JP2004119330A - Secondary battery and its manufacturing method - Google Patents

Secondary battery and its manufacturing method Download PDF

Info

Publication number
JP2004119330A
JP2004119330A JP2002284807A JP2002284807A JP2004119330A JP 2004119330 A JP2004119330 A JP 2004119330A JP 2002284807 A JP2002284807 A JP 2002284807A JP 2002284807 A JP2002284807 A JP 2002284807A JP 2004119330 A JP2004119330 A JP 2004119330A
Authority
JP
Japan
Prior art keywords
electrode
current collector
collector plate
electrode body
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002284807A
Other languages
Japanese (ja)
Other versions
JP4401065B2 (en
Inventor
Naoya Nakanishi
中西 直哉
Hideo Hagino
萩野 秀雄
Koichi Sato
佐藤 広一
Kazunari Okita
大北 一成
Atsuhiro Funabashi
船橋 淳浩
Toshiyuki Noma
能間 俊之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002284807A priority Critical patent/JP4401065B2/en
Publication of JP2004119330A publication Critical patent/JP2004119330A/en
Application granted granted Critical
Publication of JP4401065B2 publication Critical patent/JP4401065B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To surely weld a current collecting plate 6 to an electrode body 4, in a secondary battery composed by housing the electrode body 4 in a battery can 1. <P>SOLUTION: In this secondary battery, an end 49 of a band-like core body constituting a positive electrode or a negative electrode is projected at least at either end of the electrode body 4, and the collecting plate 6 is installed by covering the end 49. On the surface of the collecting plate 6 facing the electrode body 4, a plurality of guide members 7 formed into a serrate shape are disposed. The collecting plate 6 is welded to the core body end 49 by a laser by pressing the guide member 7 against the end 49 of the electrode body 4. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電池缶の内部に二次電池要素となる電極体が収容され、電池缶に設けた一対の電極端子部から電極体の発生電力を取り出すことが出来る二次電池に関するものである。
【0002】
【従来の技術】
近年、携帯型電子機器の電源として、エネルギー密度の高いリチウムイオン二次電池が注目されている。又、電気自動車の電源として、大容量の円筒型二次電池が注目されている。
従来の円筒型リチウムイオン二次電池は、図14及び図15に示す様に、筒体(11)の両端部に蓋体(12)(12)を溶接固定してなる円筒状の電池缶(1)の内部に、巻き取り電極体(4)を収容して構成されている。両蓋体(12)(12)には、正負一対の電極端子機構(9)(9)が取り付けられており、巻き取り電極体(4)の両極と両電極端子機構(9)(9)とが互いに接続されて、巻き取り電極体(4)が発生する電力を一対の電極端子機構(9)(9)から外部に取り出すことが可能となっている。又、各蓋体(12)には圧力開閉式のガス排出弁(13)が取り付けられている。
【0003】
巻き取り電極体(4)は、図15に示す様に、それぞれ帯状の正極(41)と負極(43)の間に帯状のセパレータ(42)を介在させて、これらを渦巻き状に巻回して構成されている。正極(41)は、アルミニウム箔からなる帯状芯体(45)の両面にリチウム複合酸化物からなる正極活物質(44)を塗布して構成され、負極(43)は、銅箔からなる帯状芯体(47)の両面に炭素材料を含む負極活物質(46)を塗布して構成されている。セパレータ(42)には、非水電解液が含浸されている。
【0004】
ここで、正極(41)及び負極(43)はそれぞれセパレータ(42)上に幅方向へずらして重ね合わされ、渦巻き状に巻き取られている。これによって、巻き取り電極体(4)の巻き軸方向の両端部の内、一方の端部では、セパレータ(42)の端縁よりも外方へ正極(41)の芯体(45)の端縁(48)が突出すると共に、他方の端部では、セパレータ(42)の端縁よりも外方へ負極(43)の芯体(47)の端縁(48)が突出している。
そして、巻き取り電極体(4)の両端部にはそれぞれ円板状の集電板(50)が溶接され、該集電板(50)がリード部材(55)を介して図14に示す電極端子機構(9)の基端部に接続される。
【0005】
電極端子機構(9)は、電池缶(1)の蓋体(12)を貫通して取り付けられた電極端子(91)を具え、該電極端子(91)の基端部には鍔部(92)が形成されている。蓋体(12)の貫通孔には絶縁パッキング(93)が装着され、蓋体(12)と締結部材(91)の間の電気的絶縁性とシール性が保たれている。電極端子(91)には、蓋体(12)の外側からワッシャ(94)が嵌められると共に、第1ナット(95)及び第2ナット(96)が螺合している。そして、第1ナット(95)を締め付けて、電極端子(91)の鍔部(92)とワッシャ(94)によって絶縁パッキング(93)を挟圧することにより、シール性を高めている。
尚、前記リード部材(55)の先端部は、電極端子(91)の鍔部(92)に、スポット溶接或いは超音波溶接によって固定されている。
【0006】
しかしながら、集電板(50)を単なる平板状に形成したリチウムイオン二次電池においては、巻き取り電極体(4)の正極(41)及び負極(43)を構成する芯体(45)(47)の端縁(48)の面積が小さいため、芯体端縁(48)と集電板(50)の間の接触面積が小さく、これによって電池の内部抵抗が大きくなる問題があった。
そこで、集電板に複数の突起部を形成し、該集電板を芯体端縁に押し付けた状態で、前記突起部にレーザビームを照射することにより、集電板を巻き取り電極体に溶接する構造が提案されている(特許文献1、特許文献2参照)。
【0007】
例えば図14及び図15に示すリチウムイオン二次電池においては、集電板(50)に、放射状に伸びる複数条の円弧状凸部(52)が一体成型され、巻き取り電極体(4)側に突出している。又、集電板(50)には、複数の切り起し片(53)が形成され、巻き取り電極体(4)側に突出している。
電池の組立工程において、巻き取り電極体(4)の芯体端縁(48)に集電板(50)を押し付けると、集電板(50)の円弧状凸部(52)が、巻き取り電極体(4)の芯体端縁(48)に食い込み、円弧状凸部(52)と芯体端縁(48)の間には、円筒面からなる接合面が形成される。この状態で、集電板(50)の円弧状凸部(52)の内周面に向けてレーザビームを照射して、レーザ溶接を施す。この結果、集電板(50)の円弧状凸部(52)と巻き取り電極体(4)の芯体端縁(48)とが、大きな接触面積で互いに接合されることになる。又、集電板(50)切り起し片(53)は、巻き取り電極体(4)の芯体端縁(48)に深く食い込むことになる。
【0008】
【特許文献1】
特開2001−256952号公報
【特許文献2】
特公平2−4102号公報
【特許文献3】
特開2000−149902号公報
【0009】
【発明が解決しようとする課題】
しかしながら、集電板に形成した複数の突起部を巻き取り電極体の芯体端縁に押し付けて、該突起部にレーザ溶接を施す構造(特許文献1、特許文献2)によっても、特にリチウムイオン二次電池の如く巻き取り電極体を構成する芯体の厚さが小さく、隣接する芯体の間隔が大きい場合には、レーザ溶接時に、巻き取り電極体の芯体端縁と集電板の突起部の間の接合部が溶断することがあった。
又、集電板の突起部に照射されたレーザビームの熱が、急速に周囲へ放散して、ビーム被照射領域の温度が十分に上がらないために、溶接不良が発生する虞があった。
【0010】
そこで、本発明の目的は、電極体に集電板を確実に溶接することが可能な集電構造の二次電池を提供することである。
【0011】
【課題を解決する為の手段】
上記目的を達成するべく、本発明に係る第1の二次電池においては、集電板(6)の電極体(4)との対向面に、1或いは複数のガイド部材(7)が配置され、該ガイド部材(7)には、電極体(4)に向かって突出する複数の先鋭部(71)が、芯体の配列方向にその配列ピッチよりも大きな間隔で繰り返し形成されている。各先鋭部(71)は、芯体配列方向の両側面に、先端に向かって互いの間隔が狭まるガイド面(72)(73)を有し、隣接する先鋭部(71)(71)の互いに対向するガイド面(72)(73)間に複数枚の芯体の端部(49)が束ねられ、該束ね部に対して集電板(6)が溶接され、該集電板(6)が一方の電極端子部と連結されている。
