JP2008103309A - Secondary battery and method for manufacturing secondary battery - Google Patents

Secondary battery and method for manufacturing secondary battery Download PDF

Info

Publication number
JP2008103309A
JP2008103309A JP2007174278A JP2007174278A JP2008103309A JP 2008103309 A JP2008103309 A JP 2008103309A JP 2007174278 A JP2007174278 A JP 2007174278A JP 2007174278 A JP2007174278 A JP 2007174278A JP 2008103309 A JP2008103309 A JP 2008103309A
Authority
JP
Japan
Prior art keywords
electrode plate
current collector
plate
secondary battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007174278A
Other languages
Japanese (ja)
Other versions
JP5179103B2 (en
Inventor
Kiyomi Kouzuki
きよみ 神月
Tadashi Imai
正 今井
Yasushi Hirakawa
靖 平川
Takashi Nonoshita
孝 野々下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007174278A priority Critical patent/JP5179103B2/en
Publication of JP2008103309A publication Critical patent/JP2008103309A/en
Application granted granted Critical
Publication of JP5179103B2 publication Critical patent/JP5179103B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a secondary battery having a current collecting structure provided with a stable joint part of an electrode plate to a current collecting plate, and suitable for large-current discharge. <P>SOLUTION: An electrode group where a positive electrode plate and a negative electrode plate are arranged through a porous insulating layer in a state where the end portions 1a and 2a of the positive electrode plate and the negative electrode plate protrude from the porous insulating layer, and current collecting plates 10 and 11 each provided with a protrusion part 12 having a gap part 12a on the inside are prepared. While bringing the electrode plate end portions 1a and 2a projecting from the porous insulating layer into contact with principal surfaces of the current collecting plates 10 and 11, the protrusion part 12 is heated locally to joint the electrode plate end portions 1a and 2a to the current collecting plates 10 and 11, and the electrode plate end portions 1a and 2a are welded to the current collecting plates 10 and 11 by a molten member produced by melting the protrusion part 12. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高出力化を図った二次電池に関し、特に低抵抗で大電流放電に適した集電構造を有する二次電池およびその製造方法に関する。   The present invention relates to a secondary battery with high output, and more particularly to a secondary battery having a current collecting structure with low resistance and suitable for large current discharge, and a method for manufacturing the same.

近年、駆動用電源として用いられる二次電池は、重要なキーデバイスの一つとして、その開発が進められている。中でも、ニッケル水素蓄電池やリチウムイオン二次電池は、軽量、小型で高エネルギー密度であることから、携帯電話を始めとして民生用機器から電気自動車や電動工具の駆動用電源まで幅広く用いられている。最近では、特に、リチウムイオン二次電池が駆動用電源として注目され、高容量化・高出力化に向けた開発が活発化している。   In recent years, a secondary battery used as a driving power source has been developed as one of important key devices. Among these, nickel metal hydride storage batteries and lithium ion secondary batteries are light, small, and have a high energy density, and thus are widely used from consumer devices such as mobile phones to power sources for driving electric vehicles and power tools. Recently, in particular, lithium ion secondary batteries have been attracting attention as driving power sources, and development for higher capacity and higher output has been activated.

駆動用電源として用いられる二次電池は、大きな出力電流が要求される。このため、二次電池の構造、特に、集電構造に工夫を加えた二次電池が提案されている。   A secondary battery used as a driving power source is required to have a large output current. For this reason, secondary batteries have been proposed in which the structure of the secondary battery, in particular, the current collecting structure is modified.

例えば、電極面積を拡大するために、正極板と負極板とをセパレータを介して捲回し、正極板及び負極板を、集電タブを介して集電板に溶接等で接合した集電構造が採用されている。しかしながら、このような集電構造は、集電タブの電気抵抗が大きく集電効率が悪いため、大きな出力電流が要求される駆動用電源に対応することは困難であった。   For example, in order to increase the electrode area, a current collecting structure in which a positive electrode plate and a negative electrode plate are wound through a separator, and the positive electrode plate and the negative electrode plate are joined to a current collector plate via a current collecting tab by welding or the like. It has been adopted. However, such a current collecting structure has a large electric resistance of the current collecting tab and has a poor current collecting efficiency, and thus it is difficult to cope with a driving power source that requires a large output current.

一方、正極板及び負極板を、全面に亘って集電板に接合したタブレス集電構造は、電気抵抗を小さくできるので、大電流放電に適しているが、タブレス集電を行うためには、正極板及び負極板の端部を、確実に集電板に接合する必要がある。   On the other hand, the tabless current collecting structure in which the positive electrode plate and the negative electrode plate are joined to the current collecting plate over the entire surface can reduce the electric resistance, and is suitable for large current discharge. It is necessary to reliably join the ends of the positive electrode plate and the negative electrode plate to the current collector plate.

図16は、特許文献1に記載された集電構造を示した図で、(a)は、集電板40の断面図、(b)は、正極板(または負極板)41の端部を集電板40に接合した状態の断面図である。   16A and 16B are diagrams showing the current collecting structure described in Patent Document 1. FIG. 16A is a cross-sectional view of the current collecting plate 40, and FIG. 16B is a diagram illustrating the end of the positive electrode plate (or negative electrode plate) 41. FIG. 6 is a cross-sectional view of a state in which the current collector plate is joined to a current collector plate 40

図16(a)に示すように、集電板40の表面に、正極板(または負極板)41の端部に対応する位置に、溝部40aが形成されており、この溝部40aに、正極板(または負極板)41の端部を溝部40a挿入し、集電板40のうち溝部40aをなす部分を溶融することによって、図16(b)に示すように、正極板(または負極板)41の端部が集電板40に接合されている。   As shown in FIG. 16A, a groove portion 40a is formed on the surface of the current collector plate 40 at a position corresponding to the end portion of the positive electrode plate (or negative electrode plate) 41, and the positive electrode plate is formed in the groove portion 40a. As shown in FIG. 16B, the positive electrode plate (or negative electrode plate) 41 is obtained by inserting the end portion of the negative electrode plate 41 into the groove portion 40a and melting the portion of the current collector plate 40 forming the groove portion 40a. Is joined to the current collector plate 40.

このような方法で形成された集電構造は、正極板(または負極板)41の端部が、集電板40との接合部42において、集電板40をなす金属で埋め込まれた状態で溶接されているので、正極板(または負極板)41の端部を、確実に集電板40に接合することができる。   The current collecting structure formed by such a method is such that the end of the positive electrode plate (or negative electrode plate) 41 is embedded in the metal forming the current collecting plate 40 at the joint 42 with the current collecting plate 40. Since it is welded, the edge part of the positive electrode plate (or negative electrode plate) 41 can be reliably joined to the current collector plate 40.

しかしながら、上記方法では、正極板(または負極板)41の電極群の配列に応じて、集電板40に溝部40aを形成しなければならず、また、正極板(または負極板)41の端部を、溝部40aに挿入するための位置合わせ技術が必要となる。その結果、製造工程が複雑になり、製造コストが高くなるという問題がある。   However, in the above method, the groove portion 40 a must be formed in the current collector plate 40 according to the arrangement of the electrode group of the positive electrode plate (or negative electrode plate) 41, and the end of the positive electrode plate (or negative electrode plate) 41 An alignment technique for inserting the portion into the groove 40a is required. As a result, there is a problem that the manufacturing process becomes complicated and the manufacturing cost increases.

特許文献2には、このような位置合わせが不要で、かつ簡単な方法で、正極板(または負極板)41の端部を集電板40に接合する方法が記載されている。   Patent Document 2 describes a method in which such alignment is unnecessary and the end of the positive electrode plate (or negative electrode plate) 41 is joined to the current collector plate 40 by a simple method.

図17は、特許文献2に記載された二次電池の集電構造を示した断面図である。図17に示すように、正極板51と負極板52とが上下方向にずらした状態で、セパレータ53を介して捲回され、セパレータ53から突出した正極板51及び負極板52の端部51a、52aが、集電板60、61に溶接により接合されている。ここで、正極板51及び負極板52の端部51a、52aは、巻回軸芯方向(図面の上下方向)に押圧されることによって平坦部が形成されており、この平坦部が集電板60、61に溶接されている。   FIG. 17 is a cross-sectional view showing the current collecting structure of the secondary battery described in Patent Document 2. As shown in FIG. 17, the positive electrode plate 51 and the negative electrode plate 52 are wound through the separator 53 in a state where the positive electrode plate 51 and the negative electrode plate 52 are shifted in the vertical direction, and project from the separator 53 and the end portions 51 a of the negative electrode plate 52, 52a is joined to the current collector plates 60 and 61 by welding. Here, the end portions 51a and 52a of the positive electrode plate 51 and the negative electrode plate 52 are pressed in the winding axis direction (vertical direction in the drawing) to form flat portions, and these flat portions are current collector plates. 60 and 61 are welded.

このように形成された集電構造は、正極板51及び負極板52自身で形成された平坦部を集電板60、61に当接させて溶接しているので、位置合わせをすることなく、簡単な方法で、正極板51及び負極板52の端部を集電板60、61に接合することができる。   The current collecting structure formed in this way is welded by contacting the flat portions formed by the positive electrode plate 51 and the negative electrode plate 52 themselves to the current collecting plates 60 and 61, without positioning. The end portions of the positive electrode plate 51 and the negative electrode plate 52 can be joined to the current collector plates 60 and 61 by a simple method.

しかしながら、上記方法は、二次電池の大容量・小型化を図る上で、以下のような課題がある。すなわち、正極板51または負極板52を構成する集電体が薄箔化されると、薄箔自身に機械的強度が得られないため、正極板51または負極板52を押圧しても、均一に折れ曲がった平坦部を形成することが困難になる。特に、リチウムイオン二次電池の正極板51及び負極板52を構成する集電体には、アルミニウムや銅が用いられるため、集電体の厚みが、例えば、20μm程度以下になると、押圧により平坦部を形成することは極めて困難になる。また、押圧の際、正極板51、負極板52の端部(合剤未塗工部)51a、52aに生じた歪みに起因して、集電体の合剤塗工部51b、52bから、合剤が剥離したり破断したりする問題も生じる。   However, the above method has the following problems in increasing the capacity and size of the secondary battery. That is, when the current collector constituting the positive electrode plate 51 or the negative electrode plate 52 is thinned, mechanical strength cannot be obtained in the thin foil itself, so even if the positive electrode plate 51 or the negative electrode plate 52 is pressed, it is uniform. It becomes difficult to form a flat portion that is bent. In particular, since the current collectors constituting the positive electrode plate 51 and the negative electrode plate 52 of the lithium ion secondary battery are made of aluminum or copper, when the thickness of the current collector is, for example, about 20 μm or less, it is flattened by pressing. It becomes extremely difficult to form the part. In addition, during pressing, due to the distortion generated in the end portions of the positive electrode plate 51 and the negative electrode plate 52 (mixture uncoated portion) 51a, 52a, from the mixture coated portions 51b, 52b of the current collector, There also arises a problem that the mixture peels or breaks.

正極板または負極板を構成する集電体が薄箔化されても、正極板または負極板の端部を集電板に接合することが可能な技術が、特許文献3に記載されている。   Japanese Patent Application Laid-Open No. 2004-151867 describes a technique that can join the end of the positive electrode plate or the negative electrode plate to the current collector plate even if the current collector constituting the positive electrode plate or the negative electrode plate is thinned.

図18は、特許文献3に記載された集電板70の構成を示した斜視図である。図18に示すように、平板形状の集電板70の表面に、互いに反対向きに突出した第1の凸部70a及び第2の凸部70bが形成されており、正極板(または負極板)80の端部を、第2の凸部70bに当接した状態で、第1の凸部70aにエネルギーを照射することによって、第1の凸部70a、集電板70本体部の一部、及び第2の凸部70bを溶融して、正極板(または負極板)80の端部を、集電板70に接合するというものである。   FIG. 18 is a perspective view showing the configuration of the current collector plate 70 described in Patent Document 3. As shown in FIG. As shown in FIG. 18, a first convex portion 70 a and a second convex portion 70 b projecting in opposite directions are formed on the surface of a flat plate-shaped current collector plate 70, and a positive electrode plate (or a negative electrode plate). By irradiating energy to the first convex portion 70a with the end portion of 80 in contact with the second convex portion 70b, the first convex portion 70a, a part of the current collector plate 70 main body, And the 2nd convex part 70b is fuse | melted, and the edge part of the positive electrode plate (or negative electrode plate) 80 is joined to the current collecting plate 70. FIG.

このような方法で形成された集電構造は、正極板(または負極板)80の端部を、集電板70の第2の凸70bに当接するだけで、集電板70自身が溶融して生成された溶融部材によって、集電板70に接合することができるので、正極板(または負極板)80を構成する集電体が薄箔化されて機械的強度が弱くなっても、集電体に負荷をかけずに、正極板(または負極板)80の端部を集電板70に接合することができる。
特開2006−172780号公報 特開2000−294222号公報 特開2004−172038号公報
In the current collecting structure formed by such a method, the current collecting plate 70 itself is melted only by bringing the end of the positive electrode plate (or negative electrode plate) 80 into contact with the second protrusion 70b of the current collecting plate 70. Therefore, even if the current collector constituting the positive electrode plate (or the negative electrode plate) 80 is thinned and the mechanical strength is reduced, the current collector is collected. The end of the positive electrode plate (or negative electrode plate) 80 can be joined to the current collector plate 70 without applying a load to the electric body.
JP 2006-172780 A JP 2000-294222 A JP 2004-172038 A

特許文献3に記載された方法は、確かに、二次電池の大容量・小型化を図るために、正極板または負極板を構成する集電体が薄箔化された場合でも、正極板または負極板の端部を集電板に結合させることはできるが、この方法を量産工程に適用する場合、以下のような問題がある。   In the method described in Patent Document 3, the positive electrode or the current collector constituting the positive electrode or the negative electrode is certainly reduced in order to reduce the capacity and size of the secondary battery. Although the end of the negative electrode plate can be bonded to the current collector plate, there are the following problems when this method is applied to a mass production process.

すなわち、特許文献3に記載された方法においては、溶融すべき第1の凸部70a、集電板70本体部の一部、及び第2の凸部70bの体積が、平板形状の集電板70本体部の体積に比して大きいため、例えば、第2の凸部70bまで溶融させるような過剰なエネルギーが照射されると、第1の凸部70a及び第2の凸部70bに隣接する、熱容量の小さな集電板70まで溶融してしまい、集電板70の本体部の一部ごと溶け落ちてしまう。また、第1の凸部70aしか溶融しないような過小なエネルギーが照射されると、第2の凸部70bまで溶融せず、溶接ができなくなる。さらに、正極板(または負極板)80が当接していない集電板70の部位では、集電板70が溶融して生成された溶融部材が流れ込むところがないため、溶融部材自身の重さによって、集電板70の本体部から分離して、落下してしまうおそれがある。   That is, in the method described in Patent Document 3, the first convex portion 70a to be melted, a part of the current collector plate 70 main body, and the volume of the second convex portion 70b are flat plate-shaped current collector plates. Since the volume is larger than the volume of the 70 main body portion, for example, when excessive energy is applied to melt the second convex portion 70b, the first convex portion 70a and the second convex portion 70b are adjacent to each other. Then, the current collector plate 70 having a small heat capacity is melted, and a part of the main body of the current collector plate 70 is melted down. Further, when irradiation with an excessive energy that only melts the first convex portion 70a, the second convex portion 70b is not melted and welding cannot be performed. Furthermore, in the part of the current collector plate 70 where the positive electrode plate (or the negative electrode plate) 80 is not in contact, there is no place where the molten member generated by melting the current collector plate 70 flows, so the weight of the molten member itself There is a risk of falling off the main body of the current collector plate 70.

