JP2008103354A - Antistatic resin molding, and secondary molding thereof - Google Patents

Antistatic resin molding, and secondary molding thereof Download PDF

Info

Publication number
JP2008103354A
JP2008103354A JP2007335571A JP2007335571A JP2008103354A JP 2008103354 A JP2008103354 A JP 2008103354A JP 2007335571 A JP2007335571 A JP 2007335571A JP 2007335571 A JP2007335571 A JP 2007335571A JP 2008103354 A JP2008103354 A JP 2008103354A
Authority
JP
Japan
Prior art keywords
antistatic
molding
antistatic layer
less
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007335571A
Other languages
Japanese (ja)
Inventor
Masahito Sakai
将人 坂井
Hiroshi Takahashi
浩 高橋
Hidemi Ito
秀己 伊藤
Toshiji Nagamine
敏次 永峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP2007335571A priority Critical patent/JP2008103354A/en
Publication of JP2008103354A publication Critical patent/JP2008103354A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antistatic resin molding in which both antistatic property and transparency are substantially improved rather than not deteriorated by hot-molding (secondary molding), and to provide a secondary molding formed by further hot-molding. <P>SOLUTION: The molding comprises a transparent antistatic layer of thermoplastic resin having thickness of 0.15-3.5 μm in which entangling ultrafine long carbon fibers 2-15 wt.% with a wire diameter 100 nm or less and an aspect ratio not less than 5 is contained in a surface of a transparent base material of the thermoplastic resin. Surface resistivity of the antistatic layer after hot-molding at molding magnification of 3 becomes not more than the surface resistivity of the antistatic layer before hot-molding. Total light transmittance is more than 60% when hot-molded further at the molding magnification of 1.1-10, and the haze is not more than 20%, and the surface resistivity of the antistatic layer is less than 10<SP>12</SP>Ω/SQUARE. The secondary molding is formed by further hot-molding the antistatic resin molding at the molding magnification of 1.1-10. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、熱を加えて二次成形しても制電性の低下を生じない透明な制電性樹脂成形品と、その二次成形品に関する。   The present invention relates to a transparent antistatic resin molded product that does not cause a decrease in antistatic properties even when subjected to secondary molding by applying heat, and a secondary molded product thereof.

周知のように、半導体製造に用いるキャリアーボックス、製造装置の外板、コンピューターハウジング、クリーンルームなどの塵埃を嫌う用途には、静電気を逃がして塵埃の付着を防止する制電性プラスチック板などの樹脂成形品が多用されている。   As is well known, resin molding such as anti-static plastic plates that release static electricity and prevent dust from adhering to applications such as carrier boxes used in semiconductor manufacturing, outer plates of manufacturing equipment, computer housings, and clean rooms. Goods are used a lot.

斯かる制電性プラスチック板は、金属酸化物粉末やカーボン粉末又は繊維などの導電フィラーを配合した塗料を塗布するなどの手段によって、プラスチック板の表面に薄い制電層を形成したものが、製造面、コスト面から優位性があるため多用されている。このプラスチック板は、制電層に分散する導電フィラーの相互接触によって制電性が発現されるものである。   Such an antistatic plastic plate is produced by forming a thin antistatic layer on the surface of the plastic plate by means of applying a paint containing a conductive filler such as metal oxide powder, carbon powder or fiber. In terms of cost and cost, it is often used. This plastic plate exhibits antistatic properties by mutual contact of conductive fillers dispersed in the antistatic layer.

しかし、金属酸化物粉末を配合した塗料を用いて制電層を形成した制電性プラスチック板は、制電層が透明ないし白色となるが、カーボン粉末やカーボン繊維等の炭素系フィラーを配合した塗料を用いて制電層を形成したものは、制電層が炭素系フィラーによって黒色化するため、透明な制電性プラスチック板を得ることができず、自由な着色もできないという不都合があった。ところが、最近になって、炭素系フィラーを配合しているにも拘らず黒色化しない組成物が開発された。   However, the antistatic plastic plate in which the antistatic layer is formed by using the paint containing the metal oxide powder is transparent or white in the antistatic layer, but the carbon filler such as carbon powder or carbon fiber is incorporated. When the antistatic layer is formed using a paint, the antistatic layer is blackened by the carbon-based filler, so that there is an inconvenience that a transparent antistatic plastic plate cannot be obtained and free coloring cannot be performed. . Recently, however, a composition that does not blacken in spite of the incorporation of a carbon-based filler has been developed.

一つは、特開平9−115334号(特許文献1)に開示された透明導電膜形成用組成物であり、この組成物は、樹脂バインダー中に中空炭素マイクロファイバーを0.01〜1重量%と、透明導電性金属酸化物粉末を1〜40重量%含有させたものである。他の一つは、特開平9−111135号(特許文献2)に開示された導電性ポリマー組成物であり、この組成物は、有機ポリマー中に中空炭素マイクロファイバーを0.01〜2重量%未満と、導電性白色粉末を2.5〜40重量%含有させたものである。   One is a composition for forming a transparent conductive film disclosed in JP-A-9-115334 (Patent Document 1). This composition comprises 0.01 to 1% by weight of hollow carbon microfibers in a resin binder. And 1 to 40% by weight of transparent conductive metal oxide powder. The other is a conductive polymer composition disclosed in Japanese Patent Application Laid-Open No. 9-111135 (Patent Document 2). This composition contains 0.01 to 2% by weight of hollow carbon microfibers in an organic polymer. And 2.5 to 40% by weight of conductive white powder.

これらの組成物は、いずれも極細の中空炭素マイクロファイバーを使用し、その配合量を前者の組成物では1重量%以下、後者の組成物では2重量%未満と少なくすると共に、透明導電性金属酸化物粉末や導電性白色粉末を多量に配合しているため、前者の組成物では比較的高い全光線透過率と比較的低いヘーズを有する透明な制電層を形成することが可能となり、また、後者の組成物では中程度の白色度を有する制電層を形成することが可能となる。
特開平9−115334号公報 特開平9−111135号公報
Each of these compositions uses ultrafine hollow carbon microfibers, and the blending amount thereof is reduced to 1% by weight or less in the former composition and less than 2% by weight in the latter composition, and the transparent conductive metal Since a large amount of oxide powder or conductive white powder is blended, the former composition can form a transparent antistatic layer having a relatively high total light transmittance and a relatively low haze, and In the latter composition, it is possible to form an antistatic layer having a medium whiteness.
JP-A-9-115334 JP-A-9-111135

しかしながら、前者の組成物を用いて透明な制電層を形成した制電性プラスチック板は、制電層における中空炭素マイクロファイバーの含有量が0.01〜1重量%と非常に少なく、導電フィラーの大部分が導電性金属酸化物粉末で占められているため、該プラスチック板を10倍以下の成形倍率で更に熱成形(例えば加熱真空成形など)して二次成形品を造ると、表面の制電層が延伸されて、導電フィラー相互の接触頻度、特に、大部分を占める金属酸化物粉末相互の接触頻度が極端に減少すると共に、該粉末の相互間隔も拡がり、表面抵抗率が著しく増大して制電性が失われるという問題があった。   However, the antistatic plastic plate in which a transparent antistatic layer is formed using the former composition has a very low content of hollow carbon microfibers in the antistatic layer of 0.01 to 1% by weight, and the conductive filler. Most of it is occupied by conductive metal oxide powder, and when the plastic plate is further thermoformed at a molding ratio of 10 times or less (for example, heat vacuum forming) to produce a secondary molded product, When the antistatic layer is stretched, the contact frequency between the conductive fillers, particularly the contact frequency between the metal oxide powders that occupy the majority, is extremely reduced, and the mutual spacing between the powders is widened, and the surface resistivity is remarkably increased. As a result, there was a problem that the antistatic property was lost.