【0012】
例えば、電極体(4)は、それぞれ帯状の正極(41)と負極(43)の間にセパレータ(42)を介在させてこれらを渦巻き状に巻き取ったものであり、集電板(6)は円板状に形成され、複数のガイド部材(7)は、該集電板(6)の電極体(4)との対向面を放射状に伸びており、各ガイド部材(7)の先鋭部(71)は、ガイド部材(7)の長手方向に並び、鋸歯状を呈している。
【0013】
上記本発明の二次電池においては、組立工程にて、電極体(4)に集電板(6)を押し付けることによって、集電板(6)の各先鋭部(71)は、電極体(4)の芯体の配列に分け入って、隣接する先鋭部(71)(71)の互いに対向するガイド面(72)(73)間に、複数枚の芯体の端部(49)を導入する。これによって、これら複数枚の芯体端部(49)は互いに寄せ集められて、束ねられる。この束ね部は集電板(6)と広い面積で接合することになるので、該接合部にレーザビーム若しくは電子ビームを照射することによって、該接合部にて溶断を起こすことなく、集電板(6)は電極体(4)に溶接される。
【0014】
又、上記目的を達成するべく、本発明に係る第2の二次電池においては、集電板(5)に、芯体端縁(48)に向かって突出する複数条の凸部(52)が形成されると共に、各凸部(52)には、凸部(52)の長手方向に伸びる2本の溝(56)(56)が凹設されている。該集電板(5)が電極体(4)に押し付けられた状態で、各凸部(52)の2本の溝(56)(56)に挟まれた領域にレーザビーム又は電子ビームによる溶接が施されて、該集電板(5)が電極体(4)に接合される。又、該集電板(5)が一方の電極端子部と連結されている。
【0015】
本発明に係る二次電池の製造方法は、上記二次電池を製造する方法であって、
少なくとも何れか一方の端部に正極(41)或いは負極(43)を構成する帯状芯体の端縁(48)が突出した電極体(4)と、電極体(4)の芯体端縁(48)に向かって突出する複数条の凸部(52)が形成されると共に各凸部(52)には凸部(52)の長手方向に伸びる2本の溝(56)(56)が凹設された集電板(5)とを作製する工程と、
集電板(5)を電極体(4)の芯体端縁(48)に押し付けた状態で、各凸部(52)の2本の溝(56)(56)に挟まれた領域にレーザビーム又は電子ビームを照射して、集電板(5)を電極体(4)に接合する工程と、
該集電板(5)を一方の電極端子部と連結する工程
とを有している。
【0016】
上記本発明の二次電池の製造方法においては、電極体(4)に集電板(5)を接合する工程で、集電板(5)の各凸部(52)の2本の溝(56)(56)に挟まれた領域にレーザビーム又は電子ビームを照射した場合、溝(56)が凹設された部分では熱流路が狭まっているため、レーザビーム又は電子ビームの照射によって発生した熱は、2本の溝(56)(56)の存在によって外側へ流れ難くなる。この結果、2本の溝(56)(56)に挟まれた領域の温度が十分に上がり、該領域が電極体(4)の芯体端縁(48)に確実に溶接されることになる。
【0017】
【発明の効果】
本発明に係る二次電池及びその製造方法によれば、電極体に集電板を確実に溶接することが出来、これによって電池の内部抵抗を低減させ、高い電池性能を得ることが可能である。
【0018】
【発明の実施の形態】
以下、本発明を円筒型リチウムイオン二次電池に実施した形態につき、図面に沿って具体的に説明する。
【0019】
第1実施例
本発明に係る円筒型リチウムイオン二次電池は、図1に示す如く、アルミニウム製の筒体(11)の各開口部に、アルミニウム製の蓋体(12)をレーザ溶接により固定して、電池缶(1)を形成し、該電池缶(1)の内部には巻き取り電極体(4)が収容されている。又、電池缶(1)の両蓋体(12)(12)には、正負一対の電極端子機構(9)(9)が取り付けられており、巻き取り電極体(4)が発生する電力を外部に取り出すことが可能となっている。
尚、電池缶(1)の蓋体(12)には圧力開放型のガス排出弁(13)が接続されている。
【0020】
巻き取り電極体(4)の両端部にはそれぞれ集電板(6)が設置され、該集電板(6)は、巻き取り電極体(4)にレーザ溶接により接合されている(図2参照)。該集電板(6)の端部に突設されたリード部(62)の先端は、電極端子機構(9)を構成する電極端子(91)の鍔部(92)に、スポット溶接、超音波溶接或いはレーザ溶接によって接合されている。
正極側の集電板(6)はアルミニウム製、負極側の集電板(6)は銅製であって、何れも、直径が20mm、厚さが0.5mmに形成されている。
【0021】
電極端子機構(9)は、電池缶(1)の蓋体(12)を貫通して取り付けられた電極端子(91)を具え、該電極端子(91)の基端部には鍔部(92)が形成されている。蓋体(12)の貫通孔には絶縁パッキング(93)が装着され、蓋体(12)と締結部材(91)の間の電気的絶縁性とシール性が保たれている。電極端子(91)には、蓋体(12)の外側からワッシャ(94)が嵌められると共に、第1ナット(95)及び第2ナット(96)が螺合している。そして、第1ナット(95)を締め付けて、電極端子(91)の鍔部(92)とワッシャ(94)によって絶縁パッキング(93)を挟圧することにより、シール性を高めている。
【0022】
巻き取り電極体(4)は、図2に示す如く、厚さ15μmのアルミニウム箔からなる芯体(45)の表面にコバルト酸リチウムからなる正極活物質(44)を塗布してなる正極(41)と、厚さ10μmの銅箔からなる芯体(47)の表面に黒鉛からなる負極活物質(46)を塗布してなる負極(43)と、イオン透過性ポリプロピレン製の微多孔膜からなるセパレータ(42)とから構成され、正極(41)及び負極(43)はそれぞれセパレータ(42)上に幅方向へずらして重ね合わされ、渦巻き状に巻き取られている。これによって、巻き取り電極体(4)の巻き軸方向の両端部の内、一方の端部では、セパレータ(42)の端縁よりも外方へ正極(41)の芯体(45)の端縁(48)が突出すると共に、他方の端部では、セパレータ(42)の端縁よりも外方へ負極(43)の芯体(47)の端縁(48)が突出している。該巻き取り電極体(4)には非水電解液が含浸されている。
【0023】
図3及び図4に示す如く、集電板(6)は円板状に形成されており、その中央部には、貫通孔(61)が開設されている。
該集電板(6)の巻き取り電極体との対向面には、貫通孔(61)を中心として放射状に伸びる8本のガイド部材(7a)(7b)が、溶接によって固定されている。十字に配置された4本のガイド部材(7a)は集電板(6)の半径線の略全長に亘って伸びているのに対し、他の4本のガイド部材(7b)は、集電板(6)の外周部から半径線の約2分の1の位置まで伸びている。
【0024】
各ガイド部材(7)は、図5に示す如く鋸歯状を呈しており、集電板(6)から離れる方向に尖った複数の先鋭部(71)が、巻き取り電極体の一方の電極を構成する芯体の配列ピッチの整数倍の間隔で、ガイド部材(7)の長手方向に繰り返し形成されており、隣接する先鋭部(71)(71)は、集電板(6)と密着可能な平板部(74)によって連結されている。各先鋭部(71)の両側面には、先端に向かって互いの間隔が狭まるガイド面(72)(73)が形成されている。
尚、ガイド部材(7)の資材となった帯板の厚さは0.2mm、平板部(74)の幅aは1mm、先鋭部(71)の高さhは3mm、先鋭部(71)の配列ピッチbは3mmである。
一方、図2の如く巻き取り電極体(4)のセパレータ(42)から突出する芯体端縁(48)の突出高さは4mmである。
【0025】
図6に示す如く、巻き取り電極体(4)の一方の電極においては、複数の芯体端部(49)が一定の配列ピッチで並んでおり、該巻き取り電極体(4)に対して集電板(6)を押し付けると、図7に示す如く、集電板(6)に固定されているガイド部材(7)の各先鋭部(71)が、巻き取り電極体(4)の芯体端部(49)の配列の間に分け入って、隣接する先鋭部(71)(71)の互いに対向するガイド面(72)(73)の間に、複数の芯体端部(49)が導入される。このガイド面(72)(73)の案内によって、前記複数の芯体端部(49)は互いに寄せ集められ、束ねられる。そして、該束ね部の先端は、ガイド部材(7)の平板部(74)と接触することになる。
【0026】
そこで、図7中に矢印で示す様に、集電板(6)の外側からガイド部材(7)の平板部(74)に対してレーザビームを照射すると、ガイド部材(7)の先鋭部(71)(71)の間に束ねられた複数の芯体端部(49)とガイド部材(7)の平板部(74)とが互いに溶接されて、集電板(6)が巻き取り電極体(4)に接合される。
ここで、互いに束ねられた複数の芯体端部(49)とガイド部材(7)の平板部(74)との接触面積は、ガイド部材(7)を有しない従来の構造に比べて遙かに大きくなるので、レーザ溶接は、溶断を起こすことなく、確実に行なわれる。この結果、内部抵抗が低減して、電池性能が向上する。
【0027】
上述の本発明に係る円筒型リチウムイオン二次電池と、集電板に形成した複数の突起部(先端角度60°)を芯体端縁に押し付けて該突起部にレーザ溶接を施した従来の円筒型リチウムイオン二次電池(特許文献2)とを作製して、各電池の内部抵抗を測定した。尚、両電池は、集電構造以外の構成において同じ条件となる様に作製した。
内部抵抗の測定は、巻き取り電極体を構成する正極及び負極の芯体と、正極側及び負極側の集電板のリード部との間を対象として、1KHzの交流によるインピーダンスを測定した。その結果、下記表1の結果が得られた。
【0028】
【表1】

Figure 2004119330
【0029】
この結果から明らかな様に、本発明に係る円筒型リチウムイオン二次電池においては、巻き取り電極体(4)から電極端子機構(9)に至る電流経路の電気抵抗(内部抵抗)が従来電池よりも大幅に低減しており、この結果、電池性能が向上する。
又、巻き取り電極体(4)の芯体端部(49)を束ねて、該束ね部に対してレーザ溶接を施すので、溶接面積が大幅(例えば3分の1以下)に減少し、この結果、生産性が向上する。