このように、集電板70に照射すべきエネルギーの制御が複雑になるため、量産工程に適用した場合、安定して正極板(または負極板)80の端部を集電板70に結合することが困難になる。また、溶融部材が落下すると、正極板(または負極板)80の合剤塗工部等に損傷を与え、信頼性を低下させる要因ともなる。   As described above, since the control of the energy to be applied to the current collector plate 70 becomes complicated, the end of the positive electrode plate (or the negative electrode plate) 80 is stably coupled to the current collector plate 70 when applied to the mass production process. It becomes difficult. Moreover, if the melting member falls, it will damage the mixture coating portion of the positive electrode plate (or negative electrode plate) 80 and the like, which will also reduce the reliability.

本発明は、かかる課題に鑑みなされたもので、その主な目的は、安定した正極板(または負極板)と集電板との接合部を備え、大電流放電に適した集電構造を有する二次電池を提供することにある。   The present invention has been made in view of the above problems, and its main object is to have a current collecting structure suitable for high-current discharge, which includes a junction between a stable positive electrode plate (or negative electrode plate) and a current collector plate. It is to provide a secondary battery.

本願発明者等は、特許文献3に記載された方法において、集電板(第1の凸部)に照射すべきエネルギーの制御が複雑になる要因が、溶融すべき部分の集電板の体積が、溶融されない集電板の本体部の体積に比して大きいことにあることに着目し、本発明における二次電池の集電板において、その主面の一部に、内側に間隙部を有する突出部を設けた構成を採用した。すなわち、本発明の二次電池における集電構造は、当該突出部が形成された集電板に、正極板(または負極板)の端部を当接した状態で、突出部を局所的に加熱して、正極板(または負極板)の端部と集電板とを溶接により接合した構成をなす。   The inventors of the present application, in the method described in Patent Document 3, have a factor that complicates control of energy to be applied to the current collector plate (first convex portion). However, in the current collector plate of the secondary battery according to the present invention, a gap is formed on the inner side of a part of the main surface of the current collector plate of the secondary battery according to the present invention. The structure which provided the protrusion part which has was employ | adopted. That is, the current collecting structure in the secondary battery according to the present invention is such that the protrusion is locally heated in a state where the end of the positive electrode plate (or the negative electrode plate) is in contact with the current collector plate on which the protrusion is formed. Thus, a configuration is adopted in which the end of the positive electrode plate (or the negative electrode plate) and the current collector plate are joined together by welding.

当該突出部は、その内側に間隙部を有しているため、溶融すべき部分の集電板の体積は、溶融されない集電板の本体部の体積とそれほど差がない。それ故、集電板(突出部)に照射すべきエネルギーの大きさを容易に決定することができる。   Since the protrusion has a gap on the inner side, the volume of the current collector plate to be melted is not so different from the volume of the main body of the current collector plate that is not melted. Therefore, it is possible to easily determine the magnitude of energy to be applied to the current collector plate (projection).

また、突出部が溶融して生成された溶融部材は、間隙部を通って正極板(または負極板)の端部に速やかに導かれるため、正極板(または負極板)端部の接合部を、均一かつ確実に溶接することができる。さらに、正極板(または負極板)が当接していない集電板の部位でも、突出部が溶融して生成された溶融部材は、間隙部内において界面張力により保持されるため、集電板からの落下を防ぐことができる。   In addition, the melted member generated by melting the protruding portion is promptly guided to the end of the positive electrode plate (or negative electrode plate) through the gap, so that the joining portion of the end of the positive electrode plate (or negative electrode plate) is Can be welded uniformly and reliably. Furthermore, the melted member produced by melting the protruding portion is retained by the interfacial tension in the gap portion even at the portion of the current collector plate where the positive electrode plate (or the negative electrode plate) is not in contact. Can prevent falling.

本発明に係わる二次電池の製造方法は、正極板及び負極板が多孔質絶縁層を介して配置された電極群を備えた二次電池の製造方法であって、少なくとも一方の極性の極板の端部が、多孔質絶縁層から突出した状態で正極板及び負極板が多孔質絶縁層を介して配置された電極群を用意する工程(a)と、一の主面に内側に間隙部を有する突出部が形成された集電板を用意する工程(b)と、多孔質絶縁層から突出した極板の端部を集電板の他の主面に当接する工程(c)と、突出部を局所的に加熱することによって極板の端部と集電板とを接合する工程(d)とを有し、工程(d)において、極板の端部は、突出部が溶融して生成された溶融部材によって集電板に溶接されることを特徴とする。   A method of manufacturing a secondary battery according to the present invention is a method of manufacturing a secondary battery including an electrode group in which a positive electrode plate and a negative electrode plate are arranged via a porous insulating layer, and the electrode plate has at least one polarity. A step (a) of preparing an electrode group in which the positive electrode plate and the negative electrode plate are arranged via the porous insulating layer in a state in which the end portion protrudes from the porous insulating layer; A step (b) of preparing a current collector plate in which a protruding portion having a protrusion is formed, a step (c) of contacting an end portion of the electrode plate protruding from the porous insulating layer with the other main surface of the current collector plate, A step (d) of joining the end portion of the electrode plate and the current collector plate by locally heating the protruding portion, and in the step (d), the protruding portion melts at the end portion of the electrode plate. It is welded to the current collector plate by the molten member generated in this manner.

なお、上記工程(d)において、極板の端部は、突出部が溶融して生成された溶融部材が、間隙部を通り極板の端部に導かれることによって集電板に溶接されることが好ましい。   In the step (d), the end of the electrode plate is welded to the current collector plate by the molten member generated by melting the protruding portion being guided to the end of the electrode plate through the gap. It is preferable.

このような方法により、突出部が溶融して生成された溶融部材を、間隙部を通って極板端部に速やかに導くことができるので、極板端部の接合部を、均一かつ確実に溶接することができる。また、極板が当接していない集電板の部位でも、集電板が溶融して生成された溶融部材は、間隙部内において界面張力により保持されるため、集電板からの落下を防ぐことができる。これにより、安定した極板端部と集電板との接合部を備え、大電流放電に適した集電構造を有する二次電池を実現することができる。   By such a method, the molten member generated by melting the protrusion can be quickly guided to the end of the electrode plate through the gap, so that the joint of the end of the electrode plate can be uniformly and reliably Can be welded. In addition, even at the part of the current collector plate where the electrode plate is not in contact, the melted member produced by melting the current collector plate is retained by the interfacial tension in the gap, thus preventing falling from the current collector plate Can do. Thereby, the secondary battery which has the junction part of the stable electrode plate edge part and a current collector plate, and has a current collection structure suitable for a large current discharge is realizable.

ある好適な実施形態において、上記突出部は、集電板の一の主面上を放射状に形成されている。ここで、電極群は、正極板及び負極板が多孔質絶縁層を介して捲回された構成をなしていることが好ましい。   In a preferred embodiment, the protrusions are formed radially on one main surface of the current collector plate. Here, the electrode group preferably has a configuration in which the positive electrode plate and the negative electrode plate are wound through a porous insulating layer.

また、ある好適な実施形態において、上記突出部は、集電板の一の主面上を正極板及び負極板の積層方向に平行に形成されている。ここで、電極群は、正極板及び負極板が多孔質絶縁層を介して積層された構成をなしていることが好ましい。   In a preferred embodiment, the protruding portion is formed on one main surface of the current collector plate in parallel to the stacking direction of the positive electrode plate and the negative electrode plate. Here, the electrode group preferably has a configuration in which a positive electrode plate and a negative electrode plate are laminated via a porous insulating layer.

このような構成により、多孔質絶縁層から突出した極板端部が、突出部が集電板の一の主面上を延びる方向と概ね直交した状態で、集電板の他の主面に当接するため、極板端部を集電板に確実に溶接することができる。   With such a configuration, the end portion of the electrode plate protruding from the porous insulating layer is placed on the other main surface of the current collector plate in a state where the protruding portion is substantially orthogonal to the direction in which the protruding portion extends on one main surface of the current collector plate. Because of the contact, the end of the electrode plate can be reliably welded to the current collector plate.

また、上記突出部は、平板からなる集電板をプレス加工することによって、間隙部を設けた状態で一体的に形成されていることが好ましい。これにより、内側に間隙部を有する突出部を容易に形成することができる。   Moreover, it is preferable that the said protrusion part is integrally formed in the state which provided the clearance gap by pressing the current collecting plate which consists of a flat plate. Thereby, the protrusion part which has a gap | interval part inside can be formed easily.

また、上記突出部は、該突出部の高さが、集電板の厚みよりも大きく形成されていることが好ましい。これにより、十分な量の溶融部材を極板端部の接合部に供給することができる。   Moreover, it is preferable that the said protrusion part is formed so that the height of this protrusion part is larger than the thickness of a current collecting plate. As a result, a sufficient amount of the melting member can be supplied to the joint at the end of the electrode plate.

また、上記突出部の内側に設けられた間隙部の幅は、集電板の厚み以下に形成されていることが好ましい。これにより、極板が当接していない集電板の部位でも、集電板が溶融して生成された溶融部材を、十分に大きな界面張力で間隙部内に保持することができる。   Moreover, it is preferable that the width | variety of the clearance gap provided in the inside of the said protrusion part is formed below in the thickness of a current collecting plate. As a result, the melted member generated by melting the current collector plate can be held in the gap with a sufficiently large interfacial tension even at the portion of the current collector plate where the electrode plate is not in contact.

また、上記突出部の内側に設けられた間隙部は、開口端において広くなっている、あるいは、開口端において狭くなっていることが好ましい。これにより、開口端の広狭に応じて、極板と集電板との接合部の幅及び深さを制御することができる。   Moreover, it is preferable that the gap | interval part provided inside the said protrusion part is wide at an opening end, or is narrow at an opening end. Thereby, the width and depth of the joint between the electrode plate and the current collector plate can be controlled according to the width of the opening end.

また、上記工程(c)において、電極群の全ての極板端部は、集電体の一の主面に当接されることが好ましい。これにより、溶接時において、極板端部でスパークが発生するのを防止することができる。   Moreover, in the said process (c), it is preferable that all the electrode plate edge parts of an electrode group are contact | abutted by one main surface of an electrical power collector. Thereby, it can prevent that a spark generate | occur | produces at the electrode plate edge part at the time of welding.

また、上記工程(d)において、少なくとも二以上の極板端部は、集電板の他の主面に形成された一の突出部が溶融して生成された溶融部材によって、集電板に溶接されることが好ましい。   Further, in the step (d), at least two or more electrode plate end portions are formed on the current collector plate by a melting member generated by melting one protrusion formed on the other main surface of the current collector plate. It is preferable to be welded.

本発明に係わる他の二次電池の製造方法は、正極板及び負極板が多孔質絶縁層を介して配置された電極群を備えた二次電池の製造方法であって、少なくとも一方の極性の極板の端部が、多孔質絶縁層から突出した状態で正極板及び負極板が多孔質絶縁層を介して配置された電極群を用意する工程(a)と、複数の貫通孔が形成された集電板を用意する工程(b)と、多孔質絶縁層から突出した極板の端部を集電板の他の主面に当接する工程(c)と、貫通孔に溶融金属を流入することによって、極板の端部と集電板とを接合する工程(d)とを有し、工程(d)において、極板端部は、貫通孔を通り極板端部に導かれた溶融金属によって集電板に溶接されることを特徴とする。なお、上記貫通孔の大きさは、集電板の厚み以下であることが好ましい。   Another method for producing a secondary battery according to the present invention is a method for producing a secondary battery comprising an electrode group in which a positive electrode plate and a negative electrode plate are disposed via a porous insulating layer, and having at least one polarity. A step (a) of preparing an electrode group in which a positive electrode plate and a negative electrode plate are arranged via a porous insulating layer with the end portion of the electrode plate protruding from the porous insulating layer; and a plurality of through holes are formed. Preparing the current collector plate (b), contacting the end of the electrode plate protruding from the porous insulating layer with the other main surface of the current collector plate, and flowing molten metal into the through hole A step (d) of joining the end portion of the electrode plate and the current collector plate, and in step (d), the electrode plate end portion is led to the electrode plate end portion through the through hole. It is welded to the current collector plate by molten metal. The size of the through hole is preferably equal to or less than the thickness of the current collector plate.

このような構成により、貫通孔に流入した溶融金属を、貫通孔を通って極板端部に速やかに導くことができるので、極板端部の接合部を、均一かつ確実に溶接することができる。また、極板が当接していない集電板の部位でも、貫通孔に流入した溶融金属は、貫通孔内において界面張力により保持されるため、集電板からの落下を防ぐことができる。これにより、安定した極板端部と集電板との接合部を備え、大電流放電に適した集電構造を有する二次電池を実現することができる。   With such a configuration, the molten metal that has flowed into the through hole can be quickly guided to the end of the electrode plate through the through hole, so that the joint at the end of the electrode plate can be welded uniformly and reliably. it can. Moreover, since the molten metal that has flowed into the through hole is held by the interfacial tension in the through hole even at the portion of the current collecting plate where the electrode plate is not in contact, it can be prevented from dropping from the current collecting plate. Thereby, the secondary battery which has the junction part of the stable electrode plate edge part and a current collector plate, and has a current collection structure suitable for a large current discharge is realizable.

ここで、上記溶融金属は、溶加棒を加熱することによって、該溶加棒が溶融して生成された溶融部材によって供給されることが好ましい。   Here, it is preferable that the molten metal is supplied by a melting member generated by melting the melt rod by heating the melt rod.

本発明に係わる二次電池は、正極板及び負極板が多孔質絶縁層を介して配置された電極群を備え、少なくとも一方の極性の極板の端部が多孔質絶縁層から突出し、該突出した極板の端部が、集電板の一の主面に当接した状態で該集電板に接合されており、極板端部は、集電板の他の主面に形成された突出部が溶融して生成された溶融部材が、突出部の内側に設けられた間隙部を通り極板端部に導かれて、集電板に溶接されていることを特徴とする。   The secondary battery according to the present invention includes an electrode group in which a positive electrode plate and a negative electrode plate are arranged via a porous insulating layer, and an end of at least one polar electrode plate protrudes from the porous insulating layer. The end of the electrode plate is joined to the current collector plate in contact with one main surface of the current collector plate, and the end of the electrode plate is formed on the other main surface of the current collector plate The melting member generated by melting the protrusion is guided to the end of the electrode plate through the gap provided inside the protrusion, and is welded to the current collector plate.

このような構成により、突出部が溶融して生成された溶融部材が、間隙部を通って極板端部に速やかに導かれているので、均一かつ確実に溶接された極板端部の接合部を得ることができる。また、極板が当接していない集電板の部位でも、集電板が溶融して生成された溶融部材は、集電板からの落下することなく、間隙部内において保持されている。これにより、安定した極板と集電板との接合部を備え、大電流放電に適した集電構造を有する二次電池を実現することができる。   With such a configuration, the molten member produced by melting the protruding portion is promptly guided to the end portion of the electrode plate through the gap portion, so that the end portions of the electrode plate that are welded uniformly and reliably can be joined. Part can be obtained. In addition, even at a portion of the current collector plate where the electrode plate is not in contact, the molten member generated by melting the current collector plate is held in the gap portion without falling from the current collector plate. Thereby, the secondary battery which has the junction part of the stable electrode plate and current collector plate, and has the current collection structure suitable for large current discharge is realizable.

