JP2008115054A - Method for producing titania-silica glass - Google Patents

Method for producing titania-silica glass Download PDF

Info

Publication number
JP2008115054A
JP2008115054A JP2006301254A JP2006301254A JP2008115054A JP 2008115054 A JP2008115054 A JP 2008115054A JP 2006301254 A JP2006301254 A JP 2006301254A JP 2006301254 A JP2006301254 A JP 2006301254A JP 2008115054 A JP2008115054 A JP 2008115054A
Authority
JP
Japan
Prior art keywords
introduction pipe
titania
source
gas
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006301254A
Other languages
Japanese (ja)
Inventor
Yoshitoshi Isomura
由寿 磯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2006301254A priority Critical patent/JP2008115054A/en
Publication of JP2008115054A publication Critical patent/JP2008115054A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • C03B19/1423Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03B2201/42Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn doped with titanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/26Multiple ports for glass precursor
    • C03B2207/28Multiple ports for glass precursor for different glass precursors, reactants or modifiers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which uses a raw material supplied in a stable composition and can be used for easily producing titania-silica glass of homogeneous composition. <P>SOLUTION: The method for producing the titania-silica glass comprises separately supplying a gas prepared by gasifying a liquid raw material of a silica source or a gas prepared by gasifying a liquid raw material of a titania source from either one of a first introduction pipe which is a center of a multitubular pipe of a concentric multiple pipe burner, a second introduction pipe which flanks with the periphery of the first introduction pipe, and a third introduction pipe which flanks with the periphery of the second introduction pipe, hydrolyzing the gas in oxyhydrogen flame of the burner, depositing glass particles on a target, and then subjecting the glass particles to a heat vitrifying treatment. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、チタニアを含むシリカガラスに関し、より詳細には、半導体・液晶等の製造工程において、超紫外光リソグラフィ(以下、EUVリソグラフィという。)のフォトマスクやミラー材等の光学用部材として好適に使用されるチタニア−シリカガラスの製造方法に関する。   The present invention relates to silica glass containing titania, and more specifically, as an optical member such as a photomask or a mirror material for ultra-ultraviolet lithography (hereinafter referred to as EUV lithography) in a manufacturing process of a semiconductor / liquid crystal or the like. The present invention relates to a method for producing a titania-silica glass used in the manufacturing process.

EUVリソグラフィにおけるフォトマスクやミラー材等には、高出力レーザが照射されるため、熱膨張係数の絶対値が小さい、すなわち、低熱膨張ガラスを用いる必要があり、このようなガラスとしては、チタニア−シリカガラスが知られている。
このチタニア−シリカガラスは、従来は、例えば、特許文献1に記載されているように、シリカ前駆体およびチタニア前駆体の混合気体を酸水素火炎により加水分解して、ガラススート体を得、これを加熱して透明化処理することにより製造されていた。
Since photomasks and mirror materials in EUV lithography are irradiated with a high-power laser, it is necessary to use a glass having a low absolute value of thermal expansion coefficient, that is, low thermal expansion glass. Silica glass is known.
This titania-silica glass has been conventionally obtained by hydrolyzing a mixed gas of a silica precursor and a titania precursor with an oxyhydrogen flame as described in Patent Document 1, for example, to obtain a glass soot body. It was manufactured by heating and clarifying.

また、特許文献2に記載されているような同心円状の多重管バーナを用いた製造方法も知られている。このような多重管バーナを用いた従来のチタニア−シリカガラスの製造方法は、シリカ源となるケイ素塩化物や有機ケイ素化合物等の液体原料をキャリアガスとともに気化させ、一方で、チタニア源となるチタン塩素化合物やチタン有機化合物等の液体原料をキャリアガスとともに気化させ、これらのガスをバーナ手前で混合した後、多重管バーナの同一管へ供給して、火炎加水分解させ、ターゲット上にガラススート体を堆積させるという方法であった。
特開2005−519349号公報 特開2004−323319号公報
A manufacturing method using a concentric multi-tube burner as described in Patent Document 2 is also known. A conventional titania-silica glass manufacturing method using such a multi-tube burner vaporizes a liquid raw material such as silicon chloride or an organosilicon compound serving as a silica source together with a carrier gas, while titanium serving as a titania source. Liquid raw materials such as chlorine compounds and titanium organic compounds are vaporized together with the carrier gas, these gases are mixed in front of the burner, then supplied to the same tube of the multi-tube burner, subjected to flame hydrolysis, and glass soot on the target It was the method of depositing.
JP 2005-519349 A JP 2004-323319 A