【0030】
第2実施例
本実施例の円筒型リチウムイオン二次電池は、図8に示す如く、アルミニウム製の筒体(11)の開口部に、アルミニウム製の蓋体(12)をレーザ溶接により固定して、電池缶(1)を形成し、該電池缶(1)の内部には巻き取り電極体(4)が収容されている。又、電池缶(1)の両蓋体(12)(12)には、正負一対の電極端子機構(9)(9)が取り付けられており、巻き取り電極体(4)が発生する電力を外部に取り出すことが可能となっている。
【0031】
電池缶(1)の蓋体(12)には貫通孔(13)が開設され、該貫通孔(13)には、圧力開放型のガス排出弁(13)が固定されている。
巻き取り電極体(4)の両端部にはそれぞれ集電板(5)が設置され、該集電板(5)が巻き取り電極体(4)にレーザ溶接により接合されている。該集電板(5)の端部に突設されたリード部(55)の先端は、電極端子機構(9)を構成する電極端子(91)の鍔部(92)に、スポット溶接、超音波溶接或いはレーザ溶接によって接合されている。
正極側の集電板(6)はアルミニウム製、負極側の集電板(6)はニッケル製であって、何れも、直径が20mm、厚さが0.5mmに形成されている。
【0032】
電極端子機構(9)は、電池缶(1)の蓋体(12)を貫通して取り付けられた電極端子(91)を具え、該電極端子(91)の基端部には鍔部(92)が形成されている。蓋体(12)の貫通孔には絶縁パッキング(93)が装着され、蓋体(12)と締結部材(91)の間の電気的絶縁性とシール性が保たれている。電極端子(91)には、蓋体(12)の外側からワッシャ(94)が嵌められると共に、第1ナット(95)及び第2ナット(96)が螺合している。そして、第1ナット(95)を締め付けて、電極端子(91)の鍔部(92)とワッシャ(94)によって絶縁パッキング(93)を挟圧することにより、シール性を高めている。
【0033】
巻き取り電極体(4)は、図9に示す如く、厚さ15μmのアルミニウム箔からなる芯体(45)の表面にコバルト酸リチウムからなる正極活物質(44)を塗布してなる正極(41)と、厚さ10μmの銅箔からなる芯体(47)の表面に黒鉛からなる負極活物質(46)を塗布してなる負極(43)と、イオン透過性ポリプロピレン製の微多孔膜からなるセパレータ(42)とから構成され、正極(41)及び負極(43)はそれぞれセパレータ(42)上に幅方向へずらして重ね合わされ、渦巻き状に巻き取られている。これによって、巻き取り電極体(4)の巻き軸方向の両端部の内、一方の端部では、セパレータ(42)の端縁よりも外方へ正極(41)の芯体(45)の端縁(48)が突出すると共に、他方の端部では、セパレータ(42)の端縁よりも外方へ負極(43)の芯体(47)の端縁(48)が突出している。該巻き取り電極体(4)には非水電解液が含浸されている。
【0034】
図10及び図11に示す如く、集電板(5)は、円板状の本体(51)を具え、該円板状本体(51)には、中央孔(54)が開設されている。円板状本体(51)には、中央孔(54)を中心として放射状に伸びる複数条の円弧状凸部(52)が一体成型され、巻き取り電極体(4)側に突出している。又、円板状本体(51)には、隣接する円弧状凸部(52)(52)の間にそれぞれ、複数条の切り起し片(53)が形成され、巻き取り電極体(4)側に突出している。更に、円板状本体(51)の端部には、短冊状のリード部(55)が一体に形成されている。
尚、集電板(5)の円弧状凸部(52)は、図11に示す如く円板状本体(51)の半径線に直交する断面形状が半円の円弧を呈している。
【0035】
又、集電板(5)の各円弧状凸部(52)には、その内周面に、図11に示す如く円弧状凸部(52)の中央ラインの両側を全長に亘って伸びる2本の溝(56)(56)が凹設されている。溝(56)は、深さが集電板(5)の厚さの3分の1前後、例えば0.25mm、幅が0.5mmに形成される。
【0036】
上記集電板(5)を作製した後、巻き取り電極体(4)の各端部に形成されている芯体端縁(48)に集電板(5)を押し付ける。これによって、図12(a)に示す如く集電板(5)の円弧状凸部(52)は、巻き取り電極体(4)の芯体端部(49)に食い込み、円弧状凸部(52)と芯体端部(49)との間には、円筒面からなる接合面が形成される。又、集電板(5)の切り起し片(53)は、巻き取り電極体(4)の芯体端縁(48)に深く食い込み、芯体端縁(48)と圧着することになる。
【0037】
この状態で、図12(a)中に矢印で示す如く、集電板(5)の円弧状凸部(52)の2本の溝(56)(56)に挟まれた領域に向けてレーザビームを照射し、レーザ溶接を施す。ここで、集電板(5)の各凸部(52)の2本の溝(56)(56)に挟まれた領域にレーザビームを照射した場合、溝(56)が凹設された部分では熱流路が狭まっているため、レーザビームの照射によって発生した熱は、2本の溝(56)(56)の存在によって外側へ流れ難くなる。これによって、2本の溝(56)(56)に挟まれた領域の温度が十分に上がり、図12(b)の如く該領域に信頼性の高い溶接(57)が施されて、集電板(5)が電極体(4)の芯体端部(49)に確実に固定されることになる。
【0038】
この結果、集電板(5)の円弧状凸部(52)と巻き取り電極体(4)の芯体端部(49)とが、大きな接触面積で互いに接合されると共に、切り起し片(53)と芯体端縁(48)の間の圧着状態が維持され、巻き取り電極体(4)と集電板(5)の間の電気抵抗(内部抵抗)が大幅に低減することになる。
又、外部から衝撃や振動が加わったとしても、溶接部(57)にて巻き取り電極体(4)と集電板(5)の接合が外れる虞はない。
【0039】
上述の本発明の円筒型リチウムイオン二次電池(本発明電池)と、集電板(5)の円弧状凸部(52)に溝(56)(56)が形成されていないことを除いて本発明電池と同じ構造の従来の円筒型リチウムイオン二次電池(従来電池)とを作製し、巻き取り電極体(4)と正極側の集電板(5)との間、或いは巻き取り電極体(4)と負極側の集電板(5)との間に引張力を作用させて、溶接強度を比較したところ、下記表2の結果が得られた。尚、表中には、溶接強度の大きい順に◎○△×の記号で比較結果を表わした。
【0040】
【表2】
Figure 2004119330
【0041】
この結果から明らかな様に、本発明に係る円筒型リチウムイオン二次電池によれば、正極側及び負極側の何れにおいても、巻き取り電極体(4)と集電板(5)の間に従来電池よりも高い溶接強度が得られている。これは、本発明の集電板(5)に形成された溝(56)(56)が溶接部の温度上昇に寄与したものと考えられる。
【0042】
尚、本発明の各部構成は上記実施の形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。例えば、第1実施例において、ガイド部材(7)は集電板(6)に溶接固定する構成に限らず、プレス工程によって集電板(6)に一体成型することも可能である。
又、第2実施例においては、集電板(5)の凸部(52)は断面円弧状に限らず、図13(a)(b)に示す如く断面U字状に形成することも可能であって、この場合も同様に、凸部(52)の底面に2本の溝(56)(56)を凹設し、両溝(56)(56)に挟まれた領域にレーザビームを照射して溶接(57)を施す。これによって、集電板(5)を芯体端部(49)に確実に溶接することが出来る。
【図面の簡単な説明】
【図1】第1実施例における円筒型リチウムイオン二次電池の断面図である。
【図2】該二次電池において巻き取り電極体から集電板を分解した状態を示す斜視図である。
【図3】集電板の拡大斜視図である。
【図4】集電板の平面図である。
【図5】図4のA−A線に沿う拡大断面図である。
【図6】ガイド部材を芯体端部に押し付ける前の状態を示す拡大斜視図である。
【図7】ガイド部材を芯体端部に押し付けた後の状態を示す断面図である。
【図8】第2実施例における円筒型リチウムイオン二次電池の断面図である。
【図9】該二次電池において巻き取り電極体から集電板を分解した状態を示す斜視図である。
【図10】集電板の平面図である。
【図11】図10のA−A線及びB−B線に沿う拡大断面図である。
【図12】レーザ溶接工程を示す拡大断面図である。
【図13】他の実施例のレーザ溶接工程を示す拡大断面図である。
【図14】従来の円筒型リチウムイオン二次電池の断面図である。
【図15】該二次電池において巻き取り電極体から集電板を分解した状態を示す斜視図である。
【符号の説明】
(1) 電池缶
(4) 巻き取り電極体
(49) 芯体端部
(5) 集電板
(52) 円弧状凸部
(56) 溝
(6) 集電板
(7) ガイド部材
(71) 先鋭部
(72) ガイド面
(73) ガイド面
(74) 平板部
(9) 電極端子機構[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a secondary battery in which an electrode body serving as a secondary battery element is accommodated in a battery can and power generated by the electrode body can be taken out from a pair of electrode terminals provided in the battery can.
[0002]
[Prior art]
2. Description of the Related Art In recent years, lithium-ion secondary batteries with high energy density have attracted attention as power supplies for portable electronic devices. In addition, large-capacity cylindrical secondary batteries have attracted attention as power sources for electric vehicles.