ここで、上記電極群は、正極板及び負極板が多孔質絶縁層を介して捲回された構成をなし、極板端部の接合部は、集電板の一の主面内において、放射状の部位に形成されていることが好ましい。あるいは、上記電極群は、正極板及び負極板が多孔質絶縁層を介して積層された構成をなし、極板端部の接合部は、集電板の一の主面内において、正極板及び負極板の積層方向に平行な部位に形成されていることが好ましい。   Here, the electrode group has a configuration in which the positive electrode plate and the negative electrode plate are wound through a porous insulating layer, and the junction at the end of the electrode plate is radially within one main surface of the current collector plate. It is preferable that it is formed in this part. Alternatively, the electrode group has a configuration in which a positive electrode plate and a negative electrode plate are laminated via a porous insulating layer, and a joint portion at the end of the electrode plate is formed in the main surface of one of the current collector plates, It is preferably formed in a portion parallel to the lamination direction of the negative electrode plate.

このような構成により、多孔質絶縁層から突出した極板端部が、突出部が集電板の一の主面上を延びる方向と概ね直交した状態で、集電板の他の主面に当接しているため、確実に溶接された極板端部の接合部を得ることができる。   With such a configuration, the end portion of the electrode plate protruding from the porous insulating layer is placed on the other main surface of the current collector plate in a state where the protruding portion is substantially orthogonal to the direction in which the protruding portion extends on one main surface of the current collector plate. Since they are in contact with each other, it is possible to obtain a bonded portion of the electrode plate end portion that is reliably welded.

また、上記極板端部の接合部が形成された部位における集電板の他の主面は、凹部になっていることが好ましい。これにより、溶接された極板端部の接合部の状態を、目視により確認することができる。   Moreover, it is preferable that the other main surface of the current collecting plate in the part where the joint portion of the electrode plate end portion is formed is a concave portion. Thereby, the state of the junction part of the electrode plate edge part welded can be confirmed visually.

本発明の二次電池によれば、内側に間隙部を有する突出部が形成された集電板に、正極板(または負極板)の端部を当接した状態で、突出部を溶融させ、当該突出部が溶融して生成された溶融部材を、間隙部を通って正極板(または負極板)の端部に速やかに導くことによって、正極板(または負極板)端部を集電板に均一かつ確実に溶接することができる。また、正極板(または負極板)が当接していない集電板の部位でも、集電板が溶融して生成された溶融部材は、間隙部内において界面張力により保持されるため、集電板からの落下を防ぐことができる。これにより、安定した正極板(または負極板)と集電板との接合部を備え、大電流放電に適した集電構造を有する二次電池を実現することができる。   According to the secondary battery of the present invention, the projecting portion is melted in a state where the end portion of the positive electrode plate (or the negative electrode plate) is in contact with the current collector plate in which the projecting portion having the gap portion is formed inside. The molten member produced by melting the protruding portion is quickly guided to the end of the positive electrode plate (or negative electrode plate) through the gap portion, so that the end of the positive electrode plate (or negative electrode plate) becomes the current collector plate. It is possible to weld uniformly and reliably. In addition, even in a portion of the current collector plate where the positive electrode plate (or the negative electrode plate) is not in contact, the melted member generated by melting the current collector plate is held by the interfacial tension in the gap portion, and thus from the current collector plate Can prevent falling. Thereby, it is possible to realize a secondary battery having a current collecting structure suitable for high-current discharge, which includes a stable junction between the positive electrode plate (or negative electrode plate) and the current collector plate.

以下、本発明の実施の形態について、図面を参照しながら説明する。以下の図面においては、説明の簡略化のため、実質的に同一の機能を有する構成要素を同一の参照符号で示す。なお、本発明は以下の実施形態に限定されない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, components having substantially the same function are denoted by the same reference numerals for the sake of simplicity. In addition, this invention is not limited to the following embodiment.

(第1の実施形態)
図1は、本発明の第1の実施形態における二次電池の集電構造を模式的に示した図で、(a)は、正極板の端部1aを正極集電板10に当接した状態を示した斜視図、(b)は、正極板の端部1aを正極集電板10に接合した状態を示した断面図である。なお、本発明は、負極板の端部2a及び負極集電板11に対しても適用できることから、以下の説明では、正負の極性を区別することなく、単に、極板及び集電板と呼ぶ。勿論、本発明は、一方の極性に対してのみ適用するものも当然に含まれる。
(First embodiment)
FIG. 1 is a diagram schematically showing a current collecting structure of a secondary battery according to the first embodiment of the present invention. FIG. 1 (a) shows that an end 1 a of a positive electrode plate is in contact with a positive electrode current collecting plate 10. The perspective view which showed the state, (b) is sectional drawing which showed the state which joined the edge part 1a of the positive electrode plate to the positive electrode current collecting plate 10. FIG. In addition, since this invention is applicable also to the edge part 2a of the negative electrode plate, and the negative electrode current collector plate 11, in the following description, it does not distinguish positive / negative polarity, but only calls an electrode plate and a current collector plate. . Of course, the present invention naturally includes one that applies only to one polarity.

図1(a)に示すように、集電板10は、一の主面10a(図中では上面)の一部に、内側に間隙部12aを有する突出部12が形成されている。そして、後述する多孔質絶縁層から突出した極板端部1aが、集電板10の他の主面10bに当接している。ここで、突出部12が延びる方向(矢印Xの方向)は、極板端部1aが延びる方向(矢印Yの方向)と概ね直交している。   As shown in FIG. 1 (a), the current collector plate 10 is formed with a protruding portion 12 having a gap portion 12a on the inside on a part of one main surface 10a (upper surface in the drawing). An electrode plate end portion 1 a protruding from a porous insulating layer described later is in contact with the other main surface 10 b of the current collector plate 10. Here, the direction in which the protruding portion 12 extends (the direction of the arrow X) is substantially orthogonal to the direction in which the electrode plate end portion 1a extends (the direction of the arrow Y).

この状態で、突出部12を局所的に加熱することによって、突出部12を溶融させると、図1(b)に示すように、突出部12が溶融して生成された溶融部材が、間隙部12aを通り極板端部1aに導かれ、極板端部1aと集電板10とは、接合部9において溶融部材によって溶接される。なお、突出部12は、ある幅をもった領域で溶融するので、極板端部1aは、その両面において溶融部材により溶接される。また、突出部12が溶融する領域が、隣接する極板が当接する部位まで及んでいれば、2以上の極板端部1aを、集電板10に同時に溶接することもできる。この場合、極板端部1aが当接していない集電板10の部位にも、突出部12が溶融して溶融部材が生成されるが、ここで生成された溶融部材は、間隙部12a内において界面張力により保持されるため、集電板10から落下することはない。   In this state, when the protrusion 12 is melted by locally heating the protrusion 12, as shown in FIG. 1B, the melting member generated by melting the protrusion 12 becomes a gap portion. The electrode plate end portion 1a is guided to the electrode plate end portion 1a, and the electrode plate end portion 1a and the current collector plate 10 are welded to each other at the joint portion 9 by the melting member. In addition, since the protrusion part 12 fuse | melts in the area | region with a certain width | variety, the electrode plate edge part 1a is welded by the fusion | melting member in the both surfaces. Further, if the region where the protruding portion 12 melts extends to a portion where the adjacent electrode plates abut, two or more electrode plate end portions 1a can be welded to the current collector plate 10 at the same time. In this case, the projecting portion 12 is also melted to generate a melted member at a portion of the current collector plate 10 where the electrode plate end 1a is not in contact, but the melted member generated here is in the gap portion 12a. In this case, the current collector plate 10 is not dropped from the current collector plate 10.

また、溶融した突出部12は、溶融部材として極板端部の接合部9に供給されるため、図1(b)に示すように、極板端部1aの接合部9が形成された部位における集電板10の表面は、凹部になっている。これにより、溶接された極板端部の接合部9の状態を、目視により確認することができる。   Further, since the melted protruding portion 12 is supplied as a melting member to the joining portion 9 at the end portion of the electrode plate, as shown in FIG. 1B, the portion where the joining portion 9 of the end portion 1a of the electrode plate is formed. The surface of the current collector plate 10 in FIG. Thereby, the state of the welding part 9 of the electrode plate edge part welded can be confirmed visually.

なお、極板を構成する集電体の厚みが薄い場合には、極板端部1aが集電板10に当接する際の極板端部1aの変形を防ぐために、極板端部1aを、集電板10に対して概ね垂直に当接させることが好ましい。また、このようにすれば、突出部12が溶融して生成された溶融部材を、極板端部1aの両面に均一に導くことができ、より安定した接合部9を得ることができる。   When the current collector constituting the electrode plate is thin, in order to prevent deformation of the electrode plate end 1a when the electrode plate end 1a abuts on the current collector plate 10, the electrode plate end 1a is It is preferable that the current collector plate 10 is brought into contact with the current collector plate 10 substantially vertically. In this way, the molten member generated by melting the protruding portion 12 can be uniformly guided to both surfaces of the electrode plate end portion 1a, and a more stable joint portion 9 can be obtained.

以下、本発明における二次電池の具体的な製造方法について、図2〜図4を参照しながら説明する。   Hereinafter, a specific method for manufacturing a secondary battery according to the present invention will be described with reference to FIGS.

まず、図2(a)に示すように、正極集電体の幅方向に正極合剤が帯状に塗工された塗工部1bと未塗工部1aを有する正極板1と、図2(b)に示すように、負極集電体の幅方向に負極合剤が帯状に塗工された塗工部2bと未塗工部2aを有する負極板2とを用意する。   First, as shown in FIG. 2 (a), a positive electrode plate 1 having a coated portion 1b and a non-coated portion 1a coated with a positive electrode mixture in the width direction of the positive electrode current collector, and FIG. As shown to b), the coating part 2b by which the negative electrode mixture was coated in the strip | belt shape in the width direction of a negative electrode collector, and the negative electrode plate 2 which has the uncoated part 2a are prepared.

次に、図3(a)に示すように、正極板1の端部(未塗工部1a)と負極板2の端部(未塗工部2a)とを、互いに反対方向に多孔質絶縁層(不図示)から突出した状態で、正極板1及び負極板2を多孔質絶縁層を介して渦巻き状に捲回して、電極群4を形成する。   Next, as shown in FIG. 3 (a), the end of the positive electrode plate 1 (uncoated portion 1a) and the end of the negative electrode plate 2 (uncoated portion 2a) are porous insulated in opposite directions. In a state protruding from a layer (not shown), the positive electrode plate 1 and the negative electrode plate 2 are spirally wound through the porous insulating layer to form the electrode group 4.

ここで、多孔質絶縁層は、例えば、シャットダウン機能を有する樹脂からなる微多孔質膜、または、このような微多孔質膜とシャットダウン機能を有さない絶縁性粒子を含む耐熱性多孔質膜との積層膜からなる。   Here, the porous insulating layer is, for example, a microporous film made of a resin having a shutdown function, or a heat-resistant porous film including such microporous film and insulating particles not having a shutdown function. It consists of a laminated film.

また、図3(b)に示すように、円盤状の正極集電板10及び負極集電板11を用意し、その表面に、突出部12を放射状に形成する。図3(c)は、図3(b)のIIIc−IIIcに沿った突出部12の断面図で、突出部12の内側には間隙部12aが形成されている。ここで、突出部12は、例えば、平板からなる集電板10、11を、間隙部を設けた状態でプレス加工することによって、集電板10、11と一体的に形成することができる。なお、集電板10、11の形成にはプレス加工の他、切削加工や鍛造加工などを適用することも出来る。   Further, as shown in FIG. 3B, a disc-shaped positive current collector plate 10 and a negative current collector plate 11 are prepared, and protrusions 12 are radially formed on the surfaces thereof. FIG. 3C is a cross-sectional view of the protrusion 12 taken along IIIc-IIIc in FIG. 3B, and a gap 12 a is formed inside the protrusion 12. Here, the protruding portion 12 can be formed integrally with the current collecting plates 10 and 11 by, for example, pressing the current collecting plates 10 and 11 made of flat plates in a state where a gap portion is provided. The current collector plates 10 and 11 may be formed by pressing, forging, or the like in addition to press working.

ここで、正極板1及び負極板2は、渦巻き状に捲回されているので、極板端部1a、2aは、集電板10、11の面上を放射状に形成されている突出部12とは、どの部位においても概ね直交している。   Here, since the positive electrode plate 1 and the negative electrode plate 2 are wound in a spiral shape, the electrode plate end portions 1 a and 2 a are protruding portions 12 formed radially on the surfaces of the current collector plates 10 and 11. Is substantially orthogonal at any part.

次に、図3(a)に示した電極群4を、図3(b)に示した集電板10、11に対して、図1(a)に示したような状態で当接させ、突出部12を局所的に加熱することによって、極板端部1a、2aと集電板10、11とを、それぞれ突出部12が溶融して生成された溶融部材によって溶接する。ここで、極板端部1a、2aは、集電板10、11の面上に形成された突出部12と、どの部位においても概ね直交しているので、極板端部1a、2aを、集電板10、11に確実に溶接することができる。   Next, the electrode group 4 shown in FIG. 3A is brought into contact with the current collector plates 10 and 11 shown in FIG. 3B in the state shown in FIG. By locally heating the protrusion 12, the electrode plate end portions 1 a and 2 a and the current collector plates 10 and 11 are welded to each other by a melting member generated by melting the protrusion 12. Here, since the electrode plate end portions 1a and 2a are substantially orthogonal to the protrusions 12 formed on the surfaces of the current collector plates 10 and 11 in any part, the electrode plate end portions 1a and 2a are The current collector plates 10 and 11 can be reliably welded.

なお、図3(b)に示すように、電極群4の全ての極板端部1a、2aを、集電板10、11の面に当接するようにすることが好ましい。もし、極板端部1a、2aの一部が、集電板10、11の面からはみ出ていると、溶接する際、このはみ出た部分にスパークが発生することがあり、安定した溶接ができないおそれがあるからである。   As shown in FIG. 3B, it is preferable that all the electrode plate end portions 1a, 2a of the electrode group 4 are brought into contact with the surfaces of the current collecting plates 10, 11. If part of the electrode plate end portions 1a, 2a protrudes from the surfaces of the current collector plates 10, 11, sparks may be generated at the protruding portions during welding, and stable welding cannot be performed. Because there is a fear.

図4は、上記の方法により形成された集電構造を、電池容器13に収容して完成させた二次電池の構造を示した断面図である。負極集電板11は電池容器13の底部に、正極集電板10は正極リード15を介して封口板16にそれぞれ接続されている。また、電池容器13には、非水電解質(不図示)が注入され、ガスケット17を介して封口板16で密封されている。   FIG. 4 is a cross-sectional view showing the structure of a secondary battery in which the current collecting structure formed by the above method is accommodated in the battery container 13 and completed. The negative electrode current collector plate 11 is connected to the bottom of the battery container 13, and the positive electrode current collector plate 10 is connected to the sealing plate 16 via the positive electrode lead 15. Further, a nonaqueous electrolyte (not shown) is injected into the battery container 13 and sealed with a sealing plate 16 via a gasket 17.

