JP2008110907A - Method for producing silicon carbide single crystal ingot, and silicon carbide single crystal ingot - Google Patents

Method for producing silicon carbide single crystal ingot, and silicon carbide single crystal ingot Download PDF

Info

Publication number
JP2008110907A
JP2008110907A JP2006296315A JP2006296315A JP2008110907A JP 2008110907 A JP2008110907 A JP 2008110907A JP 2006296315 A JP2006296315 A JP 2006296315A JP 2006296315 A JP2006296315 A JP 2006296315A JP 2008110907 A JP2008110907 A JP 2008110907A
Authority
JP
Japan
Prior art keywords
single crystal
silicon carbide
carbide single
crystal
sic single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006296315A
Other languages
Japanese (ja)
Inventor
Noboru Otani
昇 大谷
Masashi Nakabayashi
正史 中林
Masakazu Katsuno
正和 勝野
Hiroshi Tsuge
弘志 柘植
Tatsuo Fujimoto
辰雄 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006296315A priority Critical patent/JP2008110907A/en
Publication of JP2008110907A publication Critical patent/JP2008110907A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an SiC single crystal almost free from dislocation defects with good reproducibility. <P>SOLUTION: The method uses a sublimation-recrystallization method and produces a silicon carbide single crystal ingot in bulk form by growing a silicon carbide single crystal on a seed crystal 1 consisting of a silicon carbide single crystal in a crucible 3 for crystal growth. The crucible 3 is coated with an insulating material having a total thickness of 5-200 mm and constituted of a laminated structure comprising of 2-100 sheets of graphite felt 7. The silicon carbide single crystal ingot produced had an ingot diameter of 50-300 mm and further an etch pit density of not more than 1×104 cm<SP>-2</SP>. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、炭化珪素単結晶インゴット及びその製造方法に係わり、特に、電子デバイスの基板ウェハとなる良質で大型の単結晶インゴット及びその製造方法に関するものである。   The present invention relates to a silicon carbide single crystal ingot and a method for manufacturing the same, and more particularly, to a high-quality and large single crystal ingot that becomes a substrate wafer for an electronic device and a method for manufacturing the same.

炭化珪素(SiC)は、耐熱性及び機械的強度に優れ、放射線に強い等の物理的、化学的性質から、耐環境性半導体材料として注目されている。また、近年、青色から紫外にかけての短波長光デバイス、高周波・高耐圧電子デバイス等の基板ウェハとしてSiC単結晶基板の需要が高まっている。しかしながら、大面積を有する高品質のSiC単結晶を、工業的規模で安定に供給し得る結晶成長技術は、未だ確立されていない。それ故、SiCは、上述のような多くの利点及び可能性を有する半導体材料にもかかわらず、その実用化が阻まれていた。   Silicon carbide (SiC) has attracted attention as an environmentally resistant semiconductor material because of its physical and chemical properties such as excellent heat resistance and mechanical strength, and resistance to radiation. In recent years, the demand for SiC single crystal substrates as substrate wafers for short wavelength optical devices from blue to ultraviolet, high frequency / high voltage electronic devices, and the like has been increasing. However, a crystal growth technique that can stably supply a high-quality SiC single crystal having a large area on an industrial scale has not yet been established. Therefore, practical use of SiC has been hindered despite the semiconductor material having many advantages and possibilities as described above.

従来、研究室程度の規模では、例えば、昇華再結晶法(レーリー法)でSiC単結晶を成長させ、半導体素子の作製が可能なサイズのSiC単結晶を得ていた。しかしながら、この方法では、得られた単結晶の面積が小さく、その寸法及び形状を高精度に制御することは困難である。また、SiCが有する結晶多形及び不純物キャリア濃度の制御も容易ではない。また、化学気相成長法(CVD法)を用いて、珪素(Si)等の異種基板上にヘテロエピタキシャル成長させることにより、立方晶のSiC単結晶を成長させることも行われている。この方法では、大面積の単結晶は得られるが、基板との格子不整合が約20%あること等により、積層欠陥等の結晶欠陥が入り易く、高品質のSiC単結晶を得ることは難しい。   Conventionally, on a laboratory scale scale, for example, a SiC single crystal was grown by a sublimation recrystallization method (Rayleigh method) to obtain a SiC single crystal of a size capable of manufacturing a semiconductor element. However, with this method, the area of the obtained single crystal is small, and it is difficult to control its size and shape with high accuracy. Also, it is not easy to control the crystal polymorphism and impurity carrier concentration of SiC. In addition, a cubic SiC single crystal is grown by heteroepitaxial growth on a heterogeneous substrate such as silicon (Si) using a chemical vapor deposition method (CVD method). With this method, a large-area single crystal can be obtained, but due to the lattice mismatch with the substrate being about 20%, crystal defects such as stacking faults are likely to occur, and it is difficult to obtain a high-quality SiC single crystal. .

これらの問題点を解決するために、SiC単結晶基板を種結晶として用いて昇華再結晶を行う改良型のレーリー法が提案され(非特許文献1)、多くの研究機関で実施されている。この方法では、種結晶を用いているため結晶の核形成過程が制御でき、また、不活性ガスにより雰囲気圧力を133Pa〜1.33kPa程度に制御することにより、結晶の成長速度等を再現性良くコントロールできる。   In order to solve these problems, an improved Rayleigh method in which sublimation recrystallization is performed using a SiC single crystal substrate as a seed crystal has been proposed (Non-patent Document 1) and has been implemented in many research institutions. In this method, the seed nucleation process can be used to control the nucleation process of the crystal, and by controlling the atmospheric pressure to about 133 Pa to 1.33 kPa with an inert gas, the growth rate of the crystal can be controlled with good reproducibility. it can.

図1を用いて、改良レーリー法の原理を説明する。種結晶となるSiC単結晶と原料となるSiC結晶粉末は、坩堝(通常、黒鉛製)の中に収納され、アルゴン(Ar)等の不活性ガス雰囲気中(133〜13.3kPa)、2000〜2400℃に加熱される。この際、原料粉末に比べ、種結晶がやや低温になるように、温度勾配が設定される。原料は、昇華後、濃度勾配(温度勾配により形成される)により種結晶方向へ拡散、輸送される。単結晶成長は、種結晶に到着した原料ガスが種結晶上で再結晶化することにより実現される。この際、結晶の抵抗率は、不活性ガスからなる雰囲気中に不純物ガスを添加する、あるいは、SiC原料粉末中に不純物元素あるいはその化合物を混合することにより、制御可能である。SiC単結晶中の置換型不純物として代表的なものに、窒素(n型)、ホウ素(p型)、アルミニウム(p型)がある。改良レーリー法を用いれば、SiC単結晶の結晶多形(6H型、4H型、15R型等)及び形状、キャリア型及び濃度を制御しながら、SiC単結晶を成長させることができる。   The principle of the improved Rayleigh method will be described with reference to FIG. The SiC single crystal as a seed crystal and the SiC crystal powder as a raw material are stored in a crucible (usually made of graphite), in an inert gas atmosphere such as argon (Ar) (133 to 13.3 kPa), 2000 to 2400 Heated to ° C. At this time, the temperature gradient is set so that the seed crystal has a slightly lower temperature than the raw material powder. After sublimation, the raw material is diffused and transported in the direction of the seed crystal by a concentration gradient (formed by a temperature gradient). Single crystal growth is realized by recrystallization of the source gas that has arrived at the seed crystal on the seed crystal. At this time, the resistivity of the crystal can be controlled by adding an impurity gas in an atmosphere made of an inert gas or mixing an impurity element or a compound thereof in the SiC raw material powder. Typical substitutional impurities in SiC single crystals include nitrogen (n-type), boron (p-type), and aluminum (p-type). By using the modified Rayleigh method, it is possible to grow a SiC single crystal while controlling the crystal polymorphism (6H type, 4H type, 15R type, etc.), shape, carrier type and concentration of the SiC single crystal.

上記したように、SiC単結晶は坩堝内にて高温下で昇華した原料が温度勾配により形成される濃度勾配によって拡散、輸送され種結晶上へ到達し、そこで再結晶化することで成長する。このため、結晶成長における坩堝内の温度分布の制御は極めて重要な技術となる。改良レーリー法によるSiC単結晶成長において必要となる、坩堝を2000〜2400℃の高温に加熱する方法としては、高周波印加による誘導加熱が一般的に使用されている。具体的には、高周波により導電性材料中に発生する誘導電流によって導電性材料自体が発熱することを利用する。坩堝の形状としては、高周波誘導電流による発熱が導電性材料のキャリアによる遮蔽効果のため内部に浸透せず導電性材料の表面で生じることから(表皮効果)、坩堝内での温度分布を均等にし易いとして、円柱型の坩堝が常用される。   As described above, a SiC single crystal grows by recrystallizing the SiC single crystal, which is diffused and transported by a concentration gradient formed by a temperature gradient in a crucible at a high temperature to reach the seed crystal. For this reason, control of the temperature distribution in the crucible during crystal growth is a very important technique. As a method for heating a crucible to a high temperature of 2000 to 2400 ° C., which is necessary for SiC single crystal growth by the modified Rayleigh method, induction heating by applying a high frequency is generally used. Specifically, the fact that the conductive material itself generates heat by an induced current generated in the conductive material due to high frequency is utilized. As for the shape of the crucible, heat generation due to high-frequency induced current does not penetrate inside due to the shielding effect of the carrier of the conductive material and occurs on the surface of the conductive material (skin effect), so the temperature distribution in the crucible is made uniform. For ease of use, a cylindrical crucible is commonly used.