As shown in FIGS. 14 and 15, a conventional cylindrical lithium ion secondary battery has a cylindrical battery can (see FIG. 14) in which lids (12) and (12) are fixed to both ends of a cylindrical body (11) by welding. The winding electrode body (4) is accommodated in the inside of 1). A pair of positive and negative electrode terminal mechanisms (9) and (9) are attached to the both lids (12) and (12), respectively, and both poles of the winding electrode body (4) and both electrode terminal mechanisms (9) and (9). Are connected to each other, so that the electric power generated by the winding electrode body (4) can be taken out from the pair of electrode terminal mechanisms (9) and (9). A pressure opening / closing gas discharge valve (13) is attached to each lid (12).
[0003]
As shown in FIG. 15, the winding electrode body (4) has a strip-shaped separator (42) interposed between a strip-shaped positive electrode (41) and a strip-shaped negative electrode (43) and spirally winds them. It is configured. The positive electrode (41) is formed by applying a positive electrode active material (44) made of a lithium composite oxide to both surfaces of a band-shaped core (45) made of aluminum foil, and the negative electrode (43) is made of a band-shaped core made of copper foil. A negative electrode active material (46) containing a carbon material is applied to both surfaces of the body (47). The separator (42) is impregnated with a non-aqueous electrolyte.
[0004]
Here, the positive electrode (41) and the negative electrode (43) are superposed on the separator (42) while being shifted in the width direction, and are wound in a spiral shape. As a result, at one end of the two ends of the winding electrode body (4) in the winding axis direction, the end of the core body (45) of the positive electrode (41) is located outward of the edge of the separator (42). At the other end, the edge (48) of the core (47) of the negative electrode (43) protrudes outward from the edge of the separator (42).
Then, disc-shaped current collectors (50) are welded to both ends of the wound electrode body (4), and the current collectors (50) are connected to the electrode shown in FIG. It is connected to the base end of the terminal mechanism (9).
[0005]
The electrode terminal mechanism (9) includes an electrode terminal (91) attached through the lid (12) of the battery can (1), and a flange (92) is provided at a base end of the electrode terminal (91). ) Is formed. An insulating packing (93) is attached to the through-hole of the lid (12), so that electrical insulation and sealing between the lid (12) and the fastening member (91) are maintained. A washer (94) is fitted to the electrode terminal (91) from the outside of the lid (12), and a first nut (95) and a second nut (96) are screwed into the electrode terminal (91). Then, the first nut (95) is tightened, and the insulating packing (93) is sandwiched between the flange (92) of the electrode terminal (91) and the washer (94) to enhance the sealing performance.
The tip of the lead member (55) is fixed to the flange (92) of the electrode terminal (91) by spot welding or ultrasonic welding.
[0006]
However, in a lithium ion secondary battery in which the current collector plate (50) is formed in a simple plate shape, the core members (45) and (47) constituting the positive electrode (41) and the negative electrode (43) of the wound electrode body (4). ), The contact area between the core body edge (48) and the current collector plate (50) is small, resulting in a problem that the internal resistance of the battery increases.
Therefore, a plurality of projections are formed on the current collector, and the current collector is pressed against the edge of the core, and the projection is irradiated with a laser beam to wind the current collector into the winding electrode body. A welding structure has been proposed (see Patent Documents 1 and 2).
[0007]
For example, in the lithium ion secondary battery shown in FIGS. 14 and 15, a plurality of radially extending arc-shaped protrusions (52) are integrally formed on the current collector plate (50), and the current collector plate (50) side It protrudes. A plurality of cut-and-raised pieces (53) are formed on the current collector plate (50), and protrude toward the winding electrode body (4).
In the battery assembling process, when the current collector (50) is pressed against the core edge (48) of the winding electrode body (4), the arc-shaped convex portion (52) of the current collector (50) is wound. The electrode body (4) bites into the core edge (48), and a joint surface formed of a cylindrical surface is formed between the arc-shaped projection (52) and the core edge (48). In this state, laser welding is performed by irradiating the inner peripheral surface of the arc-shaped convex portion (52) of the current collector plate (50) with a laser beam. As a result, the arc-shaped convex portion (52) of the current collector plate (50) and the core edge (48) of the winding electrode body (4) are joined to each other with a large contact area. In addition, the cut-and-raised piece (53) of the current collector plate (50) will bite into the core edge (48) of the wound electrode body (4).
[0008]
[Patent Document 1]
JP 2001-256952 A [Patent Document 2]
Japanese Patent Publication No. 2-4102 [Patent Document 3]
JP 2000-149902 A
[Problems to be solved by the invention]
However, even with a structure in which a plurality of protrusions formed on the current collector plate are pressed against the edge of the core of the winding electrode body and laser welding is performed on the protrusions (Patent Documents 1 and 2), lithium ions, especially When the thickness of the core constituting the winding electrode body is small and the distance between adjacent cores is large as in a secondary battery, the edge of the core of the winding electrode body and the current collector plate are not welded during laser welding. In some cases, the joint between the protrusions was melted.
In addition, the heat of the laser beam applied to the projections of the current collector plate is rapidly dissipated to the surroundings, and the temperature of the area to be irradiated with the laser beam does not rise sufficiently.
[0010]
Therefore, an object of the present invention is to provide a secondary battery having a current collecting structure capable of reliably welding a current collecting plate to an electrode body.
[0011]
[Means for solving the problem]
In order to achieve the above object, in the first secondary battery according to the present invention, one or a plurality of guide members (7) are disposed on a surface of the current collector (6) facing the electrode body (4). On the guide member (7), a plurality of sharp portions (71) projecting toward the electrode body (4) are formed repeatedly at intervals larger than the arrangement pitch in the arrangement direction of the core bodies. Each sharpened portion (71) has guide surfaces (72) and (73) on both side surfaces in the core body arrangement direction in which a distance between the sharpened portions (71) and (73) decreases toward the tip. The end portions (49) of the plurality of cores are bundled between the opposing guide surfaces (72) and (73), and the current collector plate (6) is welded to the bundle portion to form the current collector plate (6). Are connected to one of the electrode terminals.
[0012]
For example, the electrode body (4) is formed by spirally winding a strip-shaped positive electrode (41) and a negative electrode (43) with a separator (42) interposed therebetween and a current collector plate (6). Are formed in a disk shape, and the plurality of guide members (7) extend radially on the surface of the current collector plate (6) facing the electrode body (4), and each of the guide members (7) has a sharp portion. (71) is arranged in the longitudinal direction of the guide member (7) and has a sawtooth shape.
[0013]
In the above-mentioned secondary battery of the present invention, in the assembling step, by pressing the current collector plate (6) against the electrode body (4), each sharp portion (71) of the current collector plate (6) becomes an electrode body (71). In 4), the end portions (49) of the plurality of cores are introduced between the guide surfaces (72) and (73) of the adjacent sharpened portions (71) and (71) which face each other. I do. Thus, the plurality of core end portions (49) are gathered together and bundled. Since the bundled portion is bonded to the current collector plate (6) in a wide area, a laser beam or an electron beam is applied to the bonded portion so that the current collector plate is not melted at the bonded portion. (6) is welded to the electrode body (4).
[0014]
In order to achieve the above object, in the second secondary battery according to the present invention, the current collector plate (5) has a plurality of protrusions (52) projecting toward the core edge (48). Are formed, and two grooves (56) (56) extending in the longitudinal direction of the protrusion (52) are formed in each protrusion (52). In a state where the current collector plate (5) is pressed against the electrode body (4), the area between the two grooves (56) (56) of each projection (52) is welded by a laser beam or an electron beam. And the current collector plate (5) is joined to the electrode body (4). The current collector plate (5) is connected to one of the electrode terminals.
[0015]
A method for manufacturing a secondary battery according to the present invention is a method for manufacturing the secondary battery,
An electrode body (4) having an edge (48) of a strip-shaped core body constituting a positive electrode (41) or a negative electrode (43) at at least one end thereof, and a core edge (4) of the electrode body (4); A plurality of projections (52) projecting toward the projection (48) are formed, and each of the projections (52) has two grooves (56) (56) extending in the longitudinal direction of the projection (52). Producing the provided current collector plate (5);
With the current collector plate (5) pressed against the edge (48) of the core body of the electrode body (4), the laser is applied to the region between the two grooves (56) (56) of each projection (52). Irradiating a beam or an electron beam to join the current collector plate (5) to the electrode body (4);
Connecting the current collector plate (5) to one of the electrode terminal portions.
[0016]
In the method for manufacturing a secondary battery according to the present invention, in the step of joining the current collector plate (5) to the electrode body (4), the two grooves (52) of each projection (52) of the current collector plate (5) are used. 56) When a laser beam or an electron beam is applied to a region sandwiched by (56), the heat flow path is narrowed in a portion where the groove (56) is recessed. Heat is less likely to flow outward due to the presence of the two grooves (56) (56). As a result, the temperature of the region sandwiched between the two grooves (56) (56) rises sufficiently, and this region is reliably welded to the core body edge (48) of the electrode body (4). .
[0017]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the secondary battery and the manufacturing method thereof according to the present invention, the current collector plate can be reliably welded to the electrode body, whereby the internal resistance of the battery can be reduced and high battery performance can be obtained. .
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment in which the present invention is applied to a cylindrical lithium ion secondary battery will be specifically described with reference to the drawings.