上記のように、EUVリソグラフィに用いられるチタニア−シリカガラスには、微細な研削加工を精確に行うために、熱膨張係数の絶対値が小さいこと、さらに、均質であることが要求されるため、スート法によるガラス製造の際には、所定の組成比率での安定した原料供給を行う必要がある。   As described above, the titania-silica glass used for EUV lithography is required to have a small absolute value of thermal expansion coefficient and to be homogeneous in order to perform fine grinding accurately. When producing glass by the soot method, it is necessary to supply a stable raw material at a predetermined composition ratio.

しかしながら、上記のような従来の製造方法においては、シリカ源のガスとチタニア源のガスとをバーナの手前で予め混合することから、例えば、シリカ源となる液体原料が四塩化ケイ素(沸点57℃)であり、チタニア源となる液体原料が四塩化チタン(沸点136.4℃)である場合、混合ガスが再び液化することを防止するために、前記混合ガスを、四塩化チタンの沸点以上に加熱する必要がある。
このため、混合される四塩化ケイ素が必要以上に加熱されることになり、供給量が一定となるように制御することが難しく、ガラスの生成速度の低下や均質な組成のガラスを得ることが困難であるという課題を有していた。
However, in the conventional manufacturing method as described above, since the silica source gas and the titania source gas are premixed before the burner, for example, the liquid raw material to be the silica source is silicon tetrachloride (boiling point 57 ° C. In the case where the liquid raw material that serves as the titania source is titanium tetrachloride (boiling point 136.4 ° C.), the mixed gas is made to exceed the boiling point of titanium tetrachloride in order to prevent the mixed gas from liquefying again. It needs to be heated.
For this reason, the silicon tetrachloride to be mixed is heated more than necessary, it is difficult to control the supply amount to be constant, and it is possible to obtain a glass having a reduced glass generation rate and a homogeneous composition. It had the problem of being difficult.

本発明は、上記技術的課題を解決するためになされたものであり、原料を安定した組成で供給可能であり、均質な組成のチタニア−シリカガラスを容易に製造することができる方法を提供することを目的とするものである。   The present invention has been made to solve the above technical problem, and provides a method capable of supplying a raw material with a stable composition and easily producing a titania-silica glass having a homogeneous composition. It is for the purpose.

本発明に係るチタニア−シリカガラスの製造方法は、同心円状多重管バーナの多重管の中心である第1導入管と、該第1導入管の外周に接する第2導入管と、該第2導入管の外周に接する第3導入管のいずれかから、シリカ源の液体原料を気化させたガスまたはチタニア源の液体原料を気化させたガスを別個に供給して、バーナの酸水素火炎中で加水分解し、ターゲット上にガラス微粒子を堆積させた後、加熱透明化処理をすることを特徴とする。
このように、スート法において、チタニア源およびシリカ源のガスを個別にバーナ開口部の火炎中心部に供給することにより、チタニア源およびシリカ源の原料ガスの供給量を一定にすることができ、均質な組成のチタニア−シリカガラスを容易に得ることができる。
The method for producing titania-silica glass according to the present invention includes a first introduction tube that is the center of a multiple tube of a concentric multiple tube burner, a second introduction tube that is in contact with the outer periphery of the first introduction tube, and the second introduction tube. A gas obtained by vaporizing the liquid source of the silica source or a gas obtained by vaporizing the liquid source of the titania source is supplied separately from any of the third introduction pipes in contact with the outer periphery of the pipe, and the water is added in the oxyhydrogen flame of the burner. Decomposing and depositing glass particles on the target, followed by heat-clearing treatment.
Thus, in the soot method, by supplying the gas of the titania source and the silica source individually to the flame center of the burner opening, the supply amount of the source gas of the titania source and the silica source can be made constant, A titania-silica glass having a homogeneous composition can be easily obtained.