また、後者の組成物で制電層を形成した制電性プラスチック板も、制電層における中空炭素マイクロファイバーの含有量が0.01〜2重量%未満と少なく、導電フィラーの大部分が導電性白色粉末で占められているため、二次成形品を製造すると上記と同様に制電性が失われるという問題があった。   Further, the antistatic plastic plate in which the antistatic layer is formed of the latter composition also has a small content of hollow carbon microfibers in the antistatic layer of less than 0.01 to 2% by weight, and most of the conductive filler is electrically conductive. Because of the white powder, the antistatic property is lost as described above when the secondary molded product is manufactured.

上述したような二次成形品の制電性の低下、消失の問題は、従来の金属酸化物粉末やカーボン粉末を配合した塗料等で制電層を形成した制電性プラスチック板を二次成形する場合においても、同様に生じるものであり、その解決が希求されている。   The above-mentioned problem of deterioration and disappearance of antistatic property of secondary molded products is the secondary molding of antistatic plastic plate with antistatic layer formed with paints containing conventional metal oxide powder or carbon powder. In this case, the problem occurs in the same manner, and there is a demand for a solution.

本発明は上記事情の下になされたもので、その解決しようとする第一の課題は、熱成形(二次成形)によって制電性が低下せず、むしろ制電性も透明性も実質的に向上するような透明の制電性樹脂成形品を提供することにある。そして、第二の課題は、この制電性樹脂成形品を更に熱成形した二次成形品を提供することにある。   The present invention has been made under the above circumstances, and the first problem to be solved is that the antistatic property does not deteriorate by thermoforming (secondary forming), but the antistatic property and the transparency are substantially reduced. It is an object of the present invention to provide a transparent antistatic resin molded product that can be improved. The second problem is to provide a secondary molded product obtained by further thermoforming the antistatic resin molded product.

本発明の第一の課題を解決する制電性樹脂成形品は、熱可塑性樹脂の透明な基材の表面に、曲がりくねって絡み合う線径が100nm以下、アスペクト比が5以上の極細の長炭素繊維を2〜15重量%含んだ厚さ0.15〜3.5μmの熱可塑性樹脂の透明な制電層を有する成形品であって、3倍の成形倍率で更に熱成形したときの制電層の表面抵抗率が熱成形前の制電層の表面抵抗率以下となり、また、1.1〜10倍の成形倍率で熱成形したときの全光線透過率が60%以上、ヘーズが20%以下、制電層の表面抵抗率が1012Ω/□未満となることを特徴とするものである。ここに成形倍率とは、熱成形前の制電性樹脂成形品の面積に対する熱成形後の二次成形品の面積の比率を意味する。 An antistatic resin molded article that solves the first problem of the present invention is an ultrafine long carbon fiber having a wire diameter of 100 nm or less and an aspect ratio of 5 or more, which is twisted and entangled with the surface of a transparent base material of a thermoplastic resin. A molded article having a transparent antistatic layer made of a thermoplastic resin having a thickness of 0.15 to 3.5 μm containing 2 to 15% by weight, and the antistatic layer when further thermoformed at a molding magnification of 3 times The surface resistivity is less than the surface resistivity of the antistatic layer before thermoforming, and the total light transmittance is 60% or more and the haze is 20% or less when thermoformed at a molding magnification of 1.1 to 10 times. The surface resistivity of the antistatic layer is less than 10 12 Ω / □. Here, the molding magnification means the ratio of the area of the secondary molded product after thermoforming to the area of the antistatic resin molded product before thermoforming.

この制電性樹脂成形品においては、長炭素繊維が3.5〜100nmの線径と5以上のアスペクト比を有する曲がりくねった繊維であり、絡み合って分散していることが望ましく、また、制電層に導電性金属酸化物の粉末が含まれていないことが望ましい。   In this antistatic resin molded product, it is desirable that the long carbon fiber is a twisted fiber having a wire diameter of 3.5 to 100 nm and an aspect ratio of 5 or more, and is entangled and dispersed. It is desirable that the layer does not contain conductive metal oxide powder.

また、本発明の第二の課題を解決する二次成形品は、上記の制電性樹脂成形品を1.1〜10倍の成形倍率で更に熱成形した二次成形品であって、その全光線透過率が60%以上、ヘーズが20%以下、制電層の表面抵抗率が1012Ω/□未満であることを特徴とするものである。 Further, a secondary molded product that solves the second problem of the present invention is a secondary molded product obtained by further thermoforming the above-mentioned antistatic resin molded product at a molding magnification of 1.1 to 10 times. The total light transmittance is 60% or more, the haze is 20% or less, and the surface resistivity of the antistatic layer is less than 10 12 Ω / □.

本発明の制電性樹脂成形品は、制電層に2〜15重量%含まれた極細の長炭素繊維が曲がりくねって絡み合いながら互いに接触し、或は、導通可能な微小間隔を保って分散しているため、後述の実験データに示されるように、表面抵抗率が1012Ω/□未満であり、充分な制電性を有している。 In the antistatic resin molded product of the present invention, the ultrafine long carbon fibers contained in the antistatic layer in an amount of 2 to 15% by weight are twisted and intertwined to contact each other, or are dispersed with a minute gap that allows conduction. Therefore, as shown in the experimental data to be described later, the surface resistivity is less than 10 12 Ω / □, and it has sufficient antistatic properties.

そして、この制電性樹脂成形品を熱成形(二次成形)すると、基材と共に制電層が伸び変形しつつ薄肉化し、これに伴って、制電層中の極細の曲がりくねった長炭素繊維は伸び変形の方向に伸張する。しかし、10倍以下の成形倍率では、長炭素繊維が伸び変形の方向にまっすぐ配向するまでには至らず、曲がりながら絡み合った状態を維持するため、長炭素繊維の接触頻度は減少することがなく、むしろ、制電層の薄肉化に伴って長炭素繊維が上下方向に接近するため、長炭素繊維の接触頻度や導通可能な微小間隔部分は増加し、その分だけ制電層の表面抵抗率が低下して、制電性が向上することになる。従って、この制電性樹脂成形品は、後述の実験データに示されるように、二次成形(熱成形)後の制電層の表面抵抗率も1012Ω/□未満となって、二次成形前よりも表面抵抗率がむしろ成形条件等によっては低下し、3倍の成形倍率で熱成形したときには制電層の表面抵抗率が確実に熱成形前の制電層の表面抵抗率以下となって、制電性が向上した二次成形品を得ることが可能となる。 And when this antistatic resin molded product is thermoformed (secondary molding), the antistatic layer becomes thin while being stretched and deformed together with the base material, and along with this, the extremely thin and long carbon fiber in the antistatic layer Stretches in the direction of stretch deformation. However, at a molding magnification of 10 times or less, the long carbon fibers do not reach a straight orientation in the direction of elongation deformation, and maintain the entangled state while bending, so the contact frequency of the long carbon fibers does not decrease. Rather, since the long carbon fibers approach in the vertical direction as the antistatic layer becomes thinner, the contact frequency of the long carbon fibers and the minute gaps that can be conducted increase, and the surface resistivity of the antistatic layer increases accordingly. As a result, the antistatic property is improved. Therefore, as shown in the experimental data described later, this antistatic resin molded product has a surface resistivity of the antistatic layer after secondary molding (thermoforming) of less than 10 12 Ω / □, The surface resistivity is lower depending on molding conditions rather than before molding, and when thermoforming at a molding magnification of 3 times, the surface resistivity of the antistatic layer is surely below the surface resistivity of the antistatic layer before thermoforming. Thus, it becomes possible to obtain a secondary molded article with improved antistatic properties.

また、極細の長炭素繊維は、制電層中に最大限15重量%程度含有させても、従来のカーボン繊維ほど制電層を黒色化することがなく、可視光線の散乱も少ないので、上記のように制電層の厚みを最大限3.5μmと薄く形成すれば、充分な透明になるものであり、しかも、二次成形(熱成形)によって制電層が薄肉化すると、制電層はますます透明性が向上するので、全光線透過率が60%以上、ヘーズが20%以下の実質的に無色透明の二次成形品を得ることが可能となる。   In addition, even if the ultrafine long carbon fiber is contained in the antistatic layer at a maximum of about 15% by weight, the antistatic layer does not blacken as much as the conventional carbon fiber and the scattering of visible light is less. If the antistatic layer is made as thin as 3.5 μm at the maximum, the film becomes sufficiently transparent, and if the antistatic layer is thinned by secondary molding (thermoforming), the antistatic layer Since the transparency is further improved, it becomes possible to obtain a substantially colorless and transparent secondary molded article having a total light transmittance of 60% or more and a haze of 20% or less.

極細の長炭素繊維としては、上記のように100nm以下の線径と5以上のアスペクト比を有する曲がりくねった繊維であって、絡み合って集合体ないしは凝集体となっているものが好ましく使用される。アスペクト比の上限は特に限定されるものではないが、3000以下のものが好適に使用され、線径の好ましい下限は3.5nmである。また、この極細の長炭素繊維の集合体ないしは凝集体を装置を用いて微細化し、上記同様の線径とアスペクト比を有する曲がりくねって絡み合った極細の長炭素繊維として制電層中に分散した状態に含有させる。線径が上記より太く、アスペクト比が上記より小さい炭素繊維は、曲がりくねりや絡み合いが不足するので、二次成形時に表面抵抗率の増加を招く恐れがあり、また、制電層をかなり黒くするので好ましくない。   As the ultrafine long carbon fiber, a twisted fiber having a wire diameter of 100 nm or less and an aspect ratio of 5 or more as described above, which is intertwined into an aggregate or aggregate is preferably used. The upper limit of the aspect ratio is not particularly limited, but 3000 or less is preferably used, and the preferred lower limit of the wire diameter is 3.5 nm. In addition, this ultrafine long carbon fiber aggregate or agglomerate is refined by using an apparatus, and is dispersed in the antistatic layer as an extremely fine long carbon fiber that is twisted and entangled with the same wire diameter and aspect ratio as described above. To contain. Carbon fibers with larger wire diameters and smaller aspect ratios than the above have insufficient bends and entanglements, which can lead to an increase in surface resistivity during secondary molding, and also make the antistatic layer quite black. It is not preferable.

また、本発明の二次成形品は、本発明の制電性樹脂成形品を最大限10倍までの成形倍率で更に熱成形(二次成形)して得られるものであり、これより高倍率で二次成形すると、制電層に含まれる長炭素繊維が切断したり配向性が高くなったりして接触頻度の低下を招き、表面抵抗率が増大して制電性を損なう恐れが生じる。尚、この二次成形品の物性、色調などは、上記制電性樹脂成形品の作用効果の説明のところで併せて説明した通りである。   Moreover, the secondary molded product of the present invention is obtained by further thermoforming (secondary molding) the antistatic resin molded product of the present invention at a molding magnification of up to 10 times, and higher magnification than this. If secondary molding is performed, the long carbon fibers contained in the antistatic layer are cut or the orientation is increased, leading to a decrease in contact frequency, and the surface resistivity may be increased to impair the antistatic property. The physical properties, color tone, and the like of the secondary molded product are as described in the description of the operational effects of the antistatic resin molded product.

本発明の制電性樹脂成形品は、透明な基材を熱成形の可能な熱可塑性樹脂で形成する必要があり、熱可塑性樹脂としては、例えばポリエチレン、ポリプロピレンなどのオレフィン系樹脂、ポリ塩化ビニル、ポリメチルメタクリレート、ポリスチレンなどのビニル系樹脂、ポリカーボネート、ポリエチレンテレフタレート、芳香族ポリエステルなどのエステル系樹脂、ABS樹脂、これらの樹脂それぞれの共重合体樹脂などが好適に使用される。透明な基材は、これらの熱可塑性樹脂に可塑剤、安定剤、紫外線吸収剤などの添加剤を適宜配合したものであり、特に、85%以上の全光線透過率と、5%以下のヘーズを有する透明性に優れた基材が好適である。   The antistatic resin molded product of the present invention requires a transparent base material to be formed of a thermoplastic resin that can be thermoformed. Examples of the thermoplastic resin include olefin resins such as polyethylene and polypropylene, and polyvinyl chloride. Vinyl resins such as polymethyl methacrylate and polystyrene, ester resins such as polycarbonate, polyethylene terephthalate, and aromatic polyester, ABS resins, and copolymer resins of these resins are preferably used. The transparent base material is obtained by appropriately blending these thermoplastic resins with additives such as a plasticizer, a stabilizer, and an ultraviolet absorber, and in particular, a total light transmittance of 85% or more and a haze of 5% or less. A base material excellent in transparency having the above is suitable.

基材の形状は、二次成形(熱成形)の容易な板状やシート状が好ましいが、これに限定されるものではなく、その他、管状、棒状、線状、フィルム状など、用途に応じた所望の形状とすることができる。   The shape of the substrate is preferably a plate shape or a sheet shape that is easy to perform secondary molding (thermoforming), but is not limited thereto, and other shapes such as a tubular shape, a rod shape, a linear shape, a film shape, and the like are used. The desired shape can be obtained.

基材の表面に形成する制電層は、曲がりくねって絡み合う極細の長炭素繊維を含んだ熱可塑性樹脂の透明な層であって、長炭素繊維が絡み合いながら互いに接触し、或は、導通可能な微小間隔を保って分散しているため、静電気を逃がして塵埃の付着を防止する働きを有するものである。この制電層は、基材のいずれか片面に形成してもよいし、両面に形成してもよい。   The antistatic layer formed on the surface of the base material is a transparent layer of thermoplastic resin containing ultrafine long carbon fibers that are twisted and intertwined, and the long carbon fibers are in contact with each other while being intertwined, or can be electrically connected. Since it is dispersed with a minute interval, it has a function of releasing static electricity and preventing the adhesion of dust. This antistatic layer may be formed on one side of the substrate or on both sides.

この制電層も、熱成形の可能な熱可塑性樹脂で形成する必要があり、前述した基材の熱可塑性樹脂と同種の熱可塑性樹脂、又は、相溶性のある異種の熱可塑性樹脂が使用される。制電層は基材の表面に形成するものであるから、特に、耐候性、表面硬度、耐摩耗性などに優れた熱可塑性樹脂を選択使用することが望ましい。   This antistatic layer also needs to be formed of a thermoplastic resin that can be thermoformed, and the same kind of thermoplastic resin as that of the above-mentioned base material or a different kind of thermoplastic resin is used. The Since the antistatic layer is formed on the surface of the base material, it is particularly preferable to select and use a thermoplastic resin excellent in weather resistance, surface hardness, wear resistance and the like.

制電層に含有させる長炭素繊維は、アスペクト比が大きく線径が小さい極細の曲がりくねった長繊維であって、絡み合いながら制電層中に分散しているものであり、不定形炭素質繊維でもグラファイト質繊維でもよく、また、素繊維に不定形炭素とグラファイトとが共存するような炭素繊維であってもよい。   The long carbon fiber to be included in the antistatic layer is an extremely fine and long continuous fiber having a small aspect ratio and a small wire diameter, and is dispersed in the antistatic layer while being entangled. Graphite fibers may be used, and carbon fibers in which amorphous carbon and graphite coexist in the elementary fibers may be used.

特に好ましい長炭素繊維は、構造上はグラファイト質繊維であって、繊維軸に同軸状にグラファイト層が積層形成された断面円形のグラファイト質の極細の長繊維であり、その線径が3.5〜100nm、アスペクト比が5以上のものである。また、特に上限は限定されないが、アスペクト比3000までのものが好適に使用される。このようなグラファイト質繊維は、特公平3−64606号公報明細書中にその製法が開示されており、芳香族又は非芳香族炭化水素と水素との混合気流中で鉄族金属又はその酸化物の接触反応により繊維軸に同軸状のグラファイト層を析出させて形成した極細の繊維である。この繊維はグラファイトの層状結晶のC軸が繊維軸と直交する構造であり、不定形炭素の析出の少ないものが好ましい。   Particularly preferred long carbon fiber is a graphitic fiber in terms of structure, and is a graphitic ultrafine long fiber having a circular cross section in which a graphite layer is coaxially formed on the fiber axis, and the wire diameter thereof is 3.5. ˜100 nm and aspect ratio of 5 or more. The upper limit is not particularly limited, but those having an aspect ratio of up to 3000 are preferably used. Such a graphite fiber is disclosed in Japanese Patent Publication No. 3-64606, and its production method is disclosed. In a mixed gas stream of aromatic or non-aromatic hydrocarbon and hydrogen, an iron group metal or its oxide is used. This is an ultrafine fiber formed by depositing a coaxial graphite layer on the fiber axis by the contact reaction. This fiber has a structure in which the C-axis of the graphite layered crystal is perpendicular to the fiber axis, and preferably has a small amount of precipitation of amorphous carbon.

長炭素繊維の線径が3.5nmより細くなると、成形品を更に熱成形(二次成形)するときに長炭素繊維が切れやすくなり、線径が100nmを超えると、繊維の剛直性が増すため、曲がりくねって絡み合いながら分散するのに不利となり、可視光線も散乱しやすくなるので、透明性の低下を招く恐れが生じる。   When the wire diameter of the long carbon fiber is smaller than 3.5 nm, the long carbon fiber is easily cut when the molded product is further thermoformed (secondary molding), and when the wire diameter exceeds 100 nm, the rigidity of the fiber is increased. For this reason, it is disadvantageous for being dispersed while being twisted and twisted, and visible light is also easily scattered, which may cause a decrease in transparency.

また、長炭素繊維のアスペクト比(線径に対する長さの比)が5より小さくなると、制電層中に長炭素繊維が絡み合いながら分散した状態を形成し難くなるため、繊維相互の接触頻度が低下したり、導通可能な微小間隔を保ちにくくなり、成形品を熱成形(二次成形)する際には長炭素繊維の接触短絡が解けて、制電性が低下する恐れも生じる。   In addition, when the aspect ratio of the long carbon fibers (ratio of the length to the wire diameter) is smaller than 5, it becomes difficult to form a state in which the long carbon fibers are entangled and dispersed in the antistatic layer. It becomes difficult to maintain a minute interval that can be lowered or conducted, and when the molded product is thermoformed (secondary molding), the contact short circuit of the long carbon fiber can be solved and the antistatic property may be lowered.

制電層中の長炭素繊維の含有量は2〜15重量%とする必要があり、また、制電層の厚さは0.15〜3.5μmとする必要がある。長炭素繊維の含有量を2重量%より少なくした場合、制電層の厚みを3.5μmとしても、二次成形によって表面抵抗率が1012Ω/□未満の充分な制電性を有する二次成形品を得ることが難しくなる。他方、長炭素繊維の含有量を15重量%より多くした場合、制電層の厚みを制電層の透明性を考慮して0.15μm以下にしようとすると、二次成形時に制電層が部分的に破断する恐れもあり、また、制電層の形成がしづらくなる。長炭素繊維のより好ましい含有量は2〜12重量%の範囲であり、制電層のより好ましい厚さは0.2〜3μmの範囲である。 The content of the long carbon fiber in the antistatic layer needs to be 2 to 15% by weight, and the thickness of the antistatic layer needs to be 0.15 to 3.5 μm. When the content of the long carbon fiber is less than 2% by weight, even if the thickness of the antistatic layer is 3.5 μm, the secondary resistivity has sufficient antistatic property with a surface resistivity of less than 10 12 Ω / □. It becomes difficult to obtain the next molded product. On the other hand, when the content of the long carbon fiber is more than 15% by weight, if the thickness of the antistatic layer is set to 0.15 μm or less in consideration of the transparency of the antistatic layer, the antistatic layer is not formed during secondary molding. There is also a risk of partial breakage, and it becomes difficult to form the antistatic layer. The more preferable content of the long carbon fiber is in the range of 2 to 12% by weight, and the more preferable thickness of the antistatic layer is in the range of 0.2 to 3 μm.

制電層の形成は、熱可塑性樹脂を揮発性溶剤に溶解した溶液に、上記の長炭素繊維を均一に分散させて塗液を調製し、この塗液を基材表面に塗布して硬化させる塗工手段によることが望ましい。また、制電性に優れた制電層を形成するには、長炭素繊維を非常に細かく均一に分散させた塗液を調製する必要があるので、高速インペラー、サンドミル、アトライター、三本ロールなどの混合装置で充分に混合、分散させることが大切である。   The antistatic layer is formed by preparing a coating solution by uniformly dispersing the above-mentioned long carbon fibers in a solution in which a thermoplastic resin is dissolved in a volatile solvent, and applying the coating solution to the substrate surface and curing it. It is desirable to use coating means. Also, in order to form an antistatic layer with excellent antistatic properties, it is necessary to prepare a coating solution in which long carbon fibers are dispersed very finely and uniformly, so a high-speed impeller, sand mill, attritor, three-roll It is important to mix and disperse thoroughly with a mixing device such as.

塗液の基材表面への塗布は、ナイフエッジコーティング、ロールコーティング、スプレーコーティング等が利用可能であるが、基材が表面の平坦な平板である場合には、ロールコーティングによるグラビア印刷法を採用するのが好ましい。このようなグラビア印刷法で塗液を塗布すると、塗布厚みを一定に調整しやすいという利点がある。   Knife edge coating, roll coating, spray coating, etc. can be used to apply the coating liquid to the substrate surface. If the substrate is a flat plate with a surface, the gravure printing method using roll coating is used. It is preferable to do this. When the coating liquid is applied by such a gravure printing method, there is an advantage that the coating thickness can be easily adjusted to be constant.

また、上記の塗工手段に代えて、基材と同種の熱可塑性樹脂フィルム又は相溶性のある熱可塑性樹脂フィルムの表面に、前述の長炭素繊維を含む制電層の塗膜を形成した制電性フィルムを作製し、この制電性フィルムを基材の表面に接着剤を介して接着したり、或は、加熱プレスやロールプレスで該制電性フィルムを熱圧着する方法を採用して、制電性樹脂成形品を製造してもよい。   Further, instead of the above-mentioned coating means, a control film in which the above-mentioned antistatic coating film containing long carbon fibers is formed on the surface of the same kind of thermoplastic resin film as the base material or a compatible thermoplastic resin film. An electric film is prepared, and this antistatic film is adhered to the surface of the substrate via an adhesive, or a method of thermocompression bonding the antistatic film with a heating press or a roll press is adopted. An antistatic resin molded product may be manufactured.

上記の制電層は、二次成形後の表面抵抗率の上昇(制電性の低下)をなくすため、透明な導電性金属酸化物を含有させていないが、二次成形前の表面抵抗率を下げる目的で平均一次粒径が該粉末を30〜50重量%程度含有させてもよい。   The above antistatic layer does not contain a transparent conductive metal oxide in order to eliminate the increase in surface resistivity (decrease in antistatic properties) after secondary molding, but the surface resistivity before secondary molding In order to lower the average particle size, the powder may have an average primary particle size of about 30 to 50% by weight.

また、上記の制電層には、界面活性剤やカップリング剤などの分散剤、紫外線吸収剤、表面改質剤、安定剤などの添加剤を適宜加えることが好ましい。   Moreover, it is preferable to add additives such as a dispersant such as a surfactant and a coupling agent, an ultraviolet absorber, a surface modifier, and a stabilizer as appropriate to the antistatic layer.

以上のように、透明な制電層を透明な熱可塑性樹脂の基材表面に形成した制電性樹脂成形品は、制電層に2〜15重量%含まれた極細の長炭素繊維が曲がりくねって絡み合いながら互いに接触し、或は、導通可能な微小間隔を保って分散しているため、後述するように表面抵抗率が1012Ω/□未満であり、充分な制電性を有している。 As described above, in the antistatic resin molded product in which the transparent antistatic layer is formed on the surface of the transparent thermoplastic resin substrate, the ultrafine long carbon fiber contained in the antistatic layer is 2 to 15% by weight. As described later, the surface resistivity is less than 10 12 Ω / □ and has sufficient antistatic properties. Yes.

斯かる制電性樹脂成形品は、基材も制電層も熱可塑性樹脂から成るため、用途に応じて更に熱成形(二次成形)が可能であり、1.1〜10倍の成形倍率で該成形品を更に熱成形すると、基材と共に制電層が伸び変形しながら薄肉化して、制電層中の極細の曲がりくねった長炭素繊維が伸び変形の方向に伸張する。しかし、10倍以下の成形倍率では、長炭素繊維が伸び変形の方向にまっすぐ配向するまでには至らず、曲がりながら絡み合った状態を維持するため、長炭素繊維の接触頻度は減少することがなく、むしろ、制電層の薄肉化によって長炭素繊維が上下方向に接近するため、長炭素繊維の接触頻度や導通可能な微小間隔部分は増加し、その分だけ制電層の表面抵抗率が低下して制電性が向上することになる。従って、この制電性樹脂成形品を更に熱成形して得られる二次成形品は、制電層の表面抵抗率が1012Ω/□未満となり、二次成形前よりも表面抵抗率が低下して制電性が向上するようになる。特に、成形倍率が3〜5倍程度のときに、制電性の向上が顕著である。 Such an antistatic resin molded product is composed of a thermoplastic resin for both the base material and the antistatic layer, and therefore can be further thermoformed (secondary molding) depending on the application, and a molding magnification of 1.1 to 10 times. When the molded product is further thermoformed, the antistatic layer and the base material are thinned while being stretched and deformed, and the ultrathin and long carbon fiber in the antistatic layer is stretched in the direction of the stretch deformation. However, at a molding magnification of 10 times or less, the long carbon fibers do not reach a straight orientation in the direction of elongation deformation, and maintain the entangled state while bending, so the contact frequency of the long carbon fibers does not decrease. Rather, since the long carbon fibers approach in the vertical direction due to the thinning of the antistatic layer, the contact frequency of the long carbon fibers and the minute gaps that can be conducted increase, and the surface resistivity of the antistatic layer decreases accordingly. As a result, the antistatic property is improved. Therefore, the secondary molded product obtained by further thermoforming this antistatic resin molded product has a surface resistivity of the antistatic layer of less than 10 12 Ω / □, and the surface resistivity is lower than before the secondary molding. As a result, the antistatic property is improved. In particular, when the molding magnification is about 3 to 5 times, the improvement of the antistatic property is remarkable.

しかも、線径が3.5〜100nmの極細の長炭素繊維は、可視光線の散乱が少なく、従来の太いカーボン繊維ほど制電層を黒色化するものではないため、制電層の厚みが0.15〜3.5μmと薄ければ、長炭素繊維を2〜15重量%含有させても、制電層は充分な透明になるものであり、更に熱成形(二次成形)によって制電層が薄肉化すると、制電層はますます透明性が向上するため、得られる二次成形品は全光線透過率が60%以上、ヘーズが20%以下の実質的に無色透明の成形品となる。   In addition, the ultra-fine long carbon fibers having a wire diameter of 3.5 to 100 nm have less visible light scattering and do not blacken the antistatic layer as much as conventional thick carbon fibers. If it is as thin as 15 to 3.5 μm, the antistatic layer becomes sufficiently transparent even if 2 to 15% by weight of long carbon fiber is contained, and the antistatic layer is further formed by thermoforming (secondary forming). As the thickness of the antistatic layer becomes thinner, the transparency of the antistatic layer is further improved, so that the obtained secondary molded product becomes a substantially colorless and transparent molded product having a total light transmittance of 60% or more and a haze of 20% or less. .

二次の熱成形方法としては、成形品を加熱して行う曲げ加工、プレス成形、真空成形、圧空成形、ブロー成形、型押し成形などの方法を採用できるが、いずれの熱成形方法の場合も、その成形倍率を最大限10倍までとする必要があり、これより高倍率で熱成形すると、制電層に含まれる長炭素繊維が切断したり配向性が高くなったりして接触頻度の低下を招き、表面抵抗率が増大して制電性を損なう恐れが生じる。   As the secondary thermoforming method, methods such as bending by heating the molded product, press molding, vacuum forming, pressure forming, blow molding, embossing, etc. can be adopted. The molding magnification must be up to 10 times. If thermoforming is performed at a higher magnification than this, the long carbon fibers contained in the antistatic layer are cut or the orientation is increased, resulting in a decrease in contact frequency. May increase the surface resistivity and impair the antistatic property.

次に、本発明の更に具体的な実施例と比較例を説明する。   Next, more specific examples and comparative examples of the present invention will be described.

[実施例1〜8]
溶媒としてのシクロヘキサノンに、熱可塑性樹脂としてポリ塩化ビニルの粉末を添加して溶解し、この溶液中に長炭素繊維としてグラファイト質繊維[ハイピリオンカタリシスインターナショナル社製の品名「グラファイトフィブリルズ」(下記の表1ではGFと記す)、平均線径10nm、平均長さ10μm、アスペクト比1000)を種々濃度を変えて添加し、均一に混合、分散して塗液を形成した。
[Examples 1 to 8]
Polyvinyl chloride powder as a thermoplastic resin is added to and dissolved in cyclohexanone as a solvent, and graphite fiber as a long carbon fiber [Product name “Graphite Fibrils” manufactured by Hyperion Catalysis International Co., Ltd. In Table 1, GF), an average wire diameter of 10 nm, an average length of 10 μm, and an aspect ratio of 1000) were added at various concentrations, and mixed and dispersed uniformly to form a coating solution.

基材として、厚さ3mm、全光線透過率86.2%、ヘーズ3.2%のポリ塩化ビニルプレートを用いて、その表面に上記の塗液を種々異なる膜厚に塗布し、乾燥硬化させることによって、下記の表1に示す長炭素繊維の含有量と厚さを有する制電層を表面に形成した実施例1〜8の制電性ポリ塩化ビニルプレートを作製した。   Using a polyvinyl chloride plate having a thickness of 3 mm, a total light transmittance of 86.2%, and a haze of 3.2% as a base material, the above-mentioned coating liquid is applied to the surface in various film thicknesses, and is dried and cured Thus, antistatic polyvinyl chloride plates of Examples 1 to 8 having an antistatic layer having a long carbon fiber content and thickness shown in Table 1 on the surface were produced.

これらの制電性ポリ塩化ビニルプレートについて、表面抵抗率、全光線透過率(下記の表1では透過率と記す)、ヘーズ(曇度)を測定したところ、下記の表1に示す通りの結果が得られた。   For these antistatic polyvinyl chloride plates, the surface resistivity, total light transmittance (referred to as transmittance in Table 1 below), and haze (haze) were measured, and the results shown in Table 1 below were obtained. was gotten.

更に、これらの制電性ポリ塩化ビニルプレートを200℃に加熱し、3倍と5倍の成形倍率(成形前のプレート面積に対する成形後の二次成形品の面積の比)で真空成形して二次成形品を得た。そして、これらの二次成形品について表面抵抗率、全光線透過率、ヘーズを測定したところ、下記の表1に示す通りの結果が得られた。   Further, these antistatic polyvinyl chloride plates are heated to 200 ° C. and vacuum molded at a molding magnification of 3 times and 5 times (ratio of the area of the secondary molded product after molding to the plate area before molding). A secondary molded product was obtained. And when surface resistivity, total light transmittance, and haze were measured about these secondary molded products, the result as shown in following Table 1 was obtained.

尚、全光線透過率及びヘーズはASTM D1003に準拠して測定したものであり、また表面抵抗率はASTM D257に準拠して測定したものである。   The total light transmittance and haze are measured in accordance with ASTM D1003, and the surface resistivity is measured in accordance with ASTM D257.

[比較例1〜5]
比較のために、カーボンブラック(下記の表1ではCBと記す)を5重量%含む厚さ0.7μmの制電層、同じくカーボンブラックを5重量%含む厚さ1.4μmの制電層、同じくカーボンブラックを10重量%含む厚さ0.7μmの制電層、前記実施例のグラファイト質繊維を1重量%とアンチモンドープ酸化錫(下記の表1では酸化錫と記す)を39重量%含む厚さ1.0μmの制電層、同じくグラファイト質繊維を1重量%とアンチモンドープ酸化錫を39重量%含む厚さ5.0μmの制電層を、前記実施例で用いたポリ塩化ビニルプレートの表面にそれぞれ形成した比較例1〜5の制電性ポリ塩化ビニルプレートを作製した。そして、それぞれの表面抵抗率、全光線透過率、ヘーズを測定したところ、下記の表1に示す通りの結果が得られた。
[Comparative Examples 1-5]
For comparison, an antistatic layer having a thickness of 0.7 μm containing 5% by weight of carbon black (referred to as CB in Table 1 below), an antistatic layer having a thickness of 1.4 μm and also containing 5% by weight of carbon black, Similarly, a 0.7 μm-thick antistatic layer containing 10% by weight of carbon black, 1% by weight of the graphitic fiber of the above example, and 39% by weight of antimony-doped tin oxide (referred to as tin oxide in Table 1 below) An antistatic layer having a thickness of 1.0 μm, and an antistatic layer having a thickness of 5.0 μm containing 1% by weight of graphitic fiber and 39% by weight of antimony-doped tin oxide were used for the polyvinyl chloride plate used in the above example. Antistatic polyvinyl chloride plates of Comparative Examples 1 to 5 formed on the surface were prepared. And when each surface resistivity, total light transmittance, and haze were measured, the result as shown in following Table 1 was obtained.