[0019]
First Embodiment As shown in FIG. 1, a cylindrical lithium ion secondary battery according to the present invention has an aluminum lid (12) at each opening of an aluminum cylinder (11). The battery can (1) is fixed by laser welding to form a battery can (1), and a wound electrode body (4) is accommodated inside the battery can (1). Further, a pair of positive and negative electrode terminal mechanisms (9) and (9) are attached to both lids (12) and (12) of the battery can (1), and the electric power generated by the winding electrode body (4) is supplied. It is possible to take it out.
A pressure release type gas discharge valve (13) is connected to the lid (12) of the battery can (1).
[0020]
Current collecting plates (6) are provided at both ends of the winding electrode body (4), and the current collecting plates (6) are joined to the winding electrode body (4) by laser welding (FIG. 2). reference). The tip of the lead (62) projecting from the end of the current collector plate (6) is spot-welded to the flange (92) of the electrode terminal (91) constituting the electrode terminal mechanism (9). They are joined by sonic welding or laser welding.
The current collector plate (6) on the positive electrode side is made of aluminum, and the current collector plate (6) on the negative electrode side is made of copper, and both have a diameter of 20 mm and a thickness of 0.5 mm.
[0021]
The electrode terminal mechanism (9) includes an electrode terminal (91) attached through the lid (12) of the battery can (1), and a flange (92) is provided at a base end of the electrode terminal (91). ) Is formed. An insulating packing (93) is attached to the through-hole of the lid (12), so that electrical insulation and sealing between the lid (12) and the fastening member (91) are maintained. A washer (94) is fitted to the electrode terminal (91) from the outside of the lid (12), and a first nut (95) and a second nut (96) are screwed into the electrode terminal (91). Then, the first nut (95) is tightened, and the insulating packing (93) is sandwiched between the flange (92) of the electrode terminal (91) and the washer (94) to enhance the sealing performance.
[0022]
As shown in FIG. 2, the wound electrode body (4) has a positive electrode (41) formed by applying a positive electrode active material (44) made of lithium cobalt oxide to the surface of a core (45) made of an aluminum foil having a thickness of 15 μm. ), A negative electrode (43) obtained by applying a negative electrode active material (46) made of graphite on the surface of a core (47) made of a copper foil having a thickness of 10 μm, and a microporous film made of ion-permeable polypropylene. The positive electrode (41) and the negative electrode (43) are superposed on the separator (42) so as to be shifted in the width direction, and are wound in a spiral shape. As a result, at one end of the two ends of the winding electrode body (4) in the winding axis direction, the end of the core body (45) of the positive electrode (41) is located outward of the edge of the separator (42). At the other end, the edge (48) of the core (47) of the negative electrode (43) protrudes outward from the edge of the separator (42). The wound electrode body (4) is impregnated with a non-aqueous electrolyte.
[0023]
As shown in FIGS. 3 and 4, the current collector plate (6) is formed in a disk shape, and a through hole (61) is formed in the center thereof.
Eight guide members (7a) (7b) extending radially around the through hole (61) are fixed to the surface of the current collector plate (6) facing the winding electrode body by welding. The four guide members (7a) arranged in a cross shape extend over substantially the entire length of the radial line of the current collector (6), while the other four guide members (7b) collect current. It extends from the outer periphery of the plate (6) to a position about one half of the radius line.
[0024]
Each guide member (7) has a sawtooth shape as shown in FIG. 5, and a plurality of sharp portions (71) that are sharp in a direction away from the current collector (6) form one of the electrodes of the winding electrode body. The guide member (7) is repeatedly formed in the longitudinal direction at intervals of an integral multiple of the arrangement pitch of the constituent cores, and the adjacent sharpened portions (71) (71) can be in close contact with the current collector plate (6). Are connected by a flat plate portion (74). Guide surfaces (72) and (73) are formed on both side surfaces of each sharp portion (71) so that the distance between them decreases toward the tip.
The thickness of the strip used as the material of the guide member (7) is 0.2 mm, the width a of the flat plate portion (74) is 1 mm, the height h of the sharp portion (71) is 3 mm, and the sharp portion (71). Is 3 mm.
On the other hand, as shown in FIG. 2, the protruding height of the core edge (48) protruding from the separator (42) of the wound electrode body (4) is 4 mm.
[0025]
As shown in FIG. 6, in one electrode of the winding electrode body (4), a plurality of core end parts (49) are arranged at a constant arrangement pitch, and are arranged with respect to the winding electrode body (4). When the current collecting plate (6) is pressed, as shown in FIG. 7, each sharp portion (71) of the guide member (7) fixed to the current collecting plate (6) becomes a core of the winding electrode body (4). The plurality of core end portions (49) are divided between the arrangements of the body end portions (49), and between the guide surfaces (72) (73) of the adjacent sharpened portions (71) (71) facing each other. Is introduced. By the guidance of the guide surfaces (72) and (73), the plurality of core body ends (49) are gathered together and bundled. Then, the tip of the bundle portion comes into contact with the flat plate portion (74) of the guide member (7).
[0026]
Therefore, as shown by an arrow in FIG. 7, when the flat plate portion (74) of the guide member (7) is irradiated with a laser beam from outside the current collecting plate (6), the sharp portion ( 71) The plurality of end portions (49) of the core bundled between (71) and the flat plate portion (74) of the guide member (7) are welded to each other, and the current collector plate (6) is wound and the electrode body is wound. It is joined to (4).
Here, the contact area between the plurality of core end portions (49) bundled with each other and the flat plate portion (74) of the guide member (7) is much larger than the conventional structure without the guide member (7). Therefore, the laser welding is reliably performed without causing fusing. As a result, the internal resistance is reduced, and the battery performance is improved.
[0027]
The aforementioned cylindrical lithium ion secondary battery according to the present invention and a conventional method in which a plurality of projections (tip angle 60 °) formed on the current collector plate are pressed against the edge of the core body and laser-welded to the projections. A cylindrical lithium ion secondary battery (Patent Document 2) was prepared, and the internal resistance of each battery was measured. Both batteries were manufactured under the same conditions except for the current collecting structure.
The internal resistance was measured by measuring the impedance by alternating current of 1 KHz between the positive and negative electrode cores constituting the wound electrode body and the leads of the current collector plates on the positive and negative electrodes. As a result, the results shown in Table 1 below were obtained.
[0028]
[Table 1]
Figure 2004119330
[0029]
As is clear from these results, in the cylindrical lithium ion secondary battery according to the present invention, the electric resistance (internal resistance) of the current path from the wound electrode body (4) to the electrode terminal mechanism (9) is lower than that of the conventional battery. And the battery performance is improved as a result.
In addition, since the core body end portions (49) of the winding electrode body (4) are bundled and laser welding is performed on the bundled portions, the welding area is greatly reduced (for example, 1/3 or less). As a result, productivity is improved.
[0030]
Second Embodiment As shown in FIG. 8, a cylindrical lithium ion secondary battery according to the present embodiment has an aluminum lid (12) at the opening of an aluminum cylinder (11) with a laser. The battery can (1) is fixed by welding to form a battery can (1), and a wound electrode body (4) is housed inside the battery can (1). Further, a pair of positive and negative electrode terminal mechanisms (9) and (9) are attached to both lids (12) and (12) of the battery can (1), and the electric power generated by the winding electrode body (4) is supplied. It is possible to take it out.
[0031]
A through hole (13) is formed in the lid (12) of the battery can (1), and a pressure release type gas discharge valve (13) is fixed to the through hole (13).
Current collecting plates (5) are provided at both ends of the winding electrode body (4), and the current collecting plates (5) are joined to the winding electrode body (4) by laser welding. The tip of the lead portion (55) projecting from the end of the current collector plate (5) is spot-welded to the flange (92) of the electrode terminal (91) constituting the electrode terminal mechanism (9). They are joined by sonic welding or laser welding.
The current collector plate (6) on the positive electrode side is made of aluminum, and the current collector plate (6) on the negative electrode side is made of nickel, and both have a diameter of 20 mm and a thickness of 0.5 mm.
[0032]
The electrode terminal mechanism (9) includes an electrode terminal (91) attached through the lid (12) of the battery can (1), and a flange (92) is provided at a base end of the electrode terminal (91). ) Is formed. An insulating packing (93) is attached to the through-hole of the lid (12), so that electrical insulation and sealing between the lid (12) and the fastening member (91) are maintained. A washer (94) is fitted to the electrode terminal (91) from the outside of the lid (12), and a first nut (95) and a second nut (96) are screwed into the electrode terminal (91). Then, the first nut (95) is tightened, and the insulating packing (93) is sandwiched between the flange (92) of the electrode terminal (91) and the washer (94) to enhance the sealing performance.
[0033]
As shown in FIG. 9, the wound electrode body (4) has a positive electrode (41) formed by applying a positive electrode active material (44) made of lithium cobalt oxide to the surface of a core (45) made of an aluminum foil having a thickness of 15 μm. ), A negative electrode (43) obtained by applying a negative electrode active material (46) made of graphite on the surface of a core (47) made of a copper foil having a thickness of 10 μm, and a microporous film made of ion-permeable polypropylene. The positive electrode (41) and the negative electrode (43) are superposed on the separator (42) so as to be shifted in the width direction, and are wound in a spiral shape. As a result, at one end of the two ends of the winding electrode body (4) in the winding axis direction, the end of the core body (45) of the positive electrode (41) is located outward of the edge of the separator (42). At the other end, the edge (48) of the core (47) of the negative electrode (43) protrudes outward from the edge of the separator (42). The wound electrode body (4) is impregnated with a non-aqueous electrolyte.