以上の製造方法により製造された二次電池は、突出部12が溶融して生成された溶融部材が、間隙部12aを通って極板端部1a、2aに速やかに導かれているので、均一かつ確実に溶接された極板端部1a、2aの接合部を得ることができる。また、極板端部1a、2aが当接していない集電板10、11の部位でも、突出部12が溶融して生成された溶融部材は、集電板10、11から落下することなく、間隙部12a内において保持されている。これにより、安定した極板端部1a、2aと集電板10、11との接合部を備え、信頼性に優れ、かつ大電流放電に適した集電構造を有する二次電池を実現することができる。   In the secondary battery manufactured by the above manufacturing method, the molten member generated by melting the protruding portion 12 is promptly guided to the electrode plate end portions 1a and 2a through the gap portion 12a. And the junction part of the electrode plate edge part 1a, 2a welded reliably can be obtained. In addition, even in the region of the current collector plates 10 and 11 where the electrode plate end portions 1a and 2a are not in contact with each other, the molten member generated by melting the protruding portion 12 does not fall from the current collector plates 10 and 11, It is held in the gap 12a. As a result, a secondary battery having a current collector structure that has stable electrode plate end portions 1a, 2a and current collector plates 10, 11 and that is excellent in reliability and suitable for large current discharge is realized. Can do.

ところで、本願発明者等は、突出部12の形状を検討していたところ、突出部12の内側に形成する間隙部12aの形状を変えることによって、極板端部1a、2aの接合部9の形状を制御できることを見出した。   By the way, the inventors of the present application have been studying the shape of the protruding portion 12, and by changing the shape of the gap portion 12a formed inside the protruding portion 12, the joint portion 9 of the electrode plate end portions 1a and 2a is changed. It was found that the shape can be controlled.

図5(a)〜(c)は、突出部12の内側に形成される間隙部12aの形状と、極板端部1a、2aの接合部9の形状との関係を模式的に示した図である。図5(a)〜(c)において、左側の図は、極板端部1a、2aを集電板10、11に当接した状態を示し、右側の図は、突出部12を溶融させて、極板端部1a、2aを集電板10、11に溶接した状態を示している。   5A to 5C schematically show the relationship between the shape of the gap 12a formed inside the protrusion 12 and the shape of the joint 9 of the electrode plate end portions 1a and 2a. It is. 5 (a) to 5 (c), the left diagram shows a state in which the electrode plate end portions 1a and 2a are in contact with the current collector plates 10 and 11, and the right diagram shows the projection 12 being melted. The electrode plate end portions 1a and 2a are welded to the current collector plates 10 and 11, respectively.

図5(a)に示した突出部12における間隙部12aは、幅Wがほぼ一定の形状をなし、この場合、極板端部1a、2aの接合部9は、突出部12が溶融して生成された溶融部材が、極板端部1a、2aの表面に広がった形状となる。   The gap 12a in the protrusion 12 shown in FIG. 5A has a shape with a substantially constant width W. In this case, the protrusion 12 is melted at the joint 9 between the electrode plate end portions 1a and 2a. The generated melting member has a shape spreading on the surfaces of the electrode plate end portions 1a and 2a.

これに対し、図5(b)に示した突出部12における間隙部12aは、その開口端が幅Wよりも広がった形状をなし、この場合、極板端部1a、2aの接合部9は、突出部12が溶融して生成された溶融部材が、極板端部1a、2aの表面に広浅に広がった形状となる。   On the other hand, the gap portion 12a in the protruding portion 12 shown in FIG. 5B has a shape in which the opening end is wider than the width W. In this case, the joint portion 9 between the electrode plate end portions 1a and 2a is The molten member generated by melting the protruding portion 12 has a shape that spreads shallowly on the surfaces of the electrode plate end portions 1a and 2a.

また、図5(c)に示した突出部12における間隙部12aは、その開口端が幅Wよりも狭くなった形状をなし、この場合、極板端部1a、2aの接合部9は、突出部12が溶融して生成された溶融部材が、極板端部1a、2aの表面を狭深に広がった形状となる。   In addition, the gap portion 12a in the protruding portion 12 shown in FIG. 5C has a shape in which the opening end is narrower than the width W. In this case, the joint portion 9 between the electrode plate end portions 1a and 2a is: The molten member generated by melting the protruding portion 12 has a shape in which the surfaces of the electrode plate end portions 1a and 2a are spread deeply.

このように、突出部12の内側に形成する間隙部12aの形状を変えることによって、極板端部1a、2aの接合部9の形状を制御することができるので、例えば、複数の極板端部1a、2aを同時に溶接したい場合には、間隙部12aを図5(b)に示すような形状に、また、接合部9の面積を大きくして接合を強化したい場合には、間隙部12aを図5(c)に示すような形状にするとよい。   Thus, by changing the shape of the gap portion 12a formed inside the protruding portion 12, the shape of the joint portion 9 of the electrode plate end portions 1a and 2a can be controlled. When it is desired to weld the portions 1a and 2a at the same time, the gap portion 12a is shaped as shown in FIG. 5B, and when the area of the joint portion 9 is increased to strengthen the joint, the gap portion 12a is used. It is good to make it into a shape as shown in FIG.5 (c).

また、十分な溶融部材を接合部9に供給するためには、突出部12の高さHは、集電板10、11の厚みTよりも大きく形成されていることが好ましい。集電板10、11の本体部の厚みを変えずに、突出部12の高さHが高くなっても、突出部12自身の肉厚は変わらないので、突出部12に照射すべきエネルギーの量は一定でよく、しかも、突出部12が溶融して生成された溶融部材は、継続的に間隙部12aを通って極板端部1a、2aに速やかに導かれるため、極板端部1a、2aの接合部を、均一かつ確実に溶接することができる。   Further, in order to supply a sufficient melting member to the joint portion 9, the height H of the protruding portion 12 is preferably formed to be larger than the thickness T of the current collector plates 10 and 11. Even if the height H of the projecting portion 12 is increased without changing the thickness of the main body of the current collector plates 10 and 11, the thickness of the projecting portion 12 itself does not change. The amount may be constant, and the molten member generated by melting the protrusion 12 is continuously guided to the electrode plate end portions 1a and 2a through the gap portion 12a. 2a can be welded uniformly and reliably.

また、突出部12の内側に設けられた間隙部12aの幅Wは、集電板10、11の厚みT以下に形成されていることが好ましい。具体的には、0.5mm以下、より好ましくは0.2mm以下に形成されていることが好ましい。このようにすると、極板1、2が当接していない集電板10、11の部位でも、集電板10、11が溶融して生成された溶融部材が、間隙部12a内において界面張力により保持されるため、集電板10、11から落下するのを、より確実に防ぐことができる。なお、間隙部12aの好適な幅Wは、集電板10、11の材質や、突出部12を溶融させる加熱条件等によって、適宜決めることができる。   Moreover, it is preferable that the width W of the gap portion 12 a provided inside the protruding portion 12 is formed to be equal to or less than the thickness T of the current collector plates 10 and 11. Specifically, it is preferably 0.5 mm or less, more preferably 0.2 mm or less. In this way, even in the region of the current collector plates 10 and 11 where the electrode plates 1 and 2 are not in contact, the molten member generated by melting the current collector plates 10 and 11 is caused by the interfacial tension in the gap 12a. Since it is hold | maintained, it can prevent more reliably that it falls from the current collecting plates 10 and 11. FIG. A suitable width W of the gap portion 12a can be appropriately determined depending on the material of the current collector plates 10 and 11, the heating condition for melting the protruding portion 12, and the like.

ところで、図3(a)に示した電極群4は、正極板1及び負極板2を多孔質絶縁層を介して渦巻き状に捲回された構成であるが、図6(a)に示すように、正極板1及び負極板2を多孔質絶縁層(不図示)を介して積層された構成であってもよい。この場合、電極群4は、正極板1の端部1aと負極板2の端部2aとを、例えば、互いに反対方向に多孔質絶縁層から突出した状態で、正極板1及び負極板2を多孔質絶縁層を介して積層して形成される。   Incidentally, the electrode group 4 shown in FIG. 3A has a configuration in which the positive electrode plate 1 and the negative electrode plate 2 are spirally wound through a porous insulating layer, but as shown in FIG. 6A. Alternatively, the positive electrode plate 1 and the negative electrode plate 2 may be laminated via a porous insulating layer (not shown). In this case, the electrode group 4 includes the positive electrode plate 1 and the negative electrode plate 2 with the end portion 1a of the positive electrode plate 1 and the end portion 2a of the negative electrode plate 2 protruding from the porous insulating layer in opposite directions, for example. It is formed by laminating through a porous insulating layer.

このような構成の電極群4に対しては、集電板10、11は、図6(b)に示すように、矩形状のものが用いられる。そして、集電板10、11の表面に形成される突出部12は、正極板1及び負極板2の積層方向(矢印Dの方向)に平行に形成される。なお、突出部12は、図6(c)に示すように、突出部12の内側に間隙部12aが形成されている。   For the electrode group 4 having such a configuration, rectangular plates are used as the current collector plates 10 and 11 as shown in FIG. And the protrusion part 12 formed in the surface of the current collecting plates 10 and 11 is formed in parallel with the lamination direction (direction of arrow D) of the positive electrode plate 1 and the negative electrode plate 2. As shown in FIG. 6C, the protrusion 12 has a gap 12 a formed inside the protrusion 12.

ここで、正極板1及び負極板2の積層方向と突出部12とは、互いに平行に形成されているので、正極板1の端部1a及び負極板2の端部2aは、集電板10、11の面上に形成された突出部12とは、どの部位においても概ね直交している。   Here, since the stacking direction of the positive electrode plate 1 and the negative electrode plate 2 and the protruding portion 12 are formed in parallel to each other, the end portion 1 a of the positive electrode plate 1 and the end portion 2 a of the negative electrode plate 2 are connected to the current collector plate 10. , 11 is substantially orthogonal to the protrusion 12 formed on the surface.

図6(a)に示した電極群4を、図6(b)に示した集電板10、11に当接させ、突出部12を局所的に加熱することによって、極板端部1a、2aと集電板10、11とを、突出部12が溶融して生成された溶融部材によって、均一にかつ確実に溶接することができる。   The electrode group 4 shown in FIG. 6 (a) is brought into contact with the current collector plates 10 and 11 shown in FIG. 6 (b), and the protrusions 12 are locally heated, whereby the electrode plate end 1a, 2a and the current collector plates 10 and 11 can be welded uniformly and reliably by the melting member generated by melting the protrusion 12.

また、図1(a)に示すように、極板端部1a、2aは、集電板10、11の面上に形成された突出部12と直交していることが好ましいが、例えば、図7(a)に示すように、極板端部1a、2aが、集電板10、11の面上に形成された突出部12と平行になっていても、本発明の効果を得ることができる。   Further, as shown in FIG. 1 (a), the electrode plate end portions 1a and 2a are preferably orthogonal to the protruding portions 12 formed on the surfaces of the current collector plates 10 and 11. 7 (a), even if the electrode plate end portions 1a and 2a are parallel to the protrusions 12 formed on the surfaces of the current collector plates 10 and 11, the effects of the present invention can be obtained. it can.

この場合、突出部12における間隙部12aは、図5(b)に示したような、開口端が幅Wよりも広がった形状にしておくことが好ましい。このようにすれば、突出部12が溶融して生成された溶融部材は、集電板10、11の下面を広範囲に広がるので、図7(b)に示すように、突出部12から離れて位置する極板端部1a、2aの接合部9まで溶融部材が供給され、極板端部1a、2aを集電板10、11に溶接することができる。   In this case, it is preferable that the gap portion 12a in the protruding portion 12 has a shape in which the opening end is wider than the width W as shown in FIG. In this way, the melted member generated by melting the protrusion 12 spreads over the lower surface of the current collector plates 10 and 11, so that it is separated from the protrusion 12 as shown in FIG. The melting member is supplied up to the junction 9 of the electrode plate end portions 1 a and 2 a located, and the electrode plate end portions 1 a and 2 a can be welded to the current collector plates 10 and 11.

また、図8に示すように、電極群の極板間が比較的密である場合、少なくとも二以上の極板端部1a、2aを、集電板10、11の面上に形成された一の突出部12の近傍に当接させることによって、複数の極板端部1a、2aを、溶融して生成された溶融部材によって、一括して集電板10、11に溶接することができる。   Further, as shown in FIG. 8, when the electrode plates of the electrode group are relatively dense, at least two or more electrode plate end portions 1a, 2a are formed on the surfaces of the current collecting plates 10, 11. The plurality of electrode plate end portions 1a and 2a can be collectively welded to the current collector plates 10 and 11 by a melting member generated by melting.

以上、説明したように、本発明に係わる二次電池は、安定した極板端部と集電板との接合部を備え、信頼性に優れ、かつ大電流放電に適した集電構造を有するが、特に、正極板または負極板の集電体に、膜厚が50μm以下、より好適には20μm以下のアルミニウム箔または銅箔等が用いられる高出力のリチウムイオン二次電池に有効である。   As described above, the secondary battery according to the present invention includes a stable junction between the end portion of the electrode plate and the current collector plate, and has a current collection structure that is excellent in reliability and suitable for large current discharge. However, it is particularly effective for a high-power lithium ion secondary battery in which an aluminum foil or copper foil having a film thickness of 50 μm or less, more preferably 20 μm or less, is used for the current collector of the positive electrode plate or the negative electrode plate.

(第1の実施形態の変形例)
第1の実施形態において、集電板10、11の面上に形成される突出部12の形状の好適な例を図3(c)に示したが、これに限らず、種々の形状を有する突出部12を本発明に適用することができる。
(Modification of the first embodiment)
In 1st Embodiment, although the suitable example of the shape of the protrusion part 12 formed on the surface of the current collecting plates 10 and 11 was shown in FIG.3 (c), it has not only this but various shapes. The protrusion 12 can be applied to the present invention.

図9(a)、(b)は、集電板10、11の面上に形成された突出部12の形状を示した図で、図3(a)に示すように、正極板1及び負極板2が多孔質絶縁層を介して渦巻き状に捲回して形成された電極群に適用し得る。   FIGS. 9A and 9B are views showing the shape of the protrusions 12 formed on the surfaces of the current collector plates 10 and 11, and as shown in FIG. The present invention can be applied to an electrode group in which the plate 2 is spirally wound through a porous insulating layer.

図9(a)は、集電板10、11の面上を複数列、平行に形成された突出部12の形状の変形例を示した図である。このような形状の突出部12は、平板からなる集電板10、11を、間隙部を設けた状態でプレス加工することによって、容易に形成することができる。   FIG. 9A is a diagram showing a modification of the shape of the protruding portions 12 formed in parallel on the surfaces of the current collector plates 10 and 11 in a plurality of rows. The protruding portion 12 having such a shape can be easily formed by pressing the current collecting plates 10 and 11 made of a flat plate in a state where a gap portion is provided.