前記製造方法においては、前記第1導入管からシリカ源の液体原料を気化させたガスを供給し、前記第2または第3導入管からチタニア源の液体原料を気化させたガスを供給することが好ましい。
主成分であるシリカ源のガスを中心の導入管から供給し、これに近接する導入管から、チタニア源のガスを導入することにより、得られるガラスの均質化を図ることができる。
In the manufacturing method, the gas obtained by vaporizing the liquid source of the silica source is supplied from the first introduction pipe, and the gas obtained by vaporizing the liquid source of the titania source is supplied from the second or third introduction pipe. preferable.
By supplying the gas of the silica source, which is the main component, from the central introduction pipe, and introducing the gas of the titania source from the introduction pipe adjacent thereto, it is possible to homogenize the glass obtained.

さらに、前記第1導入管にシリカ源の液体原料を気化させたガスを供給し、酸素導入管と水素導入管との間に挟まれた第3導入管からチタニア源の液体原料を気化させたガスを供給することが好ましい。特に、前記第2導入管から水素を供給し、前記第3導入管の外周に接する第4導入管から酸素を供給することがより好ましい。
上記のような構成でガスを供給することにより、バーナ開口部に目詰まりを生じることなく、均質なガラスをより安定的に得ることができる。
Further, a gas obtained by vaporizing the liquid source of the silica source was supplied to the first introduction pipe, and the liquid source of the titania source was vaporized from the third introduction pipe sandwiched between the oxygen introduction pipe and the hydrogen introduction pipe. It is preferable to supply gas. In particular, it is more preferable to supply hydrogen from the second introduction pipe and to supply oxygen from the fourth introduction pipe in contact with the outer periphery of the third introduction pipe.
By supplying the gas with the above configuration, a homogeneous glass can be obtained more stably without clogging the burner opening.

本発明においては、原料は気化させてガスとして供給されるため、前記シリカ源はケイ素塩化物または有機ケイ素化合物であり、前記チタニア源はチタン塩素化合物またはチタン有機化合物であることが好ましい。   In the present invention, since the raw material is vaporized and supplied as a gas, the silica source is preferably a silicon chloride or an organic silicon compound, and the titania source is preferably a titanium chlorine compound or a titanium organic compound.

上述したとおり、本発明に係る製造方法によれば、多重管バーナを用いたスート法によるガラス製造方法において、原料を安定した組成で供給可能であり、均質な組成のチタニア−シリカガラスを容易に製造することができる。
したがって、前記チタニア−シリカガラスは、フォトマスクまたはミラー材等の光学用部材として好適に用いることができ、特に、半導体・液晶等の製造工程におけるEUVリソグラフィにおいて、好適に使用することができ、ひいては、半導体・液晶等の各種処理工程における歩留の向上に寄与し得る。
As described above, according to the manufacturing method of the present invention, in the glass manufacturing method by the soot method using a multi-tube burner, the raw material can be supplied with a stable composition, and a titania-silica glass having a homogeneous composition can be easily obtained. Can be manufactured.
Therefore, the titania-silica glass can be suitably used as an optical member such as a photomask or a mirror material, and in particular, can be suitably used in EUV lithography in a manufacturing process of a semiconductor / liquid crystal, etc. In addition, it can contribute to the improvement of the yield in various processing steps such as semiconductor and liquid crystal.