[0034]
As shown in FIGS. 10 and 11, the current collector plate (5) includes a disc-shaped main body (51), and the disc-shaped main body (51) has a central hole (54). The disk-shaped main body (51) is integrally formed with a plurality of arc-shaped convex portions (52) extending radially around the center hole (54) and protruding toward the winding electrode body (4). Further, a plurality of cut-and-raised pieces (53) are formed on the disk-shaped main body (51) between the adjacent arc-shaped convex portions (52) and (52), respectively, and the wound electrode body (4) is formed. Protruding to the side. Further, a strip-shaped lead portion (55) is integrally formed at an end of the disc-shaped main body (51).
Incidentally, the arc-shaped convex portion (52) of the current collector plate (5) has a semicircular cross section perpendicular to the radius line of the disc-shaped main body (51) as shown in FIG.
[0035]
Each of the arc-shaped protrusions (52) of the current collector plate (5) has an inner peripheral surface extending on both sides of the center line of the arc-shaped protrusion (52) over the entire length as shown in FIG. The grooves (56) (56) of the book are recessed. The groove (56) is formed to have a depth of about one third of the thickness of the current collector (5), for example, 0.25 mm and a width of 0.5 mm.
[0036]
After producing the current collector plate (5), the current collector plate (5) is pressed against the core edge (48) formed at each end of the wound electrode body (4). As a result, as shown in FIG. 12A, the arc-shaped convex portion (52) of the current collector plate (5) bites into the core end (49) of the winding electrode body (4), and the arc-shaped convex portion (52). A joint surface composed of a cylindrical surface is formed between the core member 52 and the end portion 49 of the core body. The cut-and-raised pieces (53) of the current collector plate (5) bite into the core edge (48) of the winding electrode body (4) and are pressed against the core edge (48). .
[0037]
In this state, as shown by an arrow in FIG. 12A, the laser is directed toward a region between the two grooves (56) and (56) of the arc-shaped convex portion (52) of the current collector plate (5). Irradiate the beam and perform laser welding. Here, when a region between the two grooves (56) and (56) of each convex portion (52) of the current collector plate (5) is irradiated with a laser beam, a portion where the groove (56) is recessed is formed. In this case, since the heat flow path is narrowed, the heat generated by the laser beam irradiation hardly flows outward due to the presence of the two grooves (56) (56). As a result, the temperature of the region sandwiched between the two grooves (56) (56) is sufficiently increased, and as shown in FIG. The plate (5) is securely fixed to the end (49) of the electrode body (4).
[0038]
As a result, the arc-shaped convex portion (52) of the current collector plate (5) and the core end portion (49) of the winding electrode body (4) are joined to each other with a large contact area, and the cut and raised pieces are formed. The crimped state between (53) and the core edge (48) is maintained, and the electrical resistance (internal resistance) between the wound electrode body (4) and the current collector (5) is greatly reduced. Become.
Further, even if an external impact or vibration is applied, there is no possibility that the connection between the wound electrode body (4) and the current collector plate (5) will be disconnected at the welded portion (57).
[0039]
Except that the above-mentioned cylindrical lithium ion secondary battery of the present invention (the battery of the present invention) and the arc-shaped convex portion (52) of the current collector plate (5) are not formed with the grooves (56) and (56). A conventional cylindrical lithium ion secondary battery (conventional battery) having the same structure as that of the battery of the present invention is manufactured, and the space between the wound electrode body (4) and the current collector plate (5) on the positive electrode side, or the wound electrode When a tensile force was applied between the body (4) and the current collector (5) on the negative electrode side to compare the welding strengths, the results in Table 2 below were obtained. In addition, in the table, the comparison results were represented by symbols of △, △, ×, in order of the welding strength.
[0040]
[Table 2]
Figure 2004119330
[0041]
As is clear from the results, according to the cylindrical lithium ion secondary battery according to the present invention, on both the positive electrode side and the negative electrode side, between the winding electrode body (4) and the current collector (5). Higher welding strength than conventional batteries is obtained. This is presumably because the grooves (56) (56) formed in the current collector plate (5) of the present invention contributed to the rise in the temperature of the welded portion.
[0042]
The configuration of each part of the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope described in the claims. For example, in the first embodiment, the guide member (7) is not limited to the configuration in which the guide member (7) is welded and fixed to the current collector plate (6), but may be formed integrally with the current collector plate (6) by a pressing process.
Further, in the second embodiment, the convex portion (52) of the current collector plate (5) is not limited to an arc-shaped cross section, but may be formed in a U-shaped cross section as shown in FIGS. In this case as well, similarly, two grooves (56) and (56) are formed in the bottom surface of the convex portion (52), and the laser beam is applied to a region sandwiched between both grooves (56) and (56). Irradiation and welding (57) are performed. Thereby, the current collector plate (5) can be securely welded to the end of the core body (49).
[Brief description of the drawings]
FIG. 1 is a sectional view of a cylindrical lithium ion secondary battery in a first embodiment.
FIG. 2 is a perspective view showing a state in which a current collector is disassembled from a wound electrode body in the secondary battery.
FIG. 3 is an enlarged perspective view of a current collecting plate.
FIG. 4 is a plan view of a current collector.
FIG. 5 is an enlarged sectional view taken along line AA of FIG. 4;
FIG. 6 is an enlarged perspective view showing a state before the guide member is pressed against the end of the core body.
FIG. 7 is a cross-sectional view showing a state after the guide member is pressed against the end of the core.
FIG. 8 is a sectional view of a cylindrical lithium ion secondary battery in a second embodiment.
FIG. 9 is a perspective view showing a state in which the current collector is disassembled from the wound electrode body in the secondary battery.
FIG. 10 is a plan view of a current collector.
FIG. 11 is an enlarged sectional view taken along lines AA and BB in FIG. 10;
FIG. 12 is an enlarged sectional view showing a laser welding step.
FIG. 13 is an enlarged sectional view showing a laser welding step of another embodiment.
FIG. 14 is a sectional view of a conventional cylindrical lithium ion secondary battery.
FIG. 15 is a perspective view showing a state in which the current collector is disassembled from the wound electrode body in the secondary battery.
[Explanation of symbols]
(1) Battery can (4) Winding electrode body (49) End of core body (5) Current collector plate (52) Arc-shaped protrusion (56) Groove (6) Current collector plate (7) Guide member (71) Sharp part (72) Guide surface (73) Guide surface (74) Flat plate part (9) Electrode terminal mechanism

Claims (4)

電池缶(1)の内部に、それぞれ帯状の正極(41)と負極(43)の間にセパレータ(42)を介在させて積層した電極体(4)が収容され、正極(41)及び負極(43)はそれぞれ、帯状芯体の表面に活物質を塗布して構成され、電極体(4)が発生する電力を一対の電極端子部から外部へ取り出すことが出来る二次電池において、電極体(4)の少なくとも何れか一方の端部には、正極(41)或いは負極(43)を構成する帯状芯体の端縁(48)が突出し、該端縁(48)を覆って集電板(6)が設置され、集電板(6)の電極体(4)との対向面には、1或いは複数のガイド部材(7)が配置され、該ガイド部材(7)には、電極体(4)に向かって突出する複数の先鋭部(71)が、芯体の配列方向にその配列ピッチよりも大きな間隔で繰り返し形成され、各先鋭部(71)は、芯体配列方向の両側面に、先端に向かって互いの間隔が狭まるガイド面(72)(73)を有し、隣接する先鋭部(71)(71)の互いに対向するガイド面(72)(73)間に複数枚の芯体の端部(49)が束ねられ、該束ね部に対して集電板(6)が溶接され、該集電板(6)が一方の電極端子部と連結されていることを特徴とする二次電池。An electrode body (4) laminated with a separator (42) interposed between a strip-shaped positive electrode (41) and a negative electrode (43) is housed inside the battery can (1), and the positive electrode (41) and the negative electrode ( 43) are each formed by applying an active material to the surface of a band-shaped core, and in a secondary battery capable of taking out the electric power generated by the electrode body (4) from a pair of electrode terminals to the outside, The edge (48) of the strip-shaped core constituting the positive electrode (41) or the negative electrode (43) protrudes from at least one of the ends of 4), and covers the edge (48) to collect the current collector plate ( 6) is installed, and one or a plurality of guide members (7) are arranged on a surface of the current collector plate (6) facing the electrode body (4), and the guide member (7) has an electrode body (7). The plurality of sharp portions (71) protruding toward 4) are arranged in the direction in which the cores are arranged more than the arrangement pitch. Each of the sharp portions (71) has guide surfaces (72) and (73) on both side surfaces in the core body arrangement direction in which the distance between the sharp portions (71) decreases toward the tip. (71) The ends (49) of a plurality of cores are bundled between the mutually facing guide surfaces (72) and (73) of (71), and the current collector plate (6) is welded to the bundled portions. A secondary battery, wherein the current collector plate (6) is connected to one of the electrode terminals. 電極体(4)は、それぞれ帯状の正極(41)と負極(43)の間にセパレータ(42)を介在させてこれらを渦巻き状に巻き取ったものであって、集電板(6)は円板状に形成され、複数のガイド部材(7)は、該集電板(6)の電極体(4)との対向面を放射状に伸びており、各ガイド部材(7)の先鋭部(71)は、ガイド部材(7)の長手方向に並び、鋸歯状を呈している請求項1に記載の二次電池。The electrode body (4) is formed by spirally winding a strip-shaped positive electrode (41) and a negative electrode (43) with a separator (42) interposed therebetween and a current collector plate (6). The plurality of guide members (7) are formed in a disk shape, and the plurality of guide members (7) extend radially on the surface of the current collector plate (6) facing the electrode body (4). 2. The secondary battery according to claim 1, wherein 71) is arranged in the longitudinal direction of the guide member and has a sawtooth shape. 3. 電池缶(1)の内部に、それぞれ帯状の正極(41)と負極(43)の間にセパレータ(42)を介在させて積層した電極体(4)が収容され、正極(41)及び負極(43)はそれぞれ、帯状芯体の表面に活物質を塗布して構成され、電極体(4)が発生する電力を一対の電極端子部から外部へ取り出すことが出来る二次電池において、電極体(4)の少なくとも何れか一方の端部には、正極(41)或いは負極(43)を構成する帯状芯体の端縁(48)が突出し、該端縁(48)を覆って集電板(5)が設置され、該集電板(5)には、芯体端縁(48)に向かって突出する複数条の凸部(52)が形成されると共に、各凸部(52)には、凸部(52)の長手方向に伸びる2本の溝(56)(56)が凹設され、該集電板(5)が電極体(4)に押し付けられた状態で、各凸部(52)の2本の溝(56)(56)に挟まれた領域にレーザビーム又は電子ビームによる溶接が施されて、該集電板(5)が電極体(4)に接合され、該集電板(5)が一方の電極端子部と連結されていることを特徴とする二次電池。An electrode body (4) laminated with a separator (42) interposed between a strip-shaped positive electrode (41) and a negative electrode (43) is housed inside the battery can (1), and the positive electrode (41) and the negative electrode ( 43) are each formed by applying an active material to the surface of a band-shaped core, and in a secondary battery capable of taking out the electric power generated by the electrode body (4) from a pair of electrode terminals to the outside, The edge (48) of the strip-shaped core constituting the positive electrode (41) or the negative electrode (43) protrudes from at least one of the ends of 4), and covers the edge (48) to collect the current collector plate ( 5) is installed, a plurality of protrusions (52) projecting toward the core body edge (48) are formed on the current collector plate (5), and each of the protrusions (52) has , Two grooves (56) (56) extending in the longitudinal direction of the convex portion (52) are recessed, and the current collector plate (5) is While being pressed against the body (4), the area between the two grooves (56) and (56) of each projection (52) is welded by a laser beam or an electron beam to the current collector plate. A secondary battery characterized in that (5) is joined to the electrode body (4), and the current collector plate (5) is connected to one of the electrode terminals. 電池缶(1)の内部に、それぞれ帯状の正極(41)と負極(43)の間にセパレータ(42)を介在させて積層した電極体(4)が収容され、正極(41)及び負極(43)はそれぞれ、帯状芯体の表面に活物質を塗布して構成され、電極体(4)が発生する電力を一対の電極端子部から外部へ取り出すことが出来る二次電池の製造方法において、
少なくとも何れか一方の端部に正極(41)或いは負極(43)を構成する帯状芯体の端縁(48)が突出した電極体(4)と、電極体(4)の芯体端縁(48)に向かって突出する複数条の凸部(52)が形成されると共に各凸部(52)には凸部(52)の長手方向に伸びる2本の溝(56)(56)が凹設された集電板(5)とを作製する工程と、
集電板(5)を電極体(4)の芯体端縁(48)に押し付けた状態で、各凸部(52)の2本の溝(56)(56)に挟まれた領域にレーザビーム又は電子ビームを照射して、集電板(5)を電極体(4)に接合する工程と、
該集電板(5)を一方の電極端子部と連結する工程
とを有することを特徴とする二次電池の製造方法。
An electrode body (4) laminated with a separator (42) interposed between a strip-shaped positive electrode (41) and a negative electrode (43) is housed inside the battery can (1), and the positive electrode (41) and the negative electrode ( 43) is a method for manufacturing a secondary battery in which an active material is applied to the surface of a strip-shaped core, and power generated by the electrode body (4) can be taken out from a pair of electrode terminals.
An electrode body (4) having an edge (48) of a strip-shaped core body constituting a positive electrode (41) or a negative electrode (43) at at least one end thereof, and a core edge (4) of the electrode body (4); A plurality of projections (52) projecting toward the projection (48) are formed, and each of the projections (52) has two grooves (56) (56) extending in the longitudinal direction of the projection (52). Producing the provided current collector plate (5);
With the current collector plate (5) pressed against the edge (48) of the core body of the electrode body (4), the laser is applied to the region between the two grooves (56) (56) of each projection (52). Irradiating a beam or an electron beam to join the current collector plate (5) to the electrode body (4);
Connecting the current collector plate (5) to one of the electrode terminals.
JP2002284807A 2002-09-30 2002-09-30 Secondary battery and manufacturing method thereof Expired - Fee Related JP4401065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002284807A JP4401065B2 (en) 2002-09-30 2002-09-30 Secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002284807A JP4401065B2 (en) 2002-09-30 2002-09-30 Secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004119330A true JP2004119330A (en) 2004-04-15
JP4401065B2 JP4401065B2 (en) 2010-01-20

Family

ID=32278255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002284807A Expired - Fee Related JP4401065B2 (en) 2002-09-30 2002-09-30 Secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4401065B2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100579409B1 (en) 2004-07-28 2006-05-12 삼성에스디아이 주식회사 Secondary battery
KR100599710B1 (en) 2004-07-28 2006-07-12 삼성에스디아이 주식회사 Secondary battery and electrodes assembly using the same and method for manufacturing secondary battery
JP2007265846A (en) * 2006-03-29 2007-10-11 Sanyo Electric Co Ltd Cylindrical battery and its manufacturing method
JP2008066075A (en) * 2006-09-06 2008-03-21 Hitachi Ltd Non-aqueous secondary battery
JP2008103309A (en) * 2006-09-20 2008-05-01 Matsushita Electric Ind Co Ltd Secondary battery and method for manufacturing secondary battery
JP2008192315A (en) * 2007-01-31 2008-08-21 Hitachi Vehicle Energy Ltd Secondary battery and its manufacturing method
WO2008111284A1 (en) * 2007-03-15 2008-09-18 Panasonic Corporation Secondary battery and method for manufacturing secondary battery
WO2009057242A1 (en) * 2007-10-29 2009-05-07 Panasonic Corporation Secondary battery
WO2009096160A1 (en) * 2008-01-28 2009-08-06 Panasonic Corporation Secondary cell collector terminal board, secondary cell, and secondary cell manufacturing method
US7989107B2 (en) 2007-06-11 2011-08-02 Hitachi Vehicle Energy, Ltd. Lithium-ion secondary battery
US9034500B2 (en) 2010-04-02 2015-05-19 Toyota Jidosha Kabushiki Kaisha Laminated electrode-type battery, manufacturing method therefor, vehicle, and device
KR20160106645A (en) * 2014-02-10 2016-09-12 도요타지도샤가부시키가이샤 Electrical storage device and manufacturing method for electrical storage device
EP3258519A1 (en) * 2016-06-16 2017-12-20 VARTA Microbattery GmbH Electrochemical cell with optimized internal resistance
CN109904380A (en) * 2019-03-26 2019-06-18 阮孟雪 A kind of circle high power lithium ion cell structure and preparation method thereof
EP3916828A1 (en) 2020-05-29 2021-12-01 VARTA Microbattery GmbH Lithium ion cell with high specific energy density
EP3916877A1 (en) 2020-05-29 2021-12-01 VARTA Microbattery GmbH Energy storage cell and method of manufacturing same
EP3916868A1 (en) 2020-05-29 2021-12-01 VARTA Microbattery GmbH Energy storage cell and method of manufacturing same
EP3916869A1 (en) 2020-05-29 2021-12-01 VARTA Microbattery GmbH Lithium ion cell with high specific energy density
EP3916841A1 (en) 2020-05-29 2021-12-01 VARTA Microbattery GmbH Lithium ion cell with high specific energy density
EP3916870A1 (en) 2020-05-29 2021-12-01 VARTA Microbattery GmbH High energy density lithium ion cell
WO2021239372A1 (en) 2020-05-29 2021-12-02 Varta Microbattery Gmbh Electrochemical cell
WO2021249808A1 (en) 2020-06-09 2021-12-16 Varta Microbattery Gmbh Lithium-ion cell with a high specific energy density