なお、正極板1及び負極板2は、渦巻き状に捲回されているので、正極板1の端部1a及び負極板2の端部2aは、集電板10、11と当接する部位において、突出部12とは種々の角度をもって交差するが、突出部12が配列する間隔を適当に設定することによって、極板端部1a、2aを集電板10、11に確実に溶接することができる。   In addition, since the positive electrode plate 1 and the negative electrode plate 2 are wound in a spiral shape, the end portion 1a of the positive electrode plate 1 and the end portion 2a of the negative electrode plate 2 are in contact with the current collector plates 10 and 11, respectively. Although it intersects with the protrusion 12 at various angles, the electrode plate end portions 1a and 2a can be reliably welded to the current collector plates 10 and 11 by appropriately setting the interval at which the protrusion 12 is arranged. .

図9(b)は、集電板10、11の面上を複数個、独立に形成された突出部12の形状の変形例を示した図である。この場合、独立した突出部12に、スポット的にエネルギーを照射すればよく、溶接時の温度上昇を抑えることができる。   FIG. 9B is a diagram showing a modification of the shape of the protruding portion 12 that is independently formed on the surfaces of the current collector plates 10 and 11. In this case, it is only necessary to irradiate the independent protrusion 12 with energy in a spot manner, and the temperature rise during welding can be suppressed.

図10(a)、(b)は、正極板1及び負極板2を多孔質絶縁層を介して捲回したものを圧縮して扁平状に変形させた電極群に対して、好適に適用することができる突出部12の例を示した図である。   FIGS. 10A and 10B are preferably applied to an electrode group in which a positive electrode plate 1 and a negative electrode plate 2 wound around a porous insulating layer are compressed and deformed into a flat shape. It is the figure which showed the example of the protrusion part 12 which can be.

図10(a)に示した突出部12は、矩形状の集電板10、11の長辺、短辺に対して垂直な方向に形成されたものである。このように形成された突出部12は、正極板1の端部1a及び負極板2の端部2aと、集電板10、11と当接する部位において、ほぼ垂直に交差するので、極板端部1a、2aを、集電板10、11に均一、かつ確実に溶接することができる。   The protrusion 12 shown in FIG. 10A is formed in a direction perpendicular to the long side and the short side of the rectangular current collector plates 10 and 11. The projecting portion 12 formed in this manner intersects the end 1a of the positive electrode plate 1 and the end 2a of the negative electrode plate 2 substantially perpendicularly at the portion where the current collector plates 10 and 11 are in contact with each other. The parts 1a and 2a can be welded to the current collector plates 10 and 11 uniformly and reliably.

図10(b)に示した突出部12は、集電板10、11の面上を複数個、独立に形成されたものである。この場合、独立した突出部12に、スポット的にエネルギーを照射すればよく、溶接時の温度上昇を抑えることができる。   A plurality of protrusions 12 shown in FIG. 10B are independently formed on the surfaces of the current collector plates 10 and 11. In this case, it is only necessary to irradiate the independent protrusion 12 with energy in a spot manner, and the temperature rise during welding can be suppressed.

次に、第1の実施形態において、突出部12の内側に形成される間隙部12aの形状の好適な例を、図5(a)〜(c)に示したが、これに限らず、種々の形状の間隙部12aを有する突出部12を本発明に適用することができる。   Next, in the first embodiment, suitable examples of the shape of the gap portion 12a formed inside the protruding portion 12 are shown in FIGS. 5A to 5C. The projecting portion 12 having the gap portion 12a of the shape can be applied to the present invention.

図11(a)〜(c)は、突出部12の内側に形成される間隙部12aの形状の変形例を示した図である。   FIGS. 11A to 11C are diagrams showing a modification of the shape of the gap portion 12 a formed inside the protruding portion 12.

図11(a)に示した間隙部12aは、開口端において広くなっており、この場合、突出部12が溶融して生成された溶融部材が、極板端部1a、2aの表面に広範囲に導かれるので、複数の極板端部1a、2aを集電板10、11に一度に溶接するのに好適である。   The gap 12a shown in FIG. 11 (a) is wide at the open end. In this case, the molten member generated by melting the protrusion 12 is spread over a wide area on the surface of the electrode plate end 1a, 2a. Therefore, it is suitable for welding the plurality of electrode plate end portions 1a, 2a to the current collector plates 10, 11 at a time.

また、図11(b)に示した間隙部12aは、開口端において狭くなっており、この場合、突出部12が溶融して生成された溶融部材が、極板端部1a、2aの表面に狭深に導かれるので、より強固に極板端部1a、2aを集電板10、11に接合するのに好適である。   Further, the gap portion 12a shown in FIG. 11B is narrow at the opening end, and in this case, a molten member generated by melting the protruding portion 12 is formed on the surface of the electrode plate end portions 1a and 2a. Since it is guided to a narrow depth, it is suitable for more strongly joining the electrode plate end portions 1a, 2a to the current collector plates 10, 11.

また、図11(c)に示した間隙部12aは、開口端において突起(または舌片)12bを有しているので、突出部12が溶融して生成された溶融部材が、集電板10、11から離脱することなく、極板端部1a、2aの表面に導かれるので、信頼性の高い接合を得ることができる。   Further, the gap portion 12a shown in FIG. 11C has a projection (or tongue piece) 12b at the opening end, so that the molten member generated by melting the protruding portion 12 is the current collecting plate 10. , 11 without being separated from the electrode plate, the lead plate ends 1a and 2a are guided to the surface, so that highly reliable bonding can be obtained.

次に、第1の実施形態において、極板端部1a、2aは、図2(a)、(b)に示したように、合剤が塗工されていない未塗工部1a、2aで構成したが、正極板1(または負極板2)を構成する集電体の膜厚が薄い場合、極板端部1a、2aを、集電板10、11に当接させた際、あるいは、極板端部1a、2aの接合部9を溶接した際、極板端部1a、2aが折れ曲がるおそれがある。   Next, in 1st Embodiment, as shown to Fig.2 (a), (b), the electrode plate edge part 1a, 2a is uncoated part 1a, 2a to which the mixture is not applied. When the current collector constituting the positive electrode plate 1 (or the negative electrode plate 2) is thin, when the electrode plate end portions 1a and 2a are brought into contact with the current collector plates 10 and 11, or When the joint portion 9 between the electrode plate end portions 1a and 2a is welded, the electrode plate end portions 1a and 2a may be bent.

図12(a)、(b)は、正極板1の端部1a及び負極板2の端部2aの一部に、補強層30を設けた正極板1及び負極板2の構成を示した図である。すなわち、図12(a)、(b)に示すように、合剤が塗工されていない未塗工部1a、2aのうち、集電板10、11と溶接される部位に補強層30を設けた構成である。ここで、補強層30は、合剤塗工部1b、2bの厚みと同程度またはそれよりも薄い厚みに形成することが好ましい。これにより、電極群の捲回数を減少させることなく、極板端部1a、2aの折れ曲がりを防止することができる。   FIGS. 12A and 12B are diagrams showing configurations of the positive electrode plate 1 and the negative electrode plate 2 in which a reinforcing layer 30 is provided on part of the end portion 1a of the positive electrode plate 1 and the end portion 2a of the negative electrode plate 2. FIG. It is. That is, as shown in FIGS. 12 (a) and 12 (b), the reinforcing layer 30 is applied to the portions to be welded to the current collector plates 10 and 11 in the uncoated portions 1a and 2a that are not coated with the mixture. This is a configuration provided. Here, the reinforcing layer 30 is preferably formed to a thickness that is the same as or thinner than the thickness of the mixture coating portions 1b and 2b. Thereby, the bending of the electrode plate end portions 1a and 2a can be prevented without reducing the number of times of winding of the electrode group.

ここで、補強層30は、例えば、アルミナなどの無機酸化物フィラー、結着剤、及び適量のN−メチル−2−ピロリドン(以下、「NMP」と記す)を混練して作製したスラリーを、未塗工部1a、2aに塗布した後、乾燥させて形成することができる。   Here, the reinforcing layer 30 is, for example, a slurry prepared by kneading an inorganic oxide filler such as alumina, a binder, and an appropriate amount of N-methyl-2-pyrrolidone (hereinafter referred to as “NMP”), After applying to the uncoated portions 1a and 2a, it can be formed by drying.

図13は、図12(a)、(b)に示した正極板1及び負極板2を多孔質絶縁層3を介して渦巻き状に捲回して電極群4を形成した後、電極群4を集電板10、11に溶接して形成した集電構造を、電池容器13に収容して完成させた二次電池の構造を示した断面図である。   FIG. 13 shows the electrode group 4 after the positive electrode plate 1 and the negative electrode plate 2 shown in FIGS. 12A and 12B are spirally wound through the porous insulating layer 3 to form the electrode group 4. FIG. 3 is a cross-sectional view showing a structure of a secondary battery in which a current collecting structure formed by welding to current collecting plates 10 and 11 is accommodated in a battery container 13 and completed.

(第2の実施形態)
第1の実施形態においては、内側に間隙部12aを有する突出部12を溶融させて、当該突出部12が溶融して生成された溶融部材を、間隙部12aを通り極板端部1a、2aに導くことによって、極板端部1a、2aを集電板10、11に溶接したものであるが、本実施形態においては、かかる溶融部材を外部から供給するようにしたものである。
(Second Embodiment)
In the first embodiment, the projecting portion 12 having the gap portion 12a on the inside is melted, and the molten member generated by melting the projecting portion 12 passes through the gap portion 12a and the electrode plate end portions 1a, 2a. In this embodiment, the melting member is supplied from the outside. In this embodiment, the electrode plate end portions 1a and 2a are welded to the current collector plates 10 and 11, respectively.

図14(a)は、本実施形態における集電板10、11の構成を模式的に示した断面図で、集電板10、11には、複数の貫通孔20(図中では1個のみを表示)が形成されている。そして、例えば、図3(a)または図6(a)に示したような、多孔質絶縁層から突出した極板端部1a、2aを、複数の貫通孔20が形成された集電板10、11に当接させた状態で、貫通孔20に溶融金属を流入することによって、極板端部1a、2aは集電板10、11に溶接により接合される。   FIG. 14A is a cross-sectional view schematically showing the configuration of the current collector plates 10 and 11 in the present embodiment. The current collector plates 10 and 11 have a plurality of through holes 20 (only one in the drawing). Is formed). Then, for example, as shown in FIG. 3 (a) or FIG. 6 (a), the current collector plate 10 in which a plurality of through holes 20 are formed on the electrode plate end portions 1a and 2a protruding from the porous insulating layer. When the molten metal flows into the through-hole 20 in a state of being brought into contact with the electrode 11, the electrode plate end portions 1a and 2a are joined to the current collector plates 10 and 11 by welding.

このように、本実施形態においては、貫通孔20に流入した溶融金属を、貫通孔20を通って極板端部1a、2aに速やかに導くことができるので、極板端部1a、2aの接合部を、均一かつ確実に溶接することができる。また、極板端部1a、2aが当接していない集電板10、11の部位でも、貫通孔20に流入された溶融金属は、貫通孔20内において界面張力により保持されるため、集電板10、11からの落下を防ぐことができる。これにより、安定した極板端部1a、2aと集電板10、11との接合部を備え、大電流放電に適した集電構造を有する二次電池を実現することができる。   Thus, in the present embodiment, the molten metal that has flowed into the through hole 20 can be quickly guided to the electrode plate end portions 1a, 2a through the through hole 20, so that the electrode plate end portions 1a, 2a The joint can be welded uniformly and reliably. Further, the molten metal that has flowed into the through-hole 20 is also retained in the through-hole 20 by the interfacial tension even at the portions of the current-collecting plates 10 and 11 that are not in contact with the electrode plate end portions 1a and 2a. Drops from the plates 10 and 11 can be prevented. Thereby, the secondary battery which has the junction part of stable electrode plate edge part 1a, 2a and the current collecting plates 10 and 11 and has a current collection structure suitable for large current discharge is realizable.

ここで、溶融金属は、例えば、溶加棒を加熱することによって、溶加棒が溶融して生成された溶融部材によって供給することができる。   Here, the molten metal can be supplied by, for example, a melting member generated by melting the melt rod by heating the melt rod.

また、貫通孔20の孔の大きさWは、集電板10、11の厚み以下に形成されていることが好ましい。具体的には、0.5mm以下、より好ましくは0.2mm以下に形成されていることが好ましい。このようにすると、極板端部1a、2aが当接していない集電板10、11の部位でも、貫通孔20に流入された溶融金属が、貫通孔20内において界面張力により保持されるため、集電板10、11から落下するのを、より確実に防ぐことができる。   Further, the size W of the through hole 20 is preferably formed to be equal to or less than the thickness of the current collector plates 10 and 11. Specifically, it is preferably 0.5 mm or less, more preferably 0.2 mm or less. By doing so, the molten metal that has flowed into the through-hole 20 is retained by the interfacial tension in the through-hole 20 even in the current collector plates 10 and 11 where the electrode plate end portions 1a and 2a are not in contact. Moreover, it can prevent more reliably that it falls from the current collecting plates 10 and 11. FIG.

ところで、第1の実施形態のところで説明したのと同様に、集電板10、11に形成された貫通孔20の形状を変えることによって、極板端部1a、2aの接合部9の形状を制御することができる。   By the way, in the same manner as described in the first embodiment, the shape of the joint portion 9 of the electrode plate end portions 1a and 2a is changed by changing the shape of the through holes 20 formed in the current collector plates 10 and 11. Can be controlled.

例えば、図14(b)に示すように、貫通孔20の開口端を孔の大きさWよりも広がった形状にした場合には、貫通孔20に流入された溶融金属が、極板端部1a、2aの表面に広範囲に導かれるので、複数の極板端部1a、2aを集電板10、11に一度に溶接するのに好適である。   For example, as shown in FIG. 14B, when the opening end of the through hole 20 is made wider than the size W of the hole, the molten metal that has flowed into the through hole 20 Since it is led over a wide range to the surfaces of 1a and 2a, it is suitable for welding a plurality of electrode plate end portions 1a and 2a to the current collector plates 10 and 11 at a time.

また、図14(c)に示すように、貫通孔20の開口端を孔の大きさWよりも狭くなった形状にした場合には、貫通孔20に流入された溶融金属が、極板端部1a、2aの表面に狭深に導かれるので、極板端部1a、2aを集電板10、11により強固に接合するのに好適である。   In addition, as shown in FIG. 14C, when the opening end of the through hole 20 has a shape narrower than the size W of the hole, the molten metal that has flowed into the through hole 20 Since it is guided to the surface of the portions 1a and 2a in a narrow depth, it is suitable for firmly joining the electrode plate end portions 1a and 2a to the current collector plates 10 and 11.

さらに、図14(d)に示すように、貫通孔20の開口端に突起(または舌片)を設けた形状にした場合には、貫通孔20に流入された溶融金属が、集電板10、11から離脱することなく、極板端部1a、2aの表面に導かれるので、信頼性の高い接合を得ることができる。   Furthermore, as shown in FIG. 14 (d), when the projection (or tongue piece) is provided at the opening end of the through-hole 20, the molten metal that has flowed into the through-hole 20 flows into the current collector plate 10. , 11 without being separated from the electrode plate, the lead plate ends 1a and 2a are guided to the surface, so that highly reliable bonding can be obtained.

図15(a)〜(c)は、集電板10、11に形成された貫通孔20の配列の一例を示した図で、これらの集電板10、11は、正極板1及び負極板2が渦巻き状に捲回して形成された電極群に適用することができる。   FIGS. 15A to 15C are diagrams showing an example of the arrangement of the through holes 20 formed in the current collector plates 10 and 11. These current collector plates 10 and 11 are the positive electrode plate 1 and the negative electrode plate. 2 can be applied to an electrode group formed by spirally winding.