これらの制電性ポリ塩化ビニルプレートを更に200℃に加熱し、前記実施例と同様に3倍と5倍の成形倍率で真空成形して二次成形品を得た。そして、これらの二次成形品の表面抵抗率、全光線透過率、ヘーズを測定したところ、下記の表1に示す通りの結果が得られた。   These antistatic polyvinyl chloride plates were further heated to 200 ° C., and vacuum molded at a molding magnification of 3 times and 5 times in the same manner as in the above-mentioned examples to obtain secondary molded products. And when the surface resistivity, total light transmittance, and haze of these secondary molded products were measured, the results as shown in Table 1 below were obtained.

Figure 2008103354
Figure 2008103354

この表1を見ると、グラファイト質繊維を2.0〜15.0重量%の範囲で含む厚さ0.15〜3.1μmの範囲の制電層を表面に形成した実施例1〜8の制電性ポリ塩化ビニルプレートは、いずれも表面抵抗率が8×10〜9×1011Ω/□の範囲にあり、良好な制電性を有することが判る。そして、成形倍率が3倍及び5倍の二次成形品は、いずれも表面抵抗率が1012Ω/□未満で、二次成形前のプレートに比べて実施例5を除きいずれも表面抵抗率が低下しており、二次成形前のプレートよりも制電性が向上していることが判る。 When Table 1 is seen, Examples 1-8 which formed the antistatic layer of the range of 0.15-3.1 micrometers in thickness which contains a graphitic fiber in the range of 2.0-15.0 weight% were formed. Each of the antistatic polyvinyl chloride plates has a surface resistivity in the range of 8 × 10 6 to 9 × 10 11 Ω / □, and is found to have good antistatic properties. The secondary molded products having a molding magnification of 3 times and 5 times each have a surface resistivity of less than 10 12 Ω / □, and all of them except for Example 5 compared to the plate before the secondary molding. It can be seen that the antistatic property is improved as compared with the plate before the secondary forming.

また、実施例1〜8の制電性ポリ塩化ビニルプレートは、二次成形によって全光線透過率が向上し、成形倍率が3倍の二次成形品はいずれも全光線透過率が63.0%以上であり、成形倍率が5倍に上がると、全光線透過率が更に高くなって82.8%以上になる。一方、ヘーズは二次成形前のプレートの方が低く、二次成形の成形倍率が高くなるほど増大するが、成形倍率が5倍の二次成形品でもヘーズは14.7%以下である。このように、実施例1〜8の制電性ポリ塩化ビニルプレートは、いずれも二次成形したときの全光線透過率が60%以上、ヘーズが20%以下という本発明の透明性に関する条件を満足し、本発明の意図する透明性を具備していることが判る。   In addition, the antistatic polyvinyl chloride plates of Examples 1 to 8 are improved in total light transmittance by secondary molding, and all the secondary molded products having a molding magnification of 3 times have a total light transmittance of 63.0. If the molding magnification is increased to 5 times, the total light transmittance is further increased to 82.8% or more. On the other hand, the haze is lower in the plate before the secondary molding and increases as the molding ratio of the secondary molding becomes higher, but the haze is 14.7% or less even in the secondary molded product having a molding ratio of 5 times. As described above, the antistatic polyvinyl chloride plates of Examples 1 to 8 satisfy the conditions regarding transparency of the present invention in which the total light transmittance when secondary molding is 60% or more and the haze is 20% or less. It can be seen that it is satisfactory and has the transparency intended by the present invention.

これに対し、カーボンブラックを含む制電層を形成した比較例1〜3の制電性ポリ塩化ビニルプレートは、二次成形前も二次成形後も表面抵抗率が1013Ω/□より高く、制電性が殆どないことが判る。これは、カーボンブラックが粉末であるため、5〜10重量%程度の含有率では導通接触の頻度が極めて少ないからである。また、グラファイト質繊維を1重量%とアンチモンドープ酸化錫を39重量%含む制電層を形成した比較例4,5の制電性ポリ塩化ビニルプレートは、表面抵抗率が10Ω/□以下で良好な制電性を有するが、二次成形すると表面抵抗率が1013Ω/□より高くなり、制電性を失うことが判る。これは、二次成形前は多量のアンチモンドープ酸化錫による導通接触の頻度が高いため表面抵抗率は下がるが、二次成形すると伸び変形によってアンチモンドープ酸化錫の接触頻度が激減し、実質的に少量のグラファイト質繊維の接触のみによる導通では不充分であるためである。なお、全光線透過率やヘーズは、比較例1〜5の方が実施例1〜8よりも若干優れている。 On the other hand, the antistatic polyvinyl chloride plates of Comparative Examples 1 to 3 in which the antistatic layer containing carbon black was formed had a surface resistivity higher than 10 13 Ω / □ before and after the secondary molding. It can be seen that there is almost no antistatic property. This is because since carbon black is a powder, the frequency of conductive contact is very low at a content of about 5 to 10% by weight. Further, the antistatic polyvinyl chloride plates of Comparative Examples 4 and 5 in which the antistatic layer containing 1% by weight of graphite fiber and 39% by weight of antimony-doped tin oxide was formed had a surface resistivity of 10 7 Ω / □ or less. However, when the secondary molding is performed, the surface resistivity becomes higher than 10 13 Ω / □, and it is understood that the antistatic property is lost. This is because the frequency of conductive contact with a large amount of antimony-doped tin oxide is high before the secondary molding, and the surface resistivity is lowered.However, when secondary molding is performed, the contact frequency of antimony-doped tin oxide is drastically reduced due to elongation deformation, which is substantially reduced. This is because conduction by only contact with a small amount of graphite fiber is insufficient. In addition, the total light transmittance and haze are slightly better in Comparative Examples 1 to 5 than in Examples 1 to 8.

以上の説明から理解できるように、本発明の制電性樹脂成形品は、極細の曲がりくねって絡み合う長炭素繊維を制電層に特定の含有率で含有させたため、熱成形(二次成形)によって制電性機能が消失せず、表面抵抗率が1012Ω/□未満となってむしろ成形条件等によっては制電性が向上し、しかも透明性が比較的良好で二次成形により透明性が更に向上する。従って、この制電性樹脂成形品を更に熱成形した本発明の二次成形品は、良好な制電性と透明性を兼ね備えたものとなる。 As can be understood from the above description, the antistatic resin molded product of the present invention contains long carbon fibers that are twisted and entangled in a very thin amount at a specific content in the antistatic layer. Therefore, by thermoforming (secondary molding) The antistatic function does not disappear, the surface resistivity becomes less than 10 12 Ω / □, and the antistatic property is improved depending on molding conditions, etc., and the transparency is relatively good, and the transparency is improved by secondary molding. Further improvement. Therefore, the secondary molded product of the present invention obtained by further thermoforming this antistatic resin molded product has both excellent antistatic properties and transparency.

Claims (4)

熱可塑性樹脂の透明な基材の表面に、曲がりくねって絡み合う線径が100nm以下、アスペクト比が5以上の極細の長炭素繊維を2〜15重量%含んだ厚さ0.15〜3.5μmの熱可塑性樹脂の透明な制電層を有する成形品であって
3倍の成形倍率で更に熱成形したときの制電層の表面抵抗率が熱成形前の制電層の表面抵抗率以下となり、また、1.1〜10倍の成形倍率で熱成形したときの全光線透過率が60%以上、ヘーズが20%以下、制電層の表面抵抗率が1012Ω/□未満となることを特徴とする制電性樹脂成形品。
A thickness of 0.15 to 3.5 μm containing 2 to 15% by weight of ultrafine long carbon fiber having a diameter of 100 nm or less and an aspect ratio of 5 or more, which is twisted and entangled on the surface of a transparent base material of thermoplastic resin A molded article having a transparent antistatic layer of thermoplastic resin, and the surface resistivity of the antistatic layer when further thermoformed at a molding magnification of 3 times is less than the surface resistivity of the antistatic layer before thermoforming, Further, the total light transmittance when thermoformed at a molding magnification of 1.1 to 10 times is 60% or more, the haze is 20% or less, and the surface resistivity of the antistatic layer is less than 10 12 Ω / □. Characteristic antistatic resin molded product.
長炭素繊維が、3.5〜100nmの線径と5以上のアスペクト比を有する曲がりくねった繊維であり、絡み合って分散していることを特徴とする請求項1に記載の制電性樹脂成形品。   2. The antistatic resin molded product according to claim 1, wherein the long carbon fiber is a twisted fiber having a wire diameter of 3.5 to 100 nm and an aspect ratio of 5 or more, and is entangled and dispersed. . 制電層に導電性金属酸化物の粉末が含まれていないことを特徴とする請求項1又は請求項2に記載の制電性樹脂成形品。   The antistatic resin molded article according to claim 1 or 2, wherein the antistatic layer does not contain a conductive metal oxide powder. 請求項1に記載した制電性樹脂成形品を1.1〜10倍の成形倍率で更に熱成形した二次成形品であって、その全光線透過率が60%以上、ヘーズが20%以下、制電層の表面抵抗率が1012Ω/□未満であることを特徴とする二次成形品。 A secondary molded product obtained by further thermoforming the antistatic resin molded product according to claim 1 at a molding magnification of 1.1 to 10 times, and has a total light transmittance of 60% or more and a haze of 20% or less. The secondary molded product characterized in that the surface resistivity of the antistatic layer is less than 10 12 Ω / □.
JP2007335571A 2007-12-27 2007-12-27 Antistatic resin molding, and secondary molding thereof Pending JP2008103354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007335571A JP2008103354A (en) 2007-12-27 2007-12-27 Antistatic resin molding, and secondary molding thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007335571A JP2008103354A (en) 2007-12-27 2007-12-27 Antistatic resin molding, and secondary molding thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP17812498A Division JP4087508B2 (en) 1998-06-09 1998-06-09 Antistatic resin molded product and its secondary molded product

Publications (1)

Publication Number Publication Date
JP2008103354A true JP2008103354A (en) 2008-05-01

Family

ID=39437488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007335571A Pending JP2008103354A (en) 2007-12-27 2007-12-27 Antistatic resin molding, and secondary molding thereof

Country Status (1)

Country Link
JP (1) JP2008103354A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63300596A (en) * 1987-05-29 1988-12-07 Mishima Seishi Kk Electromagnetic wave shielding synthetic-resin molding
JPH02189824A (en) * 1988-11-17 1990-07-25 Xerox Corp Electric device with drawing working member
WO1997045257A1 (en) * 1996-05-31 1997-12-04 Hyperion Catalysis International, Inc. Method for disentangling hollow carbon microfibers, electrically conductive transparent carbon microfibers aggregation film and coating composition for forming such film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63300596A (en) * 1987-05-29 1988-12-07 Mishima Seishi Kk Electromagnetic wave shielding synthetic-resin molding
JPH02189824A (en) * 1988-11-17 1990-07-25 Xerox Corp Electric device with drawing working member
WO1997045257A1 (en) * 1996-05-31 1997-12-04 Hyperion Catalysis International, Inc. Method for disentangling hollow carbon microfibers, electrically conductive transparent carbon microfibers aggregation film and coating composition for forming such film

Similar Documents

Publication Publication Date Title
KR102026594B1 (en) Mixtures, methods and compositions pertaining to conductive materials
JP4471346B2 (en) Electromagnetic shield
TWI533767B (en) Graphene printed pattern circuit structure
JP2007314417A (en) Carbon nanotube-containing dispersion
JP7055096B2 (en) Manufacturing method of ductile conductive paste and curved printed wiring board
KR20120107044A (en) Polymer compositions containing graphene sheets and graphite
EP2802626A1 (en) Resin composition for emi shielding, comprising carbon hydride composite
JP2004124086A (en) Resin composition containing nano-scale carbon, conductive or antistatic resin molded product, conductive or antistatic resin coating composition, charge prevention film and method for producing the same
CN108084627B (en) HIPS (high impact polystyrene) based conductive master batch based on carbon nano tube and graphene compound system and preparation method thereof
KR102359134B1 (en) Conductive resin composition, molded article and manufacturing method thereof
CN108084686B (en) Polyester-based conductive master batch based on carbon nanotube and graphene compound system and preparation method thereof
JP6734925B2 (en) Silver paste for flexible substrates
WO2014050440A1 (en) Transparent conductive laminate
JP2017065964A (en) Dispersion liquid containing carbon nanotube and conductive laminate using the same
KR20140147975A (en) Conductive ink composition, transparent conductive film comprising thereof and method for preparing transparent conductive film
JP3398587B2 (en) Moldable antistatic resin molded product
JP4087508B2 (en) Antistatic resin molded product and its secondary molded product
JP6580431B2 (en) Transparent conductive film
KR101790707B1 (en) Conductive master batch and method for manufacturing thereof and method for manufacturing conductive film using the same
JP2008103354A (en) Antistatic resin molding, and secondary molding thereof
US6214451B1 (en) Formable antistatic resin molded article
CN116018266A (en) Method for producing transparent conductive film
JP2001062952A (en) Electric control transparent resin plate
WO2021172086A2 (en) Transparent conductive film
JP2017065056A (en) Conductive laminate and method for manufacturing conductive laminate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101027

A02 Decision of refusal

Effective date: 20110302

Free format text: JAPANESE INTERMEDIATE CODE: A02