JP2008111404A - Diesel engine - Google Patents

Diesel engine Download PDF

Info

Publication number
JP2008111404A
JP2008111404A JP2006295861A JP2006295861A JP2008111404A JP 2008111404 A JP2008111404 A JP 2008111404A JP 2006295861 A JP2006295861 A JP 2006295861A JP 2006295861 A JP2006295861 A JP 2006295861A JP 2008111404 A JP2008111404 A JP 2008111404A
Authority
JP
Japan
Prior art keywords
pressure
injection
common rail
fuel
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006295861A
Other languages
Japanese (ja)
Inventor
Hiroshige Eguchi
裕滋 江口
Akiro Tamura
彰朗 田村
Junji Nakada
純二 中田
Hiroshi Morimoto
宏 森本
Yoshinao Okubo
善直 大久保
Masaaki Suga
公明 菅
Shinji Okubo
真司 大久保
Kenji Adachi
憲司 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP2006295861A priority Critical patent/JP2008111404A/en
Publication of JP2008111404A publication Critical patent/JP2008111404A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform a high-pressure injection for main injection and fine control by a low-pressure injection for pilot injection in fuel injection for a diesel engine having a plurality of common rails. <P>SOLUTION: The diesel engine 1 equipped with the common rails is constructed so that a fuel injection pump 2 and the high-pressure common rail 3 corresponding to the high-pressure injection and the low-pressure common rail 4 corresponding to the low-pressure injection, which are arranged in parallel, are connected to have fuel supply and permit fuel supply from the low-pressure common rail 4 to a fuel injection valve 5. The diesel engine is further constructed so that the high-pressure common rail 3 and the low-pressure common rail 4 are connected via a supply valve 6 for interlocking control. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、ディーゼルエンジンに関し、主としてコモンレール式による燃料噴射装置の分野に属する。   The present invention relates to a diesel engine and mainly belongs to the field of fuel injection devices using a common rail type.

コモンレール式ディーゼルエンジンにおいて、コモンレールを互いに分離された第一のコモンレールと第二のコモンレールから構成し、燃料ポンプから第一のコモンレールに高圧の燃料を供給すると共にコモンレール内の燃料を燃料噴射弁に送り込み、機関始動時には第一のコモンレールと第二のコモンレールの連通を遮断して燃料ポンプから第一のコモンレールのみに高圧の燃料を供給すると共に増圧ピストンの作動を停止させ、機関始動後暫くして第二のコモンレールの燃料圧も上昇すべきであると判断されたときは燃料ポンプから第二のコモンレールにも高圧の燃料を供給すると共に必要に応じて増圧ピストンを作動させることにより、良好な燃料噴射圧の増大作用を確保しつつ機関の良好な始動を確保することができるもの等が開示されている。(例えば、特許文献1参照)
また、二つの気筒列を有するエンジンに用いられるコモンレール式燃料噴射装置において、各気筒列毎に第一のコモンレールと第二のコモンレールが配置されており、高圧ポンプから吐出された高圧燃料によって第一,第二のコモンレール間で発生する圧力波の影響によって生じる第一,第二のコモンレールの圧力差による噴射圧及び噴射量の変動を防止するために、第一,第二のコモンレールに均等に高圧燃料を分配供給する分配ブロックを設けているが、この分配ブロックはコストと車両搭載性の観点から不利であるから、分配ブロックを用いることなく第一,第二のコモンレールに圧力差が生じないコモンレール式燃料噴射装置を提供するもの等が開示されている。(例えば、特許文献2参照)
特開2006ー233805号公報 特開2005ー163556号公報
In a common rail diesel engine, the common rail is composed of a first common rail and a second common rail that are separated from each other, and high-pressure fuel is supplied from the fuel pump to the first common rail, and fuel in the common rail is sent to the fuel injection valve. When starting the engine, the communication between the first common rail and the second common rail is cut off, high pressure fuel is supplied only from the fuel pump to the first common rail, and the operation of the booster piston is stopped. When it is determined that the fuel pressure of the second common rail should also be increased, a high pressure fuel is supplied from the fuel pump to the second common rail and the pressure increasing piston is operated as necessary. Disclosure of what can ensure a good start of the engine while ensuring an increase in fuel injection pressure It has been. (For example, see Patent Document 1)
Further, in a common rail fuel injection device used for an engine having two cylinder rows, a first common rail and a second common rail are arranged for each cylinder row, and the first common rail is provided by high pressure fuel discharged from a high pressure pump. In order to prevent fluctuations in the injection pressure and injection amount due to the pressure difference between the first and second common rails caused by the pressure wave generated between the second and common rails, the first and second common rails are equally high A distribution block that distributes and supplies fuel is provided, but this distribution block is disadvantageous from the viewpoints of cost and vehicle mountability. Therefore, there is no pressure difference between the first and second common rails without using a distribution block. A device that provides a fuel injection device is disclosed. (For example, see Patent Document 2)
JP 2006-233805 A JP 2005-163556 A

しかし、前記の如き作用を行う複数のコモンレールを有しているものにおいて、パイロット噴射時は噴射量が少ないため低圧で燃料噴射を行った方が噴射量を細かく制御可能であるが、メイン噴射時には高圧で燃料噴射を行った方が良好な性能が得られるため、従来では、高負荷時におけるパイロット噴射を行う際にも高圧で燃料噴射が行われるため、パイロット噴射時における細かな制御ができ難いものであった。   However, in the case of having a plurality of common rails that perform the operation as described above, the injection amount is small at the time of pilot injection, so that the injection amount can be controlled more finely by performing the fuel injection at a low pressure. Since better performance is obtained when fuel injection is performed at high pressure, conventionally, fuel injection is performed at high pressure even when pilot injection is performed under high load, and thus it is difficult to perform fine control during pilot injection. It was a thing.

そこで本発明は、複数のコモンレールを有するものにおける燃料噴射時に、メイン噴射では高圧噴射を行い、パイロット噴射では低圧噴射による細かな制御を可能にしようとするものである。   Therefore, the present invention is intended to enable fine control by high pressure injection in main injection and low pressure injection in pilot injection at the time of fuel injection in an apparatus having a plurality of common rails.

本発明は前述のごとき課題を解決するために、次のように構成する。
請求項1の発明は、コモンレールを搭載したディーゼルエンジン(1)において、燃料噴射ポンプ(2)と、並列配置した高圧噴射対応の高圧用コモンレール(3)及び低圧噴射対応の低圧用コモンレール(4)とを連結して燃料供給可能に構成すると共に、前記低圧用コモンレール(4)から燃料噴射弁(5)に燃料供給可能に構成したことを特徴とするディーゼルエンジンの構成とする。
In order to solve the above-mentioned problems, the present invention is configured as follows.
The invention of claim 1 is directed to a diesel engine (1) equipped with a common rail, a fuel injection pump (2), a high-pressure common rail (3) compatible with high-pressure injection and a low-pressure common rail (4) compatible with low-pressure injection. Are connected to each other so that fuel can be supplied, and the fuel can be supplied from the low-pressure common rail (4) to the fuel injection valve (5).