図15(a)は、貫通孔20が集電板10、11の面上を放射状に配置された例、図15(b)は、貫通孔20が集電板10、11の面上を平行に配置された例、図15(c)は、貫通孔20が集電板10、11の面上を複数箇所に配置された例をそれぞれ示す。   15A shows an example in which the through holes 20 are arranged radially on the surfaces of the current collector plates 10 and 11, and FIG. 15B shows a case in which the through holes 20 are parallel on the surfaces of the current collector plates 10 and 11. FIG. 15C shows an example in which the through holes 20 are arranged at a plurality of locations on the surfaces of the current collector plates 10 and 11.

本実施形態では、これらの貫通孔20は、例えば、プレスの打ち抜き加工により形成することができるので、第1の実施形態における突出部12を形成するよりも、容易に形成することができる。   In the present embodiment, these through-holes 20 can be formed, for example, by punching a press, so that they can be formed more easily than the protrusions 12 in the first embodiment.

以下に、本発明をリチウムイオン二次電池に適応した実施例を説明する。   Examples in which the present invention is applied to a lithium ion secondary battery will be described below.

(実施例1)
(1)正極板の作製
正極活性物質としてコバルト酸リチウム粉末を85重量部、導電剤として炭素粉末を10重量部、結着剤としてポリフッ化ビニリデン(PVDF)を5重量部、それぞれ混合して正極合剤を作製した。
(Example 1)
(1) Preparation of positive electrode plate Positive electrode by mixing 85 parts by weight of lithium cobaltate powder as a positive electrode active material, 10 parts by weight of carbon powder as a conductive agent, and 5 parts by weight of polyvinylidene fluoride (PVDF) as a binder. A mixture was prepared.

次に、正極合剤を、厚み15μm、幅56mmのアルミニウム箔の正極集電体の両面に塗布し、正極合剤を乾燥した後、正極合剤塗工部を圧延して、厚みが150μmの正極板を作製した。このときの正極合剤塗工部の幅は50mm、正極合剤未塗工部の幅は6mmであった。   Next, the positive electrode mixture was applied to both surfaces of a positive electrode current collector of aluminum foil having a thickness of 15 μm and a width of 56 mm, and after drying the positive electrode mixture, the positive electrode mixture coating portion was rolled to obtain a thickness of 150 μm. A positive electrode plate was produced. At this time, the width of the positive electrode mixture coated portion was 50 mm, and the width of the positive electrode mixture uncoated portion was 6 mm.

(2)負極板の作製
負極活性物質として人造黒鉛粉末を95重量部、結着剤としてPVDFを5重量部、それぞれ混合して負極合剤を作製した。
(2) Production of negative electrode plate A negative electrode mixture was produced by mixing 95 parts by weight of artificial graphite powder as a negative electrode active substance and 5 parts by weight of PVDF as a binder.

次に、負極合剤を、厚み10μm、幅57mmの銅箔の負極集電体の両面に塗布し、負極合剤を乾燥した後、負極合剤塗工部を圧延して、厚みが160μmの負極板を作製した。このときの負極合剤塗工部の幅は52mm、負極合剤未塗工部の幅は5mmであった。   Next, the negative electrode mixture was applied to both surfaces of a negative electrode current collector of copper foil having a thickness of 10 μm and a width of 57 mm, and after drying the negative electrode mixture, the negative electrode mixture coating portion was rolled to obtain a thickness of 160 μm. A negative electrode plate was produced. At this time, the width of the negative electrode mixture coated portion was 52 mm, and the width of the negative electrode mixture uncoated portion was 5 mm.

(3)電極群の作製
上記のように作製した正極板及び負極板を、正極合剤塗工部と負極合剤塗工部を覆うように、幅53mm、厚み25μmのポリプロピレン樹脂製微多孔フィルムよりなる多孔質絶縁層を介して渦巻き状に捲回し、電極群を作製した。
(3) Production of electrode group The microporous film made of polypropylene resin having a width of 53 mm and a thickness of 25 μm covers the positive electrode plate and the negative electrode plate produced as described above so as to cover the positive electrode mixture coating portion and the negative electrode mixture coating portion. The electrode group was produced by spirally winding the porous insulating layer.

(4)集電板の作製
厚み0.5mm、50mm角のアルミニウム板をプレス加工して、高さが1mm、間隙部が0.2mmの突出部をアルミニウム板の面上に平行に形成した。このアルミニウム板をプレスで打ち抜いて、中央部に直径7mmの穴を有した、直径24mmの円板状の正極集電体を作製した。同様の方法で、厚み0.3mmの銅板からなる負極集電板を作製した。
(4) Production of current collector plate An aluminum plate having a thickness of 0.5 mm and a 50 mm square was pressed to form protrusions having a height of 1 mm and a gap portion of 0.2 mm in parallel on the surface of the aluminum plate. This aluminum plate was punched out with a press to produce a disc-shaped positive electrode current collector with a diameter of 24 mm having a hole with a diameter of 7 mm in the center. In the same manner, a negative electrode current collector plate made of a copper plate having a thickness of 0.3 mm was produced.

(5)集電構造の作製
上記のように作製した電極群を正極集電板及び負極集電板に当接させて、TIG(Tungsten Inert Gas)溶接により電極群を正極集電板及び負極集電板に溶接して、集電構造を作製した。このとき、TIG溶接の条件は、正極集電板及び負極集電板とも、電流120A、時間50msであった。
(5) Production of current collecting structure The electrode group produced as described above is brought into contact with the positive electrode current collecting plate and the negative electrode current collecting plate, and the electrode group is made positive electrode current collecting plate and negative electrode current collecting member by TIG (Tungsten Inert Gas) welding. A current collecting structure was fabricated by welding to an electric plate. At this time, the TIG welding conditions were a current of 120 A and a time of 50 ms for both the positive current collector and the negative current collector.

(6)リチウムイオン二次電池の作製
上記のように作製した集電構造を、片側のみ開口した円筒型の電池容器に挿入し、負極集電部板を電池容器に抵抗溶接した後、絶縁板を間に配して、正極集電部板と封口板とをアルミニウム製の正極リードを介して電池容器にレーザ溶接した。
(6) Production of lithium ion secondary battery The current collecting structure produced as described above was inserted into a cylindrical battery container opened on only one side, and the negative electrode current collector plate was resistance welded to the battery container, and then an insulating plate The positive electrode current collector plate and the sealing plate were laser welded to the battery container via an aluminum positive electrode lead.

次に、非水溶媒として、エチレンカーボネートとエチルメチルカーボネートを体積比1:1で混合し、これを、六フッ化リン酸リチウム(LiPF6)の溶質に溶解させて、水電解質を作製した。   Next, as a non-aqueous solvent, ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 1, and this was dissolved in a solute of lithium hexafluorophosphate (LiPF6) to prepare a water electrolyte.

次に、電池容器を加熱して乾燥した後、電池容器に非水電解質を注入した後、封口板をガスケットを介して電池容器でかしめて封止し、直径26mm、高さ65mmの大きさで、型設計容量が2600mAhの円筒型リチウムイオン二次電池(サンプル1)を作製した。   Next, after heating and drying the battery container, a non-aqueous electrolyte is injected into the battery container, and then the sealing plate is caulked with the battery container through a gasket and sealed, with a diameter of 26 mm and a height of 65 mm. A cylindrical lithium ion secondary battery (Sample 1) having a mold design capacity of 2600 mAh was produced.

(実施例2)
本実施例は、集電板に貫通孔を設けたものである。
(Example 2)
In this embodiment, through holes are provided in the current collector plate.

(1)集電板の作製
厚み0.5mm、50mm角のアルミニウム板をプレスで打ち抜き加工して、直径が 0.2mmの貫通孔をアルミニウム板の面上に放射状に形成した。このアルミニウム板をプレスで打ち抜いて、中央部に直径7mmの穴を有した、直径24mmの円板状の正極集電体を作製した。同様の方法で、厚み0.3mmの銅板からなる負極集電板を作製した。
(1) Production of current collector plate An aluminum plate having a thickness of 0.5 mm and a 50 mm square was punched out with a press to form through holes having a diameter of 0.2 mm radially on the surface of the aluminum plate. This aluminum plate was punched out with a press to produce a disc-shaped positive electrode current collector with a diameter of 24 mm having a hole with a diameter of 7 mm in the center. In the same manner, a negative electrode current collector plate made of a copper plate having a thickness of 0.3 mm was produced.

(2)集電構造の作製
実施例1と同様の方法で作成した電極群を、上記により作製した正極集電板及び負極集電板に当接させて、TIG溶接により銅製の溶加棒を溶融させて溶融金属を貫通孔に流入し、電極群を正極集電板及び負極集電板に溶接して、集電構造を作製した。このとき、TIG溶接の条件は、正極集電板に対して、電流120A、時間30ms、負極集電板に対して、電流120A、時間50msであった。
(2) Production of current collecting structure An electrode group produced by the same method as in Example 1 was brought into contact with the positive electrode current collector plate and the negative electrode current collector plate produced as described above, and a copper filler rod was bonded by TIG welding. The molten metal was poured into the through-hole and the electrode group was welded to the positive electrode current collector plate and the negative electrode current collector plate to produce a current collecting structure. At this time, the TIG welding conditions were a current of 120 A and a time of 30 ms for the positive electrode current collector plate, a current of 120 A and a time of 50 ms for the negative electrode current collector plate.

(3)リチウムイオン二次電池の作製
以上の方法で作成した集電構造を用いて、実施例1と同様の方法で、リチウムイオン二次電池(サンプル2)を作製した。
(3) Production of Lithium Ion Secondary Battery A lithium ion secondary battery (Sample 2) was produced in the same manner as in Example 1 using the current collecting structure created by the above method.

(実施例3)
本実施例は、実施例1で作製した正極板及び負極板の各端部に補強層を設けたものである。
(Example 3)
In this example, a reinforcing layer is provided at each end of the positive electrode plate and the negative electrode plate produced in Example 1.

(1)正極板、負極板の作製
まず、無機酸化物フィラーであるアルミナと、ポリアクリロニトリル変性ゴム結着剤とを、N−メチルピロリドン(NMP)に混練し、補強層用のスラリーを作製した。
(1) Preparation of positive electrode plate and negative electrode plate First, alumina as an inorganic oxide filler and a polyacrylonitrile-modified rubber binder were kneaded in N-methylpyrrolidone (NMP) to prepare a slurry for a reinforcing layer. .

次に、正極合剤塗工部に接する正極合剤未塗工部の一部に、作製したスラリーを幅4mm、厚み62.5μmでもって塗布した後、スラリーを乾燥させて補強層を形成した。このときの補強層の厚みは、正極合剤塗工部の厚みとほぼ同じであった。同様の方法で、負極板にも、幅4mm、厚み75μmの補強層を形成した。   Next, after applying the prepared slurry with a width of 4 mm and a thickness of 62.5 μm to a part of the positive electrode mixture uncoated portion in contact with the positive electrode mixture coated portion, the slurry was dried to form a reinforcing layer. . The thickness of the reinforcing layer at this time was almost the same as the thickness of the positive electrode mixture coating portion. In the same manner, a reinforcing layer having a width of 4 mm and a thickness of 75 μm was also formed on the negative electrode plate.

(2)リチウムイオン二次電池の作製
以上の方法で作成した正極板及び負極板を用いて、実施例1と同様の方法で、リチウムイオン二次電池(サンプル3)を作製した。
(2) Production of Lithium Ion Secondary Battery A lithium ion secondary battery (Sample 3) was produced in the same manner as in Example 1 using the positive electrode plate and the negative electrode plate created by the above method.

(比較例1)
実施例1と同様の正極板、負極板を用いて電極群を作製した後に、正極板端部及び負極板端部をそれぞれ巻回軸芯方向に押圧して平坦面を形成した。そして、正極板端部の平坦面を、アルミニウムからなる正極集電板(厚み0.5mm、直径24mm)に当接して、レーザ溶接により正極板端部の平坦面を正極集電板に溶接した。同様に、負極板端部の平坦面を、銅からなる負極集電板(厚み0.3mm、直径24mm)に当接して、レーザ溶接により負極板端部の平坦面を負極集電板に溶接した。このとき、レーザ溶接の条件は、正極集電板に対しては、電流125A、時間1.2秒、負極集電板に対しては、電流95A、時間1.4秒であった。
(Comparative Example 1)
After producing an electrode group using the same positive electrode plate and negative electrode plate as in Example 1, the positive electrode plate end and the negative electrode plate end were each pressed in the direction of the winding axis to form a flat surface. The flat surface at the end of the positive electrode plate was brought into contact with the positive electrode current collector plate (thickness 0.5 mm, diameter 24 mm) made of aluminum, and the flat surface at the end of the positive electrode plate was welded to the positive electrode current collector plate by laser welding. . Similarly, the flat surface at the end of the negative electrode plate is brought into contact with a negative electrode current collector plate (thickness 0.3 mm, diameter 24 mm) made of copper, and the flat surface at the end of the negative electrode plate is welded to the negative electrode current collector plate by laser welding. did. At this time, the laser welding conditions were a current of 125 A and a time of 1.2 seconds for the positive current collector, and a current of 95 A and a time of 1.4 seconds for the negative current collector.

以上の方法で作製された集電構造を用いて、実施例1と同様の方法で、リチウムイオン二次電池(サンプル4)を作製した。   A lithium ion secondary battery (sample 4) was produced in the same manner as in Example 1 using the current collecting structure produced by the above method.

(比較例2)
厚み1.5mmのアルミニウム板をプレスで打ち抜いて、中央部に直径7mmの穴の空いた直径24mmの円板状に加工した後、アルミニウム板の表面の一部を切削して、突出高さが1mmの突出部が平行に形成された正極集電板を作製した。同様の方法により、突出部が形成された銅板(厚み1.3mm)からなる負極集電板を作製した。
(Comparative Example 2)
An aluminum plate with a thickness of 1.5 mm is punched out with a press and processed into a disk shape with a diameter of 7 mm and a hole with a diameter of 7 mm in the center, and then a part of the surface of the aluminum plate is cut to obtain a protrusion height. A positive electrode current collector plate having 1 mm protrusions formed in parallel was produced. By the same method, a negative electrode current collector plate made of a copper plate (thickness 1.3 mm) on which protrusions were formed was produced.

以上の方法で作製された正極集電板及び負極集電板を用いて、実施例1と同様の方法で、リチウムイオン二次電池(サンプル5)を作製した。   A lithium ion secondary battery (Sample 5) was produced in the same manner as in Example 1 using the positive electrode current collector plate and the negative electrode current collector plate produced by the above method.

次に、以上のように作製したサンプル1〜5のリチウムイオン二次電池を各50個準備し、以下のような評価を行った。   Next, 50 lithium ion secondary batteries of Samples 1 to 5 prepared as described above were prepared and evaluated as follows.