以下、本発明について、より詳細に説明する。
本発明に係るチタニア−シリカガラスの製造方法は、同心円状多重管バーナを用いて、原料ガスをバーナの酸水素火炎中で加水分解し、ターゲット上にガラス微粒子を堆積させてガラススート体を形成し、その後、加熱透明化処理して透明ガラス体を得るものである。
本発明においては、前記同心円多重管バーナからのガスの供給に際し、多重管の中心である第1導入管と、該第1導入管の外周に接する第2導入管と、該第2導入管の外周に接する第3導入管のいずれかから、シリカ源の液体原料を気化させたガスまたはチタニア源の液体原料を気化させたガスを別個に供給することを特徴とする。
このような構成で多重管バーナに各原料ガスを別個に導入することにより、バーナ手前で原料ガスを混合する従来の方法に比べて、原料ガス流量の複雑な制御を要することなく、バーナ開口部の火炎中に供給されるチタニア源およびシリカ源の原料ガスの供給量を一定に保持することができ、均質な組成のチタニア−シリカガラスを得ることができる。
Hereinafter, the present invention will be described in more detail.
The method for producing titania-silica glass according to the present invention uses a concentric multi-tube burner to hydrolyze the raw material gas in an oxyhydrogen flame of the burner, and deposits glass fine particles on the target to form a glass soot body. Then, a transparent glass body is obtained by heat-clearing treatment.
In the present invention, when the gas is supplied from the concentric multiple tube burner, the first introduction tube that is the center of the multiple tube, the second introduction tube that is in contact with the outer periphery of the first introduction tube, and the second introduction tube A gas obtained by vaporizing a liquid raw material of a silica source or a gas vaporized of a liquid raw material of a titania source is supplied separately from any of the third introduction pipes in contact with the outer periphery.
By introducing each raw material gas into the multi-tube burner separately in such a configuration, the burner opening can be obtained without requiring complicated control of the raw material gas flow rate as compared with the conventional method of mixing the raw material gas before the burner. It is possible to keep the supply amounts of the titania source and the silica source gas supplied in the flame of the above, and to obtain a titania-silica glass having a homogeneous composition.

前記製造方法においては、ガス種と導入管との位置関係は、同心円状多重管バーナの多重管の中心を第1導入管とし、その外周に接する導入管を第2導入管とし、さらに、その外周に接する導入管を第3導入管とし、同様に外側に進むにつれて順次、第4導入管、第5導入管、……とした場合、第1導入管から主成分であるシリカ源の液体原料を気化させたガスを、第2または第3導入管からチタニア源の液体原料を気化させたガスを、それぞれ供給する構成とすることが好ましい。   In the manufacturing method, the positional relationship between the gas species and the introduction pipe is such that the center of the multi-tube of the concentric multi-tube burner is the first introduction pipe, the introduction pipe in contact with the outer periphery is the second introduction pipe, When the introduction pipe in contact with the outer periphery is the third introduction pipe, and the fourth introduction pipe, the fifth introduction pipe,. It is preferable that the gas obtained by vaporizing the gas is supplied from the second or third introduction pipe with the gas obtained by vaporizing the liquid material of the titania source.

チタニア源のガス導入管が、多重管の中心の第1導入管から離れた外周側になりすぎると、ガス導入管の断面積大きくなり、一定のガス流量の場合、流速が遅くなり、ガラススートの生成箇所がバーナ開口部に近すぎて、バーナ開口部に目詰まりが生じやすくなるため、チタニア源のガスは、できるだけ内側の導入管から供給することが好ましい。
したがって、チタニア源のガスは、シリカ源のガスに近接したバーナ開口部の火炎中心部に供給されるように、第2または第3導入管から供給することが好ましい。
If the gas inlet pipe of the titania source is too far away from the first inlet pipe at the center of the multiple pipe, the cross-sectional area of the gas inlet pipe becomes large. It is preferable that the gas of the titania source is supplied from the inner introduction pipe as much as possible because the generation site is too close to the burner opening and the burner opening is easily clogged.
Accordingly, the titania source gas is preferably supplied from the second or third introduction pipe so as to be supplied to the flame center of the burner opening adjacent to the silica source gas.

さらに、上記においては、チタニア源の液体原料を気化させたガスは、酸素導入管と水素導入管との間に挟まれた第3導入管から供給することがより好ましい。特に、前記第2導入管から水素を供給し、第4導入管から酸素を供給することがより好ましい。
上記のような構成でガスを供給することにより、バーナ開口部に目詰まりを生じることなく、均質なガラスをより安定的に得ることができる。
Further, in the above, it is more preferable that the gas obtained by vaporizing the liquid material of the titania source is supplied from a third introduction pipe sandwiched between the oxygen introduction pipe and the hydrogen introduction pipe. In particular, it is more preferable to supply hydrogen from the second introduction pipe and to supply oxygen from the fourth introduction pipe.
By supplying the gas with the above configuration, a homogeneous glass can be obtained more stably without clogging the burner opening.

なお、多重管のその他のガス導入管には、シリカ源のガスとチタニア源のガスとが、バーナ開口部で火炎加水分解反応によりガラススートを生成することができる限りにおいて、適宜、酸素、水素、窒素等の不活性ガスを導入してよい。この場合、バーナ開口部の酸水素火炎中で均質な加水分解反応を行う観点から、酸素と水素は隣接する導入管から供給せず、両導入管は、窒素等の不活性ガスを供給する導入管を間に挟むように構成することが好ましい。   In addition, as long as the gas of the silica source and the gas of the titania source can generate glass soot by a flame hydrolysis reaction at the burner opening, the other gas introduction tube of the multiple tube is appropriately oxygen, hydrogen, An inert gas such as nitrogen may be introduced. In this case, from the viewpoint of performing a homogeneous hydrolysis reaction in the oxyhydrogen flame of the burner opening, oxygen and hydrogen are not supplied from the adjacent introduction pipes, and both introduction pipes supply an inert gas such as nitrogen. It is preferable that the tube is sandwiched between them.

上記のように、前記多重管バーナには、ガラス原料はガスとして導入されるため、前記シリカ源はケイ素塩化物または有機ケイ素化合物であり、前記チタニア源はチタン塩素化合物またはチタン有機化合物であることが好ましい。
具体的には、シリカ源としては、四塩化ケイ素、オクタメチルシクロテトラシロキサン([(CH32SiO]4=OMCTS)、テトラエトキシシラン(Si(OC254=TEOS)等の液体原料を気化させたガスを供給する。一方で、チタニア源としては、四塩化チタンやチタン有機化合物等の液体原料を気化させたガスを供給する。
As described above, since the glass raw material is introduced into the multi-tube burner as a gas, the silica source is a silicon chloride or an organic silicon compound, and the titania source is a titanium chlorine compound or a titanium organic compound. Is preferred.
Specifically, examples of the silica source include silicon tetrachloride, octamethylcyclotetrasiloxane ([(CH 3 ) 2 SiO] 4 = OMCTS), tetraethoxysilane (Si (OC 2 H 5 ) 4 = TEOS), and the like. A gas obtained by vaporizing a liquid material is supplied. On the other hand, as a titania source, a gas obtained by vaporizing a liquid raw material such as titanium tetrachloride or a titanium organic compound is supplied.

前記液体原料を気化する方法としては、ベーキングや、窒素等の不活性ガスのキャリアガスによるバブリング等を用いることができる。これらの方法により気化させたガスは、直接、多重管バーナのガス導入管に導入してよく、したがって、チタニア源およびシリカ源のガスは、キャリアガスとともに供給され得る。
前記各ガスの供給量は、チタニア−シリカガラスにおける所望のチタニア濃度に基づいて、流量を調節することにより制御する。
As a method for vaporizing the liquid raw material, baking, bubbling with an inert gas carrier gas such as nitrogen, or the like can be used. The gas vaporized by these methods may be introduced directly into the gas introduction pipe of the multi-tube burner, and therefore the gas of the titania source and the silica source can be supplied together with the carrier gas.
The supply amount of each gas is controlled by adjusting the flow rate based on the desired titania concentration in the titania-silica glass.

上記のようにして得られたチタニア−シリカガラススート体は、多孔体であるため、加熱透明化処理を施して、透明ガラス体とする。前記ガラススート体から得られた透明ガラス体は、低熱膨ガラスであり、かつ、均質性に優れているため、EUVリソグラフィにおけるフォトマスクやミラー材等の光学用部材に好適に用いることができる。   Since the titania-silica glass soot body obtained as described above is a porous body, it is subjected to a heat clarification treatment to obtain a transparent glass body. Since the transparent glass body obtained from the glass soot body is a low thermal expansion glass and excellent in homogeneity, it can be suitably used for optical members such as a photomask and a mirror material in EUV lithography.

以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は下記の実施例により制限されるものではない。
同心円状9重管バーナを用いて、中心の管を第1導入管とし、外周方向に順に、第2導入管、第3導入管、……、第9導入管とし、各導入管に表1の実施例1,2および比較例1〜4に示すようなガス構成にて各ガスを供給し、50時間、火炎加水分解を行い、ターゲット上にガラス微粒子を堆積させて、チタニア−シリカガラススート体を得た。
なお、シリカ源としては四塩化ケイ素を気化させたガスを用い、チタニア源としては四塩化チタンをバブリングして加熱して気化させたガスを用いた。
前記スート体を1450℃に加熱透明化処理し、透明な円柱状のガラスインゴット(透明ガラス体)を得た。
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not restrict | limited by the following Example.
Using a concentric 9-tube burner, the central pipe is the first introduction pipe, and the second introduction pipe, the third introduction pipe,..., The ninth introduction pipe are sequentially arranged in the outer circumferential direction. Each gas was supplied in a gas configuration as shown in Examples 1 and 2 and Comparative Examples 1 to 4, flame hydrolysis was performed for 50 hours, glass fine particles were deposited on the target, and titania-silica glass soot. Got the body.
Note that a gas obtained by vaporizing silicon tetrachloride was used as the silica source, and a gas obtained by bubbling and heating titanium tetrachloride was used as the titania source.
The soot body was heat-cleared to 1450 ° C. to obtain a transparent cylindrical glass ingot (transparent glass body).

得られた円柱状のガラスインゴットについて、径方向に3点およびその径の位置における軸方向に3点の計9点から、10〜15gずつ試料を採取した。
この9点の試料について、チタニア濃度を測定し、各位置での測定値のばらつきの評価を行った。ばらつきが±0.2%以内である場合は○、±0.2%を超えて±0.3%以内である場合は△、±0.5%を超える場合は×とした。これらの評価結果を、併せて、表1に示す。
なお、比較例1〜3においては、バーナ開口部で目詰まりが生じ、十分なサイズのガラススート体が得られなかった。
About the obtained cylindrical glass ingot, 10 to 15 g samples were collected from a total of 9 points, 3 points in the radial direction and 3 points in the axial direction at the position of the diameter.
With respect to these nine samples, the titania concentration was measured and the variation of the measured values at each position was evaluated. When the variation was within ± 0.2%, it was evaluated as ◯, when it exceeded ± 0.2% and within ± 0.3%, Δ, and when it exceeded ± 0.5%, it was marked as ×. These evaluation results are shown together in Table 1.
In Comparative Examples 1 to 3, clogging occurred at the burner opening, and a sufficiently-sized glass soot body could not be obtained.