このような構成により、噴射量の少ないパイロット噴射時には、燃料噴射ポンプ(2)から低圧噴射に対応する低圧用コモンレール(4)へ燃料が供給され燃料噴射弁(5)から低圧での噴射が行われ、メイン噴射時には、燃料噴射ポンプ(2)から高圧噴射に対応する高圧用コモンレール(3)へ燃料が供給され燃料噴射弁(5)から高圧での噴射が行われる。   With such a configuration, during pilot injection with a small injection amount, fuel is supplied from the fuel injection pump (2) to the low pressure common rail (4) corresponding to low pressure injection, and low pressure injection is performed from the fuel injection valve (5). During main injection, fuel is supplied from the fuel injection pump (2) to the high-pressure common rail (3) corresponding to high-pressure injection, and high-pressure injection is performed from the fuel injection valve (5).

請求項2の発明は、前記高圧用コモンレール(3)と低圧用コモンレール(4)とを供給バルブ(6)を介して連動制御可能に接続したことを特徴とする請求項1に記載のディーゼルエンジンの構成とする。   The invention according to claim 2 is characterized in that the high-pressure common rail (3) and the low-pressure common rail (4) are connected via a supply valve (6) so as to be capable of interlocking control. The configuration is as follows.

このような構成により、噴射量の少ないパイロット噴射時には、燃料噴射ポンプ(2)から低圧噴射に対応する低圧用コモンレール(4)へ燃料が供給され燃料噴射弁(5)から低圧での噴射が行われ、メイン噴射時には、燃料噴射ポンプ(2)から高圧噴射に対応する高圧用コモンレール(3)へ燃料が供給されると共に、高圧用コモンレール(3)から供給バルブ(6)の連動制御により高圧噴射対応に変更された低圧用コモンレール(4)へ燃料が供給され燃料噴射弁(5)から高圧での噴射が行われる。   With such a configuration, during pilot injection with a small injection amount, fuel is supplied from the fuel injection pump (2) to the low pressure common rail (4) corresponding to low pressure injection, and low pressure injection is performed from the fuel injection valve (5). During main injection, fuel is supplied from the fuel injection pump (2) to the high-pressure common rail (3) corresponding to high-pressure injection, and the high-pressure injection is performed from the high-pressure common rail (3) by interlocking control of the supply valve (6). Fuel is supplied to the low-pressure common rail (4) that has been changed accordingly, and high-pressure injection is performed from the fuel injection valve (5).

請求項1の発明では、並列構成とした高圧用コモンレール(3)と低圧用コモンレール(4)により、メイン噴射時には高圧対応の高圧用コモンレール(3)により高圧で噴射を行うと共に、パイロット噴射時には低圧対応の低圧用コモンレール(4)により低圧で噴射を行うことができるから、パイロット噴射時における噴射量を細かく制御できる等、パイロット噴射時の性能向上が大である。   In the first aspect of the invention, the high-pressure common rail (3) and the low-pressure common rail (4) configured in parallel perform the injection at a high pressure by the high-pressure common rail (3) corresponding to the high pressure during the main injection, and the low pressure during the pilot injection. Since the corresponding low pressure common rail (4) can perform injection at low pressure, the performance during pilot injection is greatly improved, such as the amount of injection during pilot injection being finely controlled.

請求項2の発明では、特に、メイン噴射時には高圧対応の高圧用コモンレール(3)から供給バルブ(6)を介して高圧対応に変更した低圧用コモンレール(4)により高圧で噴射を行うので、供給バルブ(6)により精度の高い噴射が実行可能となる。   In the second aspect of the invention, particularly during main injection, injection is performed at high pressure from the high-pressure common rail (3) adapted to high pressure via the supply valve (6) from the high-pressure common rail (3). The valve (6) enables highly accurate injection.

以下に、この発明の実施例を図面に基づいて説明する。
コモンレールを搭載したディーゼルエンジン1について、図1に示す如きシステム図によりその概要を説明する。コモンレール(蓄圧式燃料噴射)とは、各気筒へ燃料を噴射する燃料噴射装置への燃料供給を要求された圧力とするコモンレール10(蓄圧室)を介して行うものである。
Embodiments of the present invention will be described below with reference to the drawings.
About the diesel engine 1 carrying a common rail, the outline | summary is demonstrated with a system diagram as shown in FIG. The common rail (accumulated fuel injection) is performed via the common rail 10 (accumulated pressure chamber) that provides the required pressure to supply fuel to the fuel injection device that injects fuel into each cylinder.

燃料タンク11内の燃料は吸入通路により燃料フィルタ12を介して該エンジン1で駆動される燃料噴射ポンプ2に吸入され、この噴射ポンプ2によって加圧された高圧燃料は吐出通路14によりコモンレール10に導かれ蓄えられる。   The fuel in the fuel tank 11 is sucked into the fuel injection pump 2 driven by the engine 1 through the fuel filter 12 through the suction passage, and the high-pressure fuel pressurized by the injection pump 2 is supplied to the common rail 10 through the discharge passage 14. Guided and stored.

該コモンレール10内の高圧燃料は各高圧燃料供給通路16により気筒数分の燃料噴射弁5に供給され、エンジンコントロールユニット18(以下ECUという)からの指令に基づき、各気筒毎に燃料噴射弁5が開弁作動して、高圧燃料が該エンジン1の各燃焼室内に噴射供給され、各燃料噴射弁5での余剰燃料(リターン燃料)は各リターン通路19により共通のリターン通路20へ導かれ、このリターン通路20によって燃料タンク11へ戻される。   The high-pressure fuel in the common rail 10 is supplied to the fuel injection valves 5 corresponding to the number of cylinders through the high-pressure fuel supply passages 16, and the fuel injection valves 5 for each cylinder based on a command from an engine control unit 18 (hereinafter referred to as ECU). Is opened, high pressure fuel is injected and supplied into each combustion chamber of the engine 1, and surplus fuel (return fuel) in each fuel injection valve 5 is led to a common return passage 20 by each return passage 19, The return passage 20 returns the fuel tank 11.

また、コモンレール10内の燃料圧力(コモンレール圧)を制御するため燃料噴射ポンプ2に圧力制御弁21が設けられており、この圧力制御弁21はECU18からのデューティ信号によって、燃料噴射ポンプ2から燃料タンク11への余剰燃料のリターン通路20の流路面積を調整するものであり、これによりコモンレール10側への燃料吐出量を調整してコモンレール圧を制御することができる。   In addition, a pressure control valve 21 is provided in the fuel injection pump 2 to control the fuel pressure in the common rail 10 (common rail pressure). The pressure control valve 21 receives fuel from the fuel injection pump 2 according to a duty signal from the ECU 18. The flow area of the return passage 20 for surplus fuel to the tank 11 is adjusted, and thereby the fuel discharge amount to the common rail 10 side can be adjusted to control the common rail pressure.

