rubber composition as described in any one of Claim 1 to 3 at 60-100 degreeC. 成形温度が混練温度よりも低いことを特徴とする請求項6記載の耐火被覆材の製造方法。   The method for producing a fireproof coating material according to claim 6, wherein the molding temperature is lower than the kneading temperature. 請求項4又は5記載の耐火被覆材を用いた耐火被覆処理方法。   A fireproof coating method using the fireproof coating material according to claim 4 or 5. 前記耐火被覆材を、
該耐火被覆材の粘着力によって基材表面へ粘着させた後、
さらに、該耐火被覆材の自然加硫によって基材表面へ固着化させることを特徴とする請求項8記載の耐火被覆処理方法。

The fireproof coating,
After adhering to the substrate surface by the adhesive strength of the fireproof coating,
The fireproof coating treatment method according to claim 8, further comprising fixing the fireproof coating material to the surface of the substrate by natural vulcanization.

JP2007184139A 2006-10-12 2007-07-13 Refractory rubber composition, refractory coating comprising the refractory rubber composition, and refractory coating treatment method using the refractory coating Active JP4021934B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007184139A JP4021934B1 (en) 2006-10-12 2007-07-13 Refractory rubber composition, refractory coating comprising the refractory rubber composition, and refractory coating treatment method using the refractory coating
CN2007101811812A CN101161715B (en) 2006-10-12 2007-10-12 Fire-resistant rubber composition, fire-resistant covering material composed of the composition and fire-resistant covering processing method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006278253 2006-10-12
JP2007184139A JP4021934B1 (en) 2006-10-12 2007-07-13 Refractory rubber composition, refractory coating comprising the refractory rubber composition, and refractory coating treatment method using the refractory coating

Publications (2)

Publication Number Publication Date
JP4021934B1 JP4021934B1 (en) 2007-12-12
JP2008115359A true JP2008115359A (en) 2008-05-22

Family

ID=38857852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007184139A Active JP4021934B1 (en) 2006-10-12 2007-07-13 Refractory rubber composition, refractory coating comprising the refractory rubber composition, and refractory coating treatment method using the refractory coating

Country Status (2)

Country Link
JP (1) JP4021934B1 (en)
CN (1) CN101161715B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011506729A (en) * 2007-12-18 2011-03-03 ソシエテ ド テクノロジー ミシュラン Rubber composition for tire production
JP4669573B1 (en) * 2010-07-07 2011-04-13 電気化学工業株式会社 Thermally expandable joint material for fire protection
JP5269200B2 (en) * 2009-06-08 2013-08-21 パナソニック株式会社 Battery pack
WO2017126654A1 (en) * 2016-01-20 2017-07-27 積水化学工業株式会社 Fire-resistant resin composition
WO2017150515A1 (en) 2016-02-29 2017-09-08 積水化学工業株式会社 Refractory elastomer composition and molded article thereof
JP2018090756A (en) * 2016-02-02 2018-06-14 積水化学工業株式会社 Fire-resistant resin composition
JP2018100410A (en) * 2016-12-21 2018-06-28 積水化学工業株式会社 Fire-resistant resin composition
JP6467692B1 (en) * 2017-12-26 2019-02-13 清典 藏田 Thermally expandable fireproof insulation coating and fireproof insulation sheet for cables using the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103665496B (en) * 2013-11-27 2015-09-23 山东中一橡胶有限公司 Flame resistance rubber
JP7198574B2 (en) * 2017-07-10 2023-01-04 綜研化学株式会社 Composition, adhesive and adhesive sheet
CN108649502A (en) * 2018-06-15 2018-10-12 荣马电器有限公司 A kind of fire-resistant cable slot box
CN115772297B (en) * 2021-09-06 2024-04-23 深圳科创新源新材料股份有限公司 Self-adhesive expansion type fire-retardant belting and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060448A (en) * 1996-08-22 1998-03-03 Hitachi Cable Ltd Fireproofing seal composition
JP2001348487A (en) * 2000-06-06 2001-12-18 Crk Kk Thermally expansible fireproofing composition
JP2005206648A (en) * 2004-01-21 2005-08-04 Denki Kagaku Kogyo Kk Rubber composition and foamed molded item using the rubber composition
JP2006274134A (en) * 2005-03-30 2006-10-12 Denki Kagaku Kogyo Kk Joint material and gasket
JP2007161976A (en) * 2005-12-15 2007-06-28 Hiroshima Kasei Ltd Fire-resistant resin composition, fire-resistant resin strip, fire-resistant tape

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060448A (en) * 1996-08-22 1998-03-03 Hitachi Cable Ltd Fireproofing seal composition
JP2001348487A (en) * 2000-06-06 2001-12-18 Crk Kk Thermally expansible fireproofing composition
JP2005206648A (en) * 2004-01-21 2005-08-04 Denki Kagaku Kogyo Kk Rubber composition and foamed molded item using the rubber composition
JP2006274134A (en) * 2005-03-30 2006-10-12 Denki Kagaku Kogyo Kk Joint material and gasket
JP2007161976A (en) * 2005-12-15 2007-06-28 Hiroshima Kasei Ltd Fire-resistant resin composition, fire-resistant resin strip, fire-resistant tape

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011506729A (en) * 2007-12-18 2011-03-03 ソシエテ ド テクノロジー ミシュラン Rubber composition for tire production
JP5269200B2 (en) * 2009-06-08 2013-08-21 パナソニック株式会社 Battery pack
JP4669573B1 (en) * 2010-07-07 2011-04-13 電気化学工業株式会社 Thermally expandable joint material for fire protection
JP2012017380A (en) * 2010-07-07 2012-01-26 Denki Kagaku Kogyo Kk Thermally expandable joint material for fire prevention
WO2017126654A1 (en) * 2016-01-20 2017-07-27 積水化学工業株式会社 Fire-resistant resin composition
JP2021165391A (en) * 2016-01-20 2021-10-14 積水化学工業株式会社 Fire-resistant resin composition
JP7197634B2 (en) 2016-01-20 2022-12-27 積水化学工業株式会社 Fire resistant resin composition
JP2018090771A (en) * 2016-01-20 2018-06-14 積水化学工業株式会社 Fire-resistant resin composition
JP2018090756A (en) * 2016-02-02 2018-06-14 積水化学工業株式会社 Fire-resistant resin composition
JP7316333B2 (en) 2016-02-02 2023-07-27 積水化学工業株式会社 Fire resistant resin composition
JP2022008465A (en) * 2016-02-02 2022-01-13 積水化学工業株式会社 Fire-resistant resin composition
JP2021101013A (en) * 2016-02-02 2021-07-08 積水化学工業株式会社 Fire-resistant resin composition
KR20180117091A (en) 2016-02-29 2018-10-26 세키스이가가쿠 고교가부시키가이샤 Refractory elastomer composition and molded article thereof
JPWO2017150515A1 (en) * 2016-02-29 2018-12-20 積水化学工業株式会社 Refractory elastomer composition and molded article thereof
WO2017150515A1 (en) 2016-02-29 2017-09-08 積水化学工業株式会社 Refractory elastomer composition and molded article thereof
JP2018100410A (en) * 2016-12-21 2018-06-28 積水化学工業株式会社 Fire-resistant resin composition
JP7095985B2 (en) 2016-12-21 2022-07-05 積水化学工業株式会社 Refractory resin composition
JP2019116606A (en) * 2017-12-26 2019-07-18 清典 藏田 Heat expansion fireproof heat insulation coating, fireproof heat insulation sheet for cable using the same
JP6467692B1 (en) * 2017-12-26 2019-02-13 清典 藏田 Thermally expandable fireproof insulation coating and fireproof insulation sheet for cables using the same

Also Published As

Publication number Publication date
CN101161715B (en) 2010-11-10
CN101161715A (en) 2008-04-16
JP4021934B1 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
JP4021934B1 (en) Refractory rubber composition, refractory coating comprising the refractory rubber composition, and refractory coating treatment method using the refractory coating
JP4270470B1 (en) Fireproof coating material, method for producing the fireproof coating material, and fireproof coating method using the fireproof coating material
JP4312254B2 (en) Refractory rubber composition
JP4669573B1 (en) Thermally expandable joint material for fire protection
JP4450760B2 (en) Joint materials and gaskets
JP6737761B2 (en) Fire resistant resin composition
JP4068135B1 (en) Rubber mixture for heat-expandable joint material, heat-expandable joint material and fireproof two-layer pipe joint
JP5535406B2 (en) Coating material
JP4490860B2 (en) Joint materials and gaskets
JP7221733B2 (en) refractory material
JPWO2011007788A1 (en) Sealing material
JP7127960B2 (en) Fire resistant resin composition
JP2003192840A (en) Adhesive fireproof rubber composition and sheet
JP5888909B2 (en) Curable refractory putty composition, method for delaying geopolymer reaction, method for improving long-term storage
JP3934612B2 (en) Rubber composition and foam molded article using the rubber composition
JP2018035300A (en) Thermally expanded fire-resistant resin composition
JPH05311122A (en) Surface treating agent for asbestos-containing molded article
JP2018035299A (en) Thermally expanded fire-resistant resin composition
JP2000054527A (en) Fire preventive roof
JP4052519B2 (en) Refractory double-layer pipe fittings
JP4054902B2 (en) Joint material for fireproof double-layer pipe and gasket comprising the joint material for fireproof double-layer pipe
JP5103140B2 (en) Carbonized refractory composition and refractory sheet
JP2024035637A (en) thermally expandable fireproofing material
JP2022053474A (en) Refractory resin composition, refractory material, and fixtures
JP2024035638A (en) thermally expandable fireproofing material

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4021934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250