Figure 2008115054
Figure 2008115054

上記実施例および比較例から、バーナの中心の第1導入管からシリカ源のガスを供給し、水素を供給する第2導入管と酸素を供給する第4導入管との間の第3導入管からチタニア源のガスを供給した場合(実施例1)が、原料ガスの供給量を最も安定して一定にすることができ、再現性にも優れていることが認められた。
また、実施例1の9点の各試料の組成は、いずれも、チタニア濃度が8.0重量%であり、表1に示したように、インゴット内においてばらつきのない均質なガラスであることが認められた。
From the above examples and comparative examples, the third introduction pipe between the second introduction pipe for supplying hydrogen and the fourth introduction pipe for supplying oxygen is supplied from the first introduction pipe at the center of the burner. It was confirmed that when the gas of titania source was supplied from (Example 1), the supply amount of the raw material gas was most stable and constant, and the reproducibility was also excellent.
In addition, the composition of each of the nine samples in Example 1 has a titania concentration of 8.0% by weight, and as shown in Table 1, it should be a homogeneous glass having no variation in the ingot. Admitted.

また、比較例1〜3において、バーナ開口部の目詰まりが生じたのは、チタニア源のガス導入管が外周側であるほど、導入管の断面積が広くなるため、ガス流量が一定である場合、流速が遅くなり、バーナ開口部により近い位置で、加水分解反応が起きたためであると考えられる。   Further, in Comparative Examples 1 to 3, the clogging of the burner opening occurred because the cross-sectional area of the introduction pipe was larger as the gas introduction pipe of the titania source was closer to the outer peripheral side, so the gas flow rate was constant. In this case, it is considered that the flow rate became slow and the hydrolysis reaction occurred at a position closer to the burner opening.

Claims (5)

同心円状多重管バーナの多重管の中心である第1導入管と、該第1導入管の外周に接する第2導入管と、該第2導入管の外周に接する第3導入管のいずれかから、シリカ源の液体原料を気化させたガスまたはチタニア源の液体原料を気化させたガスを別個に供給して、バーナの酸水素火炎中で加水分解し、ターゲット上にガラス微粒子を堆積させた後、加熱透明化処理することを特徴とするチタニア−シリカガラスの製造方法。   From any one of the first introduction pipe that is the center of the multiple pipe of the concentric multi-tube burner, the second introduction pipe that is in contact with the outer circumference of the first introduction pipe, and the third introduction pipe that is in contact with the outer circumference of the second introduction pipe After separately supplying a gas obtained by vaporizing a liquid source of silica source or a gas obtained by vaporizing a liquid source of titania source, hydrolysis is performed in an oxyhydrogen flame of a burner, and glass fine particles are deposited on the target. A method for producing titania-silica glass, characterized by heat-clearing. 前記第1導入管からシリカ源の液体原料を気化させたガスを供給し、前記第2または第3導入管からチタニア源の液体原料を気化させたガスを供給することを特徴とする請求項1記載のチタニア−シリカガラスの製造方法。   2. A gas obtained by vaporizing a liquid raw material of a silica source is supplied from the first introduction pipe, and a gas obtained by vaporizing a liquid raw material of a titania source is supplied from the second or third introduction pipe. The manufacturing method of the titania-silica glass of description. 前記第1導入管にシリカ源の液体原料を気化させたガスを供給し、酸素導入管と水素導入管との間に挟まれた第3導入管からチタニア源の液体原料を気化させたガスを供給することを特徴とする請求項1記載のチタニア−シリカガラスの製造方法。   A gas obtained by vaporizing the liquid source of the silica source is supplied to the first introduction pipe, and a gas obtained by vaporizing the liquid source of the titania source is supplied from the third introduction pipe sandwiched between the oxygen introduction pipe and the hydrogen introduction pipe. The method for producing titania-silica glass according to claim 1, wherein the titania-silica glass is supplied. 前記第2導入管から水素を供給し、前記第3導入管の外周に接する第4導入管から酸素を供給することを特徴とする請求項3記載のチタニア−シリカガラスの製造方法。   4. The method for producing titania-silica glass according to claim 3, wherein hydrogen is supplied from the second introduction pipe and oxygen is supplied from a fourth introduction pipe that is in contact with an outer periphery of the third introduction pipe. 前記シリカ源がケイ素塩化物または有機ケイ素化合物であり、前記チタニア源がチタン塩素化合物またはチタン有機化合物であることを特徴とする請求項1から請求項4までのいずれかに記載のチタニア−シリカガラスの製造方法。   The titania-silica glass according to any one of claims 1 to 4, wherein the silica source is a silicon chloride or an organosilicon compound, and the titania source is a titanium chlorine compound or a titanium organic compound. Manufacturing method.
JP2006301254A 2006-11-07 2006-11-07 Method for producing titania-silica glass Pending JP2008115054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006301254A JP2008115054A (en) 2006-11-07 2006-11-07 Method for producing titania-silica glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006301254A JP2008115054A (en) 2006-11-07 2006-11-07 Method for producing titania-silica glass