WO2021255238A1 (en) 2020-06-19 2021-12-23 Varta Microbattery Gmbh Lithium-ion cell with a high specific energy density
WO2022034156A1 (en) 2020-08-11 2022-02-17 Varta Microbattery Gmbh Energy storage cell and production method
EP3965196A1 (en) 2020-09-07 2022-03-09 VARTA Microbattery GmbH Energy storage cell
CN114175392A (en) * 2019-08-06 2022-03-11 株式会社村田制作所 Secondary battery, battery pack, electronic device, electric tool, electric aircraft, and electric vehicle
EP3972037A1 (en) 2020-09-22 2022-03-23 VARTA Microbattery GmbH Energy storage cell
CN114473210A (en) * 2022-01-27 2022-05-13 天津力神电池股份有限公司 Current collecting disc structure of circular lithium ion battery and welding method
CN115051120A (en) * 2021-03-09 2022-09-13 宁德时代新能源科技股份有限公司 Battery cell, manufacturing method and manufacturing system thereof, battery and electric equipment
WO2022177179A3 (en) * 2021-02-19 2022-10-13 주식회사 엘지에너지솔루션 Electrode assembly and method for manufacturing same, cylindrical battery cell comprising electrode assembly, and battery pack and automobile comprising cylindrical battery cell
EP4170812A1 (en) 2021-10-20 2023-04-26 VARTA Microbattery GmbH Lithium-ion cell
WO2024055256A1 (en) * 2022-09-15 2024-03-21 宁德时代新能源科技股份有限公司 Battery cell and preparation method therefor, battery, and electrical device

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100599710B1 (en) 2004-07-28 2006-07-12 삼성에스디아이 주식회사 Secondary battery and electrodes assembly using the same and method for manufacturing secondary battery
US7364817B2 (en) 2004-07-28 2008-04-29 Samsung Sdi Co., Ltd Secondary battery and method of manufacturing the same
KR100579409B1 (en) 2004-07-28 2006-05-12 삼성에스디아이 주식회사 Secondary battery
JP2007265846A (en) * 2006-03-29 2007-10-11 Sanyo Electric Co Ltd Cylindrical battery and its manufacturing method
JP2008066075A (en) * 2006-09-06 2008-03-21 Hitachi Ltd Non-aqueous secondary battery
JP2008103309A (en) * 2006-09-20 2008-05-01 Matsushita Electric Ind Co Ltd Secondary battery and method for manufacturing secondary battery
US7867644B2 (en) 2007-01-31 2011-01-11 Hitachi Vehicle Energy, Ltd. Secondary battery and secondary battery manufacturing method
JP2008192315A (en) * 2007-01-31 2008-08-21 Hitachi Vehicle Energy Ltd Secondary battery and its manufacturing method
WO2008111284A1 (en) * 2007-03-15 2008-09-18 Panasonic Corporation Secondary battery and method for manufacturing secondary battery
US7989107B2 (en) 2007-06-11 2011-08-02 Hitachi Vehicle Energy, Ltd. Lithium-ion secondary battery
JP2009110751A (en) * 2007-10-29 2009-05-21 Panasonic Corp Secondary battery
WO2009057242A1 (en) * 2007-10-29 2009-05-07 Panasonic Corporation Secondary battery
WO2009096160A1 (en) * 2008-01-28 2009-08-06 Panasonic Corporation Secondary cell collector terminal board, secondary cell, and secondary cell manufacturing method
US9034500B2 (en) 2010-04-02 2015-05-19 Toyota Jidosha Kabushiki Kaisha Laminated electrode-type battery, manufacturing method therefor, vehicle, and device
KR20160106645A (en) * 2014-02-10 2016-09-12 도요타지도샤가부시키가이샤 Electrical storage device and manufacturing method for electrical storage device
KR101881237B1 (en) 2014-02-10 2018-07-23 도요타지도샤가부시키가이샤 Electrical storage device and manufacturing method for electrical storage device
EP3258519A1 (en) * 2016-06-16 2017-12-20 VARTA Microbattery GmbH Electrochemical cell with optimized internal resistance
WO2017215900A1 (en) * 2016-06-16 2017-12-21 Varta Microbattery Gmbh Electro-chemical cell having optimised internal resistance
CN109904380A (en) * 2019-03-26 2019-06-18 阮孟雪 A kind of circle high power lithium ion cell structure and preparation method thereof
CN114175392A (en) * 2019-08-06 2022-03-11 株式会社村田制作所 Secondary battery, battery pack, electronic device, electric tool, electric aircraft, and electric vehicle
CN114175392B (en) * 2019-08-06 2024-03-29 株式会社村田制作所 Secondary battery, battery pack, electronic device, electric tool, electric aircraft, and electric vehicle
WO2022111932A1 (en) 2020-05-29 2022-06-02 Varta Microbattery Gmbh Energy storage element having a prismatic housing
WO2022023321A1 (en) 2020-05-29 2022-02-03 Varta Microbattery Gmbh Energy storage cell and production method
EP3916841A1 (en) 2020-05-29 2021-12-01 VARTA Microbattery GmbH Lithium ion cell with high specific energy density
EP3916870A1 (en) 2020-05-29 2021-12-01 VARTA Microbattery GmbH High energy density lithium ion cell
EP3916827A1 (en) 2020-05-29 2021-12-01 VARTA Microbattery GmbH High energy density lithium ion cell
EP3916829A1 (en) 2020-05-29 2021-12-01 VARTA Microbattery GmbH Lithium ion cell with high specific energy density
WO2021239490A1 (en) 2020-05-29 2021-12-02 Varta Microbattery Gmbh Lithium-ion cell with a specified high energy density
WO2021239372A1 (en) 2020-05-29 2021-12-02 Varta Microbattery Gmbh Electrochemical cell
WO2021239492A1 (en) 2020-05-29 2021-12-02 Varta Microbattery Gmbh Lithium-ion cell with a high energy density
EP3916877A1 (en) 2020-05-29 2021-12-01 VARTA Microbattery GmbH Energy storage cell and method of manufacturing same
WO2022058342A1 (en) 2020-05-29 2022-03-24 Varta Microbattery Gmbh Lithium-ion cell with a high specific energy density
EP3916828A1 (en) 2020-05-29 2021-12-01 VARTA Microbattery GmbH Lithium ion cell with high specific energy density
EP3916868A1 (en) 2020-05-29 2021-12-01 VARTA Microbattery GmbH Energy storage cell and method of manufacturing same
EP3916869A1 (en) 2020-05-29 2021-12-01 VARTA Microbattery GmbH Lithium ion cell with high specific energy density
WO2021249808A1 (en) 2020-06-09 2021-12-16 Varta Microbattery Gmbh Lithium-ion cell with a high specific energy density
WO2021255238A1 (en) 2020-06-19 2021-12-23 Varta Microbattery Gmbh Lithium-ion cell with a high specific energy density
WO2022034156A1 (en) 2020-08-11 2022-02-17 Varta Microbattery Gmbh Energy storage cell and production method
EP3965196A1 (en) 2020-09-07 2022-03-09 VARTA Microbattery GmbH Energy storage cell
WO2022048969A1 (en) 2020-09-07 2022-03-10 Varta Microbattery Gmbh Energy storage cell
WO2022063632A1 (en) 2020-09-22 2022-03-31 Varta Microbattery Gmbh Energy storage cell
EP3972037A1 (en) 2020-09-22 2022-03-23 VARTA Microbattery GmbH Energy storage cell
WO2022177179A3 (en) * 2021-02-19 2022-10-13 주식회사 엘지에너지솔루션 Electrode assembly and method for manufacturing same, cylindrical battery cell comprising electrode assembly, and battery pack and automobile comprising cylindrical battery cell
CN115051120A (en) * 2021-03-09 2022-09-13 宁德时代新能源科技股份有限公司 Battery cell, manufacturing method and manufacturing system thereof, battery and electric equipment
WO2022188484A1 (en) * 2021-03-09 2022-09-15 宁德时代新能源科技股份有限公司 Battery cell and manufacturing method and manufacturing system therefor, battery, and powered device
WO2023066791A1 (en) 2021-10-20 2023-04-27 Varta Microbattery Gmbh Lithium-ion cell
EP4170812A1 (en) 2021-10-20 2023-04-26 VARTA Microbattery GmbH Lithium-ion cell
CN114473210A (en) * 2022-01-27 2022-05-13 天津力神电池股份有限公司 Current collecting disc structure of circular lithium ion battery and welding method
WO2024055256A1 (en) * 2022-09-15 2024-03-21 宁德时代新能源科技股份有限公司 Battery cell and preparation method therefor, battery, and electrical device

Also Published As

Publication number Publication date
JP4401065B2 (en) 2010-01-20

Similar Documents

Publication Publication Date Title
JP4401065B2 (en) Secondary battery and manufacturing method thereof
US20220376367A1 (en) Secondary battery and method of manufacturing same
JP3738177B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP5275271B2 (en) Secondary battery
US7976979B2 (en) Secondary battery and method for manufacturing secondary battery
JP4446205B2 (en) Battery and manufacturing method thereof
JP6582443B2 (en) Secondary battery and manufacturing method thereof
EP1484808B1 (en) Secondary battery
KR20120025389A (en) Square-sealed type secondary battery
JP2004119329A (en) Secondary battery
US20220352606A1 (en) Secondary battery and method for manufacturing same
JPH11135100A (en) Wound electrode battery and manufacture thereof
JP3825706B2 (en) Secondary battery
JP3738166B2 (en) Non-aqueous electrolyte secondary battery
JP4159299B2 (en) Secondary battery
JP3588264B2 (en) Rechargeable battery
JP4679046B2 (en) Battery and battery unit using the same
JP2004071266A (en) Nonaqueous electrolyte secondary battery and its manufacturing process
JP5248210B2 (en) Lithium ion secondary battery
JPH11329398A (en) Wound-electrode battery
JP4780954B2 (en) Secondary battery
JP4159383B2 (en) Cylindrical secondary battery
JP4338372B2 (en) Secondary battery
JP4428965B2 (en) Battery unit
JP7285817B2 (en) SEALED BATTERY AND METHOD OF MANUFACTURING SEALED BATTERY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees