JP2008109043A - 半導体装置の製造方法および半導体装置 - Google Patents

半導体装置の製造方法および半導体装置 Download PDF

Info

Publication number
JP2008109043A
JP2008109043A JP2006292782A JP2006292782A JP2008109043A JP 2008109043 A JP2008109043 A JP 2008109043A JP 2006292782 A JP2006292782 A JP 2006292782A JP 2006292782 A JP2006292782 A JP 2006292782A JP 2008109043 A JP2008109043 A JP 2008109043A
Authority
JP
Japan
Prior art keywords
insulating film
semiconductor device
wiring
wirings
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006292782A
Other languages
English (en)
Inventor
Masaru Seto
勝 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Miyagi Oki Electric Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Miyagi Oki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd, Miyagi Oki Electric Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2006292782A priority Critical patent/JP2008109043A/ja
Priority to US11/905,918 priority patent/US7867890B2/en
Publication of JP2008109043A publication Critical patent/JP2008109043A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/7682Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing the dielectric comprising air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

【課題】従来の構成では、エアーギャップを形成する絶縁膜が段差被覆性の低いプラズマCVD法により形成されているため、絶縁膜の表面の平坦性が良好ではない。このためこの絶縁膜上に形成される耐湿性の高い絶縁膜の被覆性が低減してしまう可能性があり、これにより、半導体装置の耐湿性が低減してしまう可能性があった。
【解決手段】本願発明の半導体装置の製造方法では、半導体基板上に形成された第1の絶縁膜上に、互いに隣接するように複数の配線を形成する工程と、第1の絶縁膜上にプラズマCVD法により第2の絶縁膜を形成して、隣接する配線の配線間にエアーギャップが形成されるように配線を第2の絶縁膜により覆う工程と、第2の絶縁膜上に高密度プラズマCVD法により、第3の絶縁膜を形成する工程と、第3の絶縁膜上に耐湿性の高い第4の絶縁膜を形成する工程とを有する。
【選択図】図4

Description

本願発明は、半導体装置の製造方法に関するものであり、特に、半導体基板上に形成された配線の配線間にエアーギャップが形成されている半導体装置の製造方法に関するものである。
従来、半導体基板上に形成された配線の配線間の容量を低減させることを目的として、この配線間にエアーギャップを備える半導体装置が知られている。
このエアーギャップを備える半導体装置の製造方法は、半導体基板上に形成された第1の絶縁膜上に互いに隣接するように配線を形成する工程と、この第1の絶縁膜上にプラズマCVD法により第2の絶縁膜を形成して隣接する配線の配線間にエアーギャップが形成されるように配線を第2の絶縁膜により覆う工程と、この第2の絶縁膜上に耐湿性の高い第3の絶縁膜を形成する工程とを有している。
このような構成は例えば特許文献1で開示されている。
特許文献1では、図1および段落0011〜0014に示されているように、半導体基板201上に形成された絶縁膜202上に、互いに隣接するように最上層配線203を形成し、絶縁膜202上にプラズマCVD法によりシリコン酸化膜204を形成して隣接する最上層配線203の配線間に空洞部207が形成されるように最上層配線203を覆い、さらに、シリコン酸化膜204上に最終保護膜となるシリコン窒化膜205を形成することについて開示されている。
特開平8−213392号公報
しかしながら、上述した従来の構成では、エアーギャップを形成する絶縁膜が段差被覆性の低いプラズマCVD法により形成されているため、絶縁膜の表面の平坦性が良好ではない。このためこの絶縁膜上に形成される耐湿性の高い絶縁膜の被覆性が低減してしまう可能性があり、これにより、半導体装置の耐湿性が低減してしまう可能性があった。
上記課題を解決する為、本願発明の半導体装置の製造方法では、半導体基板上に形成された第1の絶縁膜上に、互いに隣接するように複数の配線を形成する工程と、第1の絶縁膜上にプラズマCVD法により第2の絶縁膜を形成して、隣接する配線の配線間にエアーギャップが形成されるように配線を第2の絶縁膜により覆う工程と、第2の絶縁膜上に高密度プラズマCVD法により、第3の絶縁膜を形成する工程と、第3の絶縁膜上に、第2および第3の絶縁膜よりも耐湿性の高い第4の絶縁膜を形成する工程とを有する。
この構成によれば、エアーギャップを形成する絶縁膜上に形成される耐湿性の高い絶縁膜の被覆性を向上させることが可能となり、半導体装置の耐湿性を向上させることが可能となる。
以下、本願発明の実施例について図面を参照して詳細に説明する。なお、全図面を通して同様の構成には同様の符号を付与する。
図1〜図7は、本願発明の実施例1における半導体装置の製造方法を説明する工程図である。ここで、図1〜図6は半導体装置の断面図である。
本願発明の実施例1では、図1に示されるように、半導体基板100上に形成された第1の絶縁膜200上に、互いに隣接するように複数の配線300を形成する。
半導体基板100はシリコン(Si)基板である。第1の絶縁膜200はシリコン酸化(SiO2)膜であり、高密度プラズマCVD(High Density Plasma Chemical Vapor Deposition)法で形成される。配線300は、窒化チタン(TiN)膜、アルミ銅(AlCu)膜、窒化チタン(TiN)膜が順次積層された積層構造を備える。配線300は、上記の各金属膜をスパッタリング法により積層し、これをパターニングすることで得られる。
本実施例では、配線120は、図6に示されるように、半導体基板100上に形成された多層配線層400の最上層に形成された配線に相当する。
つまり、本実施例では、トランジスタ等の電子素子が形成された半導体基板100上に層間絶縁膜210と配線310とが順次積層された多層配線層400が形成されており、第1の絶縁膜200は多層配線層400の最上層の絶縁膜210に相当し、配線300は多層配線層400の最上層の配線310に相当する。なお、多層配線層400の最上層には外部と電気的に接続される電極パッド320が形成されている。
さらに、本実施例の半導体装置は半導体記憶装置に関するものでありメモリセル101とメモリセル101からデータを読み出すビット線とを備える。
本実施例では、半導体基板100は、メモリセル101が形成されるメモリセル領域110と、周辺トランジスタ102が形成される周辺領域120とに区別されている。メモリセル領域110上に配置される配線300は、メモリセル101からデータの読出しを行なうビット線に対応する。周辺領域120上に配置される配線300はその他の配線300である。
メモリセル領域110上および周辺領域120上に配置される配線300は、図1に示されるように、隣接する配線と所定間隔離間して配置され、図1の奥行き方向に延在している。
メモリセル領域110に配置される配線300は、配線間隔が周辺領域120上に配置された配線300よりも狭くなるように配置されている。
本実施例では、メモリセル領域110上に配置される配線300の配線幅wは0.376μmで、配線間隔dは0.264μmであり、周辺領域120上に配置される配線300の配線幅w´は0.80μmで、配線間隔d´は0.80μmである。
次に、図2に示されているように、第1の絶縁膜200上にプラズマCVD(Plasma Chemical Vapor Deposition)法により第2の絶縁膜500を形成して、隣接する配線300の配線間にエアーギャップ510が形成されるように配線300を第2の絶縁膜500により覆う。
本実施例では、第2の絶縁膜500はシリコン酸化膜である。第2の絶縁膜500の膜厚は4000Åである。プラズマCVD法による第2の絶縁膜の成膜は、TEOS流量:100sccm、O2流量:1.6SLM、圧力:3.0Torr、高周波パワー:450W、低周波パワー:300、成膜温度:420℃の条件で行なわれる。
図5に示されるように、プラズマCVD法による成膜では、配線間の上部530における成膜が他の箇所よりも先に進み、配線間を十分に埋め込む前に、配線間の上部530が塞がる。これにより、配線間の狭い箇所では配線間にエアーギャップ510が形成される。なお、図5は、図2におけるメモリセル領域110上に配置された配線300の拡大図に相当する。
さらに詳しく説明すると、配線300の配線間において、中央から上方に渡りエアーギャップ510が形成されており、配線間の下部520と上部530は第2の絶縁膜500により埋め込まれている。配線300の側面は第2の絶縁膜500により覆われている。エアーギャップ510の上端は配線300の上端よりも高いレベルに位置する。
ここで、第2の絶縁膜500の成膜は、隣り合う各配線300から互いに向かい合うように進むため、それらが交わる箇所において溝540が形成される。つまり、エアーギャップ510の上方に位置する第2の絶縁膜500の表面には、溝540が形成される。
さらに、プラズマCVD法による埋め込み性は、配線の間隔に対する配線の高さの比であるアスペクト比に依存し、配線300のうち配線間隔が狭い箇所でありアスペクト比が大きい箇所では、上述したように配線間が十分に第2の絶縁膜500で埋め込まれずに配線間にエアーギャップ510が形成される一方、配線間隔が広い箇所でありアスペクト比が高い箇所では、配線間が十分に第2の絶縁膜500で埋め込まれ、エアーギャップ510は形成されない。
本実施例では、図2に示されるように、メモリセル領域110上に配置される配線300の配線間にはエアーギャップ510が形成され、周辺領域120上に配置される配線300の配線間は第2の絶縁膜500で十分に埋め込まれてエアーギャップ510は形成されない。本実施例では、メモリセル領域110上に配置される配線300のアスペクト比は2以上であり、周辺領域120上に配置される配線300のアスペクト比は2よりも小さい。
ここで、周辺領域120上において第2の絶縁膜500は配線間で窪むようにして形成されるため、第2の絶縁膜500の配線300と配線間との境界では段差550が形成される。
このように、本願発明では、半導体基板上に形成された配線300は、互いにエアーギャップ510を挟んで配置されるため、配線間容量を低減することが可能となる。
つまり、エアーギャップ510は第2の絶縁膜500に比べて誘電率が低い為、配線間にエアーギャップ510を設けることで、配線間が全て第2の絶縁膜500で埋め込まれている構成と比べて、大幅に配線間容量を低減することが可能となる。これにより、配線300を伝達する信号の速度を大幅に向上させることが可能となる。
特に、本実施例では、このエアーギャップ510が間に形成される配線300が、メモリセル101からデータを読み出すためのビット線に相当するため、高速化が特に求められているデータの読出し速度を大幅に向上させることが可能となる。これにより、デバイスとしての特性を大幅に向上させることが可能となり、本願発明を適用することの効果をより顕著に得ることが可能となる。
また、本実施例では、エアーギャップを形成する第2の絶縁膜500の膜厚は上述したように4000Åであるが、発明者の研究によると、第2の絶縁膜500の膜厚が3000Å以上であれば、配線間容量を十分に低減することが可能なエアーギャップ510が形成されることが明らかとなっている。
さらに、本実施例では、上述したように、エアーギャップ510の上端は配線300の上端よりも高いレベルに位置しているため、配線間容量をより十分に低減させることが可能となる。
次に、図3に示されるように、第2の絶縁膜500上に、高密度プラズマCVD(High Density Plasma Chemical Vapor Deposition)法により、第3の絶縁膜600を形成する。
本実施例では、第3の絶縁膜600はシリコン酸化膜である。第3の絶縁膜の膜厚は8000Åである。高密度プラズマCVD法による第3の絶縁膜600の成膜は、SiH4流量:120sccm、O2流量:170sccm、Ar流量:240sccm、低周波パワー:4200W、高周波パワー:2950W、He圧力:7.0の条件で行なわれる。
高密度プラズマCVD法による成膜では、堆積膜を削りながら成膜が行なわれるため、下地層に段差がある場合でも、平坦性の高い膜を成膜することが可能となる。
つまり、この構成によれば、エアーギャップ510の上方に位置する第2の絶縁膜500の表面に形成された溝540は、第3の絶縁膜600により埋め込まれて、この溝540上には平坦性の高い第3の絶縁膜600が成膜される。すなわち、メモリセル領域110上において、平坦性の高い表面を得ることが可能となる。
さらに、この構成によれば、周辺領域120上における第2の絶縁膜500に形成された段差550上において、なだらかな形状となるように第3の絶縁膜600が形成されるため、周辺領域120上においても、平坦性の高い表面を得ることが可能となる。
次に、第3の絶縁膜600上に、第2の絶縁膜500および第3の絶縁膜600よりも耐湿性の高い第4の絶縁膜700を形成する。
第4の絶縁膜700は、外部から水分が浸入することを防止するための耐湿性の高いパッシベーション膜であり、本実施例では、第4の絶縁膜700は、シリコン窒化(SiN)膜である。第4の絶縁膜700は、プラズマCVD法により成膜される。第4の絶縁膜700の膜厚は3000Åである。なお、第4の絶縁膜700は、電極パッド320を露出するように形成される。
本願発明では、第4の絶縁膜700は上述したように平坦性の高い表面を備える第3の絶縁膜600上に成膜されるため、成膜される第4の絶縁膜700の被覆性は高上する。
これにより、外部からの水分等の浸入を第4の絶縁膜700で十分に防ぐことが可能となり、半導体装置の耐湿性を向上させることが可能となる。
さらに、本実施例では、第4の絶縁膜700上に、第5の絶縁膜800が形成されている。
第5の絶縁膜800はシリコン酸化膜であり、プラズマCVD法によって成膜される。第5の絶縁膜800の膜厚は6000Åである。なお、第5の絶縁膜800は、電極パッド320を露出するように形成される。
本願発明の実施例1を説明する半導体装置の断面図。 本願発明の実施例1を説明する半導体装置の断面図。 本願発明の実施例1を説明する半導体装置の断面図。 本願発明の実施例1を説明する半導体装置の断面図。 本願発明の実施例1を説明する半導体装置の部分拡大断面図。 本願発明の実施例1を説明する半導体装置の断面図。
符号の説明
100 半導体基板
101 メモリセル
102 周辺トランジスタ
110 メモリセル領域
120 周辺領域
200,210 第1の絶縁膜
300,310 配線
320 電極パッド
400 多層配線層
500 第2の絶縁膜
510 エアーギャップ
600 第3の絶縁膜
700 第4の絶縁膜
800 第5の絶縁膜

Claims (16)

  1. 半導体基板上に形成された第1の絶縁膜上に、互いに隣接するように複数の配線を形成する工程と、
    前記第1の絶縁膜上にプラズマCVD法により第2の絶縁膜を形成して、前記隣接する配線の配線間にエアーギャップが形成されるように前記配線を前記第2の絶縁膜により覆う工程と、
    前記第2の絶縁膜上に高密度プラズマCVD法により、第3の絶縁膜を形成する工程と、
    前記第3の絶縁膜上に、前記第2および前記第3の絶縁膜よりも耐湿性の高い第4の絶縁膜を形成する工程とを有することを特徴とする半導体装置の製造方法。
  2. 前記半導体基板上には多層配線層が形成され、前記配線は、前記多層配線層の一部であり、前記多層配線層の最上層の配線であることを特徴とする請求項1に記載の半導体装置の製造方法。
  3. 前記第2の絶縁膜は、シリコン酸化膜であることを特徴とする請求項1または2に記載の半導体装置の製造方法。
  4. 前記第2の絶縁膜の膜厚は、3000Å以上であることを特徴とする請求項1〜3のいずれか1つに記載の半導体装置の製造方法。
  5. 前記第3の絶縁膜は、シリコン酸化膜であることを特徴とする請求項1〜4のいずれか1つに記載の半導体装置の製造方法。
  6. 前記第4の絶縁膜は、シリコン窒化膜であることを特徴とする請求項1〜5のいずれかに記載の半導体装置の製造方法。
  7. 前記半導体装置は半導体記憶装置であり、前記半導体装置はメモリセルと前記メモリセルからデータを読み出すビット線とを備え、
    前記配線は、前記ビット線に対応することを特徴とする請求項1〜6のいずれか1つに記載の半導体装置の製造方法。
  8. 前記半導体装置は半導体記憶装置であり、前記半導体基板はメモリセルが形成されるメモリセル領域と周辺トランジスタが形成される周辺領域とを備え、
    前記メモリセル領域上に配置される前記隣接する配線の配線間に、前記エアーギャップが形成されることを特徴とする請求項1〜6のいずれか1つに記載の半導体装置の製造方法。
  9. 半導体基板と、
    前記半導体基板上に形成された第1の絶縁膜と、
    前記第1の絶縁膜上に互いに隣接するように形成された複数の配線と、
    前記第1の絶縁膜上にCVD法により形成され、前記隣接する配線の配線間にエアーギャップが形成されるように前記配線を覆う第2の絶縁膜と、
    前記第2の絶縁膜上に高密度プラズマCVD法により形成された第3の絶縁膜と、
    前記第3の絶縁膜上に形成され、前記第2および前記第3の絶縁膜よりも耐湿性の高い第4の絶縁膜と、
    を有することを特徴とする半導体装置。
  10. 前記半導体基板上には多層配線層が形成され、前記配線は、前記多層配線層の一部であり、前記多層配線層の最上層の配線であることを特徴とする請求項9に記載の半導体装置。
  11. 前記第2の絶縁膜は、シリコン酸化膜であることを特徴とする請求項9または10に記載の半導体装置。
  12. 前記第2の絶縁膜の膜厚は、3000Å以上であることを特徴とする請求項9〜11のいずれか1つに記載の半導体装置。
  13. 前記第3の絶縁膜は、シリコン酸化膜であることを特徴とする請求項9〜12のいずれか1つに記載の半導体装置。
  14. 前記第4の絶縁膜は、シリコン窒化膜であることを特徴とする請求項9〜13のいずれかに記載の半導体装置。
  15. 前記半導体装置は半導体記憶装置であり、前記半導体装置はメモリセルと前記メモリセルからデータを読み出すビット線とを備え、
    前記配線は、前記ビット線に対応することを特徴とする請求項9〜14のいずれか1つに記載の半導体装置。
  16. 前記半導体装置は半導体記憶装置であり、前記半導体基板はメモリセルが形成されるメモリセル領域と周辺トランジスタが形成される周辺領域とを備え、
    前記メモリセル領域上に配置される前記隣接する配線の配線間に、前記エアーギャップが形成されることを特徴とする請求項9〜14のいずれか1つに記載の半導体装置。
JP2006292782A 2006-10-27 2006-10-27 半導体装置の製造方法および半導体装置 Pending JP2008109043A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006292782A JP2008109043A (ja) 2006-10-27 2006-10-27 半導体装置の製造方法および半導体装置
US11/905,918 US7867890B2 (en) 2006-10-27 2007-10-05 Manufacturing method of semiconductor device and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006292782A JP2008109043A (ja) 2006-10-27 2006-10-27 半導体装置の製造方法および半導体装置

Publications (1)

Publication Number Publication Date
JP2008109043A true JP2008109043A (ja) 2008-05-08

Family

ID=39329125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006292782A Pending JP2008109043A (ja) 2006-10-27 2006-10-27 半導体装置の製造方法および半導体装置

Country Status (2)

Country Link
US (1) US7867890B2 (ja)
JP (1) JP2008109043A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181898A (ja) * 2010-02-04 2011-09-15 Tokyo Ohka Kogyo Co Ltd エアギャップ形成用シリカ系被膜形成材料及びエアギャップ形成方法

Families Citing this family (131)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4703669B2 (ja) * 2008-02-18 2011-06-15 株式会社東芝 半導体記憶装置及びその製造方法
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
JP2012199277A (ja) * 2011-03-18 2012-10-18 Toshiba Corp 電子部品の製造方法
US8808563B2 (en) 2011-10-07 2014-08-19 Applied Materials, Inc. Selective etch of silicon by way of metastable hydrogen termination
US9267739B2 (en) 2012-07-18 2016-02-23 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9034770B2 (en) 2012-09-17 2015-05-19 Applied Materials, Inc. Differential silicon oxide etch
US9023734B2 (en) 2012-09-18 2015-05-05 Applied Materials, Inc. Radical-component oxide etch
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US8969212B2 (en) 2012-11-20 2015-03-03 Applied Materials, Inc. Dry-etch selectivity
US8980763B2 (en) 2012-11-30 2015-03-17 Applied Materials, Inc. Dry-etch for selective tungsten removal
US9111877B2 (en) 2012-12-18 2015-08-18 Applied Materials, Inc. Non-local plasma oxide etch
US8921234B2 (en) 2012-12-21 2014-12-30 Applied Materials, Inc. Selective titanium nitride etching
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9040422B2 (en) 2013-03-05 2015-05-26 Applied Materials, Inc. Selective titanium nitride removal
US20140271097A1 (en) 2013-03-15 2014-09-18 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9520303B2 (en) 2013-11-12 2016-12-13 Applied Materials, Inc. Aluminum selective etch
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9287095B2 (en) 2013-12-17 2016-03-15 Applied Materials, Inc. Semiconductor system assemblies and methods of operation
US9287134B2 (en) 2014-01-17 2016-03-15 Applied Materials, Inc. Titanium oxide etch
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9499898B2 (en) 2014-03-03 2016-11-22 Applied Materials, Inc. Layered thin film heater and method of fabrication
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9269590B2 (en) 2014-04-07 2016-02-23 Applied Materials, Inc. Spacer formation
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9159606B1 (en) * 2014-07-31 2015-10-13 Applied Materials, Inc. Metal air gap
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch
US9478434B2 (en) 2014-09-24 2016-10-25 Applied Materials, Inc. Chlorine-based hardmask removal
US9368364B2 (en) 2014-09-24 2016-06-14 Applied Materials, Inc. Silicon etch process with tunable selectivity to SiO2 and other materials
US9613822B2 (en) 2014-09-25 2017-04-04 Applied Materials, Inc. Oxide etch selectivity enhancement
US9355922B2 (en) 2014-10-14 2016-05-31 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US9847249B2 (en) * 2014-11-05 2017-12-19 Sandisk Technologies Llc Buried etch stop layer for damascene bit line formation
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US9299583B1 (en) 2014-12-05 2016-03-29 Applied Materials, Inc. Aluminum oxide selective etch
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US9502258B2 (en) 2014-12-23 2016-11-22 Applied Materials, Inc. Anisotropic gap etch
US9343272B1 (en) 2015-01-08 2016-05-17 Applied Materials, Inc. Self-aligned process
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US9373522B1 (en) 2015-01-22 2016-06-21 Applied Mateials, Inc. Titanium nitride removal
US9449846B2 (en) 2015-01-28 2016-09-20 Applied Materials, Inc. Vertical gate separation
US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9349605B1 (en) 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US9728447B2 (en) * 2015-11-16 2017-08-08 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-barrier deposition for air gap formation
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US9721789B1 (en) 2016-10-04 2017-08-01 Applied Materials, Inc. Saving ion-damaged spacers
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
TWI716818B (zh) 2018-02-28 2021-01-21 美商應用材料股份有限公司 形成氣隙的系統及方法
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5323343A (en) * 1989-10-26 1994-06-21 Mitsubishi Denki Kabushiki Kaisha DRAM device comprising a stacked type capacitor and a method of manufacturing thereof
JPH08213392A (ja) 1995-02-01 1996-08-20 Oki Electric Ind Co Ltd 半導体素子及びその製造方法
JP2853661B2 (ja) 1996-06-27 1999-02-03 日本電気株式会社 半導体集積回路装置の製造方法
US6690084B1 (en) * 1997-09-26 2004-02-10 Sanyo Electric Co., Ltd. Semiconductor device including insulation film and fabrication method thereof
JP2000091431A (ja) 1998-09-16 2000-03-31 Denso Corp 半導体装置及びその製造方法
US6300242B1 (en) * 1999-04-28 2001-10-09 Matsuhita Electronics Corporation Semiconductor device and method of fabricating the same
US6888247B2 (en) * 1999-09-03 2005-05-03 United Microelectronics Corp. Interconnect structure with an enlarged air gaps disposed between conductive structures or surrounding a conductive structure within the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181898A (ja) * 2010-02-04 2011-09-15 Tokyo Ohka Kogyo Co Ltd エアギャップ形成用シリカ系被膜形成材料及びエアギャップ形成方法
US8790990B2 (en) 2010-02-04 2014-07-29 Tokyo Ohka Kogyo Co., Ltd. Silica-based film forming material for formation of air gaps, and method for forming air gaps

Also Published As

Publication number Publication date
US20080099876A1 (en) 2008-05-01
US7867890B2 (en) 2011-01-11

Similar Documents

Publication Publication Date Title
JP2008109043A (ja) 半導体装置の製造方法および半導体装置
US11056450B2 (en) Semiconductor device
KR100286126B1 (ko) 다층의 패시배이션막을 이용한 도전층 사이에 공기 공간을 형성하는 방법
CN110120381A (zh) 包括通路插塞的半导体器件
JP2006190839A (ja) 半導体装置及びその製造方法
KR20150078100A (ko) 반도체 장치 및 이의 제조 방법
JP2005175491A (ja) 金属−絶縁体−金属キャパシタを含む半導体素子及びその製造方法
JP2009295733A (ja) 半導体装置及びその製造方法
KR20030007862A (ko) 반도체 장치와 그 제조 방법
JP2012080132A (ja) 半導体装置及びその製造方法
JP2006228977A (ja) 半導体装置及び半導体装置の製造方法
JP5303139B2 (ja) 半導体装置及びその製造方法
CN102339791B (zh) 一种半导体器件制作方法
US9330966B2 (en) Methods of forming semiconductor devices
JP2948588B1 (ja) 多層配線を有する半導体装置の製造方法
JP2009182203A (ja) 半導体装置およびその製造方法
KR100664339B1 (ko) 반도체 소자의 금속배선 형성방법
JP2014175525A (ja) 半導体装置及びその製造方法
US20090072402A1 (en) Semiconductor device and method of fabricating the same
KR20010081964A (ko) 반도체 장치 및 그의 제조 방법
US7468317B2 (en) Method of forming metal line of semiconductor device
KR20050050875A (ko) 반도체 소자 및 그 제조 방법
KR20070048820A (ko) 반도체 장치의 배선 구조물 및 그 제조 방법
CN102361019A (zh) 一种半导体器件制作方法
CN102339793A (zh) 一种半导体器件制作方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080922

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090805