具体的には、エンジン運転条件に応じて目標コモンレール圧を設定し、レール圧センサ22により検出されるコモンレール圧が目標コモンレール圧と一致するよう、圧力制御弁21を介してコモンレール圧をフィードバック制御する。   Specifically, the target common rail pressure is set according to the engine operating conditions, and the common rail pressure is feedback-controlled through the pressure control valve 21 so that the common rail pressure detected by the rail pressure sensor 22 matches the target common rail pressure. .

作業機等におけるコモンレール式ディーゼルエンジン1のECU18は、図2に示す如く、回転数と出力トルクの関係において走行モードM1と通常作業モードM2及び重作業モードM3の三種類の制御モードを設けている。   As shown in FIG. 2, the ECU 18 of the common rail diesel engine 1 in a work machine or the like has three types of control modes, a travel mode M1, a normal work mode M2, and a heavy work mode M3, in relation to the rotational speed and the output torque. .

走行モードM1は、回転数の変動で出力も変動するドループ制御として、農作業を行わず移動走行する場合に使用するものであり、例えば、ブレーキを掛けて走行速度を減速したり停止したりすると、この走行負荷の増大に伴ってエンジン回転数が低下するため走行速度の減速や停止を安全に行うことができる。   The traveling mode M1 is used when traveling without farming as droop control in which the output fluctuates due to fluctuations in the rotational speed. For example, when the traveling speed is reduced or stopped by applying a brake, As the traveling load increases, the engine speed decreases, so the traveling speed can be reduced or stopped safely.

通常作業モードM2は、負荷が変動しても回転数が一定で出力を負荷に応じて変更するアイソクロナス制御として、通常の農作業を行う場合に使用するものであり、例えば、トラクターであれば耕耘作業時に耕地が固く耕耘刃に抵抗が掛かるとき、コンバインであれば収穫作業時に収穫物が多く負荷が増大したときでも、出力が変動して回転数を維持するのでオペレータが楽に操縦できる。   The normal work mode M2 is used when performing normal farm work as isochronous control in which the rotation speed is constant even when the load fluctuates and the output is changed according to the load. Sometimes, when the cultivated land is hard and resistance is applied to the cultivator blade, the combine makes it easy for the operator to control the output and maintain the rotational speed even when the harvest is heavy and the load increases during harvesting operations.

重作業モードM3は、通常作業モードM2と同様に負荷が変動しても回転数一定で出力を負荷に応じて変更するアイソクロナス制御に、負荷限界近くになると回転数を上昇させて出力を上げる重負荷制御を加えた制御で、特に、負荷限界近くで農作業を行う場合に使用するものであり、例えば、トラクターで耕耘作業を行っている際に、特に、固い耕地に遭遇してもエンジン出力が通常の限界を越えて増大するので作業を中断することがない。   In the heavy work mode M3, as in the normal work mode M2, the isochronous control that changes the output according to the load at a constant rotation speed even when the load fluctuates, and when the load limit is approached, the rotation speed is increased to increase the output. Control with heavy load control, especially used when farming near the load limit.For example, when plowing with a tractor, engine output even when encountering hard cultivated land Increases beyond the normal limit, so work is not interrupted.

これらの作業モードM1,M2,M3は、作業モード切替スイッチの操作、又は走行変速レバーの変速操作、作業クラッチの入り切り操作等によって切り替わるように構成する。   These work modes M1, M2, and M3 are configured to be switched by an operation of a work mode changeover switch, a shift operation of a travel shift lever, an operation of turning on and off a work clutch, or the like.

従来、ディーゼルエンジンでは、メイン噴射に先立って少量の燃料をパルス的に噴射するパイロット噴射を行うことにより、着火遅れを短縮してディーゼルエンジン特有の、所謂ノック音を低減することが知られている。   Conventionally, in a diesel engine, it is known to perform pilot injection that injects a small amount of fuel in a pulse manner prior to main injection, thereby shortening the ignition delay and reducing the so-called knocking noise peculiar to the diesel engine. .

このパイロット噴射は、メイン噴射の前に1回乃至2回に固定して行われるものであったが、前記コモンレール10のシステムを用いることで、エンジンの状況に応じてパイロット噴射の状態を変化させ、騒音の低減や不完全燃焼による白煙又は黒煙の発生を抑制できる。   This pilot injection is performed once or twice before the main injection. However, by using the system of the common rail 10, the state of the pilot injection is changed according to the state of the engine. The generation of white smoke or black smoke due to noise reduction or incomplete combustion can be suppressed.

コモンレール式ディーゼルエンジン1において、図1に示す如き単一のコモンレール10を、図3(a),(b)に示す如く、高圧噴射対応の高圧用コモンレール3と低圧噴射対応の低圧用コモンレール4の並列二段配置とし、前記燃料噴射ポンプ2から高圧用コモンレール3と低圧用コモンレール4とに各々燃料供給可能に接続させ、高圧用コモンレール3と低圧用コモンレール4とを供給バルブ6の連動制御により燃料供給可能に接続すると共に、低圧用コモンレール4から各燃料噴射弁5に燃料供給可能に接続して構成させる。   In the common rail type diesel engine 1, a single common rail 10 as shown in FIG. 1 is made up of a high pressure common rail 3 compatible with high pressure injection and a low pressure common rail 4 compatible with low pressure injection as shown in FIGS. 3 (a) and 3 (b). The fuel injection pump 2 is connected in parallel to the high-pressure common rail 3 and the low-pressure common rail 4 so that fuel can be supplied, and the high-pressure common rail 3 and the low-pressure common rail 4 are controlled by interlocking control of the supply valve 6. It connects so that supply is possible, and it connects from the low pressure common rail 4 to each fuel injection valve 5 so that fuel can be supplied.

このような構成により、噴射量の少ないパイロット噴射時(a図参照)には、燃料噴射ポンプ2から低圧用コモンレール4へ燃料が供給され燃料噴射弁5から低圧での噴射が行われるから、パイロット噴射時における噴射量を細かく制御できる等、パイロット噴射時の性能向上が大である。   With such a configuration, at the time of pilot injection with a small injection amount (see FIG. A), fuel is supplied from the fuel injection pump 2 to the low pressure common rail 4 and injection at low pressure is performed from the fuel injection valve 5. The performance improvement at the time of pilot injection is great, such as fine control of the injection amount at the time of injection.

メイン噴射時(b図参照)には、燃料噴射ポンプ2から高圧用コモンレール3へ燃料が供給されると共に、高圧用コモンレール3から供給バルブ6の連動制御により高圧噴射対応に変更された低圧用コモンレール4へ燃料が供給され、燃料噴射弁5から高圧での噴射が行われる。   At the time of main injection (see FIG. B), fuel is supplied from the fuel injection pump 2 to the high-pressure common rail 3, and the low-pressure common rail is changed from high-pressure common rail 3 to high-pressure injection by interlocking control of the supply valve 6. The fuel is supplied to 4 and injection at high pressure is performed from the fuel injection valve 5.

また、図4(a),(b),(c)に示す如く、高圧噴射対応の高圧用コモンレール3と低圧噴射対応の低圧用コモンレール4を、前記図3(a),(b)と同様の内容にて構成させることにより、噴射量の少ないパイロット噴射時(a図参照)には、燃料噴射ポンプ2から低圧用コモンレール4へ燃料が供給され燃料噴射弁5から低圧での噴射が行われるから、パイロット噴射時における噴射量を細かく制御できる等、パイロット噴射時の性能向上が大である。   Further, as shown in FIGS. 4A, 4B, and 4C, the high-pressure common rail 3 compatible with high-pressure injection and the low-pressure common rail 4 compatible with low-pressure injection are the same as those shown in FIGS. 3A and 3B. In the case of pilot injection with a small injection amount (see FIG. A), fuel is supplied from the fuel injection pump 2 to the low pressure common rail 4 and low pressure injection is performed from the fuel injection valve 5. Therefore, the performance improvement at the time of pilot injection is great, such as being able to finely control the injection amount at the time of pilot injection.

初期のメイン噴射時(b図参照)には、燃料噴射ポンプ2から高圧用コモンレール3へ燃料が供給されると共に、高圧用コモンレール3から供給バルブ6の連動制御により低圧噴射対応に変更して低圧用コモンレール4へ燃料が供給され、燃料噴射弁5から低圧での噴射が行われ、後期のメイン噴射時(c図参照)には、燃料噴射ポンプ2から高圧用コモンレール3へ燃料が供給されると共に、高圧用コモンレール3から供給バルブ6の連動制御により高圧噴射対応に変更された低圧用コモンレール4へ燃料が供給され、燃料噴射弁5から高圧での噴射が行われるから、圧力上昇率を低く抑え燃焼改善や排ガス改善の効果が得られる。   At the time of initial main injection (see FIG. B), fuel is supplied from the fuel injection pump 2 to the high-pressure common rail 3, and the low-pressure injection is changed by interlocking control of the supply valve 6 from the high-pressure common rail 3. Fuel is supplied to the common rail 4, low-pressure injection is performed from the fuel injection valve 5, and fuel is supplied from the fuel injection pump 2 to the high-pressure common rail 3 during the latter main injection (see FIG. C). At the same time, fuel is supplied from the high-pressure common rail 3 to the low-pressure common rail 4 that has been changed to be compatible with high-pressure injection by interlocking control of the supply valve 6, and high-pressure injection is performed from the fuel injection valve 5. The effect of suppressing combustion improvement and exhaust gas improvement can be obtained.

また、前記の如く、高圧噴射対応の高圧用コモンレール3と低圧噴射対応の低圧用コモンレール4を並列二段配置しているものにおいて、図5(a),(b)に示す如く、該燃料噴射ポンプ2から高圧用コモンレール3に燃料供給可能に接続させ、高圧用コモンレール3と低圧用コモンレール4とを供給バルブ6の連動制御により燃料供給可能に接続すると共に、低圧用コモンレール4から各燃料噴射弁5に燃料供給可能に接続して構成させる。   Further, as described above, in the case where the high-pressure common rail 3 compatible with high-pressure injection and the low-pressure common rail 4 compatible with low-pressure injection are arranged in two stages in parallel, the fuel injection is performed as shown in FIGS. The pump 2 is connected to the high-pressure common rail 3 so as to be able to supply fuel, and the high-pressure common rail 3 and the low-pressure common rail 4 are connected so as to be able to supply fuel by interlocking control of the supply valve 6. 5 is configured so as to be able to supply fuel.

このような構成により、噴射量の少ないパイロット噴射時(a図参照)には、燃料噴射ポンプ2から高圧用コモンレール3へ燃料が供給されると共に、高圧用コモンレール3から供給バルブ6の連動制御により低圧噴射対応に変更して低圧用コモンレール4へ燃料が供給され、燃料噴射弁5から低圧での噴射が行われるから、パイロット噴射時における噴射量を細かく制御できる等、パイロット噴射時の性能向上が大である。   With such a configuration, at the time of pilot injection with a small injection amount (see FIG. A), fuel is supplied from the fuel injection pump 2 to the high-pressure common rail 3, and the high-pressure common rail 3 controls the supply valve 6 in conjunction with the control. Since the fuel is supplied to the low-pressure common rail 4 by changing to the low-pressure injection and the low-pressure injection is performed from the fuel injection valve 5, the performance at the time of pilot injection can be improved, such as fine control of the injection amount at the time of pilot injection. It ’s big.

メイン噴射時(b図参照)には、燃料噴射ポンプ2から高圧用コモンレール3へ燃料が供給されると共に、高圧用コモンレール3から供給バルブ6の連動制御により高圧噴射対応に変更された低圧用コモンレール4へ燃料が供給され、燃料噴射弁5から高圧での噴射が行われる。   At the time of main injection (see FIG. B), fuel is supplied from the fuel injection pump 2 to the high-pressure common rail 3, and the low-pressure common rail is changed from high-pressure common rail 3 to high-pressure injection by interlocking control of the supply valve 6. The fuel is supplied to 4 and injection at high pressure is performed from the fuel injection valve 5.

また、図6(a),(b),(c)に示す如く、高圧噴射対応の高圧用コモンレール3と低圧噴射対応の低圧用コモンレール4を、前記図5(a),(b)と同様の内容にて構成させることにより、噴射量の少ないパイロット噴射時(a図参照)には、燃料噴射ポンプ2から高圧用コモンレール3へ燃料が供給されると共に、高圧用コモンレール3から供給バルブ6の連動制御により低圧噴射対応に変更して低圧用コモンレール4へ燃料が供給され、燃料噴射弁5から低圧での噴射が行われるから、パイロット噴射時における噴射量を細かく制御できる等、パイロット噴射時の性能向上が大である。   Further, as shown in FIGS. 6A, 6B, and 6C, the high-pressure common rail 3 compatible with high-pressure injection and the low-pressure common rail 4 compatible with low-pressure injection are the same as those shown in FIGS. 5A and 5B. In the pilot injection with a small injection amount (see FIG. A), the fuel is supplied from the fuel injection pump 2 to the high-pressure common rail 3 and from the high-pressure common rail 3 to the supply valve 6. Since the fuel is supplied to the low pressure common rail 4 by the interlock control and the low pressure injection is performed from the fuel injection valve 5, the injection amount at the time of pilot injection can be finely controlled. Greatly improved performance.