(極板端部と集電板との接合部の外観検査)
サンプル1〜3のいずれにおいても、接合部の穴あき、集電体(極板)の破損は観察されなかった。一方、サンプル4では、数個の接合部の穴あきが観察された。また溶融した金属が極板端部上に導かれていないものもあった。また、サンプル5では、接合部の穴あきや集電体(極板)の破損が多数観察された。またサンプル5では、突出部を溶融する際、溶融した金属が極板端部上に導かれていなかったり、あるいは、集電板の本体部ごと溶融して抜け落ちてしまったり、接合部のバラツキが大きかった。
(Appearance inspection of the joint between the electrode plate end and the current collector plate)
In any of Samples 1 to 3, no hole was formed in the joint, and no damage to the current collector (electrode plate) was observed. On the other hand, in Sample 4, several perforations were observed. In some cases, the molten metal was not guided onto the end of the electrode plate. Further, in sample 5, many holes in the joint and damage to the current collector (electrode plate) were observed. In sample 5, when the protrusion is melted, the melted metal is not guided onto the end of the electrode plate, or the main body of the current collector plate melts and falls off, and there is a variation in the joint. It was big.

(極板端部の折れ曲がり状態の観察)
サンプル1、2においては、合剤部に歪が生じるほどの折れ曲がりはほとんど観察されず、溶接する際に集電板を当接させたときに若干の曲がりが生じただけであった。また、サンプル3は補強層があることで折れ曲がりは皆無であった。また、サンプル1〜3のいずれにおいても、合剤の剥離や損傷はまったく観察されなかった。一方、サンプル4では、極板端部を押圧して平坦面を成形した段階で合剤部の破損が多数観察された。サンプル5では、接合部の穴あきや集電体の破損があったものでも、折れ曲がりは観察されなかったが、合剤部の破損や集電板と接続されていない極板端部が多数観察された。
(Observation of the bent state of the end of the electrode plate)
In Samples 1 and 2, bending to such an extent that the mixture portion was distorted was hardly observed, and only slight bending was caused when the current collector plate was brought into contact during welding. Sample 3 was not bent at all because of the reinforcing layer. In any of Samples 1 to 3, no peeling or damage of the mixture was observed. On the other hand, in Sample 4, many damages to the mixture portion were observed at the stage where the end portion of the electrode plate was pressed to form a flat surface. In sample 5, bending was not observed even if there was a hole in the joint or the current collector was damaged, but there was a lot of damage to the mixture and the end of the electrode plate not connected to the current collector. It was done.

(引っ張り強度の測定)
極板端子と集電板との引っ張り強度を、JIS Z2241に基づいて、各サンプルから5個ずつ抜き取り測定した。具体的には、引っ張り試験機の一方に電極群を保持し、他方に集電板を保持した状態で、一定の速度で軸方向に引っ張り、接合部が外れたときの荷重を引っ張り強度とした。
(Measurement of tensile strength)
The tensile strength between the electrode plate terminal and the current collector plate was measured by extracting five pieces from each sample based on JIS Z2241. Specifically, with the electrode group held on one side of the tensile tester and the current collector plate held on the other side, it was pulled in the axial direction at a constant speed, and the load when the joint was removed was taken as the tensile strength. .

その結果、サンプル1〜3のいずれにおいても、引っ張り強度が50N以上であった。一方、サンプル4では1/5個が、サンプル5では、3/5個が10N以下の引っ張り強度で接合部が外れた。   As a result, in any of samples 1 to 3, the tensile strength was 50 N or more. On the other hand, 1/5 pieces in sample 4 and 3/5 pieces in sample 5 were disconnected at a tensile strength of 10 N or less.

(電池の内部抵抗の測定)
各サンプルを、1250mAの定電流で4.2Vまで充電した後、1250mAの定電流で3.0Vまで放電する充放電を、3サイクル繰り返した後、1kHzの交流で、二次電池の内部抵抗を測定し、接続状態を評価した。
(Measurement of battery internal resistance)
After charging each sample to 4.2 V at a constant current of 1250 mA, charging and discharging to discharge to 3.0 V at a constant current of 1250 mA was repeated for 3 cycles, and then the internal resistance of the secondary battery was changed with an alternating current of 1 kHz. Measured and evaluated the connection state.

その結果は、サンプル1とサンプル3の平均の内部抵抗値は6mΩ、ばらつきは10%程度であった。また、サンプル2においては、平均の内部抵抗値は5.8mΩ、ばらつきは5%程度であった。   As a result, the average internal resistance value of Sample 1 and Sample 3 was 6 mΩ, and the variation was about 10%. In sample 2, the average internal resistance value was 5.8 mΩ, and the variation was about 5%.

一方、サンプル4の平均の内部抵抗値は11mΩ、ばらつきは20%であった。また、サンプル5の平均の内部抵抗値は12.3mΩ、ばらつきが30%以上であった。   On the other hand, the average internal resistance value of Sample 4 was 11 mΩ, and the variation was 20%. Sample 5 had an average internal resistance value of 12.3 mΩ and a variation of 30% or more.

ここで、各サンプルの内部抵抗測定値(R)から平均出力電流(I)を計算してみると、電池を4.2Vまで充電した後、1.5Vまで放電した場合、R(抵抗)×I(電流)=Δ2.7V(電圧)であるので、
サンプル1及び3 6.0/1000×I=2.7・・・I=450A
サンプル2 5.8/1000×I=2.7・・・I=465A
サンプル4 12.3/1000×I=2.7・・・I=219A
サンプル5 11/1000×I=2.7・・・I=245A
となり、サンプル1〜3では大電流放電を可能にできる抵抗値であることがわかる。
Here, when the average output current (I) is calculated from the measured internal resistance value (R) of each sample, when the battery is charged to 4.2 V and then discharged to 1.5 V, R (resistance) × Since I (current) = Δ2.7 V (voltage),
Samples 1 and 3 6.0 / 1000 × I = 2.7... I = 450 A
Sample 2 5.8 / 1000 × I = 2.7... I = 465A
Sample 4 12.3 / 1000 × I = 2.7... I = 219A
Sample 5 11/1000 × I = 2.7... I = 245A
Thus, it can be seen that Samples 1 to 3 have resistance values that enable large current discharge.

以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。例えば、上記実施形態において、極板端部の接合部が形成された部位における集電板の表面は凹部になっていたが、突出部の一部が溶融せずに集電板の表面が凸部になっていてもよい。また、突出部をTIG溶接により溶融させたが、例えば、レーザや電子ビームなど照射して、突出部を溶融させてもよい。   As mentioned above, although this invention was demonstrated by suitable embodiment, such description is not a limitation matter and of course various modifications are possible. For example, in the above-described embodiment, the surface of the current collector plate at the portion where the junction at the end of the electrode plate is formed is a concave portion, but the surface of the current collector plate is convex without melting part of the protruding portion. It may be a part. Moreover, although the protrusion was melted by TIG welding, the protrusion may be melted by irradiation with a laser or an electron beam, for example.

また、本発明が適用される二次電池は、その種類に特に制限はなく、リチウムイオン二次電池の他、ニッケル水素蓄電池等にも適用することができる。また、本発明と同じ集電構造を有する電気化学素子(例えば、コンデンサ等)に適用しても、同様の効果を得ることができる。   The type of the secondary battery to which the present invention is applied is not particularly limited, and can be applied to a nickel-metal hydride storage battery in addition to a lithium ion secondary battery. Further, the same effect can be obtained when applied to an electrochemical device (for example, a capacitor) having the same current collecting structure as the present invention.

本発明は、安定した正極板(または負極板)と集電板との接合部を備え、大電流放電に適した集電構造を有する二次電池に有用で、例えば、高出力を必要とする電動工具や電気自動車などの駆動用電池、大容量のバックアップ用電源、蓄電用電源用電池等に適用できる。   INDUSTRIAL APPLICABILITY The present invention is useful for a secondary battery that includes a stable positive electrode plate (or negative electrode plate) and current collector plate and has a current collecting structure suitable for large current discharge, and requires, for example, high output. The present invention can be applied to driving batteries for electric tools and electric vehicles, large-capacity backup power supplies, power storage battery batteries, and the like.

本発明の第1の実施形態における二次電池の集電構造を示した図で、(a)は極板端部を集電板に当接した状態を示した図、(b)は極板端部を集電板に接合した状態を示した図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the figure which showed the current collection structure of the secondary battery in the 1st Embodiment of this invention, (a) is the figure which showed the state which contact | abutted the electrode plate edge part to the current collecting plate, (b) is an electrode plate. It is the figure which showed the state which joined the edge part to the current collecting plate. (a)、(b)は、第1の実施形態における正極板及び負極板の展開図である。(A), (b) is an expanded view of the positive electrode plate and negative electrode plate in 1st Embodiment. (a)は第1の実施形態における電極群の構成を示した斜視図、(b)は集電板の構成を示した平面図、(c)は図3(b)のIIIc−IIIcに沿った突出部の断面図である。(A) is the perspective view which showed the structure of the electrode group in 1st Embodiment, (b) is the top view which showed the structure of the current collection board, (c) is along IIIc-IIIc of FIG.3 (b). It is sectional drawing of the protrusion part. 第1の実施形態における二次電池の構成を示した断面図である。It is sectional drawing which showed the structure of the secondary battery in 1st Embodiment. (a)〜(c)は、第1の実施の形態における突出部の形状、及び接合部の形状を示した図である、(A)-(c) is the figure which showed the shape of the protrusion part in 1st Embodiment, and the shape of a junction part. (a)は第1の実施形態における電極群の構成を示した斜視図、(b)は集電板の構成を示した平面図、(c)は図6(b)のVIc−VIcに沿った突出部の断面図である。(A) is the perspective view which showed the structure of the electrode group in 1st Embodiment, (b) is the top view which showed the structure of the current collection board, (c) is along VIc-VIc of FIG.6 (b). It is sectional drawing of the protrusion part. 第1の実施形態における集電構造を示した図で、(a)は極板端部を集電板に当接した状態を示した図、(b)は極板端部を集電板に接合した状態を示した図である。It is the figure which showed the current collection structure in 1st Embodiment, (a) is the figure which showed the state which contact | abutted the electrode plate edge part to the current collector plate, (b) is an electrode plate edge part to a current collector plate. It is the figure which showed the state which joined. 第1の実施形態における極板端部を集電板に接合した状態を示した図である。It is the figure which showed the state which joined the electrode plate edge part in 1st Embodiment to the current collecting plate. (a)、(b)は、第1の実施形態の変形例における集電板の構成を示した平面図である。(A), (b) is the top view which showed the structure of the current collection board in the modification of 1st Embodiment. (a)、(b)は、第1の実施形態の変形例における集電板の構成を示した平面図である。(A), (b) is the top view which showed the structure of the current collection board in the modification of 1st Embodiment. (a)〜(c)は、第1の実施形態の変形例における突出部の形状を示した断面図である。(A)-(c) is sectional drawing which showed the shape of the protrusion part in the modification of 1st Embodiment. (a)、(b)は、第1の実施形態の変形例における正極板及び負極板の展開図である。(A), (b) is an expanded view of the positive electrode plate and negative electrode plate in the modification of 1st Embodiment. 第1の実施形態の変形例における二次電池の構成を示した断面図である。It is sectional drawing which showed the structure of the secondary battery in the modification of 1st Embodiment. (a)〜(d)は、本発明の第2の実施形態における集電板の構成を示した断面図である。(A)-(d) is sectional drawing which showed the structure of the current collection board in the 2nd Embodiment of this invention. (a)〜(c)は、第2の実施形態における貫通孔の配列を示した平面図である。(A)-(c) is the top view which showed the arrangement | sequence of the through-hole in 2nd Embodiment. 従来の二次電池の集電構造を示した図で、(a)は集電板の構成を示した図、(b)は極板端部を集電板に接合した状態を示した図である。It is the figure which showed the current collection structure of the conventional secondary battery, (a) is the figure which showed the structure of the current collecting plate, (b) is the figure which showed the state which joined the electrode plate edge part to the current collecting plate. is there. 従来の二次電池の集電構造を示した断面図である。It is sectional drawing which showed the current collection structure of the conventional secondary battery. 従来の二次電池の集電板の構成を示した斜視図である。It is the perspective view which showed the structure of the current collector plate of the conventional secondary battery.

符号の説明Explanation of symbols

1 正極板
1a 正極板端部(正極合剤未塗工部)
1b 正極合剤塗工部
2 負極板
2a 負極板端部(負極合剤未塗工部)
2b 負極合剤塗工部
3 多孔質絶縁層
4 電極群
9 接合部
10 正極集電板
11 負極集電板
12 突出部
12a 間隙部
13 電池容器
15 正極リード
16 封口板
17 ガスケット
20 貫通孔
1 Positive Plate 1a Positive Plate End (Positive Material Mixture Uncoated)
1b Positive electrode mixture coated part 2 Negative electrode plate 2a Negative electrode plate end (negative electrode mixture uncoated part)
2b Negative electrode mixture coating part 3 Porous insulating layer 4 Electrode group 9 Joint part 10 Positive electrode current collector plate 11 Negative electrode current collector plate 12 Projection part 12a Gap part 13 Battery container 15 Positive electrode lead 16 Sealing plate 17 Gasket 20 Through-hole

Claims (27)