また、発熱体である坩堝からの熱損失を抑え2000℃以上の高温を維持させる目的で、断熱材で坩堝周囲を覆うことが一般的に行われている。この際、高周波が直接坩堝に作用するように、断熱材としては導電性の無い材料を用いるか、誘導電流の発生し難い構造にする必要がある。実際には、導電性が低く、断熱性が高い黒鉛製フェルト(通常、厚さ数mm〜十数mm、幅1m程度、長さ数mから十m程度)が断熱材として一般的に用いられている。   Further, for the purpose of suppressing heat loss from the crucible as a heating element and maintaining a high temperature of 2000 ° C. or higher, it is generally performed to cover the crucible periphery with a heat insulating material. At this time, it is necessary to use a non-conductive material as a heat insulating material or to have a structure in which an induced current is hardly generated so that a high frequency acts directly on the crucible. In practice, graphite felt with low electrical conductivity and high thermal insulation (usually several mm to several tens of mm, width of about 1 m, length of about several m to 10 m) is generally used as a heat insulating material. ing.

実際に黒鉛製フェルトを使用する場合、断熱保温する対象である坩堝(通常、黒鉛製)を直接黒鉛製フェルトで覆う形で設置する。しかしながら、現時点で2000℃を超す高温において再現性良く且つ均一性良く坩堝からの熱輻射、熱伝導を遮蔽できる断熱技術は、未だ確立されていない。一般的に高周波印加による誘導加熱により実施されるSiC単結晶成長においては、断熱性の再現性、均一性は、得られる単結晶の質量や形状のバラツキのみに留まらず、単結晶の品質にまで影響を及ぼしている。具体的には、断熱材の変動により、温度分布のみならず絶対温度の変化が生じるため、高品質な結晶を得るための結晶成長速度や結晶成長中の形状制御(対称性の良好な凸型形状の維持が重要)に乱れが発生し易くなり、結果として目的とする良質な結晶が得られる歩留まりの低下といった深刻な事態を招くことになる。   When a graphite felt is actually used, the crucible (usually made of graphite) that is the object of heat insulation is installed so as to be covered directly with the graphite felt. However, heat insulation technology that can shield heat radiation and heat conduction from the crucible with high reproducibility and uniformity at a high temperature exceeding 2000 ° C. has not been established yet. In SiC single crystal growth, which is generally performed by induction heating with high frequency application, the reproducibility and uniformity of thermal insulation is not limited to the mass and shape variation of the obtained single crystal, but also to the quality of the single crystal. It has an influence. Specifically, the change in heat insulation material causes not only the temperature distribution but also the change in absolute temperature.Therefore, the crystal growth rate and shape control during crystal growth (convex shape with good symmetry) to obtain high-quality crystals. The maintenance of the shape is important) and disturbance is likely to occur, and as a result, a serious situation such as a decrease in yield in which the desired high-quality crystal can be obtained is caused.

また、近年のSiC単結晶の品質向上に伴い低損失パワー素子用基板としての実用化研究が本格化するなか、基板口径に対しても従来の2インチ(50.8mm)口径をさらに大口径化(3インチ(76.2mm)あるいは100mm口径化)したいという要求が一段と高まっている。このため、SiC単結晶成長に用いられる坩堝も口径拡大に向け一層大型化の方向にあるが、坩堝が大型になるほど内部の温度分布制御技術の重要性も増大する。このため、結晶成長プロセスにおいて安定した温度分布を再現性よく実現できる断熱材技術が必要である。これらの理由により、改良レーリー法によるSiC単結晶成長技術において、より安定した坩堝内部温度分布を実現する断熱材技術の開発が強く要望されるようになった。
Yu. M. Tairov and V. F. Tsvetkov, Journal of Crystal Growth, Vol.52 (1981) pp.146-150
In addition, with the recent improvement in the quality of SiC single crystals, research into practical application as a substrate for low-loss power devices is in full swing, and the conventional 2 inch (50.8 mm) diameter has been increased even further compared to the substrate diameter ( There is a growing demand for 3 inch (76.2mm) or 100mm aperture). For this reason, crucibles used for SiC single crystal growth are also in the direction of larger size for increasing the diameter, but the importance of internal temperature distribution control technology increases as the crucible becomes larger. Therefore, there is a need for a heat insulating material technology that can realize a stable temperature distribution with high reproducibility in the crystal growth process. For these reasons, there has been a strong demand for the development of thermal insulation technology that realizes a more stable crucible internal temperature distribution in the SiC single crystal growth technology using the modified Rayleigh method.
Yu. M. Tairov and VF Tsvetkov, Journal of Crystal Growth, Vol.52 (1981) pp.146-150

以上述べてきたように、改良レーリー法において坩堝内部の温度分布の変動を大きくしている原因は、加熱する際に被加熱体である坩堝からの熱損失を遮蔽する役目を果している断熱材による断熱効果の再現性と均一性が乏しい点にある。特に、断熱材として多く用いられている黒鉛製フェルトは、その製品間あるいは製品内(一枚の黒鉛製フェルト内)の断熱性のバラツキが大きい。このような黒鉛製フェルトをSiC単結晶成長に用いると、結晶成長毎の黒鉛製フェルトの変動により坩堝内の温度分布が変化してしまい、結晶成長の再現性を得ることが困難となる。   As described above, in the improved Rayleigh method, the cause of the large fluctuation in the temperature distribution inside the crucible is due to the heat insulating material that plays the role of shielding the heat loss from the crucible which is the object to be heated when heating. The reproducibility and uniformity of the heat insulation effect is poor. In particular, a graphite felt that is often used as a heat insulating material has a large variation in heat insulating properties between products or within a product (within one piece of graphite felt). When such a graphite felt is used for SiC single crystal growth, the temperature distribution in the crucible changes due to fluctuations in the graphite felt at each crystal growth, making it difficult to obtain reproducibility of crystal growth.

そこで、本発明では、断熱材の構造を改良することにより上記問題を解決し、再現性のある坩堝内温度分布を実現する方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method for solving the above problems by improving the structure of the heat insulating material and realizing a reproducible temperature distribution in the crucible.

本発明は、
(1)結晶成長用坩堝を用いて炭化珪素(SiC)単結晶よりなる種結晶上にSiC単結晶を成長させてバルク状のSiC単結晶インゴットを製造する製造方法において、上記結晶成長用坩堝の外壁面が断熱材で被覆されており、断熱材が、合計厚さ5mm以上200mm以下で、且つ2枚以上100枚以下の黒鉛製フェルトの積層構造であることを特徴とするSiC単結晶インゴットの製造方法、
(2)前記断熱材が、合計厚さ5mm以上200mm以下で、且つ4枚以上100枚以下の黒鉛製フェルトの積層構造である(1)に記載のSiC単結晶インゴットの製造方法、
(3)(1)又は(2)に記載の製造方法により得られたSiC単結晶インゴットであって、該インゴットの口径が50mm以上300mm以下であり、さらにエッチピット密度が1×104cm-2以下であることを特徴とするSiC単結晶インゴット、
(4)(3)に記載のSiC単結晶インゴットを切断し、研磨してなるSiC単結晶基板、
(5)(4)に記載のSiC単結晶基板に、SiC薄膜をエピタキシャル成長してなるSiCエピタキシャルウェハ、
(6)(4)に記載のSiC単結晶基板に、窒化ガリウム(GaN)、窒化アルミニウム(AlN)、窒化インジウム(InN)又はこれらの混晶をエピタキシャル成長してなる薄膜エピタキシャルウェハ、
である。
The present invention
(1) In a production method for producing a bulk SiC single crystal ingot by growing a SiC single crystal on a seed crystal made of a silicon carbide (SiC) single crystal using a crystal growth crucible, The SiC single crystal ingot is characterized in that the outer wall surface is coated with a heat insulating material, and the heat insulating material has a total thickness of 5 mm to 200 mm and a laminated structure of graphite felt of 2 to 100 sheets in total. Production method,
(2) The method for producing a SiC single crystal ingot according to (1), wherein the heat insulating material has a total thickness of 5 mm or more and 200 mm or less and a laminated structure of 4 or more and 100 or less graphite felts,
(3) A SiC single crystal ingot obtained by the production method according to (1) or (2), wherein the ingot has a diameter of 50 mm or more and 300 mm or less, and an etch pit density of 1 × 10 4 cm SiC single crystal ingot characterized by being 2 or less,
(4) A SiC single crystal substrate obtained by cutting and polishing the SiC single crystal ingot according to (3),
(5) A SiC epitaxial wafer obtained by epitaxially growing a SiC thin film on the SiC single crystal substrate described in (4),
(6) A thin film epitaxial wafer obtained by epitaxially growing gallium nitride (GaN), aluminum nitride (AlN), indium nitride (InN) or a mixed crystal thereof on the SiC single crystal substrate according to (4),
It is.

本発明によれば、特に高周波印加による誘導加熱を用いた改良レーリー法によるSiC単結晶成長においても、使用する坩堝の温度分布の安定性を向上させることができ、その結果、結晶性の良好なSiC単結晶を高い歩留まりで成長させることができる。   According to the present invention, the stability of the temperature distribution of the crucible used can be improved even in SiC single crystal growth by the improved Rayleigh method using induction heating by applying high frequency, and as a result, the crystallinity is good. SiC single crystal can be grown with high yield.

本発明においては特に誘導加熱を用いたSiC単結晶成長において、断熱材を、2枚以上、より好ましく4枚以上の黒鉛製フェルトの積層構造で構成することにより、被加熱体である坩堝内部の温度分布を安定させ、結果として良質なSiC単結晶を安定的に成長させることができる。
実施形態を以下に説明する。
In the present invention, particularly in the SiC single crystal growth using induction heating, the heat insulating material is composed of a laminated structure of two or more, more preferably four or more graphite felts, so that the inside of the crucible which is the object to be heated is formed. The temperature distribution is stabilized, and as a result, a high-quality SiC single crystal can be stably grown.
Embodiments are described below.

前述したように、改良レーリー法では、通常{0001}面を結晶成長面とするSiC種結晶と原料となるSiC結晶粉末(通常、アチソン(Acheson)法で製造された研磨材を洗浄・前処理したものが使用される)は、坩堝(通常、黒鉛製)の中に収納され、アルゴン等の不活性ガス雰囲気中(133Pa〜13.3kPa)、2000〜2400℃に加熱される。この際、原料粉末に比べ種結晶がやや低温になるように、温度勾配が設定される。原料は、昇華後、濃度勾配(温度勾配により形成される)により、種結晶方向へ拡散、輸送される。単結晶成長は、種結晶に到着した原料ガスが種結晶上で再結晶化することにより実現される。   As described above, in the modified Rayleigh method, the SiC seed crystal having the {0001} plane as the crystal growth surface and the SiC crystal powder as the raw material (usually cleaning and pretreatment of the abrasive material manufactured by the Acheson method) Is used in a crucible (usually made of graphite) and heated to 2000 to 2400 ° C. in an inert gas atmosphere such as argon (133 Pa to 13.3 kPa). At this time, the temperature gradient is set so that the seed crystal has a slightly lower temperature than the raw material powder. After sublimation, the raw material is diffused and transported in the direction of the seed crystal by a concentration gradient (formed by a temperature gradient). Single crystal growth is realized by recrystallization of the source gas that has arrived at the seed crystal on the seed crystal.

ここで、坩堝の形状としては、種結晶を保持でき、原料粉末を収容できれば、円柱、円錐、多角柱、多角錐等のどのような形状でも良いが、坩堝から外部への放熱に関して、周方向における放熱量の均一性において優れている円柱形が最適である。上記改良レーリー法において、坩堝を2000〜2400℃の高温に保持するためには、坩堝の周囲(具体的には坩堝の外壁面)を黒鉛製フェルトで覆い、坩堝からの熱輻射、熱伝導を遮蔽する。   Here, the shape of the crucible may be any shape such as a cylinder, a cone, a polygonal column, a polygonal pyramid, etc., as long as it can hold the seed crystal and can accommodate the raw material powder. A cylindrical shape that is excellent in the uniformity of the heat radiation amount at is optimal. In the modified Rayleigh method, in order to keep the crucible at a high temperature of 2000 to 2400 ° C., the periphery of the crucible (specifically, the outer wall surface of the crucible) is covered with graphite felt, and the heat radiation and heat conduction from the crucible are controlled. Shield.

一般に黒鉛製フェルトは、フェルト状に縫製したレーヨンなどの化学繊維を黒鉛化することにより製造されるが、その断熱性の再現性あるいは均一性については、かなり注意して製造した黒鉛製フェルトにおいても、その原料や製法に起因してバラツキが生じることが知られている(黒鉛製フェルトの断熱性の製品間バラツキ、製品内バラツキは共に10%程度)。このように断熱性がばらついた黒鉛製フェルトを、2000℃を超える高温でプロセスを行う改良レーリー法によるSiC単結晶成長に適用した場合、良質のSiC単結晶を安定的に成長させることは困難になる。そこで、発明者らは、このようなバラツキを有する断熱材(黒鉛製フェルト)を用いても、充分な再現性、安定性を持って、SiC単結晶成長が行える断熱構造を数多くの実験を基に探索したところ、断熱材として黒鉛製フェルトを複数枚重ねた積層構造を用いることにより、SiC単結晶成長の安定性、再現性を格段に向上できることを見出した。   In general, graphite felt is manufactured by graphitizing chemical fibers such as rayon sewn into a felt shape, but the reproducibility or uniformity of its thermal insulation is also very careful in graphite felt manufactured. It is known that variations occur due to the raw materials and the production method (the variation between the heat insulating properties of graphite felt and the variation within the product are both about 10%). It is difficult to stably grow high-quality SiC single crystals when such graphite felts with varying thermal insulation properties are applied to SiC single crystal growth by the modified Rayleigh method, which processes at temperatures exceeding 2000 ° C. Become. Therefore, the inventors have conducted a number of experiments on a heat insulating structure capable of growing a SiC single crystal with sufficient reproducibility and stability even when such a heat insulating material (graphite felt) having such variations is used. As a result, it was found that the stability and reproducibility of SiC single crystal growth can be remarkably improved by using a laminated structure in which a plurality of graphite felts are stacked as a heat insulating material.

先にも述べたように、黒鉛製フェルトは製品間のバラツキがあるだけでなく、1枚の製品内においても断熱性のバラツキが存在する。したがって、このようなフェルトで黒鉛坩堝を覆い、SiC単結晶成長に用いた場合には、例えば、坩堝の上下方向、周方向あるいは径方向において断熱性のムラが生じ、再現性の高い結晶成長を行うことが困難になる。しかしながら、複数枚の黒鉛製フェルトを積層した場合には、黒鉛製フェルトの積層の仕方に工夫を凝らすことにより、フェルト製品内のバラツキの影響を小さくすることができる。これは、発明者らが数多くの結晶成長実験から見出した、黒鉛製フェルトのバラツキにはある方向性が存在する、という知見に基づく。具体的には、黒鉛製フェルトの断熱性は、坩堝の上下方向、周方向あるいは径方向に沿って、ほぼ一様に減少あるいは増加する特性を有する。これは、原材料となるレーヨンなどの化学繊維を縫製する際に、厚みや密度の変動が、フェルトの長手方向に沿ってほぼ一様に生じるためである。したがって、2枚の黒鉛製フェルトを重ね合わせる際に、その向きを逆向きにすることによって、この一方向性の断熱性のバラツキを打ち消すことができる。この断熱性バラツキの打消し効果は、2枚以上の黒鉛製フェルトを積層することによって実現できるが、黒鉛製フェルトの積層枚数を増やしていくと、製品内のバラツキだけでなく、製品間のバラツキも打ち消すことができる。これは、積層枚数を増やしていくと、それぞれの黒鉛製フェルトが有していたバラツキが平均化され、積層ロット間では変動が小さくなるためと考えられる。この黒鉛製フェルト積層の効果は結晶成長の再現性、安定性向上に大幅に貢献する。   As described above, graphite felt not only has variations between products, but also has thermal insulation variations within a single product. Therefore, when a graphite crucible is covered with such a felt and used for SiC single crystal growth, for example, unevenness of heat insulation occurs in the vertical direction, circumferential direction or radial direction of the crucible, and crystal growth with high reproducibility is achieved. It becomes difficult to do. However, when a plurality of graphite felts are laminated, the influence of variation in the felt product can be reduced by devising the way of lamination of the graphite felts. This is based on the knowledge that the inventors found from a number of crystal growth experiments that there is a certain direction in the variation of the graphite felt. Specifically, the heat insulating property of graphite felt has a characteristic of decreasing or increasing substantially uniformly along the vertical direction, circumferential direction, or radial direction of the crucible. This is because when chemical fibers such as rayon as a raw material are sewn, variations in thickness and density occur substantially uniformly along the longitudinal direction of the felt. Therefore, when the two graphite felts are overlapped, the unidirectional thermal insulation variation can be canceled by reversing the direction. The effect of canceling out this thermal insulation variation can be realized by laminating two or more graphite felts. However, increasing the number of graphite felts laminated not only within the product, but also between products. Can also be countered. This is presumably because when the number of laminated layers is increased, the variation of each graphite felt is averaged, and the variation between the laminated lots is reduced. The effect of this graphite felt lamination greatly contributes to the reproducibility and stability improvement of crystal growth.

複数枚重ねる黒鉛製フェルトの枚数については、最低2枚から本発明に記載の効果が期待できるが、断熱材の合計厚さは5mm以上とすることが望ましい。5mm未満になると、充分な断熱効果が得られ難く、坩堝の温度制御が困難となる。断熱材の最大合計厚さについては、特に制限はないものと思われるが、200mm程度が実効的な上限値のように考えられる。理由は、断熱材が厚くなると、断熱材を含めたホットゾーン部材の外形寸法が大きくなり、それに伴って炉内寸法が大きな結晶成長炉が必要になるためである(必要以上に大型の結晶成長炉の導入は製造コストの上昇に繋がる)。これに対応する黒鉛製フェルトの最大積層枚数としては、黒鉛製フェルトの厚さにもよるが、100枚程度と見積もられる。   The effect described in the present invention can be expected from a minimum of two sheets of graphite felt, but the total thickness of the heat insulating material is desirably 5 mm or more. When the thickness is less than 5 mm, it is difficult to obtain a sufficient heat insulating effect, and it becomes difficult to control the temperature of the crucible. The maximum total thickness of the heat insulating material is not particularly limited, but about 200 mm is considered to be an effective upper limit. The reason is that when the heat insulating material becomes thicker, the outer dimensions of the hot zone member including the heat insulating material become larger, and accordingly, a crystal growth furnace having a larger inner furnace size is required (larger crystal growth than necessary). The introduction of a furnace leads to an increase in manufacturing costs). The maximum number of graphite felts corresponding to this is estimated to be about 100, although it depends on the thickness of the graphite felt.

本発明のSiC単結晶インゴットの製造方法によれば、SiC単結晶成長中の結晶成長速度を高精度に制御することが可能となる。結晶成長速度の高精度制御は、欠陥抑制の観点から極めて重要である。SiC単結晶成長における結晶成長様式は、成長初期の核発生様式と、成長中盤・後半のステップフロー様式に大別されるが、結晶成長速度を高精度に制御することは、特に、成長初期の核発生様式の結晶成長において重要となっている。核発生様式による結晶成長において、結晶成長面上で発生する結晶核の結晶性は、単位時間当たりに結晶成長面上に飛来する結晶構成原子の数、即ち結晶成長速度に大きく依存する。結晶成長速度が小さい場合には、構成原子が飛来する時間間隔が大きいので、構成原子は結晶成長面上、充分な時間を持って安定原子位置を占めることができるが、結晶成長速度が大きくなると、構成原子が飛来する時間間隔が減少し、安定位置を占めるための時間を充分に取れなくなる。その結果、結晶核の結晶性が劣化し、転位欠陥等が導入される。   According to the method for producing a SiC single crystal ingot of the present invention, the crystal growth rate during SiC single crystal growth can be controlled with high accuracy. Highly accurate control of the crystal growth rate is extremely important from the viewpoint of defect suppression. The crystal growth mode in SiC single crystal growth is broadly divided into the nucleation mode in the early stage of growth and the step flow mode in the middle and latter half of the growth, but it is particularly important to control the crystal growth rate with high accuracy. It is important in nucleation-type crystal growth. In crystal growth by the nucleation mode, the crystallinity of crystal nuclei generated on the crystal growth surface greatly depends on the number of crystal constituent atoms flying on the crystal growth surface per unit time, that is, the crystal growth rate. When the crystal growth rate is low, the time interval at which the constituent atoms fly is large, so the constituent atoms can occupy stable atom positions with sufficient time on the crystal growth surface, but when the crystal growth rate increases. The time interval at which the constituent atoms fly is reduced, making it impossible to take sufficient time to occupy a stable position. As a result, the crystallinity of the crystal nucleus is deteriorated and dislocation defects are introduced.

結晶成長速度は小さくなり過ぎても、結晶核の結晶性の劣化をもたらす。これは、結晶構成原子の単位時間当たりの飛来数がある値を下回ると、結晶成長面上への不純物原子の飛来数が結晶構成原子に比して無視できなくなり、結晶核の不純物濃度が大幅に増加するためである。   Even if the crystal growth rate becomes too small, the crystallinity of the crystal nucleus is deteriorated. This is because, if the number of crystal atoms per unit time falls below a certain value, the number of impurity atoms on the crystal growth surface cannot be ignored compared to the crystal atoms, and the impurity concentration in the crystal nucleus is greatly increased. This is because it increases.

上記したように、SiC単結晶成長において、結晶成長速度は厳密に制御されるべき成長パラメータである。断熱材による断熱効果の変動等により結晶成長速度が変動すると、結晶核の結晶性が劣化し、転位欠陥等が多数導入される。本発明による断熱材を採用することで、結晶成長中、結晶成長速度を随時適切な値に高精度に制御することが可能となり、その結果、結晶成長速度の変動による転位欠陥の導入を抑制でき、高品質なSiC単結晶の結晶成長が可能となる。通常、SiC単結晶中の転位欠陥の密度は、SiC単結晶の(0001)オフ面(例えば、オフ方向:[11-20]方向、オフ角度:8°)上に現れる、転位に起因したエッチピット密度によって評価されるが、本発明の製造方法で得られたSiC単結晶は、このエッチピット密度が1×104cm-2以下であるという特徴を有する。 As described above, in the SiC single crystal growth, the crystal growth rate is a growth parameter to be strictly controlled. When the crystal growth rate fluctuates due to fluctuations in the heat insulation effect due to the heat insulating material, the crystallinity of the crystal nuclei deteriorates, and many dislocation defects are introduced. By employing the heat insulating material according to the present invention, it becomes possible to control the crystal growth rate to an appropriate value at any time during crystal growth with high accuracy, and as a result, the introduction of dislocation defects due to fluctuations in the crystal growth rate can be suppressed. High-quality SiC single crystal can be grown. Usually, the density of dislocation defects in a SiC single crystal is an etch caused by dislocations appearing on the (0001) off-plane of the SiC single crystal (for example, off direction: [11-20] direction, off angle: 8 °). Although evaluated by the pit density, the SiC single crystal obtained by the production method of the present invention has a feature that the etch pit density is 1 × 10 4 cm −2 or less.

また、本発明による断熱材を採用することで、結晶成長用坩堝の口径が大きくなっても坩堝内部の温度分布を安定して制御することができ、大口径のSiC単結晶基板、具体的には50mm以上300mm以下の口径の基板を得ることが可能になる。このようにして得られた本発明のSiC単結晶基板は、50mm以上300mm以下の口径を有しているので、この基板を用いて各種デバイスを製造する際、工業的に確立されている従来の半導体(Si、GaAs等)基板用の製造ラインを使用することができ、量産に適している。また、この基板のエッチピット密度が1×104cm-2以下と低く高品質であるため、特に、大電流、高出力のデバイス製造に適している。さらに、このSiC単結晶基板上にCVD法等によりエピタキシャル薄膜を成長して作製されるSiC単結晶エピタキシャルウェハ、あるいはGaN、AlN、InN及びこれらの混晶薄膜エピタキシャルウェハは、その基板となるSiC単結晶の品質が高く安定しているために、良好な特性(耐電圧、エピタキシャル薄膜の表面モフォロジー等)を有するようになる。 Further, by adopting the heat insulating material according to the present invention, the temperature distribution inside the crucible can be stably controlled even if the diameter of the crucible for crystal growth becomes large, and a SiC single crystal substrate having a large diameter, specifically, Makes it possible to obtain a substrate having a diameter of 50 mm or more and 300 mm or less. Since the SiC single crystal substrate of the present invention thus obtained has a diameter of 50 mm or more and 300 mm or less, when manufacturing various devices using this substrate, it has been established industrially. A production line for semiconductor (Si, GaAs, etc.) substrates can be used, which is suitable for mass production. In addition, since the etch pit density of this substrate is as low as 1 × 10 4 cm −2 or less and it is of high quality, it is particularly suitable for manufacturing high-current and high-power devices. Furthermore, an SiC single crystal epitaxial wafer produced by growing an epitaxial thin film on this SiC single crystal substrate by a CVD method or the like, or GaN, AlN, InN, and mixed crystal thin film epitaxial wafers of the SiC single crystal substrate are used. Since the quality of the crystal is high and stable, it has good characteristics (withstand voltage, surface morphology of the epitaxial thin film, etc.).

(実施例1)
以下に、本発明の実施例を述べる。
図2は、本発明におけるSiC単結晶インゴットの製造方法に用いた製造装置であり、種結晶を用いた改良型レーリー法によって、SiC単結晶を成長させる装置の一例である。まず、この単結晶成長装置について簡単に説明する。結晶成長は、種結晶として用いたSiC単結晶1の上に原料であるSiC粉末2を昇華再結晶化させることにより行われる。種結晶のSiC単結晶1は、黒鉛製坩堝3の蓋4の内面に取り付けられる。原料のSiC粉末2は、黒鉛製坩堝3の内部に充填されている。このような黒鉛製坩堝3は、二重石英管5の内部に、黒鉛の支持棒6により設置される。黒鉛製坩堝3の周囲には、熱シールドのための黒鉛製フェルト7が設置されている。二重石英管5は、真空排気装置11により高真空排気(10-3 Pa以下)することができ、かつ、内部雰囲気をArガスあるいはArと窒素の混合ガスにより圧力制御することができる。また、二重石英管5の外周には、ワークコイル8が設置されており、高周波電流を流すことにより黒鉛製坩堝3を加熱し、原料及び種結晶を所望の温度に加熱することができる。坩堝温度の計測は、坩堝上部及び下部を覆うフェルトの中央部に直径2〜4mmの光路を設け、坩堝上部及び下部からの光を取り出し、二色温度計を用いて行う。坩堝下部の温度を原料温度、坩堝上部の温度を種結晶温度とする。
(Example 1)
Examples of the present invention will be described below.
FIG. 2 is an example of an apparatus for growing an SiC single crystal by an improved Rayleigh method using a seed crystal, which is a production apparatus used in the method for producing an SiC single crystal ingot according to the present invention. First, this single crystal growth apparatus will be briefly described. Crystal growth is performed by sublimating and recrystallizing SiC powder 2 as a raw material on SiC single crystal 1 used as a seed crystal. The seed crystal SiC single crystal 1 is attached to the inner surface of the lid 4 of the graphite crucible 3. The raw material SiC powder 2 is filled in a graphite crucible 3. Such a graphite crucible 3 is installed inside a double quartz tube 5 by a graphite support rod 6. Around the graphite crucible 3, a graphite felt 7 for heat shielding is installed. The double quartz tube 5 can be highly evacuated (10 −3 Pa or less) by the evacuation device 11, and the internal atmosphere can be pressure controlled by Ar gas or a mixed gas of Ar and nitrogen. A work coil 8 is provided on the outer periphery of the double quartz tube 5, and the graphite crucible 3 can be heated by flowing a high-frequency current to heat the raw material and the seed crystal to a desired temperature. The temperature of the crucible is measured using a two-color thermometer by providing an optical path with a diameter of 2 to 4 mm at the center of the felt covering the upper and lower parts of the crucible, taking out light from the upper and lower parts of the crucible. The temperature at the bottom of the crucible is the raw material temperature, and the temperature at the top of the crucible is the seed crystal temperature.

次に、この結晶成長装置を用いたSiC単結晶の製造について、実施例を説明する。まず、予め成長しておいたSiC単結晶インゴットから、口径50mm、厚さ1mmの{0001}面を主面とした4H型のSiC単結晶片を種結晶として切り出し、両面を研磨した。このようにして用意したSiC単結晶種結晶1を、黒鉛製坩堝3の蓋4の内面に取り付けた。黒鉛製坩堝3の内部には、原料2を充填した。次いで、原料を充填した黒鉛製坩堝3を、種結晶を取り付けた蓋4で閉じ、黒鉛製フェルト7で被覆した。この際、厚さ5mmの黒鉛製フェルトを2枚、断熱性が均一になるよう重ねて(具体的にはフェルトの長手方向及びその垂直方向が、2枚のフェルトで逆向きになるように重ねた)、坩堝の上下面及び側面(外壁面)に配置した。その後、黒鉛製支持棒6の上に乗せ、二重石英管5の内部に設置した。そして、石英管の内部を真空排気した後、ワークコイルに電流を流し、原料温度を2000℃まで上げた。その後、雰囲気ガスとして窒素を10%含むArガスを流入させ、石英管内圧力を約80kPaに保ちながら、原料温度を目標温度である2400℃まで上昇させた。成長圧力である1.3kPaには約30分かけて減圧し、その後、約50時間成長を続けた。結晶の成長速度は平均で約0.60mm/時であった。得られた結晶の口径は51.5mmで、高さは30mm程度であった。   Next, an example of manufacturing a SiC single crystal using this crystal growth apparatus will be described. First, a 4H-type SiC single crystal piece having a {0001} face with a diameter of 50 mm and a thickness of 1 mm as a main surface was cut out as a seed crystal from a previously grown SiC single crystal ingot, and both surfaces were polished. The SiC single crystal seed crystal 1 prepared in this way was attached to the inner surface of the lid 4 of the graphite crucible 3. The raw material 2 was filled in the graphite crucible 3. Next, the graphite crucible 3 filled with the raw material was closed with a lid 4 to which a seed crystal was attached and covered with a graphite felt 7. At this time, two pieces of graphite felt having a thickness of 5 mm are stacked so that the heat insulation is uniform (specifically, the two felts are stacked so that the longitudinal direction and the vertical direction thereof are opposite to each other). A), and placed on the upper and lower surfaces and side surfaces (outer wall surfaces) of the crucible. Thereafter, it was placed on the graphite support rod 6 and installed inside the double quartz tube 5. Then, after evacuating the inside of the quartz tube, a current was passed through the work coil to raise the raw material temperature to 2000 ° C. Thereafter, Ar gas containing 10% nitrogen was introduced as the atmospheric gas, and the raw material temperature was raised to the target temperature of 2400 ° C. while maintaining the pressure in the quartz tube at about 80 kPa. The growth pressure was reduced to 1.3 kPa over about 30 minutes, and then the growth was continued for about 50 hours. The average crystal growth rate was about 0.60 mm / hour. The diameter of the obtained crystal was 51.5 mm and the height was about 30 mm.

こうして得られたSiC単結晶インゴットについて、実験回数20回での質量のバラツキ(結晶成長速度のバラツキを反映する)を調べたところ、平均となる質量からの質量差が最大でも±12%以内に抑えられており、後述の同じ合計厚さの黒鉛製フェルト1枚を用いた場合と比較して確実にバラツキが低減された。また、結晶成長速度、結晶成長中の形状制御の影響が大きい結晶性についても、20回の結晶成長において16回が乱れのない、種結晶と同一の結晶多形を維持した安定成長となっており、結晶成長としての歩留まりも80%と良好な値を示し、温度分布の安定性を反映した結果が得られた。   The SiC single crystal ingot thus obtained was examined for variation in mass (reflecting variation in crystal growth rate) after 20 experiments, and the mass difference from the average mass was within ± 12% at the maximum. The variation was reliably reduced as compared to the case of using one piece of graphite felt having the same total thickness described later. In addition, for crystallinity that is greatly affected by crystal growth rate and shape control during crystal growth, 16 times in 20 crystal growths, there is no disturbance and stable growth is maintained while maintaining the same crystal polymorph as the seed crystal. As a result, the yield of crystal growth was as good as 80%, and the result reflecting the stability of temperature distribution was obtained.

次に、上記した、結晶成長中の乱れがなかったSiC単結晶インゴットの一つから、口径51mm、厚さ0.4mmの{0001}面SiC単結晶基板を2枚切出し、鏡面研磨した。基板の面方位は(0001)Si面で[11-20]方向に8°オフとした。その後、これらSiC単結晶基板2枚の内の1枚を、約530℃の溶融KOHでエッチングし、転位欠陥に起因するエッチピットの密度を顕微鏡により調べたところ、9.5×103cm-2という値を得た。 Next, two {0001} -plane SiC single crystal substrates having a diameter of 51 mm and a thickness of 0.4 mm were cut out from one of the above-described SiC single crystal ingots that were not disturbed during crystal growth and mirror-polished. The plane orientation of the substrate was 8 ° off in the [11-20] direction on the (0001) Si plane. After that, one of these two SiC single crystal substrates was etched with molten KOH at about 530 ° C., and the density of etch pits caused by dislocation defects was examined with a microscope, and it was 9.5 × 10 3 cm −2 Got the value.

さらに、残りの1枚のSiC単結晶基板を用いて、SiCのエピタキシャル成長を行った。SiCエピタキシャル薄膜の成長条件は、成長温度1500℃、シラン(SiH4)、プロパン(C3H8)、水素(H2)の流量が、それぞれ5.0×10-9m3/sec、3.3×10-9m3/sec、5.0×10-5m3/secであった。成長圧力は大気圧とした。成長時間は2時間で、膜厚としては約5μm成長した。 Furthermore, SiC was epitaxially grown using the remaining one SiC single crystal substrate. The growth conditions of the SiC epitaxial thin film are as follows: the growth temperature is 1500 ° C., the flow rates of silane (SiH 4 ), propane (C 3 H 8 ), and hydrogen (H 2 ) are 5.0 × 10 −9 m 3 / sec and 3.3 × 10 respectively. -9 m 3 / sec, 5.0 × 10 -5 m 3 / sec. The growth pressure was atmospheric pressure. The growth time was 2 hours and the film thickness was about 5 μm.

エピタキシャル薄膜成長後、ノマルスキー光学顕微鏡により、得られたエピタキシャル薄膜の表面モフォロジーを観察したところ、ウェハ全面に渡って非常に平坦で、ピット等の表面欠陥が少ない良好な表面モフォロジーを有するSiCエピタキシャル薄膜が成長されているのが分かった。   After the epitaxial thin film was grown, the surface morphology of the obtained epitaxial thin film was observed with a Nomarski optical microscope. I found it growing up.

また、上記SiC単結晶インゴットから同様にして、オフ角度が0°の(0001)Si面SiC単結晶基板を切り出し、鏡面研磨した後、その上にGaN薄膜を有機金属化学気相成長(MOCVD)法によりエピタキシャル成長させた。成長条件は、成長温度1050℃、トリメチルガリウム(TMG)、アンモニア(NH3)、シラン(SiH4)をそれぞれ、54×10-6モル/min、4リットル/min、22×10-11モル/min流した。また、成長圧力は大気圧とした。成長時間は60分間で、n型のGaNを3μmの膜厚で成長させた。 Similarly, from the SiC single crystal ingot, a (0001) Si surface SiC single crystal substrate with an off angle of 0 ° was cut out and mirror-polished, and then a GaN thin film was formed on the metal organic chemical vapor deposition (MOCVD) The epitaxial growth was performed by the method. Growth conditions are: growth temperature 1050 ° C., trimethylgallium (TMG), ammonia (NH 3 ), silane (SiH 4 ), 54 × 10 −6 mol / min, 4 liter / min, 22 × 10 −11 mol / min, respectively. Min shed. The growth pressure was atmospheric pressure. The growth time was 60 minutes, and n-type GaN was grown to a thickness of 3 μm.

得られたGaN薄膜の表面状態を調べる目的で、成長表面をノマルスキー光学顕微鏡により観察した。ウェハ全面に渡って非常に平坦なモフォロジーが得られ、全面に渡って高品質なGaN薄膜が形成されているのが分かった。   In order to investigate the surface state of the obtained GaN thin film, the growth surface was observed with a Nomarski optical microscope. It was found that a very flat morphology was obtained over the entire surface of the wafer, and a high-quality GaN thin film was formed over the entire surface.

(実施例2)
厚さ5mmの黒鉛製フェルトを4枚、断熱性が均一になるように重ねて(具体的にはフェルトの長手方向及びその垂直方向が、4枚のフェルト内2枚づつ逆向きになるように重ねた)、坩堝の上下面及び側面(外壁面)に配置した以外は実施例1と同様にして、改良レーリー法によりSiC単結晶成長を行った。
(Example 2)
4 pieces of graphite felt with a thickness of 5mm are stacked so that the heat insulation is uniform (specifically, the longitudinal direction of the felt and its vertical direction are reversed by 2 pieces in the 4 pieces of felt). The SiC single crystal was grown by the modified Rayleigh method in the same manner as in Example 1 except that the layers were arranged on the upper and lower surfaces and side surfaces (outer wall surfaces) of the crucible.

こうして得られたSiC単結晶インゴットについて、実験回数20回での質量のバラツキ(結晶成長速度のバラツキを反映する)を調べたところ、平均となる質量からの質量差が最大でも±10%以内に抑えられており、後述の黒鉛製フェルト1枚のみを用いた場合と比較して確実にバラツキが低減された。また、結晶成長速度、結晶成長中の形状制御の影響が大きい結晶性についても、20回の結晶成長において18回が乱れのない、種結晶と同一の結晶多形を維持した安定成長となっており、結晶成長としての歩留まりも90%と良好な値を示し、温度分布の安定性を反映した結果が得られた。   The SiC single crystal ingot thus obtained was examined for variation in mass (reflecting variation in crystal growth rate) after 20 experiments, and the mass difference from the average mass was within ± 10% at the maximum. The variation was reliably reduced as compared with the case where only one piece of graphite felt described later was used. In addition, for crystallinity that is greatly affected by the crystal growth rate and shape control during crystal growth, 18 times in 20 crystal growths, there is no disturbance and stable growth is maintained while maintaining the same crystal polymorph as the seed crystal. In addition, the yield of crystal growth was as good as 90%, and the result reflecting the stability of temperature distribution was obtained.

次に、上記した、結晶成長中の乱れがなかったSiC単結晶インゴットの一つから、口径51mm、厚さ0.4mmの[0001]面SiC単結晶基板を2枚切出し、鏡面研磨した。基板の面方位は(0001)Si面で[11-20]方向に8°オフとした。その後、これらSiC単結晶基板2枚の内の1枚を、約530℃の溶融KOHでエッチングし、転位欠陥に起因するエッチピットの密度を顕微鏡により調べたところ、8.2×103cm-2という値を得た。 Next, two [0001] plane SiC single crystal substrates having a diameter of 51 mm and a thickness of 0.4 mm were cut out from one of the above SiC single crystal ingots that were not disturbed during crystal growth and mirror-polished. The plane orientation of the substrate was 8 ° off in the [11-20] direction on the (0001) Si plane. After that, one of these two SiC single crystal substrates was etched with molten KOH at about 530 ° C., and the density of etch pits caused by dislocation defects was examined with a microscope, and found to be 8.2 × 10 3 cm −2. Got the value.

さらに、残りの1枚のSiC単結晶基板を用いて、SiCのエピタキシャル成長を行った。SiCエピタキシャル薄膜の成長条件は、成長温度1500℃、シラン(SiH4)、プロパン(C3H8)、水素(H2)の流量が、それぞれ5.0×10-9m3/sec、3.3×10-9m3/sec、5.0×10-5m3/secであった。成長圧力は大気圧とした。成長時間は2時間で、膜厚としては約5μm成長した。 Furthermore, SiC was epitaxially grown using the remaining one SiC single crystal substrate. The growth conditions of the SiC epitaxial thin film are as follows: the growth temperature is 1500 ° C., the flow rates of silane (SiH 4 ), propane (C 3 H 8 ), and hydrogen (H 2 ) are 5.0 × 10 −9 m 3 / sec and 3.3 × 10 respectively. -9 m 3 / sec, 5.0 × 10 -5 m 3 / sec. The growth pressure was atmospheric pressure. The growth time was 2 hours and the film thickness was about 5 μm.

エピタキシャル薄膜成長後、ノマルスキー光学顕微鏡により、得られたエピタキシャル薄膜の表面モフォロジーを観察したところ、ウェハ全面に渡って非常に平坦で、ピット等の表面欠陥が少ない良好な表面モフォロジーを有するSiCエピタキシャル薄膜が成長されているのが分かった。   After the epitaxial thin film was grown, the surface morphology of the obtained epitaxial thin film was observed with a Nomarski optical microscope. I found it growing up.

また、上記SiC単結晶インゴットから同様にして、オフ角度が0°の(0001)Si面SiC単結晶基板を切り出し、鏡面研磨した後、その上にGaN薄膜を有機金属化学気相成長(MOCVD)法によりエピタキシャル成長させた。成長条件は、成長温度1050℃、トリメチルガリウム(TMG)、アンモニア(NH3)、シラン(SiH4)をそれぞれ、54×10-6モル/min、4リットル/min、22×10-11モル/min流した。また、成長圧力は大気圧とした。成長時間は60分間で、n型のGaNを3μmの膜厚で成長させた。 Similarly, from the SiC single crystal ingot, a (0001) Si surface SiC single crystal substrate with an off angle of 0 ° was cut out and mirror-polished, and then a GaN thin film was formed on the metal organic chemical vapor deposition (MOCVD) The epitaxial growth was performed by the method. Growth conditions are: growth temperature 1050 ° C., trimethylgallium (TMG), ammonia (NH 3 ), silane (SiH 4 ), 54 × 10 −6 mol / min, 4 liter / min, 22 × 10 −11 mol / min, respectively. Min shed. The growth pressure was atmospheric pressure. The growth time was 60 minutes, and n-type GaN was grown to a thickness of 3 μm.

得られたGaN薄膜の表面状態を調べる目的で、成長表面をノマルスキー光学顕微鏡により観察した。ウェハ全面に渡って非常に平坦なモフォロジーが得られ、全面に渡って高品質なGaN薄膜が形成されているのが分かった。   In order to investigate the surface state of the obtained GaN thin film, the growth surface was observed with a Nomarski optical microscope. It was found that a very flat morphology was obtained over the entire surface of the wafer, and a high-quality GaN thin film was formed over the entire surface.

(比較例)
黒鉛製フェルト(厚さ:10mm)1枚のみを坩堝の上下面及び側面(外壁面)に配置した以外は実施例と同様にして、改良レーリー法によりSiC単結晶成長を行った。
(Comparative example)
SiC single crystal growth was performed by the modified Rayleigh method in the same manner as in the example except that only one graphite felt (thickness: 10 mm) was placed on the upper and lower surfaces and side surfaces (outer wall surfaces) of the crucible.

こうして得られたSiC単結晶インゴットについて、実験回数20回での質量のバラツキを調べたところ、平均となる質量からの質量差が最大で+33%、-42%となり、実験毎の坩堝温度分布のバラツキが大きいことを反映した結果となった。また、結晶成長速度、結晶成長中の形状制御の影響が大きい結晶性についても、20回の結晶成長中9回にて結晶成長の乱れ(異種結晶多形の発生に伴う結晶性の劣化)が発生し、結晶成長としての歩留まりは55%と低い値を示し、温度分布の不安定性を反映した結果が得られた。   The SiC single crystal ingot obtained in this way was examined for variation in mass after 20 experiments, and the mass difference from the average mass was + 33% and -42% at maximum, showing the crucible temperature distribution for each experiment. The result reflects the large variation in Also, for crystallinity that is greatly affected by crystal growth rate and shape control during crystal growth, disorder of crystal growth (crystallinity deterioration due to the occurrence of heterogeneous crystal polymorphism) occurs in 9 out of 20 crystal growths. As a result, the yield as a crystal growth was as low as 55%, and the result reflecting the instability of the temperature distribution was obtained.

次に、上記した、結晶成長中に乱れが発生したSiC単結晶インゴットの一つから、口径51mm、厚さ0.4mmの{0001}面SiC単結晶基板を1枚切出し、鏡面研磨した。基板の面方位は(0001)Si面で[11-20]方向に8°オフとした。その後、このSiC単結晶基板を、約530℃の溶融KOHでエッチングし、転位欠陥に起因するエッチピットの密度を顕微鏡により調べたところ、2.5×104cm-2という値を得た。 Next, a single {0001} plane SiC single crystal substrate having a diameter of 51 mm and a thickness of 0.4 mm was cut out from one of the SiC single crystal ingots in which disorder occurred during crystal growth, and mirror-polished. The plane orientation of the substrate was 8 ° off in the [11-20] direction on the (0001) Si plane. Thereafter, this SiC single crystal substrate was etched with molten KOH at about 530 ° C., and the density of etch pits caused by dislocation defects was examined with a microscope, and a value of 2.5 × 10 4 cm −2 was obtained.

改良レーリー法の原理を説明する図Diagram explaining the principle of the improved Rayleigh method 本発明の製造方法に用いられる単結晶成長装置の一例を示す構成図Configuration diagram showing an example of a single crystal growth apparatus used in the manufacturing method of the present invention

符号の説明Explanation of symbols

1 種結晶(SiC単結晶)
2 SiC粉末原料
3 黒鉛製坩堝
4 黒鉛製坩堝蓋
5 二重石英管
6 支持棒
7 黒鉛製フェルト
8 ワークコイル
9 Arガス配管
10 Arガス用マスフローコントローラ
11 真空排気装置
1 seed crystal (SiC single crystal)
2 Raw material for SiC powder
3 Graphite crucible
4 Graphite crucible lid
5 Double quartz tube
6 Support rod
7 Graphite felt
8 Work coil
9 Ar gas piping
10 Ar gas mass flow controller
11 Vacuum exhaust system

Claims (6)

結晶成長用坩堝を用いて炭化珪素単結晶よりなる種結晶上に炭化珪素単結晶を成長させてバルク状の炭化珪素単結晶インゴットを製造する製造方法において、上記結晶成長用坩堝の外壁面が断熱材で被覆されており、断熱材が、合計厚さ5mm以上200mm以下で、且つ2枚以上100枚以下の黒鉛製フェルトの積層構造であることを特徴とする炭化珪素単結晶インゴットの製造方法。   In the manufacturing method of manufacturing a bulk silicon carbide single crystal ingot by growing a silicon carbide single crystal on a seed crystal composed of a silicon carbide single crystal using a crystal growth crucible, the outer wall surface of the crystal growth crucible is thermally insulated. A method of manufacturing a silicon carbide single crystal ingot, wherein the silicon carbide single crystal ingot is covered with a material, and the heat insulating material has a laminated structure of graphite felt having a total thickness of 5 mm or more and 200 mm or less and 2 or more and 100 or less. 前記断熱材が、合計厚さ5mm以上200mm以下で、且つ4枚以上100枚以下の黒鉛製フェルトの積層構造である請求項1に記載の炭化珪素単結晶インゴットの製造方法。   2. The method for producing a silicon carbide single crystal ingot according to claim 1, wherein the heat insulating material has a laminated structure of graphite felt having a total thickness of 5 mm or more and 200 mm or less and 4 or more and 100 or less. 請求項1又は2に記載の製造方法により得られた炭化珪素単結晶インゴットであって、該インゴットの口径が50mm以上300mm以下であり、さらにエッチピット密度が1×104cm-2以下であることを特徴とする炭化珪素単結晶インゴット。 A silicon carbide single crystal ingot obtained by the production method according to claim 1 or 2, wherein the diameter of the ingot is 50 mm or more and 300 mm or less, and the etch pit density is 1 x 10 4 cm -2 or less. A silicon carbide single crystal ingot characterized by the above. 請求項3に記載の炭化珪素単結晶インゴットを切断し、研磨してなる炭化珪素単結晶基板。   4. A silicon carbide single crystal substrate obtained by cutting and polishing the silicon carbide single crystal ingot according to claim 3. 請求項4に記載の炭化珪素単結晶基板に、炭化珪素薄膜をエピタキシャル成長してなる炭化珪素エピタキシャルウェハ。   5. A silicon carbide epitaxial wafer obtained by epitaxially growing a silicon carbide thin film on the silicon carbide single crystal substrate according to claim 4. 請求項4に記載の炭化珪素単結晶基板に、窒化ガリウム、窒化アルミニウム、窒化インジウム又はこれらの混晶をエピタキシャル成長してなる薄膜エピタキシャルウェハ。   5. A thin film epitaxial wafer obtained by epitaxially growing gallium nitride, aluminum nitride, indium nitride, or a mixed crystal thereof on the silicon carbide single crystal substrate according to claim 4.
JP2006296315A 2006-10-31 2006-10-31 Method for producing silicon carbide single crystal ingot, and silicon carbide single crystal ingot Pending JP2008110907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006296315A JP2008110907A (en) 2006-10-31 2006-10-31 Method for producing silicon carbide single crystal ingot, and silicon carbide single crystal ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006296315A JP2008110907A (en) 2006-10-31 2006-10-31 Method for producing silicon carbide single crystal ingot, and silicon carbide single crystal ingot

Publications (1)

Publication Number Publication Date
JP2008110907A true JP2008110907A (en) 2008-05-15

Family

ID=39443647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006296315A Pending JP2008110907A (en) 2006-10-31 2006-10-31 Method for producing silicon carbide single crystal ingot, and silicon carbide single crystal ingot

Country Status (1)

Country Link
JP (1) JP2008110907A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024931A1 (en) * 2009-08-27 2011-03-03 住友金属工業株式会社 Sic single crystal wafer and process for production thereof
JP2011168431A (en) * 2010-02-18 2011-09-01 Mitsubishi Electric Corp Device for producing single crystal
CN105543966A (en) * 2016-02-02 2016-05-04 北京华进创威电子有限公司 Compound insulation structure for single crystal growth of silicon carbide
CN108130593A (en) * 2017-12-20 2018-06-08 中国科学院上海硅酸盐研究所 A kind of crystal growing furnace attemperator
EP3699328A1 (en) * 2019-02-20 2020-08-26 SiCrystal GmbH Manufacturing method for sic-volume single crystal and growth assembly for same
KR102234002B1 (en) * 2019-10-22 2021-03-29 에스케이씨 주식회사 Silicon carbide ingot, preperation method of the same and preperation method of the silicon carbide wafer
CN112746324A (en) * 2019-10-29 2021-05-04 Skc株式会社 Silicon carbide wafer and method for producing silicon carbide wafer
US11339497B2 (en) 2020-08-31 2022-05-24 Senic Inc. Silicon carbide ingot manufacturing method and silicon carbide ingot manufactured thereby
CN115558987A (en) * 2022-11-16 2023-01-03 浙江晶越半导体有限公司 Crucible device for growing crystal by sublimation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412096A (en) * 1990-04-26 1992-01-16 Nippon Steel Corp Method for growing 6h-type and 4h-type silicon carbide single crystal
JP2002293694A (en) * 2001-04-03 2002-10-09 Nippon Steel Corp Silicon carbide single crystal ingot and method of manufacturing for the same
JP2004231502A (en) * 2003-02-03 2004-08-19 Tokuyama Corp As-grown single crystal body of barium fluoride
JP2005225710A (en) * 2004-02-12 2005-08-25 Denso Corp METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL AND MANUFACTURING APPARATUS FOR SiC SINGLE CRYSTAL
JP2006290635A (en) * 2005-04-05 2006-10-26 Nippon Steel Corp Method for producing silicon carbide single crystal and ingot of silicon carbide single crystal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412096A (en) * 1990-04-26 1992-01-16 Nippon Steel Corp Method for growing 6h-type and 4h-type silicon carbide single crystal
JP2002293694A (en) * 2001-04-03 2002-10-09 Nippon Steel Corp Silicon carbide single crystal ingot and method of manufacturing for the same
JP2004231502A (en) * 2003-02-03 2004-08-19 Tokuyama Corp As-grown single crystal body of barium fluoride
JP2005225710A (en) * 2004-02-12 2005-08-25 Denso Corp METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL AND MANUFACTURING APPARATUS FOR SiC SINGLE CRYSTAL
JP2006290635A (en) * 2005-04-05 2006-10-26 Nippon Steel Corp Method for producing silicon carbide single crystal and ingot of silicon carbide single crystal

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9222198B2 (en) 2009-08-27 2015-12-29 Nippon Steel & Sumitomo Metal Corporation SiC single crystal wafer and process for production thereof
EP2471981A1 (en) * 2009-08-27 2012-07-04 Sumitomo Metal Industries, Ltd. Sic single crystal wafer and process for production thereof
EP2471981A4 (en) * 2009-08-27 2013-04-17 Nippon Steel & Sumitomo Metal Corp Sic single crystal wafer and process for production thereof
TWI410537B (en) * 2009-08-27 2013-10-01 Nippon Steel & Sumitomo Metal Corp Silicon carbide single crystal wafer and its manufacturing method
JP5706823B2 (en) * 2009-08-27 2015-04-22 新日鐵住金株式会社 SiC single crystal wafer and manufacturing method thereof
WO2011024931A1 (en) * 2009-08-27 2011-03-03 住友金属工業株式会社 Sic single crystal wafer and process for production thereof
JP2011168431A (en) * 2010-02-18 2011-09-01 Mitsubishi Electric Corp Device for producing single crystal
CN105543966A (en) * 2016-02-02 2016-05-04 北京华进创威电子有限公司 Compound insulation structure for single crystal growth of silicon carbide
CN108130593A (en) * 2017-12-20 2018-06-08 中国科学院上海硅酸盐研究所 A kind of crystal growing furnace attemperator
US11261536B2 (en) * 2019-02-20 2022-03-01 Sicrystal Gmbh Production method and growth arrangement for producing a bulk SiC single crystal by arranging at least two insulation cylinder components to control a variation in a volume element density
EP3699328A1 (en) * 2019-02-20 2020-08-26 SiCrystal GmbH Manufacturing method for sic-volume single crystal and growth assembly for same
CN111593401A (en) * 2019-02-20 2020-08-28 硅晶体有限公司 Method for producing bulk SiC single crystal and growing apparatus therefor
CN111593401B (en) * 2019-02-20 2024-04-09 硅晶体有限公司 Method for producing bulk SiC single crystal and apparatus for growing the same
CN112695384A (en) * 2019-10-22 2021-04-23 Skc株式会社 Silicon carbide ingot, method for producing same, and method for producing silicon carbide wafer
JP2021066650A (en) * 2019-10-22 2021-04-30 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. Silicon carbide ingot, method for manufacturing the same and method for manufacturing silicon carbide wafer
JP7030260B2 (en) 2019-10-22 2022-03-07 セニック・インコーポレイテッド Silicon Carbide Ingot, Its Manufacturing Method and Silicon Carbide Wafer Manufacturing Method
US11466383B2 (en) 2019-10-22 2022-10-11 Senic Inc. Silicon carbide ingot, method of preparing the same, and method for preparing silicon carbide wafer
KR102234002B1 (en) * 2019-10-22 2021-03-29 에스케이씨 주식회사 Silicon carbide ingot, preperation method of the same and preperation method of the silicon carbide wafer
CN112746324A (en) * 2019-10-29 2021-05-04 Skc株式会社 Silicon carbide wafer and method for producing silicon carbide wafer
JP2021070622A (en) * 2019-10-29 2021-05-06 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. Silicon carbide wafer and method for manufacturing the same
JP7042995B2 (en) 2019-10-29 2022-03-29 セニック・インコーポレイテッド Silicon Carbide Wafer and Silicon Carbide Wafer Manufacturing Method
US11708644B2 (en) 2019-10-29 2023-07-25 Senic Inc. Method for preparing SiC ingot, method for preparing SiC wafer and the SiC wafer prepared therefrom
CN112746324B (en) * 2019-10-29 2024-04-30 赛尼克公司 Silicon carbide wafer and method for producing silicon carbide wafer
US11339497B2 (en) 2020-08-31 2022-05-24 Senic Inc. Silicon carbide ingot manufacturing method and silicon carbide ingot manufactured thereby
CN115558987A (en) * 2022-11-16 2023-01-03 浙江晶越半导体有限公司 Crucible device for growing crystal by sublimation method
CN115558987B (en) * 2022-11-16 2023-09-15 浙江晶越半导体有限公司 Crucible device for growing crystals by sublimation method

Similar Documents

Publication Publication Date Title
JP4818754B2 (en) Method for producing silicon carbide single crystal ingot
JP4964672B2 (en) Low resistivity silicon carbide single crystal substrate
JP4469396B2 (en) Silicon carbide single crystal ingot, substrate obtained therefrom and epitaxial wafer
JP4926556B2 (en) Method for manufacturing silicon carbide single crystal ingot and silicon carbide single crystal substrate
JP5562641B2 (en) Micropipe-free silicon carbide and method for producing the same
JP5304713B2 (en) Silicon carbide single crystal substrate, silicon carbide epitaxial wafer, and thin film epitaxial wafer
JP2008110907A (en) Method for producing silicon carbide single crystal ingot, and silicon carbide single crystal ingot
JP4603386B2 (en) Method for producing silicon carbide single crystal
JP4585359B2 (en) Method for producing silicon carbide single crystal
JP2006111478A (en) Silicon carbide single crystal ingot, silicon carbide single crystal wafer, and its manufacturing method
JP5031651B2 (en) Method for producing silicon carbide single crystal ingot
WO2006070480A1 (en) Silicon carbide single crystal, silicon carbide single crystal wafer, and process for producing the same
JP2004099340A (en) Seed crystal for silicon carbide single crystal growth, silicon carbide single crystal ingot and method of manufacturing the same
JP5418385B2 (en) Method for producing silicon carbide single crystal ingot
JP4690906B2 (en) Seed crystal for growing silicon carbide single crystal, method for producing the same, and method for producing silicon carbide single crystal
JP5212343B2 (en) Silicon carbide single crystal ingot, substrate obtained therefrom and epitaxial wafer
JP4408247B2 (en) Seed crystal for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
JP2003104798A (en) Silicon carbide single crystal and its manufacturing method and raw material for silicon carbide crystal for growing silicon carbide single crystal
JP5614387B2 (en) Silicon carbide single crystal manufacturing method and silicon carbide single crystal ingot
JP4850807B2 (en) Crucible for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
JP5370025B2 (en) Silicon carbide single crystal ingot
WO2015012190A1 (en) METHOD FOR PRODUCING SiC SUBSTRATES
JP2017154953A (en) Silicon carbide single crystal production apparatus
JP2003137694A (en) Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot and method of producing the same
JP5152293B2 (en) Manufacturing method of silicon carbide single crystal wafer with small mosaic property

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090217

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Effective date: 20100928

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101126

A02 Decision of refusal

Effective date: 20110405

Free format text: JAPANESE INTERMEDIATE CODE: A02