初期のメイン噴射時(b図参照)には、燃料噴射ポンプ2から高圧用コモンレール3へ燃料が供給されると共に、高圧用コモンレール3から供給バルブ6の連動制御により低圧噴射対応に変更して低圧用コモンレール4へ燃料が供給され、燃料噴射弁5から低圧での噴射が行われ、後期のメイン噴射時(c図参照)には、燃料噴射ポンプ2から高圧用コモンレール3へ燃料が供給されると共に、高圧用コモンレール3から供給バルブ6の連動制御により高圧噴射対応に変更された低圧用コモンレール4へ燃料が供給され、燃料噴射弁5から高圧での噴射が行われるから、圧力上昇率を低く抑え燃焼改善や排ガス改善の効果が得られる。   At the time of initial main injection (see FIG. B), fuel is supplied from the fuel injection pump 2 to the high-pressure common rail 3, and the low-pressure injection is changed by interlocking control of the supply valve 6 from the high-pressure common rail 3. Fuel is supplied to the common rail 4, low-pressure injection is performed from the fuel injection valve 5, and fuel is supplied from the fuel injection pump 2 to the high-pressure common rail 3 during the latter main injection (see FIG. C). At the same time, fuel is supplied from the high-pressure common rail 3 to the low-pressure common rail 4 that has been changed to be compatible with high-pressure injection by interlocking control of the supply valve 6, and high-pressure injection is performed from the fuel injection valve 5. The effect of suppressing combustion improvement and exhaust gas improvement can be obtained.

また、コモンレール式ディーゼルエンジン1において、燃料噴射装置は経年変化による目詰まりによって燃料噴射量が低下する傾向にあり、このように燃料噴射量が低下するとその低下分だけ出力不足を招いてしまう。   Further, in the common rail type diesel engine 1, the fuel injection device tends to decrease the fuel injection amount due to clogging due to secular change. When the fuel injection amount decreases in this way, the output is insufficient by the decrease.

この燃料噴射量の低下による出力不足の改善策として、図7(a),(b)に示す如く、一定回転数の全負荷上における排気温度と吸気温度の関係、及び排気温度と燃料噴射量の関係を各々計測した結果により、エンジン回転数が同じであれば排気温度が燃料噴射量及び吸気温度に比例することが分かるから、この関係の逆算により排気温度から燃料噴射量を求めることが可能であり、本来必要とする燃料噴射量の不足分を、前記ECU18により補正を行い出力不足を防止することができる。   As measures for improving the output shortage due to the decrease in the fuel injection amount, as shown in FIGS. 7A and 7B, the relationship between the exhaust temperature and the intake air temperature over the full load at a constant rotational speed, and the exhaust temperature and the fuel injection amount. As a result of measuring each of these relationships, it can be seen that if the engine speed is the same, the exhaust temperature is proportional to the fuel injection amount and the intake air temperature. Therefore, it is possible to obtain the fuel injection amount from the exhaust temperature by reverse calculation of this relationship. The shortage of the fuel injection amount that is originally required can be corrected by the ECU 18 to prevent the shortage of output.

また、従来、パイロット噴射の有無に対する領域を決定するMAPがあり、このMAPを吸気温や大気圧等により補正した例があることから、燃料噴射量とアクセル開度の時間変化率を計測し、燃料噴射量やアクセル開度に移行がある場合には、図8に示す如く、変化率の大きさに応じてパイロット噴射の実施領域を決定するMAPの閾線pにより、通常パイロット噴射領域nと補正パイロット噴射領域rとを切り替えを行い、この両パイロット噴射領域n,rにおけるパイロット噴射の実施MAPを、図9(a),(b)に示す如く設定する。   In addition, conventionally, there is a MAP that determines a region for the presence or absence of pilot injection, and since there is an example in which this MAP is corrected by intake air temperature, atmospheric pressure, etc., the time change rate of the fuel injection amount and the accelerator opening is measured, When there is a transition in the fuel injection amount or the accelerator opening, as shown in FIG. 8, the normal pilot injection region n and the normal pilot injection region n are determined by the MAP threshold line p that determines the execution region of the pilot injection according to the magnitude of the change rate. Switching to the corrected pilot injection region r is performed, and the execution MAP of the pilot injection in both pilot injection regions n and r is set as shown in FIGS. 9 (a) and 9 (b).

このような設定とすることにより、燃料噴射量の移行量が多く燃焼状態が大きく変化したときに、排出煙や騒音聴感としてオペレータに伝わらないよう、パイロット噴射の実施領域を拡大して燃焼状態を平準化させることができる。   With this setting, when the amount of fuel injection shift is large and the combustion state changes greatly, the pilot injection area is expanded to prevent the combustion state from being transmitted to the operator as exhaust smoke or noise audibility. Can be leveled.

また、前記の如く、パイロット噴射の有無領域を決定するMAPを吸気温や大気圧等により補正した例があることから、図10に示す如く、作業機等におけるハンドル切れ角の量及び変化率等により、前記アイソクロナス制御の設定回転数を補正するファクターfを求め、このファクターfをアイソクロナス設定回転数に乗じて回転数の補正を行い、この際の回転数変化率により回転移行時のパイロット噴射領域の実施MAPを、図11(a),(b)に示す如く設定する。   In addition, as described above, there is an example in which the MAP that determines the pilot injection presence / absence region is corrected by the intake air temperature, the atmospheric pressure, or the like. As shown in FIG. Thus, the factor f for correcting the set rotational speed of the isochronous control is obtained, the rotational speed is corrected by multiplying the factor f by the isochronous set rotational speed, and the pilot injection region at the time of rotational transition is determined by the rotational speed change rate at this time The implementation MAP is set as shown in FIGS. 11 (a) and 11 (b).

このような設定とすることにより、エンジン回転数の移行に伴い噴射タイミングやレール圧等の遷移移行量が多く燃焼状態が大きく変化したときに、排出煙や騒音聴感としてオペレータに伝わらないよう、パイロット噴射の実施領域を拡大して燃焼状態を平準化させることができる。   With this setting, the pilot will not be transmitted to the operator as smoke or noise audibility when there is a large transition transition amount such as injection timing or rail pressure along with the engine speed transition and the combustion state changes greatly. The injection region can be expanded to level the combustion state.

また、該アイソクロナス制御において、図12に示す如く、全負荷トルク特性を有するものでは、最大トルク回転数以上の領域での高負荷に対しては最大トルク点までの回転数ダウンにより対応できるが、最大トルク点以下での全負荷状態の場合はエンストへと至ってしまうため、最大トルク点以下で高負荷(例えば80%以上)となった場合、ガバナ制御方法をアイソクロナス制御からドループ制御へ切り替えることにより、高負荷運転状態をオペレータに告知することができる。   In addition, in the isochronous control, as shown in FIG. 12, in the case of having a full load torque characteristic, it is possible to cope with a high load in a region above the maximum torque rotation speed by reducing the rotation speed to the maximum torque point. In the case of a full load condition below the maximum torque point, the engine reaches the engine stall. Therefore, when the load becomes high below the maximum torque point (for example, 80% or more), the governor control method is switched from isochronous control to droop control. The operator can be notified of the high load operation state.

また、コモンレール式ディーゼルエンジン1を搭載したトラクターにおいて、図13に示す如く、一般的にトラクターの燃費は通常トルク点t付近で最も良くなるため、全負荷上での作業でない限り通常トルク点t付近で作業を行った方が燃料消費という点においては有利である。   Further, in the tractor equipped with the common rail diesel engine 1, as shown in FIG. 13, the fuel efficiency of the tractor is generally the best near the normal torque point t. Therefore, unless the operation is performed at full load, the vicinity of the normal torque point t. It is more advantageous in terms of fuel consumption to perform the work.

このようなことにより、図14に示す如く、車速一定の場合のエンジン回転数とミッション変速の関係から、現在の作業負荷で最も燃料消費率の良いエンジン回転数とミッション変速の組合せmとなるようアイソクロナス制御により変更させることにより、全負荷状態でない作業時に、負荷に応じた燃費の良いエンジン回転数とミッション変速の組合せmが可能となり、無駄な燃料消費を抑えることができ経済的である。   Due to this, as shown in FIG. 14, the combination of the engine speed and the mission shift with the best fuel consumption rate at the current work load is obtained from the relationship between the engine speed and the mission shift when the vehicle speed is constant. By making the change by isochronous control, a combination m of the engine speed and the gear shift with good fuel efficiency according to the load can be achieved at the time of work not in a full load state, and wasteful fuel consumption can be suppressed, which is economical.

また、ターボ過給機23を装備したディーゼルエンジン24において、図15に示す如く、ターボ過給機23のタービン23a上流側に排気側の排気通路25を接続し、この排気通路25に排気ガス中の粒子状物質を捕集するディーゼルパティキュレートフィルタ26(以後DPFという)を配設し、この配設されたDPF26の下流側からEGRクーラ27を経てターボ過給機23のコンプレッサ23b上流側に接続するEGR通路28を設ける。   Further, in the diesel engine 24 equipped with the turbocharger 23, as shown in FIG. 15, an exhaust side exhaust passage 25 is connected to the upstream side of the turbine 23a of the turbocharger 23, and the exhaust passage 25 is filled with exhaust gas. A diesel particulate filter 26 (hereinafter referred to as DPF) that collects particulate matter is disposed, and is connected from the downstream side of the disposed DPF 26 to the upstream side of the compressor 23b of the turbocharger 23 via the EGR cooler 27. An EGR passage 28 is provided.

このEGR通路28と該コンプレッサ23bの上流側位置との合流部にEGRバルブ29を配設し、DPF26による再生が必要な状況のときはEGRバルブ29を閉とし排気ガス温度を上昇させる制御を行うと共に、該コンプレッサ23bの下流側からインタークーラ30を経て吸気側の吸気通路31に接続して構成させる。   An EGR valve 29 is disposed at the junction between the EGR passage 28 and the upstream position of the compressor 23b. When regeneration by the DPF 26 is necessary, the EGR valve 29 is closed and control is performed to raise the exhaust gas temperature. At the same time, the compressor 23 b is connected to the intake passage 31 on the intake side via the intercooler 30 from the downstream side of the compressor 23 b.

このような構成により、従来、ターボ過給機23を有するものにおいてEGRを実行しようとするとき、排気と吸気間の差圧の関係から必要なEGR率が確保でき難く、排気絞り又は吸気絞りを併用することとなるため、これらの駆動ユニットや制御ユニットが必要となり、コストアップや車両搭載性の悪化を招いていたものについて改善を行うことができる。   With such a configuration, when trying to execute EGR in a conventional turbocharger having a turbocharger 23, it is difficult to secure a necessary EGR rate from the relationship between the differential pressure between exhaust and intake air. Since these are used together, these drive units and control units are required, and improvements can be made for those that have resulted in increased costs and reduced vehicle mountability.

この改善により、DPF26により再生された排気ガスを、上流側が常に負圧であるターボ過給機23のコンプレッサ23b上流側に、吸気絞り弁等の補助手段を併用することなく容易に戻すことができるから、システムの複雑化を避けて必要なEGR率としての排気ガス規制への対応や、部分負荷時の燃費低減等を確保できると共に、該コンプレッサ23bを含む吸気系の汚染を防止することができる。   With this improvement, the exhaust gas regenerated by the DPF 26 can be easily returned to the upstream side of the compressor 23b of the turbocharger 23 where the upstream side is always negative pressure without using auxiliary means such as an intake throttle valve. Therefore, it is possible to prevent the system from becoming complicated, comply with exhaust gas regulations as a necessary EGR rate, reduce fuel consumption at the time of partial load, and prevent contamination of the intake system including the compressor 23b. .

また、前記図15に示す如く配設されたDPF26において、図16に示す如く、該DPF26の入口側と出口側とに各々圧力センサ32aと圧力センサ32bを配置して構成させることにより、圧力センサ32aと圧力センサ32bにより検出された、DPF26の入口側と出口側の圧力値の差が閾値を超えた場合には、該EGRバルブ29を閉とし排気ガス温度を上昇させDPF26による再生を行わせる。   Further, in the DPF 26 arranged as shown in FIG. 15, the pressure sensor 32a and the pressure sensor 32b are respectively arranged on the inlet side and the outlet side of the DPF 26 as shown in FIG. When the difference between the pressure values detected by the pressure sensor 32b on the inlet side and the outlet side of the DPF 26 exceeds the threshold value, the EGR valve 29 is closed and the exhaust gas temperature is raised to cause regeneration by the DPF 26. .

また、該DPF26は排出ガスに見合った径サイズの選定が必要であり、コンバイン等に搭載する際に径サイズが大きいとエンジン周辺に配置できない場合が多く、配置場所によっては再生時の温度上昇によって火災を発生する危険があることから、このような危険を回避するため、DPF26を、従来よりも小さい径サイズとし、このやや小径のDPF26を直列二連の構成とする。   In addition, it is necessary to select a diameter suitable for the exhaust gas, and when the DPF 26 is mounted on a combine or the like, if the diameter is large, the DPF 26 may not be arranged around the engine. Since there is a risk of fire, in order to avoid such a risk, the DPF 26 has a smaller diameter than the conventional one, and the DPF 26 having a slightly smaller diameter is configured in a series of two.

このような構成により、上流側のDPF26aは、図17に示す如く、入口側は閉塞無しで出口側を交互に閉塞させて50%のセルが通過自由となるよう形成させると共に、下流側のDPF26bは、図18に示す如く、入口側と出口側を互い違いに閉塞させた通常形態のものとすることにより、DPF26をエンジン近傍に分離して配置することが可能となる。なお、上流側のDPF26aを50%セルの通過自由型とし二個のDPF26a,26bに分散して、粒子状物質を捕集することができるから小型化が可能となり搭載性が良くなる。   With this configuration, as shown in FIG. 17, the upstream side DPF 26a is formed such that 50% of the cells are free to pass by alternately closing the outlet side without closing the inlet side, and the downstream DPF 26b. As shown in FIG. 18, the DPF 26 can be separated and disposed in the vicinity of the engine by adopting a normal configuration in which the inlet side and the outlet side are alternately closed. In addition, since the upstream DPF 26a is a 50% cell free passage type and dispersed in the two DPFs 26a and 26b, and particulate matter can be collected, the size can be reduced and the mountability is improved.

また、前記の如きDPF26において、上流側のDPF26aは該エンジン24の本体近傍に配置しているから、農作業時は常に排気ガスの温度が600度程度の高温に保持されているため触媒無しとしても再生が可能であり、下流側のDPF26bには触媒を担持させることにより、温度の低い離れた位置に配置しても再生が可能であるためレイアウトが容易となる。   Further, in the DPF 26 as described above, since the upstream DPF 26a is arranged in the vicinity of the main body of the engine 24, the temperature of the exhaust gas is always kept at a high temperature of about 600 degrees during farm work, so there is no catalyst. Regeneration is possible, and by supporting the catalyst on the downstream DPF 26b, regeneration is possible even if it is placed at a remote location with a low temperature, so that the layout becomes easy.

トラクターやコンバイン等の農作業機を始め一般車両にも利用可能である。   It can be used for farm vehicles such as tractors and combiners as well as general vehicles.

コモンレールによる蓄圧式燃料噴射ディーゼルエンジンを示すシステム図。The system figure which shows the pressure accumulation type fuel injection diesel engine by a common rail. 三種類の制御モードによるエンジン回転数と出力トルクの関係を示す線図。The diagram which shows the relationship between the engine speed and output torque by three types of control modes. (a)パイロット噴射時における高圧用コモンレールと低圧用コモンレールの作用状態を示すブロック図。(A) The block diagram which shows the action state of the high-pressure common rail and the low-pressure common rail at the time of pilot injection.

(b)メイン噴射時における高圧用コモンレールと低圧用コモンレールの作用状態を示すブロック図。
(a)パイロット噴射時における高圧用コモンレールと低圧用コモンレールの作用状態を示すブロック図。
(B) The block diagram which shows the action state of the high-pressure common rail and the low-pressure common rail at the time of main injection.
(A) The block diagram which shows the action state of the high-pressure common rail and the low-pressure common rail at the time of pilot injection.

(b)初期のメイン噴射時における高圧用コモンレールと低圧用コモンレールの作用状態を示すブロック図。
(b)後期のメイン噴射時における高圧用コモンレールと低圧用コモンレールの作用状態を示すブロック図。
(a)図3と異なる方式のパイロット噴射時における高圧用コモンレールと低圧用コモンレールの作用状態を示すブロック図。
(B) The block diagram which shows the operation state of the high-pressure common rail and the low-pressure common rail at the time of the initial main injection.
(B) The block diagram which shows the operation state of the high pressure common rail and the low pressure common rail at the time of the late main injection.
(A) The block diagram which shows the operation state of the high pressure common rail and the low pressure common rail at the time of pilot injection of a system different from FIG.

(b)図3と異なる方式のメイン噴射時における高圧用コモンレールと低圧用コモンレールの作用状態を示すブロック図。
(a)図4と異なる方式のパイロット噴射時における高圧用コモンレールと低圧用コモンレールの作用状態を示すブロック図。
(B) The block diagram which shows the operation state of the high-pressure common rail and the low-pressure common rail at the time of main injection of a system different from FIG.
(A) The block diagram which shows the operation state of the high pressure common rail and the low pressure common rail at the time of pilot injection of a system different from FIG.

(b)図4と異なる方式の初期のメイン噴射時における高圧用コモンレールと低圧用コモンレールの作用状態を示すブロック図。
(b)図4と異なる方式の後期のメイン噴射時における高圧用コモンレールと低圧用コモンレールの作用状態を示すブロック図。
(a)コモンレール式ディーゼルエンジンにおける一定回転数の全負荷上における排気温度と吸気温度の関係を示す線図。
(B) The block diagram which shows the operation state of the high pressure common rail and the low pressure common rail at the time of the initial main injection of the system different from FIG.
(B) The block diagram which shows the action | operation state of the high-pressure common rail and the low-pressure common rail at the time of the latter main injection of the system different from FIG.
(A) The diagram which shows the relationship between the exhaust temperature on the full load of the fixed rotation speed in a common rail type diesel engine, and intake air temperature.

(b)コモンレール式ディーゼルエンジンにおける一定回転数の全負荷上における排気温度と燃料噴射量の関係を示す線図。
燃料噴射量とアクセル開度の時間変化率の大きさに応じたパイロット噴射の実施領域MAPを切り替える閾線の状態を示す線図。 (a)パイロット噴射の実施領域MAPにおける通常パイロット噴射領域のパイロット噴射回数を示す線図。
(B) The diagram which shows the relationship between the exhaust temperature on the full load of the fixed rotation speed in a common rail type diesel engine, and fuel injection quantity.
The diagram which shows the state of the threshold line which switches the implementation area | region MAP of pilot injection according to the magnitude | size of the time change rate of fuel injection quantity and accelerator opening. (A) The diagram which shows the frequency | count of pilot injection of the normal pilot injection area | region in the implementation area | region MAP of pilot injection.

(b)パイロット噴射の実施領域MAPにおける補正パイロット噴射領域のパイロット噴射回数を示す線図。
ハンドル切れ角の量及び変化率等によりアイソクロナス制御の設定回転数を補正するファクターを求める線図。 (a)アイソクロナス制御回転移行時のパイロット噴射の実施領域MAPにおける通常パイロット噴射領域のパイロット噴射回数を示す線図。
(B) The diagram which shows the frequency | count of pilot injection of the correction | amendment pilot injection area | region in the implementation area | region MAP of pilot injection.
The diagram which calculates | requires the factor which correct | amends the setting rotation speed of isochronous control by the amount of steering wheel turning angle, change rate, etc. FIG. (A) The diagram which shows the frequency | count of pilot injection of the normal pilot injection area | region in the implementation area | region MAP of the pilot injection at the time of isochronous control rotation transfer.

(b)アイソクロナス制御回転移行時のパイロット噴射の実施領域MAPにおける補正パイロット噴射領域のパイロット噴射回数を示す線図。
全負荷トルク特性を有するアイソクロナス制御において最大トルク点以下で80%以上の高負荷状態を示す線図。 トラクターの燃費は全負荷上での作業でない限り通常トルク点付近で作業を行った方が有利となる状態を示す線図。 車速一定の場合のエンジン回転数とミッション変速の関係を示す選択図。 過給機付きディーゼルエンジンにおいて過給機タービンの排気通路に配置したDPF下流側と過給機コンプレッサ側とを接続したEGR通路を示す回路図。 前記過給機付きディーゼルエンジンにおいてDPFの入口側と出口側とに各々圧力センサを配置した状態を示す回路図。 入口側を50%セル開口の通過容易型とし出口側を交互に閉塞させて形成したDPFの構造を示す斜視図。 入口側と出口側を互い違いに交互に閉塞させて形成した通常形態のDPFの構造を示す斜視図。
(B) The diagram which shows the pilot injection frequency | count of the correction | amendment pilot injection area | region in the implementation area | region MAP of the pilot injection at the time of isochronous control rotation transfer.
The diagram which shows the high load state of 80% or more below the maximum torque point in the isochronous control which has a full load torque characteristic. The tractor fuel consumption is a diagram showing a state where it is advantageous to work near the normal torque point unless the work is performed at full load. The selection figure which shows the relationship between an engine speed in case vehicle speed is constant, and a mission shift. The circuit diagram which shows the EGR path | route which connected the DPF downstream and the turbocharger compressor side which were arrange | positioned in the exhaust passage of the supercharger turbine in the diesel engine with a supercharger. The circuit diagram which shows the state which has arrange | positioned each pressure sensor in the entrance side and exit side of DPF in the said diesel engine with a supercharger. The perspective view which shows the structure of DPF formed by making the entrance side an easy passage type of a cell opening of 50%, and closing the exit side alternately. The perspective view which shows the structure of the normal form DPF formed by alternately closing the entrance side and the exit side alternately.

符号の説明Explanation of symbols

1 コモンレール式ディーゼルエンジン
2 燃料噴射ポンプ
3 高圧用コモンレール
4 低圧用コモンレール
5 燃料噴射弁
6 供給バルブ
DESCRIPTION OF SYMBOLS 1 Common rail type diesel engine 2 Fuel injection pump 3 High pressure common rail 4 Low pressure common rail 5 Fuel injection valve 6 Supply valve

Claims (2)

コモンレールを搭載したディーゼルエンジン(1)において、燃料噴射ポンプ(2)と、並列配置した高圧噴射対応の高圧用コモンレール(3)及び低圧噴射対応の低圧用コモンレール(4)とを連結して燃料供給可能に構成すると共に、前記低圧用コモンレール(4)から燃料噴射弁(5)に燃料供給可能に構成したことを特徴とするディーゼルエンジン。   In a diesel engine (1) equipped with a common rail, a fuel injection pump (2) is connected to a high pressure common rail (3) compatible with high pressure injection and a low pressure common rail (4) compatible with low pressure injection connected in parallel. A diesel engine characterized in that the fuel can be supplied from the low-pressure common rail (4) to the fuel injection valve (5). 前記高圧用コモンレール(3)と低圧用コモンレール(4)とを供給バルブ(6)を介して連動制御可能に接続したことを特徴とする請求項1に記載のディーゼルエンジン。   The diesel engine according to claim 1, characterized in that the high-pressure common rail (3) and the low-pressure common rail (4) are connected via a supply valve (6) so as to be capable of interlocking control.
JP2006295861A 2006-10-31 2006-10-31 Diesel engine Pending JP2008111404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006295861A JP2008111404A (en) 2006-10-31 2006-10-31 Diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006295861A JP2008111404A (en) 2006-10-31 2006-10-31 Diesel engine

Publications (1)

Publication Number Publication Date
JP2008111404A true JP2008111404A (en) 2008-05-15

Family

ID=39444047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006295861A Pending JP2008111404A (en) 2006-10-31 2006-10-31 Diesel engine

Country Status (1)

Country Link
JP (1) JP2008111404A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036462A (en) * 2011-07-08 2013-02-21 National Maritime Research Institute Fuel injection device capable of responding to various fuel and internal combustion engine for land and marine industrial use
CN107503870A (en) * 2017-10-10 2017-12-22 中国第汽车股份有限公司 Fuel Feeding System for Diesel Engine is united
CN109441685A (en) * 2018-10-29 2019-03-08 中船动力研究院有限公司 Marine low-speed machine high pressure co-rail system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04148012A (en) * 1990-10-09 1992-05-21 Nissan Motor Co Ltd Exhaust gas recirculation device for engine
JPH0693936A (en) * 1992-09-11 1994-04-05 Mitsubishi Motors Corp Accumulator fuel injection device
JPH1089046A (en) * 1996-09-19 1998-04-07 Toyota Motor Corp Exhaust emission control device for diesel engine
JP2000204940A (en) * 1999-01-12 2000-07-25 Toyota Motor Corp Exhaust gas control device for internal combustion engine
JP2002129938A (en) * 2000-10-24 2002-05-09 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2003155915A (en) * 2001-11-20 2003-05-30 Hino Motors Ltd Exhaust emission control device
JP2004162674A (en) * 2002-11-15 2004-06-10 Isuzu Motors Ltd Exhaust gas recirculation system for internal combustion engine provided with turbo charger
JP2005030231A (en) * 2003-07-08 2005-02-03 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2005127297A (en) * 2003-10-27 2005-05-19 Hyundai Motor Co Ltd Common rail system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04148012A (en) * 1990-10-09 1992-05-21 Nissan Motor Co Ltd Exhaust gas recirculation device for engine
JPH0693936A (en) * 1992-09-11 1994-04-05 Mitsubishi Motors Corp Accumulator fuel injection device
JPH1089046A (en) * 1996-09-19 1998-04-07 Toyota Motor Corp Exhaust emission control device for diesel engine
JP2000204940A (en) * 1999-01-12 2000-07-25 Toyota Motor Corp Exhaust gas control device for internal combustion engine
JP2002129938A (en) * 2000-10-24 2002-05-09 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2003155915A (en) * 2001-11-20 2003-05-30 Hino Motors Ltd Exhaust emission control device
JP2004162674A (en) * 2002-11-15 2004-06-10 Isuzu Motors Ltd Exhaust gas recirculation system for internal combustion engine provided with turbo charger
JP2005030231A (en) * 2003-07-08 2005-02-03 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2005127297A (en) * 2003-10-27 2005-05-19 Hyundai Motor Co Ltd Common rail system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036462A (en) * 2011-07-08 2013-02-21 National Maritime Research Institute Fuel injection device capable of responding to various fuel and internal combustion engine for land and marine industrial use
CN107503870A (en) * 2017-10-10 2017-12-22 中国第汽车股份有限公司 Fuel Feeding System for Diesel Engine is united
CN109441685A (en) * 2018-10-29 2019-03-08 中船动力研究院有限公司 Marine low-speed machine high pressure co-rail system
CN109441685B (en) * 2018-10-29 2023-09-22 中船动力研究院有限公司 High-pressure common rail system of marine low-speed machine

Similar Documents

Publication Publication Date Title
JP2010229959A (en) Diesel engine
JP4983311B2 (en) Tractor
JP2013181406A (en) Working vehicle
JP5176834B2 (en) Work vehicle
JP2010156208A (en) Diesel engine
JP2014009639A (en) Work vehicle
JP2008111404A (en) Diesel engine
JP2016142157A (en) Tractor
JP2011012562A (en) Working vehicle
JP2008088858A (en) Diesel engine
JP2011052561A (en) Working vehicle
JP2011094575A (en) Tractor
JP5315955B2 (en) Tractor
JP2010053795A (en) Diesel engine
JP2019044691A (en) Tractor
JP2009132310A (en) Working vehicle
JP2010106794A (en) Working vehicle
JP2009085066A (en) Work vehicle
JP2009284875A (en) Tractor
JP2012052459A (en) Working vehicle
JP2017155617A (en) Tractor
JP2018204466A (en) Tractor
JP2013113263A (en) Working vehicle
JP2023080715A (en) work vehicle
JP2010007648A (en) Diesel engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111220