Publications (1)

Publication Number Publication Date
JP2008115054A true JP2008115054A (en) 2008-05-22

Family

ID=39501310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006301254A Pending JP2008115054A (en) 2006-11-07 2006-11-07 Method for producing titania-silica glass

Country Status (1)

Country Link
JP (1) JP2008115054A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2399873A1 (en) 2010-06-28 2011-12-28 Asahi Glass Company, Limited Method for producing glass body and method for producing optical member for EUV lithography
WO2012105513A1 (en) * 2011-01-31 2012-08-09 旭硝子株式会社 Method for producing silica glass body containing titania, and silica glass body containing titania

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2399873A1 (en) 2010-06-28 2011-12-28 Asahi Glass Company, Limited Method for producing glass body and method for producing optical member for EUV lithography
US8567214B2 (en) 2010-06-28 2013-10-29 Asahi Glass Company, Limited Method for producing glass body and method for producing optical member for EUV lithography
WO2012105513A1 (en) * 2011-01-31 2012-08-09 旭硝子株式会社 Method for producing silica glass body containing titania, and silica glass body containing titania

Similar Documents

Publication Publication Date Title
JP5476982B2 (en) Selection method of titania-doped quartz glass
US7935648B2 (en) Titania-doped quartz glass for nanoimprint molds
US8650912B2 (en) Burner and method for the manufacture of synthetic quartz glass
TW440548B (en) Synthetic silica glass optical member and method of manufacturing the same
JP5768452B2 (en) Method for producing titania-doped quartz glass
US20080141717A1 (en) Burner for the Manufacture of Synthetic Quartz Glass
CN1212954A (en) Fluorine containing silex glass and its method of manufacture
JP2022526062A (en) Low hydroxy group high purity quartz glass and its preparation method
JP2014221712A (en) Optical member for photomask and method of manufacturing the same
JP2008115054A (en) Method for producing titania-silica glass
US6990836B2 (en) Method of producing fluorine-containing synthetic quartz glass
US8567214B2 (en) Method for producing glass body and method for producing optical member for EUV lithography
JP4438948B2 (en) Synthetic quartz glass manufacturing burner and synthetic quartz glass ingot manufacturing method
JP3796653B2 (en) Fluorine-containing synthetic quartz glass and method for producing the same
CN105189377B (en) Method for manufacturing titanium doped synthetic quartz glass
JPH1129331A (en) Production of optical member of synthetic quartz glass, and optical member
JP2005515147A (en) Fused silica containing aluminum
TW200413267A (en) Fused silica containing aluminum
JP3715163B2 (en) Synthetic quartz glass member for high-power ArF excimer laser and manufacturing method thereof
US20030205057A1 (en) Method and apparatus for adding metals to fused silica
JP2000281366A (en) Production method of synthetic quartz glass for ultraviolet ray and member obtained by the method
JP5939682B2 (en) Method for producing synthetic quartz glass soot body and method for producing transparent synthetic quartz glass ingot
JP3818567B2 (en) Method for producing synthetic quartz glass ingot
JP2006117469A (en) Method and apparatus for manufacturing synthetic quartz glass
KR20140012053A (en) Method for producing silica glass body containing titania, and silica glass body containing titania