正極板及び負極板が多孔質絶縁層を介して配置された電極群を備えた二次電池の製造方法であって、
少なくとも一方の極性の前記極板の端部が、前記多孔質絶縁層から突出した状態で、前記正極板及び前記負極板が前記多孔質絶縁層を介して配置された電極群を用意する工程(a)と、
一の主面に、内側に間隙部を有する突出部が形成された集電板を用意する工程(b)と、
前記多孔質絶縁層から突出した前記極板の端部を、前記集電板の他の主面に当接する工程(c)と、
前記突出部を局所的に加熱することによって、前記極板の端部と前記集電板とを接合する工程(d)とを有し、
前記工程(d)において、前記極板の端部は、前記突出部が溶融して生成された溶融部材によって前記集電板に溶接されることを特徴とする、二次電池の製造方法。
A method for producing a secondary battery comprising an electrode group in which a positive electrode plate and a negative electrode plate are disposed via a porous insulating layer,
A step of preparing an electrode group in which the positive electrode plate and the negative electrode plate are arranged via the porous insulating layer in a state where an end of the electrode plate of at least one polarity protrudes from the porous insulating layer ( a) and
A step (b) of preparing a current collector plate having a protruding portion having a gap on the inside on one main surface;
A step (c) of contacting an end portion of the electrode plate protruding from the porous insulating layer with another main surface of the current collector plate;
(D) joining the end of the electrode plate and the current collector plate by locally heating the protruding portion;
In the step (d), the end portion of the electrode plate is welded to the current collector plate by a molten member generated by melting the protruding portion.
前記工程(d)において、前記極板の端部は、前記突出部が溶融して生成された溶融部材が、前記間隙部を通り前記極板の端部に導かれることによって、前記集電板に溶接される、請求項1に記載の二次電池の製造方法。   In the step (d), the current collector plate is formed by introducing a molten member generated by melting the protruding portion into the end portion of the electrode plate through the gap portion. The manufacturing method of the secondary battery of Claim 1 welded to. 前記突出部は、前記集電板の一の主面上を、放射状に形成されている、請求項1に記載の二次電池の製造方法。   The method for manufacturing a secondary battery according to claim 1, wherein the protrusions are formed radially on one main surface of the current collector plate. 前記電極群は、前記正極板及び前記負極板が、前記多孔質絶縁層を介して捲回された構成をなしている、請求項3に記載の二次電池の製造方法。   The method for manufacturing a secondary battery according to claim 3, wherein the electrode group has a configuration in which the positive electrode plate and the negative electrode plate are wound through the porous insulating layer. 前記突出部は、前記集電板の一の主面上を、前記正極板及び前記負極板の積層方向に平行に形成されている、請求項1に記載の二次電池の製造方法。   2. The method of manufacturing a secondary battery according to claim 1, wherein the protruding portion is formed on one main surface of the current collector plate in parallel to a stacking direction of the positive electrode plate and the negative electrode plate. 前記電極群は、前記正極板及び前記負極板が、前記多孔質絶縁層を介して積層された構成をなしている、請求項5に記載の二次電池の製造方法。   The method for manufacturing a secondary battery according to claim 5, wherein the electrode group has a configuration in which the positive electrode plate and the negative electrode plate are laminated via the porous insulating layer. 前記突出部は、平板からなる前記集電板をプレス加工することによって、前記間隙部を設けた状態で一体的に形成されている、請求項1に記載の二次電池の製造方法。   2. The method of manufacturing a secondary battery according to claim 1, wherein the protruding portion is integrally formed with the gap provided by pressing the current collector plate made of a flat plate. 前記突出部は、該突出部の高さが、前記集電板の厚みよりも大きく形成されている、請求項1に記載の二次電池の製造方法。   The method of manufacturing a secondary battery according to claim 1, wherein the protrusion is formed such that a height of the protrusion is larger than a thickness of the current collector plate. 前記突出部の内側に設けられた前記間隙部の幅は、前記集電板の厚み以下に形成されている、請求項1に記載の二次電池の製造方法。   The method for manufacturing a secondary battery according to claim 1, wherein a width of the gap provided inside the protruding portion is formed to be equal to or less than a thickness of the current collector plate. 前記突出部の内側に設けられた前記間隙部は、開口端において広くなっている、請求項1に記載の二次電池の製造方法。   The method for manufacturing a secondary battery according to claim 1, wherein the gap provided inside the protrusion is wide at the open end. 前記突出部の内側に設けられた前記間隙部は、開口端において狭くなっている、請求項1に記載の二次電池の製造方法。   2. The method of manufacturing a secondary battery according to claim 1, wherein the gap provided inside the protruding portion is narrow at an opening end. 前記正極板及び前記負極板は、正極集電体または負極集電体上に、正極活物質または負極活物質をそれぞれ塗布したものからなり、
前記正極集電体または前記負極集電体の厚みは、20μm以下である、請求項1に記載の二次電池の製造方法。
The positive electrode plate and the negative electrode plate are each formed by applying a positive electrode active material or a negative electrode active material to a positive electrode current collector or a negative electrode current collector,
The method for producing a secondary battery according to claim 1, wherein the positive electrode current collector or the negative electrode current collector has a thickness of 20 μm or less.
前記多孔質絶縁層から突出した前記極板の端部は、前記集電板の他の主面に、略垂直に当接している、請求項1に記載の二次電池の製造方法。   2. The method of manufacturing a secondary battery according to claim 1, wherein an end portion of the electrode plate protruding from the porous insulating layer is in contact with the other main surface of the current collector plate substantially perpendicularly. 前記工程(d)において、前記極板の端部は、前記集電板に融接される、請求項1に記載の二次電池の製造方法。   2. The method of manufacturing a secondary battery according to claim 1, wherein, in the step (d), an end portion of the electrode plate is welded to the current collector plate. 前記工程(d)において、前記突出部の局所的な加熱は、該突出部にエネルギーを照射することによって実行される、請求項1に記載の二次電池の製造方法。   2. The method of manufacturing a secondary battery according to claim 1, wherein in the step (d), the local heating of the protrusion is performed by irradiating the protrusion with energy. 3. 前記工程(c)において、前記電極群の全ての極板端部は、前記集電体の一の主面に当接される、請求項1に記載の二次電池の製造方法。   The method for manufacturing a secondary battery according to claim 1, wherein in the step (c), all electrode plate end portions of the electrode group are brought into contact with one main surface of the current collector. 前記工程(d)において、少なくとも二以上の前記極板端部は、前記集電板の他の主面に形成された一の突出部が溶融して生成された溶融部材によって、前記集電板に溶接される、請求項1に記載の二次電池の製造方法。   In the step (d), at least two or more electrode plate end portions are formed by the melting member generated by melting one protrusion formed on the other main surface of the current collector plate. The manufacturing method of the secondary battery of Claim 1 welded to. 前記多孔質絶縁層は、シャットダウン機能を有する微多孔質膜と、シャットダウン機能を有さない絶縁性粒子を含む耐熱性多孔質膜とで構成されている、請求項1に記載の二次電池の製造方法。   2. The secondary battery according to claim 1, wherein the porous insulating layer includes a microporous film having a shutdown function and a heat-resistant porous film including insulating particles that do not have a shutdown function. Production method. 前記二次電池は、リチウムイオン二次電池である、請求項1に記載の二次電池の製造方法。   The method for manufacturing a secondary battery according to claim 1, wherein the secondary battery is a lithium ion secondary battery. 正極板及び負極板が多孔質絶縁層を介して配置された電極群を備えた二次電池の製造方法であって、
少なくとも一方の極性の極板の端部が、前記多孔質絶縁層から突出した状態で、前記正極板及び前記負極板が前記多孔質絶縁層を介して配置された電極群を用意する工程(a)と、
複数の貫通孔が形成された集電板を用意する工程(b)と、
前記多孔質絶縁層から突出した前記極板の端部を、前記集電板の他の主面に当接する工程(c)と、
前記貫通孔に溶融金属を流入することによって、前記極板の端部と前記集電板とを接合する工程(d)とを有し、
前記工程(d)において、前記極板端部は、前記貫通孔を通り前記極板端部に導かれた前記溶融金属によって前記集電板に溶接されることを特徴とする、二次電池の製造方法。
A method for producing a secondary battery comprising an electrode group in which a positive electrode plate and a negative electrode plate are disposed via a porous insulating layer,
A step of preparing an electrode group in which the positive electrode plate and the negative electrode plate are arranged via the porous insulating layer in a state in which an end of at least one polar electrode plate protrudes from the porous insulating layer (a )When,
A step (b) of preparing a current collector plate in which a plurality of through holes are formed;
A step (c) of contacting an end portion of the electrode plate protruding from the porous insulating layer with another main surface of the current collector plate;
A step (d) of joining the end portion of the electrode plate and the current collector plate by flowing molten metal into the through-hole,
In the step (d), the end of the electrode plate is welded to the current collector plate by the molten metal guided to the end of the electrode plate through the through hole. Production method.
前記貫通孔の大きさは、前記集電板の厚み以下である、請求項20に記載の二次電池の製造方法。   21. The method for manufacturing a secondary battery according to claim 20, wherein a size of the through hole is equal to or less than a thickness of the current collector plate. 前記工程(d)において、前記溶融金属は、溶加棒を加熱することによって、該溶加棒が溶融して生成された溶融部材によって供給される、請求項20に記載の二次電池の製造方法。   21. The production of a secondary battery according to claim 20, wherein in the step (d), the molten metal is supplied by a melting member generated by melting the melt rod by heating the melt rod. Method. 正極板及び負極板が多孔質絶縁層を介して配置された電極群を備えた二次電池であって、
少なくとも一方の極性の前記極板の端部が、前記多孔質絶縁層から突出し、該突出した極板の端部が、集電板の一の主面に当接した状態で、該集電板に接合されており、
前記極板端部は、前記集電板の他の主面に形成された突出部が溶融して生成された溶融部材が、前記突出部の内側に設けられた間隙部を通り前記極板端部に導かれて、前記集電板に溶接されていることを特徴とする、二次電池。
A secondary battery comprising an electrode group in which a positive electrode plate and a negative electrode plate are disposed via a porous insulating layer,
An end of the electrode plate having at least one polarity protrudes from the porous insulating layer, and the end of the protruding electrode plate is in contact with one main surface of the current collector plate. Are joined to
The electrode plate end portion is formed by melting a protruding portion formed on the other main surface of the current collector plate through a gap provided inside the protrusion portion. A secondary battery, wherein the secondary battery is guided to a portion and welded to the current collector plate.
前記電極群は、前記正極板及び前記負極板が前記多孔質絶縁層を介して捲回された構成をなし、
前記極板端部の接合部は、前記集電板の一の主面内において、放射状の部位に形成されている、請求項23に記載の二次電池。
The electrode group has a configuration in which the positive electrode plate and the negative electrode plate are wound through the porous insulating layer,
24. The secondary battery according to claim 23, wherein the joint portion of the electrode plate end portion is formed in a radial portion within one main surface of the current collector plate.
前記電極群は、前記正極板及び前記負極板が前記多孔質絶縁層を介して積層された構成をなし、
前記極板端部の接合部は、前記集電板の一の主面内において、前記正極板及び前記負極板の積層方向に平行な部位に形成されている、請求項23に記載の二次電池。
The electrode group has a configuration in which the positive electrode plate and the negative electrode plate are laminated via the porous insulating layer,
The secondary part according to claim 23, wherein the joint portion of the end portion of the electrode plate is formed in a portion parallel to a stacking direction of the positive electrode plate and the negative electrode plate within one main surface of the current collector plate. battery.
前記極板端部の接合部が形成された部位における前記集電板の他の主面は、凹部になっている、請求項23に記載の二次電池。   24. The secondary battery according to claim 23, wherein the other main surface of the current collector plate in a portion where the joint portion of the electrode plate end is formed is a recess. 請求項1または20に記載の二次電池の製造方法によって製造された、二次電池。   A secondary battery manufactured by the method for manufacturing a secondary battery according to claim 1.
JP2007174278A 2006-09-20 2007-07-02 Secondary battery and method for manufacturing secondary battery Expired - Fee Related JP5179103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007174278A JP5179103B2 (en) 2006-09-20 2007-07-02 Secondary battery and method for manufacturing secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006254233 2006-09-20
JP2006254233 2006-09-20
JP2007174278A JP5179103B2 (en) 2006-09-20 2007-07-02 Secondary battery and method for manufacturing secondary battery

Publications (2)

Publication Number Publication Date
JP2008103309A true JP2008103309A (en) 2008-05-01
JP5179103B2 JP5179103B2 (en) 2013-04-10

Family

ID=39437470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007174278A Expired - Fee Related JP5179103B2 (en) 2006-09-20 2007-07-02 Secondary battery and method for manufacturing secondary battery

Country Status (1)

Country Link
JP (1) JP5179103B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008293681A (en) * 2007-05-22 2008-12-04 Hitachi Vehicle Energy Ltd Lithium-ion secondary battery
WO2009057242A1 (en) * 2007-10-29 2009-05-07 Panasonic Corporation Secondary battery
WO2009096160A1 (en) * 2008-01-28 2009-08-06 Panasonic Corporation Secondary cell collector terminal board, secondary cell, and secondary cell manufacturing method
WO2010023869A1 (en) * 2008-08-25 2010-03-04 パナソニック株式会社 Method for manufacturing secondary battery and secondary battery
US20100247991A1 (en) * 2008-06-17 2010-09-30 Takashi Hosokawa Battery and method for producing the same
KR20160026771A (en) * 2014-08-29 2016-03-09 도요타지도샤가부시키가이샤 Secondary-battery collector terminal and manufacturing method of secondary battery
JP2017143063A (en) * 2011-08-31 2017-08-17 株式会社Gsユアサ Electricity storage element and method of manufacturing electricity storage element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075322A (en) * 2000-08-31 2002-03-15 Yuasa Corp Sealed battery
JP2004119330A (en) * 2002-09-30 2004-04-15 Sanyo Electric Co Ltd Secondary battery and its manufacturing method
JP2006351376A (en) * 2005-06-16 2006-12-28 Toyota Motor Corp Battery and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075322A (en) * 2000-08-31 2002-03-15 Yuasa Corp Sealed battery
JP2004119330A (en) * 2002-09-30 2004-04-15 Sanyo Electric Co Ltd Secondary battery and its manufacturing method
JP2006351376A (en) * 2005-06-16 2006-12-28 Toyota Motor Corp Battery and its manufacturing method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008293681A (en) * 2007-05-22 2008-12-04 Hitachi Vehicle Energy Ltd Lithium-ion secondary battery
WO2009057242A1 (en) * 2007-10-29 2009-05-07 Panasonic Corporation Secondary battery
WO2009096160A1 (en) * 2008-01-28 2009-08-06 Panasonic Corporation Secondary cell collector terminal board, secondary cell, and secondary cell manufacturing method
US20100247991A1 (en) * 2008-06-17 2010-09-30 Takashi Hosokawa Battery and method for producing the same
CN101861668A (en) * 2008-06-17 2010-10-13 松下电器产业株式会社 Battery and method for manufacturing same
US8337572B2 (en) * 2008-06-17 2012-12-25 Panasonic Corporation Battery and method for producing the same
WO2010023869A1 (en) * 2008-08-25 2010-03-04 パナソニック株式会社 Method for manufacturing secondary battery and secondary battery
JP2010108916A (en) * 2008-08-25 2010-05-13 Panasonic Corp Method for manufacturing secondary battery, and secondary battery
CN102124592A (en) * 2008-08-25 2011-07-13 松下电器产业株式会社 Method for manufacturing secondary battery and secondary battery
JP2017143063A (en) * 2011-08-31 2017-08-17 株式会社Gsユアサ Electricity storage element and method of manufacturing electricity storage element
KR20160026771A (en) * 2014-08-29 2016-03-09 도요타지도샤가부시키가이샤 Secondary-battery collector terminal and manufacturing method of secondary battery
KR101697018B1 (en) 2014-08-29 2017-01-16 도요타지도샤가부시키가이샤 Secondary-battery collector terminal and manufacturing method of secondary battery

Also Published As

Publication number Publication date
JP5179103B2 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
US7976979B2 (en) Secondary battery and method for manufacturing secondary battery
JP5137918B2 (en) Secondary battery manufacturing method and secondary battery
JP5100281B2 (en) Sealed battery and manufacturing method thereof
JP5137530B2 (en) Secondary battery and manufacturing method thereof
JP5917407B2 (en) Prismatic secondary battery
JP5179103B2 (en) Secondary battery and method for manufacturing secondary battery
JP5137516B2 (en) Sealed battery
JP2007227137A (en) Sealed storage battery
WO2009153914A1 (en) Battery and method for manufacturing same
JP2008293681A (en) Lithium-ion secondary battery
JP5384071B2 (en) Sealed battery
JP3627645B2 (en) Lithium secondary battery
JP2008258145A (en) Secondary battery and method for manufacturing the secondary battery
JP2010080081A (en) Secondary battery
JP2007324015A (en) Secondary battery and its manufacturing method
JP4679046B2 (en) Battery and battery unit using the same
JP5248210B2 (en) Lithium ion secondary battery
JP2009224070A (en) Lithium secondary battery
JP2002352789A (en) Secondary battery
JP2012185912A (en) Cylindrical secondary cell
JP2011170972A (en) Method of manufacturing secondary battery
WO2014163184A1 (en) Secondary battery collector structure and method for forming secondary battery collector structure
JP4954806B2 (en) Capacitor and capacitor manufacturing method
JP4428965B2 (en) Battery unit
JP2011113811A (en) Battery and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100630

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130109

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S131 Request for trust registration of transfer of right

Free format text: JAPANESE INTERMEDIATE CODE: R313135

SZ02 Written request for trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z02

S131 Request for trust registration of transfer of right

Free format text: JAPANESE INTERMEDIATE CODE: R313135

SZ02 Written request for trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z02

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees