JP2008102389A - 光照射器 - Google Patents

光照射器 Download PDF

Info

Publication number
JP2008102389A
JP2008102389A JP2006285847A JP2006285847A JP2008102389A JP 2008102389 A JP2008102389 A JP 2008102389A JP 2006285847 A JP2006285847 A JP 2006285847A JP 2006285847 A JP2006285847 A JP 2006285847A JP 2008102389 A JP2008102389 A JP 2008102389A
Authority
JP
Japan
Prior art keywords
light
reflector
optical path
illuminance
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006285847A
Other languages
English (en)
Inventor
Shigenori Nakada
重範 仲田
Katsuya Watanabe
勝也 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2006285847A priority Critical patent/JP2008102389A/ja
Publication of JP2008102389A publication Critical patent/JP2008102389A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Ink Jet (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

【課題】線状に集光された光を照射する光照射器において、高いピーク照度を得るとともに、線状に集光した光の長手方向の照度均一度をよくすること。
【解決手段】ランプ12からの光はリフレクタ13で反射して平行光となり、光路Aの光は、そのまま反射ミラー(シリンドリカル・パラボラミラー)17に入射し、光照射面Wにおいて線状に集光される。その照度分布は、中心付近の照度が高く、周辺部の照度が低い。一方、光路Bの光は、三角プリズム20に入射して屈折し、光芒の中心付近の光は光芒の周辺部に向かって光路が変更され、反射ミラー17に入射する。このため反射ミラー17により線状に集光された光路Bの光は、中心付近には光がなくなり、周辺部に照度の高い領域が生じる。光照射面Wでは、光路A光と光路Bの光とが重なり、光路Aの照度の低い部分を、光路Bの光が補い均一度の良い線状に集光された光が得られる。
【選択図】 図1

Description

本発明は、ショートアークランプを使って線状の細長い光照射領域を形成し、被照射物に光を照射する光照射器に関し、特に、線状の光照射領域の照度分布を均一化するための、光照射機の構造に関するものである。
グラビア印刷方式より簡便で安価に画像を作成することができるという理由から、近年ではインクジェット記録方式が写真・各種印刷・マーキング・カラーフィルターといった特殊印刷等の様々な印刷分野に応用されてきている。
特にインクジェット記録方式では、微細なドットを吐出・制御するインクジェット記録方式のインクジェットプリンタと、色再現域・耐久性.吐出適性等を改善したインクと、インク吸収性・色材発色性・表面光沢等を飛躍的に向上させた専用紙とを、組み合わせることで高い画質を得ることができるようになっている。
上記インクジェットプリンタはインクの種類で分類することができるが、その中に紫外線等の光の照射により硬化する光硬化型インクを用いる光硬化型インクジェット方式がある。光硬化型インクジェット方式は、比較的低臭気であり、専用紙以外にも速乾性・インク吸収性のない記録媒体等の基材にも記録できる点で注目されている。
このような光硬化型インクジェット方式のインクジェットプリンタ(以下インクジェットプリンタと呼ぶ)では、インクを微小な液滴として基材に吐出するインクジェットヘッドの他にも光を放射する光源がキャリッジに搭載されており、基材上で光源を点灯させたままキャリッジを移動させ、基材に着弾した直後のインクに光を照射して当該インクを硬化させている(例えば特許文献1,2,3、非特許文献1参照)。
なお、インクジェットプリンタは、最近、上記のような画像の記録印刷だけでなく、電子電気回路のパターンを形成するためにも使用することが試みられている。この場合、インクジェットヘッドから吐出する液体状材料は、光硬化型のレジストインキ等の回路基板形成用材料であり、印刷(すなわちパターンの形成)が行われる基材は例えばプリント基板である。
レジストインキによる回路パターンの形成も、画像の記録印刷と同様に、紫外線などの光による乾燥硬化反応を利用しており、インクジェットヘッドから吐出する材料が、レジストかインクかの違いはあるが、インクジェットプリンタの装置構成は同じである。
以下では、インクジェットプリンタとして、光硬化型のインクを用いて基材に画像を記録する装置を例に説明を行う。
図18(a)は、インクジェットプリンタのヘッド部の概略構成を示す斜視図、図18(b)は同図(a)に示す光照射器6,7をランプの軸に垂直な平面で切った断面図である。なお、同図(a)は後述する説明が容易になるように光照射器の内部が見えるように示している。
インクジェットプリンタ1は、棒状のガイドレール2を有しており、このガイドレール2には、キャリッジ3が支持されている。キャリッジ3は、キャリッジ駆動機構(不図示)によって、基材5上をガイドレール2に沿って往復移動する。以下この方向をX方向と呼ぶ。
キャリッジ3には、カラー印刷のための各色のインクを吐出するノズル(図示しない)が設けられたインクジェットヘッド4が搭載されている。インクジェットヘッド4の、キャリッジ3の移動方向に沿った両側には、光照射器6,7が設けられ、光照射器6,7は、インクジェットヘッド4のノズルから基材5に吐出されたインクに対して紫外線を照射する。
なお、上記インクジェットヘッド4、光照射部6,7から構成される部分を以下ヘッド部1aと呼ぶ。
図18において、キャリッジ3が同図X方向手前に移動しながら基材5に印刷が行われているときは、ヘッド部1aのインクジェットヘッド4からのインクは、光照射器6からの光により硬化される。また、キャリッジ3が同図X方向奥に移動しながら基材5に印刷が行われているときは、インクジェットヘッド4からのインクは、光照射器7からの光により硬化される。
光照射器6,7は、基材5側に向かって開口8aを有する箱型のカバー部材8を有しており、このカバー部材8の内部には、キャリッジ3の移動方向(X方向)と直交する方向(以下この方向をY方向と呼ぶ)に沿った線状の光源であるロングアーク型の放電ランプ90が配置されている。ランプ90の発光部の長さは、インクジェットヘッド4のY方向における長さと等しい。
このようなロングアーク型の放電ランプとして、例えば高圧水銀ランプやメタルハライドランプなどがある。
ランプ90に対して、開口8aの反対側には、ランプ90から放射される光(紫外線)を反射する樋状のリフレクタ110が設けられる。図18(b)に示すように、リフレクタ110の断面は楕円形状であり、放電ランプ90は、このリフレクタ110の第1焦点に配置され、ランプ90から放射された光(紫外線)は、リフレクタ110の第2焦点に線状に集光される。
基材5は、リフレクタ110の第2焦点位置、またはその付近を通過するように配置され、インクが着弾された基材5には、リフレクタ110により集光された光が照射されるが、ランプ90からの直接光も基材5に照射される。
特開2005一246955号公報 特開2005−103852号公報 特開2005一305742号公報 野口弘道、折笠輝夫「UVインクジェット印刷の動向」日本印刷学会誌、第40巻第3号32(2003)
最近、上記のようなインクジェットプリンタにおいて、インクを硬化させるための光(紫外線)の照度をさらに強くしたいという要望が出てきた。
インクは、インクジェットヘッドのノズルからスムーズに吐出されるように、ある程度低粘度である。そのためインクが基材に着弾後、直ちに硬化(光重合)させないと、着弾後のインクのドット形状が変化し画像品質が低下する。硬化(光重合)を素早く行なうためには、ピーク照度の高い光を照射し、一気に重合反応を進行させることが望ましい。
このような課題を解決するために、われわれは先に、光源ランプとしてロングアーク型の放電ランプよりも高い輝度を有するショートアーク型の放電ランプを用い、このランプからの光を線状に伸びるように集光し照射する光照射器を提案した(特願2006−120424)。
図19に、特願2006−120424で提案した光照射器の構成の一例を示す。
ショートアーク型の放電ランプ9からの光を、まず、ランプ9を囲むようにして設けた回転放物面状の反射面を有するリフレクタ111で反射する。次にリフレクタ111で反射された光を、断面が放物線状のシリンドリカルな反射面を有するミラー112で反射する。
ランプ9からの光は、回転放物面状の反射面を有するリフレクタ111で反射されると平行光になる。平行になった光を断面が放物線上の反射面を有するミラー112で反射すると、光は光照射面W上に、図19の紙面に垂直な方向に線状に集光される。
しかし、上記の光照射器においては、線状に集光した光の長手方向の照度均一度は、特に考慮されおらず、照度分布は、後述する図5の(プリズムなし)で示す曲線のように、中央部の照度が高く、周辺部に向かうにしたがって照度が低くなる山型になる。
光照射領域全域にわたって均一な処理するためには、照度の均一度が良好な光照射領域を形成する必要がある。照度の均一度が悪いと光照射領域全域にわたって均一な処理ができないという問題が生じる。
本発明は上述した事情に基づいてなされたものであって、線状に集光された光を照射する光照射器において、高いピーク照度を得ることができ、線状に集光した光の長手方向の照度均一度をよくすることができる光照射器を提供することを目的とする。
上記課題を本発明においては、次のように解決する。
(1)放電容器内に一対の電極が対向配置されたショートアーク型の放電ランプと、この放電ランプを取り囲むように配置され、上記放電ランプからの光を反射する反射面を有するリフレクタと、上記リフレクタにより反射された光を、一軸方向に集光する光学素子とを備えた光照射器において、上記リフレクタと上記一軸方向に集光する光学素子との間に、リフレクタにより反射された光の光路を、リフレクタから出射する光の光軸に直交し、かつ、上記光学素子により集光される方向に直交する方向に変更する光路変更部材を設ける。そして、この光路変更部材により、光照射面において複数の異なる照度分布を作り、光照射面における照度分布を均一にする。
上記一軸方向(入射光の光軸に直交する平面上の直交する2軸の内の一軸方向)のみに集光する光学素子として、シリンドリカルレンズ、シリンドリカル・パラボラミラー(断面が放物線状)、シリンドリカル楕円ミラー(断面が楕円状)があり、これらはリフレクタの形状等に応じて適宜選択する。
リフレクタが回転放物面状の反射面を有するものであれば、上記光学素子として、シリンドリカルレンズ、またはシリンドリカル・パラボラミラーが使用できる。同様に、リフレクタが、回転楕円面状の反射面を有するものであれば、上記光学素子として、シリンドリカルレンズ、またはシリンドリカル楕円ミラーを使用できる。
シリンドリカルレンズは、入射した光を一軸方向(入射光の光軸に直交する平面上の直交する2軸の内の一軸方向)のみ集光するレンズであり、市販されているものは、円柱を長さ方向に二分し底面を半円とした形状をしている。なお、以下では、シリンドリカルレンズの上記2軸の内、集光しない方向(シリンドリカルレンズの伸びる方向)を軸方向という。
シリンドリカル・パラボラミラーは、平行光を入射して一軸方向のみ集光する樋状ミラーあり、第1の方向の断面が放物線状であり、これに直交する第2の方向の断面が直線状である。なお、以下では、シリンドリカル・パラボラミラーの集光しない方向(樋状の伸びる方向、すなわち、断面の形状が直線状になる方向)を軸方向という。
シリンドリカル楕円ミラーは、第2焦点から広がる光を入射して、第1焦点において一軸方向のみ集光する樋状ミラーあり、第1の方向の断面が楕円状であり、これに直交する第2の方向の断面が直線状である。なお、以下では、シリンドリカル楕円ミラーの集光しない方向(樋状の伸びる方向、すなわち、断面の形状が直線状になる方向)を軸方向という。
図20は、回転放物面状の反射面を有するリフレクタ13と、反射鏡(シリンドリカル・パラボラミラー)17から構成され、光路変更部材15が光路の一部を横切るように設けられている場合の、光路変更部材による光路の変更方向を説明する図である。
同図に示すように、リフレクタ13から出射した光は光路変更部材15を介して、一軸方向に集光する光学素子である反射ミラー17に入射し、ここで一軸方向に集光され光照射面W上に線状の光照射領域IAが形成される。
ここで、同図に示すように、一軸方向に集光する光学素子(この例では反射ミラー17)の集光方向は、光照射面W上に線状に形成される光照射領域IAに対して直交する方向であるので、光路変更部材15による光路の変更方向は同図に示すように、線状に形成される光照射領域IAに平行で光軸に直交する方向、すなわち、リフレクタから出射する光の光軸に直交し、かつ上記光学素子17により集光される方向に直交する方向である。
なお、一軸方向に集光する光学素子としてシリンドリカル・パラボラミラーを用いる場合、反射ミラー17(シリンドリカル・パラボラミラー)により光の方向が変わるので、反射ミラー17の入射前では、光路変更部材15による光路の変更方向は、反射ミラー17の軸方向となる。
(2)上記(1)において、光路変更部材を、リフレクタにより反射された光の光路(光束)の一部を横切るように設け、光照射面において中央部分より周辺部の照度大きくなるように光路を変更する。
上記光路変更部材としては、次のようなものがあげられる。
(i) 側面が二等辺三角形のプリズムまたは側面がM字型のプリズム。
この光路変更部材により、光束の中央部の照度の高い光を屈折させて光照射領域の周辺部に移動させ、中央部に比べて周辺部の照度が高い照度分布を形成する。
そして、光路変更部材により中央部に比べて周辺部の照度が高くなった照度分布を有する光と、光路が変更されなかった中央部の照度が高く周辺部の照度が低い光とは、光照射面において重なり合う。これにより、照度の高い部分と低い部分とが補い合い、均一な照度分布の光照射領域が形成される。
リフレクタが回転放物面状の反射面を有するものであり、入射した光を一軸方向のみ集光する光学素子がシリンドリカルレンズあるいはシリンドリカル・パラボラミラーの場合は、光路変更部材として二等辺三角形のプリズムおよび側面がM字型のプリズムを用いることができる。
また、リフレクタが回転楕円面状の反射面を有するものであり、入射した光を一軸方向のみ集光する光学素子がシリンドリカルレンズあるいはシリンドリカル楕円ミラーの場合は、光路変更部材として、側面がM字型のプリズムを用いることができる。
(ii)側面が二等辺三角形で厚みがあり斜面が反射面になっている第1のミラーと、そのミラーが反射した光を反射する第2のミラーを組み合わせたミラーユニット。
上記プリズムと同様、光路変更部材の第1のミラーが、光束の中央部の照度の高い光を、光束の周辺部に向けて反射する。この光を第2のミラーが、光照射領域の周辺部の、照度の低い領域に向かって反射する。
反射により光路が変更された照度の高い光は、光照射面において、光路が変更されなかった光の照度が低い周辺部に照射され、均一な照度分布の光照射領域が形成される。
リフレクタが回転放物面状の反射面を有するものであり、入射した光を一軸方向のみ集光する光学素子がシリンドリカルレンズあるいはシリンドリカル・パラボラミラーの場合は、光路変更部材として、上記ミラーユニットを用いることができる。
なお、回転楕円面状の反射面を有するリフレクタを用いる場合、側面が二等辺三角形のプリズムおよびミラーユニットとの組合せはうまくいかない。
(3)放電容器内に一対の電極が対向配置されたショートアーク型の放電ランプと、この放電ランプを取り囲むように配置され、上記放電ランプからの光を反射する回転放物面状の反射面を有するリフレクタと、上記リフレクタにより反射された光を、一軸方向に集光する光学素子とを備えた光照射器において、上記リフレクタと上記一軸方向に集光する光学素子との間に、上記リフレクタから出射する光の光軸に垂直な平面上に平行に配置され複数のロッドレンズを設ける。
上記複数のロッドレンズは、上記リフレクタにより反射された光の光路の全体を横切るように設けられ、リフレクタにより反射された光の光路を、リフレクタから出射する光の光軸に直交し、かつ、上記光学素子により集光される方向に直交する方向に変更する。
ここで、ロッドレンズは、断面が円もしくは円に近い形状(円柱形状)の棒状レンズであり、この断面が円もしくは円に近い形状の複数の棒状レンズを、その軸方向(円もしくは円に近い形状の断面に垂直であって断面の中心を通る直線の方向)が平行になるようにリフレクタから出射する光の光軸に垂直な平面上に配置する。
ロッドレンズは、上記軸方向に直交する方向の光のみ広げる作用があり、光照射面において照度が均一化されるように光路を変更する。すなわち、複数のロッドレンズから出射して広がった光は、光照射面において重なり合い、照度の強弱を補い合い、光照射領域の照度分布が均一化される。
(4)上記(3)において、複数のロッドレンズの光出射側に、前記一軸方向に集光する光学素子の集光方向に対して直交する方向に広がる光を反射する反射ミラーを設ける。
本発明においては、以下の効果を得ることができる。
(1)光路変更部材であるプリズムやミラーユニットを、リフレクタにより反射された光の光路(光束)の一部を横切るように設けることにより、リフレクタにより反射された光のうち、一部の光の光路が変更され、光路が変更された光は、光照射面において、光路が変更されなかった光と重なり合う。
このため、照度の高い部分と低い部分とが補い合い、光照射面において、均一な照度分布の光照射領域を得ることができる。
(2)光路変更部である複数のロッドレンズを、リフレクタにより反射された光の光路(光束)の全体を横切るように設けることにより、ロッドレンズに入射した光は、光路が変更され、広がって出射する。そして、照射面において互いに重なり合う。このため、照度の強弱を補い合い、光照射面において、光均一な照度分布の光照射領域が得られる。
(3)複数のロッドレンズの光出射側に、前記一軸方向に集光する光学素子の集光方向に対して直交する方向に広がる光を反射する反射ミラーを設けることにより、ロッドレンズからの広がる光を、上記反射ミラーにより光照射領域の内側に向けて反射させ、光照射領域の長さを規定するとともに、周辺部(端部)の照度低下を補うことができる。
本発明では、前述したように、光路変更部材として、(a−1)プリズム(三角プリズム又はM字プリズム)あるいはミラーユニット、(a−2)ロッドレンズを使用することができ、また、リフレクタとして(b−1)回転放物面状の反射面を有するリフレクタ、(b−2)回転楕円面状の反射面を有するリフレクタを使用することができ、さらに、入射光を一軸方向のみに集光する光学素子として、(c−1)シリンドリカル・パラボラミラー、(c−2)シリンドリカルレンズ、(c−3)シリンドリカル楕円ミラーを使用することができる。
これらの光学素子を組み合わせることで、種々の光学系を構成することができるが、以下では、大きく分けて、光路変更部材が(a−1)プリズムまたはミラーユニットの場合、(a−2)ロッドレンズのそれぞれの場合について、リフレクタの種類、一軸方向のみに集光する光学素子の種類に分けて各実施例を説明する。
すなわち、実施例1〜実施例6で光路変更部材が(a−1)の場合、実施例7〜9で光路変更部材が(a−2)の場合について説明する。
(1)実施例1〜4
以下の実施例1〜4では、光路変更部材が、プリズム(三角プリズム又はM字プリズム)あるいはミラーユニット(上記a−1)であり、これと、回転放物面状の反射面を有するリフレクタ(上記b−1)、および、シリンドリカル・パラボラミラー(上記c−1)または、シリンドリカルレンズ(上記c−2)を組み合わせた場合について説明する。
(a)実施例1
図1は、本発明の実施例1の光照射器の構成を示す図であり、図1(a)は、光照射器を側面から見た断面図であり、図1(b)は光照射器を上面から見た断面図である。ただし、図1(b)については、光路を分かりやすく示すために、反射ミラー17(後述)による折り返しを無視し、また反射ミラーも省略して示しており、図1(b)の一点鎖線で示した位置が反射ミラー17による反射位置である。
本実施例は、光路変更部材として三角プリズム(上記a−1)を用い、これと、回転放物面状の反射面を有するリフレクタ(上記b−1)と、シリンドリカル・パラボラミラー(上記c−1)を組み合わせた場合を示している。
図1において、開口11Aを有するカバー11内に、ランプ12、リフレクタ13、樋状のミラー(シリンドリカル・パラボラミラー)17、プリズム20が配置され、これらで本実施例の光照射器10を構成する。
ランプ12は、封体内に一対の電極が対向配置されたショートアーク型の放電ランプであり、その光軸Cを中心とする回転放物面状の反射面13Aを有し、ランプ12からの光(紫外線)を反射するリフレクタ(パラボラミラー)13が、該ランプ12の背後を囲むように配置されている。
ショートアーク放電ランプ12は、例えば、放電容器に、0.08〜0.30mg/mm3 の水銀と、希ガスと、ハロゲンを封入し、電極間距離が0.5〜2.0mmであり、300〜450nmの紫外光を効率よく放射する超超高圧水銀ランプである。
ランプ12は、その一対の電極を結ぶ直線が、リフレクタ13の光軸(回転軸)と一致するように取り付けられ、ランプ12の発光部(例えばアークの輝点)は、リフレクタ(パラボラミラー)13の第1焦点Frになるよう配置される。
さらに、リフレクタ13の光出射側に、リフレクタ13で反射された光を反射する、断面が放物線状のシリンドリカル(第1の方向の断面が放物線状で、第1の方向に直交する方向の断面が直線状)な反射面17Aを有する樋状のミラー(シリンドリカル・パラボラミラー)17( 以下、反射ミラー17ともいう)を設ける。
回転放物面状の反射面13Aを有するリフレクタ13で反射されたランプ12からの光は、平行光になる。平行になった光は、断面が放物線状のシリンドリカルな反射面17Aを有する反射ミラー17で反射されると、1軸方向に反射面17Aの焦点Fmに集光され、光照射面Wにおいて線状に集光された光が得られる。
上記構成において、本実施例では、リフレクタ13と反射ミラー17の間の光路の一部に、光路変更部材として、2側面が二等辺三角形で底面が矩形状のプリズム20(以下三角プリズムという)を配置する。
図2に本発明で使用されるプリズムの形状例を示す。同図(a)は本実施例で使用される三角プリズム、(b)は後述する実施例で使用されるM字型プリズムである。
本実施例で使用される三角プリズム20は、同図(a)に示すように、二等辺三角形状の平行な第1、第2の側面と、上記2つの二等辺三角形の底辺を2辺とする該側面に垂直な底面と、上記2つの二等辺三角形の等しい2辺をそれぞれ2辺とする2つの斜面を有する三角柱形状の光透過部材で形成された光学素子である。
ここでは図2(a)に示すように、上記底面の2辺である底辺の長さをL、底面の他の2辺の長さ(三角プリズムの厚さ)をD、二等辺三角形の頂角の成す角をθとし、この底辺の伸びる方向を三角プリズムの長手方向という。また上記2つの二等辺三角形の頂点を結ぶ線を稜線という。
後述する実施例で使用されるM字型プリズム21は、同図(b)に示すように、二等辺三角形状に切り欠いたM字型形状の平行な第1、第2の側面と、該二等辺三角形の頂点に対向し、該側面に垂直な底面と、上記二等辺三角形の等しい2辺をそれぞれ2辺とする2つの斜面と、該第1、第2の側面と底面に垂直な平行な2つの第3、第4の側面を有する光透過部材で形成された光学素子である。
ここでは、図2(b)に示すように、二等辺三角形状に切り欠いたM字型形状における二等辺三角形の頂点に当たる点を結んだ線を谷の線といい、上記底面の該二等辺三角形の頂点に対向する辺を底辺という。また、この底辺の伸びる方向を長手方向という。
図1の例では、図1(a)に示すように上記三角プリズム20はリフレクタ13から出射する光芒の下半分に配置される。なお、光照射器を上面から見ると図1(b)に示すように三角プリズム20は、リフレクタ13から出射する光芒を横切るように設けられている。
図1(c)は、反射ミラー17側から、リフレクタ13と三角プリズム20を見た図である。三角プリズムの底辺の長さLは、リフレクタ13の直径R、即ちリフレクタ13に反射された光の光芒の直径Rと同じか、やや長い長さであり、三角プリズム20の長手方向を、反射ミラー17の軸方向(樋状の伸びる方向、すなわち、断面の形状が直線状になる方向)と一致させて、光束の一部を横切るように設ける。また、三角プリズム20の稜線は、リフレクタ13、即ち光芒の中心を通る線上にある。
図1(a)にもどり、リフレクタ13で反射された光のうち、同図上側の光路Aの光は、三角プリズム20を通過せず、上記で説明したとおり、反射ミラー17で被照射面Wにおいて、線状に集光される。
光路Aの、光路変更部材である三角プリズム20を通過しない光の強度は、光芒の中心付近が高く、周辺部に向かうにしたがって低下する。したがって、反射ミラー17により線状に集光された光も、中心付近の照度が高く、周辺部に向かうにしたがって低くなる。 一方、三角プリズム20が配置された光路B(図1(a)の下側の光路)の光は、三角プリズム20の斜面に入射すると屈折し、図1(b)に示すように、光芒の中心付近の光は光芒の周辺部に向かって、また、光芒の周辺部の光は光芒の中心に向かって光路が変更され、反射ミラー17に入射する。
したがって、光路Bの、反射ミラー17により線状に集光された光は、中心付近の照度が低く、周辺部に向かうにしたがって高くなる。
このため、図1(d)に示すように、被照射面Wでは、光路Aの、中心付近の照度が高く、周辺部の照度が低い光Aと、光路Bの、中心付近の照度が低く、周辺部の照度が高い光B1,B2とが重なり、照度の高い部分と低い部分を互いが補い合う。したがって、図1(d)の(A+B)の点線に示すように、均一度の良い線状に集光された光が得られる。
なお、三角プリズム20の厚さDは、光芒の中心付近から周辺部に移動させる光の量により設定する。三角プリズム20の厚さDを薄くすると、光芒の中心付近から周辺部に移動する光の量が少なくなり、被照射面Wにおいて線状に集光される光の、周辺部の照度は低くなる。三角プリズム20の厚さDが厚くすると、光芒の中心付近から周辺部に移動する光の量が多くなり被照射面Wにおいて線状に集光される光の、周辺部の照度は高くなる。
三角プリズム20の頂角θと材質(屈折率)とにより、どのくらい光の向き(角度)が変化するかが決まる。石英の直角三角プリズム(屈折率1.475)の場合、図3に示すように、光は三角プリズム20に入射角45°で入射する。
三角プリズム20内では、θP1=sin-1(sin45°/n) ≒28.6になる。そして、三角プリズム20から出射する角度θP2は、45°−θP1=16.4°となる。 したがって、最終的な、三角プリズム20により変化する光の向き(角度)θ3 は、sin-1(n・sin16.4)≒24.6°となる。
図1にもどり、三角プリズム20の下面から光照射面Wまでの距離を(L1+L2)とすると、三角プリズム20による光の角度変化により、光照射面Wにおいて光がシフトする距離は、(L1+L2)×tan24.6°で求められる。
必要とする線状に集光した光の長さをωとすると、概ねω/2=(L1+L2)×tan24.6°となる距離(Ll+L2)の位置で、光が集光されるようにすれば、均一度の良い線状に集光された光が得られる。
図4は、図1の光照射器を用いた場合の、被照射面Wにおける照度の均一化の作用を示す図である。なお、同図は実測値から求めた推定値を示す。
縦軸は換算放射照度ピーク値(mW/cm2 )、横軸は被照射面Wにおける幅方向の距離を示す。
Aは、光路Aの、三角プリズム20を通過せず、光路が変更されない光による照度分布に対応し、Bは、光路Bの三角プリズム20を通過し、光路が変更された光による照度分布に対応する。
光照射面Wにおいて、Aの照度分布を有する光と、Bの照度分布を有する光が重なり合う。A+Bが、両者が重なり合うことにより得られた、被照射面Wにおける線状に集光された光の照度分布である。一方の照度の低い部分を、他方の照度の高い部分が補うため、全体として照度の均一度が良くなる。
図5は、図1の光照射器における、三角プリズム20がある場合とない場合の、光照射面での照度分布データであり、理想的な条件で求めたシミュレーション結果を示す。
縦軸は照度の相対値、横軸は照射幅(光照射領域の長さ)(mm)、Aが三角プリズム20のない場合、Bが三角プリズム20のある場合である。
図4、図5から分かるように、従来の三角プリズム20のない場合に比べて、広い範囲で照度分布が均一であることは明らかであり、光照射領域全域にわたって均一な処理が期待できる。
なお、上記三角プリズム20は、図1の配置に限られず、以下のように配置することができる。
図1(a)(c)においては、光芒の下側の光路Bにプリズムを配置したが、この位置の限られるものではなく、上側の光路Aに配置し、光路Bを通る光の光路を変更しないようにしても良い。また、図1(e)に示すように、光路の中央部に配置しても良い。
また、光路を3つ以上に分割し、複数のプリズム(形状は互いに異なっても良い)を配置し、光照射面Wで多数の照度分布が重なり合うようにしても良い。
さらに、上記したプリズムの形状だけでなく、プリズムの個数や大きさも、光照射領域の照度分布を測定しながら、最適な照度分布になるように適宜設定する。
ただし、上記のように、プリズムは、光照射面Wにおいて、複数の異なる照度分布を作り出すために設けるものであるから1種類のプリズムで、光路全体を覆うことはない。
なお、プリズムは、反射ミラー17の光出射側に配置してもよい。しかし、実際の光照射器においては、反射ミラーから被照射面までの距離が短いことが多く、プリズムを配置するスペースを確保することは難しい。また、プリズムの光学設計も、反射ミラーにより集光されつつある光の特性を考慮しなければならないので難しくなる。
(b)実施例1の変形例
図6は、実施例1の変形例であり、実施例1において、光路Bに挿入するプリズムの形状が、三角形ではなく、前記図2(b)に示した側面がM字型のものを使用した場合である。なお、本実施例では光路変更部材としてM字型プリズム(前記a−1)を用いているが、リフレクタおよび一軸方向に集光させる光学素子は、実施例1と同様、回転放物面状の反射面を有するリフレクタ(前記b−1)と、シリンドリカル・パラボラミラー(前記c−1)を用いている。
図6(a)は、光照射器を側面から見た断面図であり、図6(b)は光照射器を上面から見た断面図である。図6(b)については、図1(b)と同様に、反射ミラーによる折り返しを無視し、反射ミラーも省略して示している。
本実施例で使用されるM字型のプリズム21は、上記実施例1の三角プリズムの場合と同様に、底辺の長さLは、リフレクタ13の直径R、即ちリフレクタ13に反射された光の光芒の直径Rと同じか、やや長い長さであり、底辺の伸びる方向、即ちM字型プリズム21の長手方向を、反射ミラー17の軸方向(樋状の伸びる方向)と一致させて、光束の一部を横切るように設ける。また、斜面に挟まれた谷の線は、リフレクタ13、即ち光芒の中心を通る線上にある。
図6において、リフレクタ13で反射され平行になった光のうち、光路Bの光は、M字型プリズム21の斜面に入射する。プリズム21に入射した光は屈折し、光芒の中心付近の光は光芒の周辺部に向かって、また、光芒の周辺部の光は光芒のより外側に向かって光路が変更され、反射ミラー17に入射する。
したがって、反射ミラー17により線状に集光された光路Bの光は、中心付近には光がなくなり、周辺部に照度の高い領域が生じる。
光路Aの光は、光路が変更されることなく反射ミラー17に入射し、光照射面Wにおいて線状に集光される。その照度分布は、中心付近の照度が高く、周辺部の照度が低い。
光照射面Wでは、光路Aの、中心付近の照度が高く、周辺部の照度が低い光と、光路Bの、中心付近に光がなく、周辺部に照度の高い領域がある光とが重なり、光路Aの照度の低い部分を、光路Bの光が補う。したがって、実施例1と同様、均一度の良い線状に集光された光が得られる。
なお、本実施例においては、光路Bの光のうち、周辺部の光はさらに周辺に追いやられ、この部分は照度が低く処理には使われない。したがって、光の利用効率は、三角形のプリズム20を使った場合よりも悪くなる。
(c)実施例2
図7は、本発明の実施例2の構成を示す図である。図7(a)は、光照射器を側面から見た断面図であり、図7(b)は光照射器を上面から見た断面図である。図7(b)は、反射ミラーによる折り返しを無視し、反射ミラーも省略して示している。図7(c)は、反射ミラー17側からリフレクタ13とミラーユニットを見た図、図7(d)は被照射面における照度分布を説明する図である。
本実施例は、光路変更部材として、プリズムではなく、中央の光路Bに配置された複数のミラーを組み合わせたミラーユニット22(前記a−1)を使用し、回転放物面状の反射面を有するリフレクタ(前記b−1)と、シリンドリカル・パラボラミラー(前記c−1)を組み合わせた場合を示している。
図7において、前記したように開口11Aを有するカバー11内に、ランプ12、リフレクタ13、樋状のミラー(シリンドリカル・パラボラミラー)17、ミラーユニット22が配置され、これらで本実施例の光照射器10を構成する。
ランプ12は、前記したように封体内に一対の電極が対向配置されたショートアーク型の放電ランプであり、その光軸Cを中心とする回転放物面状の反射面13Aを有し、ランプ12からの光(紫外線)を反射するリフレクタ(パラボラミラー)13が、該ランプ12の背後を囲むように配置されている。
リフレクタ13の光出射側に、リフレクタ13で反射された光を反射する、断面が放物線状のシリンドリカルな反射面17Aを有する樋状のミラー(シリンドリカル・パラボラミラー)17( 以下、反射ミラー17ともいう)を設ける。
回転放物面状の反射面13Aを有するリフレクタ13で反射されたランプ12からの光は、平行光になり、断面が放物線状のシリンドリカルな反射面17Aを有する反射ミラー17で反射され光照射面Wにおいて線状に集光された光が得られる。
上記構成において、本実施例では、リフレクタ13と反射ミラー17の間の光路の一部に、光路変更部材として、ミラーユニット22を配置する。
図8にミラーユニットの形状例を示す。
同図に示すように本実施例のミラーユニット22は、側面が二等辺三角形状の平行な2面で構成され、上記2つの二等辺三角形の等しい2辺をそれぞれ2辺とする2つの斜面を有し、この2つの斜面が反射面である三角柱形状のミラー(第1のミラー)22aが1個と、三角形状のミラー22aの斜面に対向し、該斜面により反射された光を反射する2枚の平面ミラー(第2のミラー)22bとから構成される。
図7(a)(b)(c)に示すように光路変更部材であるミラーユニット22の第1のミラー22aは、リフレクタ13により反射され平行光になった光束の中央部である光路Bに配置され、第2のミラー22bは、光束の外側に、第1のミラー22aの斜面に向き合うように、第1のミラー22aへの光の入射方向に対してθ°傾けて配置される。
したがって、第1のミラー22aと第2のミラー22bは、一直線状に並ぶが、この第1のミラー22aと第2のミラー22bの並べる方向は、反射ミラー17の軸方向(樋状の伸びる方向)と一致させて設ける。
これにより、図7(a)に示すように、光束はミラーユニット22に光が入射する光路Bと、その上下の、ミラーユニット22に光が入射しない光路Aと光路A’に3分割される。
光路Bを通る光は、第1のミラー22aの斜面に入射し、第2のミラー22bに向かって反射される。
第2のミラー22bは、第1のミラー22aからの光を反射するが、この時、被照射面Wに達するまでの間に、互いの光路が交差するように第2のミラー22bの角度θを設定する。例えば、図8に示すように、第1のミラー22aの底辺の角度が45°であれば、第2のミラー22bの傾け角度θを、45°よりも小さくする。
これにより、光芒の中心部の強い光が、第1のミラー22aと第2のミラー22bにより反射され、光強度の小さい光芒の周辺部に向かう。
このように、光路Bの光は、ミラーユニット22により光路が変更され、反射ミラー17に入射する。したがって、反射ミラー17により線状に集光された光路Bの光は、中心付近の照度が低くなり、周辺部の照度が高くなる。
光路Aおよび光路A’の光は、光路が変更されることなく反射ミラー17に入射し、光照射面Wにおいて線状に集光される。その照度分布は、中心付近の照度が高く、周辺部の照度が低い。
したがって、被照射面Wでは、図7(d)に示すように、中心付近の照度が高く、周辺部の照度が低い光路A,A’の光と、ミラーユニット22を介した、中心付近の照度が低く、周辺部の照度が高い光路Bの光とが重なり、照度の高い部分と低い部分を互いが補い合う。したがって、均一度の良い線状に集光された光が得られる。
(d)実施例3
図9は、本発明の実施例3の構成を示す図である。図9(a)は、光照射器を側面から見た断面図であり、図9(b)は光照射器を上面から見た断面図である。
本実施例は、リフレクタにより反射された光を線状に集光する光学素子を、反射ミラー(シリンドリカル・パラボラミラー)から、シリンドリカルレンズ(前記c−2)に変更したものである。シリンドリカルレンズを用いても、反射ミラーを用いた第1および第2の実施例と同様に、線状に集光することができる。その他の光学素子との組合せは、実施例1と同じであり、光路変更部材として三角プリズム(前記a−1)を用い、回転放物面状の反射面を有するリフレクタ(前記b−1)を使用している。
図9において、ランプ12は、前記したように封体内に一対の電極が対向配置されたショートアーク型の放電ランプであり、その光軸Cを中心とする回転放物面状の反射面13Aを有し、ランプ12からの光(紫外線)を反射するリフレクタ(パラボラミラー)13が、該ランプ12の背後を囲むように配置されている。
リフレクタ13の光出射側に、シリンドリカルレンズ18を設け、リフレクタ13とシリンドリカルレンズ18の間に、前記実施例1と同様に、光路変更部材として図2(a)に示した三角プリズム20を光路を横切るように設ける。三角プリズム20は、その長手方向が、シリンドリカルレンズ18の軸方向と一致させて、光束の一部を横切るように設けられる。
シリンドリカルレンズ18は、入射した光を−軸方向のみ集光するレンズであり、市販されているものは、円柱を長さ方向に二分し底面を半円とした形状をしている。
本実施例の動作は、シリンドリカルレンズにより一軸方向に集光させる点を除き、基本的には前記実施例1と同様であり、以下簡単に動作について説明する。
リフレクタ13で反射され平行になった光は、シリンドリカルレンズ18により、焦点位置Fsに一軸方向のみ集光され、光照射面Wに線状の光照射領域IAを形成する。
ここで、前記実施例1での説明と同様に、光路Bの光は、光路変更部材である三角プリズム20に入射して光路が変更され、中心付近の照度が低く周辺部の照度が高い光となってシリンドリカルレンズ18に入射し、光照射面Wにおいて線状に集光される。
一方、光路Aの光は光路が変更されることなくシリンドリカルレンズ18に入射し、光照射面Wにおいて、中心付近の照度が高く周辺部の照度が低い光として、線状に集光される。
被照射面Wにおいて、前記図1(d)に示したように光路Aの周辺部の照度が低い光と、高い光路Bの三角プリズム20を介した、中心付近の照度が低く、周辺部の照度が光とが重なり、照度の高い部分と低い部分を互いが補い合う。したがって、均一度の良い線状に集光された光が得られる。
なお、本実施例では、光路変更部材として三角プリズム20を用いているが、実施例1の変形例で示した、図2(b)の側面がM字型のプリズムをシリンドリカルレンズ18と組み合わせても良いのはもちろんである。
線状に集光する光学素子として、シリンドリカルレンズ18を用いると、反射ミラーを配置するスペースが不要となり、小型化できるという利点がある。また、光路変更部材であるプリズムを、シリンドリカルレンズ18上に取り付け、一体化したユニット構造にすることもでき、光照射器への取り付け取り外しといった組み立てが容易になる。
(e)実施例4
図10は、本発明の実施例4の構成を示す図である。図10(a)は、光照射器を側面から見た断面図であり、図10(b)は光照射器を上面から見た断面図、図10(c)は、反射ミラー17側からリフレクタ13とミラーユニットおよびシリンドリカルレンズを見た図である。
本実施例は、前記実施例3において、光路変更部材を三角プリズムから前記図8に示したミラーユニットに変更したものであり、その他の光学素子の組合せは、実施例3と同じであり、回転放物面状の反射面を有するリフレクタ(前記b−1)とシリンドリカルレンズ(前記c−2)とを使用している。
本実施例の動作は、シリンドリカルレンズにより一軸方向に集光させる点を除き、基本的には前記実施例2と同様であり、以下簡単に動作について説明する。
リフレクタ13で反射され平行になった光は、シリンドリカルレンズ18により、焦点位置Fsに一軸方向のみ集光され、光照射面Wに線状の光照射領域IAを形成する。
上記実施例2での説明と同様に、光路Bの光は、光路変更部材であるミラーユニット22に入射して光路が変更され、中心付近の照度が低く周辺部の照度が高い光となってシリンドリカルレンズ18に入射し、光照射面Wにおいて線状に集光される。
一方、光路A,A’の光は光路が変更されることなくシリンドリカルレンズに入射し、光照射面Wにおいて、中心付近の照度が高く周辺部の照度が低い光として、線状に集光される。
被照射面Wにおいて、図7(d)に示したように光路A,A’の周辺部の照度が低い光と、ミラーユニット22を介した中心付近の照度が低く、周辺部の照度が高い光B1,B2とが重なり、照度の高い部分と低い部分を互いが補い合う。したがって、均一度の良い線状に集光された光が得られる。
なお、前記したように、線状に集光する光学素子として、シリンドリカルレンズを用いると小型化できるという利点があり、また、ミラーユニットをシリンドリカルレンズ上に取り付け、一体化したユニット構造にすることもでき、光照射器への取り付け取り外しといった組み立てが容易になる。
(2)実施例5,6
以上説明した実施例では、リフレクタとして、回転放物面状の反射面を有するものを用いるが、以下の実施例5,6では、回転楕円面状の反射面を有するリフレクタ(上記b−2)と、光路変更部材としてM字プリズム(上記a−1)を用い、これと、シリンドリカル楕円ミラー(上記c−3)または、シリンドリカルレンズ(上記c−2)を組み合わせた場合について説明する。
なお、以下の実施例では、ランプから出射した光を集光する手段として、反射面が回転楕円面状の反射面を有するリフレクタを使用する場合について説明するが、これに換えて、回転放物面状の反射面を有するリフレクタと、その光出射側に凸レンズを配置した構成でも良い。
(a)実施例5
図11は、本発明の実施例5の光照射器の構成を示す図であり、図11(a)は、光照射器を側面から見た断面図であり、図11(b)は光照射器を上面から見た断面図、図11 (c) は、光照射面における照度分布を説明する図である。なお、図11(b)については、光路を分かりやすく示すために、反射ミラー17(後述)による折り返しを無視し、また反射ミラーも省略して示しており、図11(b)の一点鎖線で示した位置が反射ミラー17による反射位置である。
本実施例は、光路変更部材としてM字型のプリズム(上記a−1)を用い、これと、回転楕円面状の反射面を有するリフレクタ(上記b−2)と、シリンドリカル楕円ミラー(上記c−3)を組み合わせた場合を示している。
図11において、ランプ12は、前記したように封体内に一対の電極が対向配置されたショートアーク型の放電ランプであり、その光軸Cを中心とする回転楕円面状の反射面14Aを有し、ランプ12からの光(紫外線)を反射するリフレクタ14が、該ランプ12の背後を囲むように配置されている。
ランプ12は、その一対の電極を結ぶ直線が、リフレクタ14の光軸(回転軸)と一致するように取り付けられ、ランプ12の発光部(例えばアークの輝点)は、リフレクタ14の第1焦点Frになるよう配置される。
リフレクタ14が、回転楕円面状の反射面14Aを有するので、その光出射側には、断面が楕円状のシリンドリカルな反射面19Aを有するシリンドリカル楕円ミラー19(以下反射ミラー19ともいう)が配置される。シリンドリカル楕円ミラー19は、リフレクタ14で反射された光を線状に集光する。
リフレクタ14で反射されたランプ12からの光は、リフレクタ14の楕円の第2焦点に集光しその後広がっていく。集光後広がった光は、シリンドリカル楕円ミラー19で反射されると、シリンドリカル楕円ミラー19の焦点おいて1軸方向のみ集光され、光照射面Wにおいて線状に集光された光が得られる。
実施例1の変形例と同様に、リフレクタ14と反射ミラー19の間の光路の一部に、光路変更部材として、図2(b)に示したM字型のプリズム21が、その長手方向を、反射ミラー19の軸方向(樋状の伸びる方向)と一致させて、配置される。
前述したように、プリズム21に入射した光Bは、中心付近の照度が低く周辺部の照度が高い光となって、反射ミラー19により光照射面Wにおいて線状に集光される。
一方、プリズム21に入射しない光Aは光路が変更されることなく、反射ミラー19により光照射面Wにおいて線状に集光され、中心付近の照度が高く周辺部の照度が低い。
被照射面Wにおいて、図11(c)に示すように、光路が変更されない周辺部の照度が低い光Aと、プリズム21により光路が変更され中心付近の照度が低く、周辺部の照度が高い光B1,B2とが重なり、照度の高い部分と低い部分を互いが補い合う。したがって、均一度の良い線状に集光された光が得られる。
(b)実施例6
図12は、本発明の実施例6の光照射器の構成を示す図であり、図12(a)は、光照射器を側面から見た断面図であり、図12(b)は光照射器を上面から見た断面図、図12 (c) は、光照射面における照度分布を説明する図である。
本実施例は、光路変更部材としてM字型のプリズム(上記a−1)を用い、これと、回転楕円面状の反射面を有するリフレクタ(上記b−2)と、シリンドリカルレンズ(上記c−2)を組み合わせた場合を示している。
前記実施例5と同様、ランプ12は、前記したように封体内に一対の電極が対向配置されたショートアーク型の放電ランプであり、その光軸Cを中心とする回転楕円面状の反射面14Aを有し、ランプ12からの光(紫外線)を反射するリフレクタ14が、該ランプ12の背後を囲むように配置されている。
ランプ12は、その一対の電極を結ぶ直線が、リフレクタ14の光軸(回転軸)と一致するように取り付けられ、ランプ12の発光部(例えばアークの輝点)は、リフレクタ14の第1焦点Frになるよう配置される。また、リフレクタ14の光出射側には、リフレクタ14で反射された光を線状に集光するシリンドリカルレンズ18が配置される。
リフレクタ14で反射されたランプ12からの光は、リフレクタ14の楕円の第2焦点に集光しその後広がっていく。集光後広がった光は、シリンドリカルレンズ18に入射し、光照射面Wにおいて線状に集光された光が得られる。
実施例1の変形例と同様に、リフレクタ14とシリンドリカルレンズ18の間の光路の一部に、光路変更部材として、図2(b)に示したM字型のプリズム21が、その軸方向を、シンドリカルレンズ18の軸方向と一致させて、光束の一部を横切るように設けられる。
前述したように、プリズム21に入射した光Bは、中心付近の照度が低く周辺部の照度が高い光となって、反射ミラー19により光照射面Wにおいて線状に集光される。
一方、プリズム21に入射しない光Aは光路が変更されることなく、反射ミラー19により光照射面Wにおいて線状に集光され、中心付近の照度が高く周辺部の照度が低い。
被照射面Wにおいて、図12(c)に示すように、光路が変更されない周辺部の照度が低い光Aと、プリズム21により光路が変更され中心付近の照度が低く、周辺部の照度が高い光B1,B2とが重なり、照度の高い部分と低い部分を互いが補い合う。したがって、均一度の良い線状に集光された光が得られる。
(3)実施例7,8
以下の実施例7,8では、光路変更部材が、ロッドレンズ(前記a−2)であり、これと、回転放物面状の反射面を有するリフレクタ(前記b−1)、および、シリンドリカル・パラボラミラー(前記c−1)または、シリンドリカルレンズ(前記c−2)を組み合わせた場合について説明する。
(a)実施例7
図13は、本発明の実施例7の光照射器の構成を示す図であり、同図では、前記したカバー11は省略されている。図13(a)は、光照射器を側面から見た断面図、図13(b)は同図(a)のA方向から見た図であり、同図(b)では同図(a)に示される広がり防止反射ミラー24は省略されている。
本実施例は、光路変更部材としてロッドレンズ(前記a−2)を用い、これと、回転放物面状の反射面を有するリフレクタ(上記b−1)と、シリンドリカルレンズ(上記c−2)を組み合わせた場合を示している。
図13において、ランプ12は、封体内に一対の電極が対向配置されたショートアーク型の放電ランプであり、リフレクタ13は、ランプ12を囲うように設けた、その光軸Cを中心とする回転放物面状の反射面を有するパラボラミラーである
リフレクタの光出射側に、光路変更部材として、複数のロッドレンズ23をリフレクタに反射された光の光軸に垂直な平面上に(厳密には垂直でなく多少傾いていてもよい)平行に接するように並べて配置する。
ロッドレンズ23は、前述したように円柱状のレンズであり、入射する光のうち、円柱の軸方向に対して直交する方向の光を広げる作用がある。しかし、軸方向に沿って入射する光に対してはパワーを持たない。
ロッドレンズ23の光出射側には、シリンドリカルレンズ18が、その長手方向がロッドレンズ23の長手方向と直交するように設けられる。
シリンドリカルレンズ18は、ロッドレンズ23から出射した光を、一軸方向、即ち、シリンドリカルレンズ18の軸方向に直交する方向にのみ集光する。
回転放物面状の反射面を有するリフレクタ13に反射された光は、中心光線が平行な光(平行光)となり、ロッドレンズ23に入射する。
上記したロッドレンズ23の作用により、ロッドレンズ23に入射する光のうち、軸方向に沿った光は、ロッドレンズ23による影響を受けず、平行光のままロッドレンズ23から出射する。
一方、ロッドレンズ23に入射する光のうち、軸方向に直交する光は、ロッドレンズ23から出射する際、ロッドレンズ23の焦点に集光された後広がる。
ロッドレンズ23から出射した光が、一軸方向のみに集光するシリンドリカルレンズ18に入射する。
シリンドリカルレンズ18は、その軸方向に対して直交する方向の光は集光し、軸方向に沿って入射する光に対してはパワーを持たない。また、上記したように、このシリンドリカルレンズ18は、その軸方向がロッドレンズ23の軸方向と直交するように設けられている。
そのため、ロッドレンズ23から平行光のまま出射する、ロッドレンズ23の軸方向に沿った光は、シリンドリカルレンズ18に対しては、軸方向に直交する光となり、集光され、光照射面Wに照射される。
一方、ロッドレンズ23により広げられて出射する、ロッドレンズ23の軸方向に直交する光は、シリンドリカルレンズ18に対しては、軸方向に沿った光となり、シリンドリカルレンズ18をそのまま(広がったまま)通過し光照射面Wに照射される。
そのため、光照射面Wにおいては、ロッドレンズの軸方向に直交する方向に伸びる、線状に集光した光が得られる。
ここで、各ロッドレンズ23から出射し広がった光は、それぞれ中央部の照度が高い照度分布を有する。ロッドレンズ23は同一平面内に複数平行に並べられているので、各ロッドレンズ23から出射した、中央部の照度が高い照度分布を有する光は、光照射面Wにおいて、それぞれの照度のピークの位置がずれて重なり合う。したがって、光照射領域IAの照度分布が均一になる。
さらに、ロッドレンズ23の光出射側に、ロッドレンズ23からの広がる光を反射する広がり防止反射ミラー24を設けることにより、光照射領域IAの長さを規定するとともに、照度の低い周辺部(端部)の照度を補うことができる。
すなわち、図13に示すように、複数のロッドレンズ23の光出射側のシリンドリカルレンズ18の両側に、シリンドリカルレンズ18の集光方向に対して直交する方向(ロッドレンズ23により光が広げられる方向)に広がる光を反射する例えばアルミニウム製の広がり防止反射ミラー24を配置する。
これにより、図13に示すように、ロッドレンズ23の軸方向に直交する方向に広がる光をシリンドリカルレンズ13側に反射させ、光照射領域IAの周辺部の照度の低下を補うことができる。
ここで、φ9mm、長さ50mmの石英ガラス製のロッドレンズを5本用い、また、f=35mm、長さ52mmのシリンドリカルレンズを用いることで、図13に示すように例えば長さ56mm、巾5mmの線状の光照射領域IAを形成することができる。なお、ロッドレンズ23から光照射面Wまでの距離を大きくすることで、ライン状照射領域の長さを長くすることができる。
なお、光路変更部材であるロッドレンズ23の形状は、厳密に円柱形状である必要はない。ロッドレンズ23を配置するスペースを小さくするために、図14(a)に示すように、光入射側の面や、反対に光入射側の面の一部を切り落とした形状であっても良い。ただし、切り落とす部分が多くなると、光を広げるパワーがその分弱くなるので、光の重ね合わせの効果が小さくなる。
また、ロッドレンズ23を接して平行に並べやすいように、図14(b)に示すように、側面一部を切り落とした形状でも良く、複数のロッドレンズを一体に成型して構成したものでも良い。要は、入射した光を広げ光照射面で互いに重なり合う作用を有すれば、どのような形状であっても良い。
また、図13(c)に示すように、ロッドレンズ23どおしは、厳密に接しておらず、多少の隙間を有して並べられていても良い。この隙間を通過してリフレクタから出射した光がそのまま通過する。しかし、それが複数のロッドレンズにより広がった光の重ね合わせによる照度の均一化の影響を、大きく妨げない程度の光の量であれば問題ない。
上記構成することで、ロッドレンズの本数を減らしコストの削減を図ることができるが、隙間の寸法を含め、ロッドレンズの大きさや本数は、照射領域の長さ、照度、均一度、また光照射器の重量といった種々の要求事項に基づき適宜設計する。
図15は、図13の光照射器を用い、ロッドレンズ23の本数を変えて、被照射面Wにおける線状に集光された光照射領域IAの照度分布を測定した結果を示す図であり、理想的な条件で求めたシミュレーション結果を示す。縦軸は照度の相対値、横軸は照射幅(光照射領域IAの長さ)(mm)、Aはロッドレンズ23のない場合、Bはロッドレンズ1本の場合、Cはロッドレンズ2本の場合、Dはロッドレンズ7本の場合を示す。
なお、リフレクタの光出射側に設けるロッドレンズは、図16に示すように、リフレクタにより反射された光が、すべてロッドレンズに入射するように、大きさを変えている。即ち、ロッドレンズが1本の場合は、ロッドレンズの直径Rを、リフレクタから反射される光の光路(光束)の直径と、同じかやや広くする。また、ロッドレンズが2本の場合は、ロッドレンズの直径R’は、リフレクタから反射される光の光路(光束)の半径と、同じかやや広くする。同様にして、7本の場合は、7本並べたロッドレンズが、光路(光束)の全体を横切る。
図15に示されるように、ロッドレンズがない場合、光照射領域IAの照度分布は、中央部の照度が高く、周辺部に向かうにしたがって急に照度が低くなり、照度の均一度が悪く、光が照射される領域の幅も狭い。
ロッドレンズが1本の場合、光照射領域IAの幅は広がるが、照度分布のばらつきは大きい。しかし、ロッドレンズが2本になると、各ロッドレンズから出射した光の重ね合わせの効果が表れ、照度分布が改善され、広い範囲で均一な照度分布が得られる。
ロッドレンズを7本にすると、さらに照度分布の改善の効果が表れ、光照射領域IA全体で均一な照度分布が得られる。
(b)実施例8
図17は、本発明の実施例8の光照射器の構成を示す図であり、同図では、前記したカバー11は省略されている。図17(a)は、光照射器を側面から見た断面図、図17(b)は同図(a)のA方向から見た図であり、同図(b)では同図(a)に示される広がり防止反射ミラー24は省略されている。なお、図17(a)では、反射ミラーによる折り返しを無視し、反射ミラーも省略して示している。
本実施例は、実施例7の、シリンドリカルレンズを、シリンドリカル・パラボラミラーに替えた例であり、光路変更部材としてロッドレンズ(前記a−2)を用い、これと、回転放物面状の反射面を有するリフレクタ(上記b−1)と、シリンドリカル・パラボラミラー(上記c−1)を組み合わせた場合を示している。
図17において、ランプ12は、封体内に一対の電極が対向配置されたショートアーク型の放電ランプであり、リフレクタ13は、ランプ12を囲うように設けた、その光軸Cを中心とする回転放物面状の反射面を有するパラボラミラーである
リフレクタの光出射側に、光路変更部材として、複数のロッドレンズ23をリフレクタに反射された光の光軸に垂直な平面上に(厳密には垂直でなく多少傾いていてもよい)平行に接するように並べて配置する。
ロッドレンズ23は、前述したように円柱状のレンズであり、入射する光のうち、円柱の軸方向(軸方向)に対して直交する方向の光を広げる作用がある。しかし、軸方向に沿って入射する光に対してはパワーを持たない。
ロッドレンズ23の光出射側には、シリンドリカル・パラボラミラー17が、その軸方向(断面が直線状になる方向)がロッドレンズ23の軸方向と直交するように設けられる。
回転放物面状の反射面を有するリフレクタ13に反射された光は、中心光線が平行な光(平行光)となり、ロッドレンズ23に入射する。
前述したように、ロッドレンズ23に入射する光のうち、軸方向に沿った光は、ロッドレンズによる影響を受けず、平行光のまま出射し、軸方向に直交する光は、ロッドレンズ23から出射する際、ロッドレンズ23の焦点に集光された後広がる。
ロッドレンズ23から出射した光が、一軸方向のみに集光するシリンドリカル・パラボラミラー17に入射する。シリンドリカル・パラボラミラー17は、上記のように、その軸方向に対して直交する方向の光は集光し、軸方向に沿って入射する光に対してはパワーを持たない。
上記したように、シリンドリカル・パラボラミラー17は、その軸方向がロッドレンズの軸方向と直交するように設けられており、前記実施例7のシリンドリカルレンズ18の場合と同じように、ロッドレンズ23から平行光のまま出射する、ロッドレンズ23の軸方向に沿った光は、シリンドリカル・パラボラミラー17に対しては、軸方向に直交する光となり、集光され、光照射面Wに照射される。
一方、ロッドレンズ23により広げられて出射する、ロッドレンズ23の軸方向に直交する光は、シリンドリカル・パラボラミラー17に対しては、軸方向に沿った光となり、シリンドリカルレンズ17をそのまま(広がったまま)通過し光照射面Wに照射される。
ここで、各ロッドレンズ23から出射し広がった光は、それぞれ中央部の照度が高い照度分布を有する。ロッドレンズ23は同一平面内に複数平行に並べられているので、各ロッドレンズ23から出射した、中央部の照度が高い照度分布を有する光は、光照射面Wにおいて、それぞれの照度のピークの位置がずれて重なり合う。したがって、光照射領域IAの照度分布が均一になる。
さらに、実施例7と同様に、ロッドレンズ23の光出射側に、ロッドレンズ23からの広がる光を反射する広がり防止反射ミラー24を設けることにより、光照射領域IAの長さを規定するとともに、照度の低い周辺部(端部)の照度を補うことができる。
本発明の実施例1の光照射器の構成を示す図である。 本発明で使用されるプリズムの形状例を示す図である。 三角プリズムにおける入射光と出射光の関係を示す図である。 実施例1の光照射器おいて被照射面Wにおける照度の均一化の作用を示す図である。 実施例1の光照射器において三角プリズムがある場合とない場合の、光照射面での照度分布データである。 実施例1の変形例を示す図である。 本発明の実施例2の光照射器の構成を示す図である。 ミラーユニットの形状例を示す図である。 本発明の実施例3の光照射器の構成を示す図である。 本発明の実施例4の光照射器の構成を示す図である。 本発明の実施例5の光照射器の構成を示す図である。 本発明の実施例6の光照射器の構成を示す図である。 本発明の実施例7の光照射器の構成を示す図である。 ロッドレンズの断面形状例を示す図である。 ロッドレンズの本数を変えて照度分布を測定した結果を示す図である。 ロッドレンズの本数を変えた場合のロッドレンズの配置を示す図である。 本発明の実施例8の光照射器の構成を示す図である。 インクジェットプリンタのヘッド部の概略構成を示す図である。 先の出願で提案した光照射器の構成の一例を示す図である。 光路変更部材による光路の変更方向を説明する図である。
符号の説明
10 光照射器
11 カバー
12 放電ランプ
13 リフレクタ(回転放物面状)
14 リフレクタ(回転楕円面状)
15 光路変更部材
17 シリンドリカル・パラボラミラー
18 シリンドリカルレンズ
19 シリンドリカル楕円ミラー
20 三角プリズム
21 M字型のプリズム
22 ミラーユニット
23 ロッドレンズ
24 広がり防止反射ミラー

Claims (7)

  1. 放電容器内に一対の電極が対向配置されたショートアーク型の放電ランプと、
    上記放電ランプを取り囲むように配置され、上記放電ランプからの光を反射する反射面を有するリフレクタと、
    上記リフレクタにより反射された光を、一軸方向に集光する光学素子とを備えた光照射器において、
    上記リフレクタと上記一軸方向に集光する光学素子との間に、リフレクタにより反射された光の光路を、リフレクタから出射する光の光軸に直交し、かつ、上記光学素子により集光される方向に直交する方向に変更する光路変更部材を設けた
    ことを特徴とする光照射器。
  2. 上記光路変更部材は、上記リフレクタにより反射された光の光路の一部を横切るように設けられ、
    上記光路変更部材に入射した光は、光照射面において、中央部分より周辺部の照度が大きくなるように光路が変更される
    ことを特徴とする請求項1に記載の光照射器。
  3. 上記リフレクタは、回転放物面状の反射面を有し、
    上記光路変更部材は、上記リフレクタから出射する光の一部を屈折して透過するプリズムである
    ことを特徴とする請求項2に記載の光照射器。
  4. 上記リフレクタは、回転放物面状の反射面を有し、
    上記光路変更部材は、上記リフレクタから出射する光の一部を反射するミラーユニットである
    ことを特徴とする請求項2に記載の光照射器。
  5. 上記リフレクタは、回転楕円面状の反射面を有し、
    上記光路変更部材は、上記リフレクタから出射する光の一部を屈折して透過するプリズムである
    ことを特徴とする請求項2に記載の光照射器。
  6. 上記リフレクタは、回転放物面状の反射面を有し、
    上記光路変更部材は、上記リフレクタから出射する光の光軸に垂直な平面上に、平行に配置された複数のロッドレンズであり、上記リフレクタにより反射された光の光路を横切るように設けられ、
    上記複数のロッドレンズに入射した光は、光照射面において、各ロッドレンズから出射した光が重なりあうように光路が変更される
    ことを特徴とする請求項1に記載の光照射器。
  7. 上記複数のロッドレンズの光出射側に、前記一軸方向に集光する光学素子の集光方向に対して直交する方向に広がる光を反射する反射ミラーをさらに備えた
    ことを特徴とする請求項6に記載の光照射器。
JP2006285847A 2006-10-20 2006-10-20 光照射器 Pending JP2008102389A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006285847A JP2008102389A (ja) 2006-10-20 2006-10-20 光照射器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006285847A JP2008102389A (ja) 2006-10-20 2006-10-20 光照射器

Publications (1)

Publication Number Publication Date
JP2008102389A true JP2008102389A (ja) 2008-05-01

Family

ID=39436743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006285847A Pending JP2008102389A (ja) 2006-10-20 2006-10-20 光照射器

Country Status (1)

Country Link
JP (1) JP2008102389A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010237377A (ja) * 2009-03-31 2010-10-21 Furukawa Electric Co Ltd:The プリズム、プリズムペア及び該プリズムペアを備える波長選択デバイス
JP2013513122A (ja) * 2009-12-08 2013-04-18 スリーエム イノベイティブ プロパティズ カンパニー 生物学的増殖プレートスキャナーのための照射装置及び方法
JP2014194918A (ja) * 2013-09-26 2014-10-09 Ushio Inc ライン状光照射装置
JP2015501275A (ja) * 2011-10-12 2015-01-15 フォセオン テクノロジー, インコーポレイテッドPhoseon Technology, Inc. 光ファイバーを硬化するための共同設置焦点を有する多重光収集とレンズの組合せ
JP2016213012A (ja) * 2015-05-01 2016-12-15 株式会社アイテックシステム ライン状照明装置およびその製造方法
KR20170108844A (ko) * 2016-03-18 2017-09-27 호야 칸데오 옵트로닉스 가부시키가이샤 광 조사장치
KR20200044468A (ko) * 2018-10-19 2020-04-29 엘지이노텍 주식회사 자외선 경화 장치

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076613A (ja) * 1993-02-01 1995-01-10 General Electric Co <Ge> 照明システム
JPH07141903A (ja) * 1993-06-18 1995-06-02 General Electric Co <Ge> スポーツ照明器具
JP2000305168A (ja) * 1999-04-20 2000-11-02 Fujitsu General Ltd 集光装置
JP2001051348A (ja) * 1999-08-16 2001-02-23 Sony Corp 照明光学装置と映像投射装置
JP2002170409A (ja) * 2000-09-22 2002-06-14 Stanley Electric Co Ltd ヘッドランプ
JP2003297103A (ja) * 2002-03-29 2003-10-17 Hitachi Ltd 照明装置及びそれを用いた投射型プロジェクタ装置
JP2004361982A (ja) * 1993-03-16 2004-12-24 Seiko Epson Corp 投写型表示装置
JP2005250072A (ja) * 2004-03-03 2005-09-15 Canon Inc 照明光学系および画像投射装置
JP2007290233A (ja) * 2006-04-25 2007-11-08 Ushio Inc 光照射器およびインクジェットプリンタ
JP2008080224A (ja) * 2006-09-27 2008-04-10 Ushio Inc 光照射器およびインクジェットプリンタ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076613A (ja) * 1993-02-01 1995-01-10 General Electric Co <Ge> 照明システム
JP2004361982A (ja) * 1993-03-16 2004-12-24 Seiko Epson Corp 投写型表示装置
JPH07141903A (ja) * 1993-06-18 1995-06-02 General Electric Co <Ge> スポーツ照明器具
JP2000305168A (ja) * 1999-04-20 2000-11-02 Fujitsu General Ltd 集光装置
JP2001051348A (ja) * 1999-08-16 2001-02-23 Sony Corp 照明光学装置と映像投射装置
JP2002170409A (ja) * 2000-09-22 2002-06-14 Stanley Electric Co Ltd ヘッドランプ
JP2003297103A (ja) * 2002-03-29 2003-10-17 Hitachi Ltd 照明装置及びそれを用いた投射型プロジェクタ装置
JP2005250072A (ja) * 2004-03-03 2005-09-15 Canon Inc 照明光学系および画像投射装置
JP2007290233A (ja) * 2006-04-25 2007-11-08 Ushio Inc 光照射器およびインクジェットプリンタ
JP2008080224A (ja) * 2006-09-27 2008-04-10 Ushio Inc 光照射器およびインクジェットプリンタ

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010237377A (ja) * 2009-03-31 2010-10-21 Furukawa Electric Co Ltd:The プリズム、プリズムペア及び該プリズムペアを備える波長選択デバイス
JP2013513122A (ja) * 2009-12-08 2013-04-18 スリーエム イノベイティブ プロパティズ カンパニー 生物学的増殖プレートスキャナーのための照射装置及び方法
US8840840B2 (en) 2009-12-08 2014-09-23 3M Innovative Properties Company Illumination apparatus and methods for a biological growth plate scanner
JP2015111132A (ja) * 2009-12-08 2015-06-18 スリーエム イノベイティブ プロパティズ カンパニー 生物学的増殖プレートスキャナーのための照射装置及び方法
KR101732210B1 (ko) * 2009-12-08 2017-05-02 쓰리엠 이노베이티브 프로퍼티즈 컴파니 생물학적 성장 플레이트 스캐너를 위한 조명 장치 및 방법
US9638833B2 (en) 2011-10-12 2017-05-02 Phoseon Technology, Inc. Multiple light collection and lens combinations with co-located foci for curing optical fibers
JP2015501275A (ja) * 2011-10-12 2015-01-15 フォセオン テクノロジー, インコーポレイテッドPhoseon Technology, Inc. 光ファイバーを硬化するための共同設置焦点を有する多重光収集とレンズの組合せ
JP2014194918A (ja) * 2013-09-26 2014-10-09 Ushio Inc ライン状光照射装置
JP2016213012A (ja) * 2015-05-01 2016-12-15 株式会社アイテックシステム ライン状照明装置およびその製造方法
KR20170108844A (ko) * 2016-03-18 2017-09-27 호야 칸데오 옵트로닉스 가부시키가이샤 광 조사장치
KR102304706B1 (ko) * 2016-03-18 2021-09-23 호야 가부시키가이샤 광 조사장치
KR20200044468A (ko) * 2018-10-19 2020-04-29 엘지이노텍 주식회사 자외선 경화 장치
KR102559994B1 (ko) * 2018-10-19 2023-07-26 엘지이노텍 주식회사 자외선 경화 장치

Similar Documents

Publication Publication Date Title
JP4816367B2 (ja) 光照射器およびインクジェットプリンタ
US20080094460A1 (en) Light irradiation device and inkjet printer utilizing same
TWI355331B (ja)
JP2008102389A (ja) 光照射器
JP2009034831A (ja) 光照射器及びこの光照射器を使用したプリンタ
US20090046135A1 (en) Printer
CN101927620A (zh) 光照射装置
JP2009061702A (ja) 紫外線照射装置
JP2005125753A (ja) インクジェット記録装置
JP4806918B2 (ja) インクジェット記録装置
JP2010056192A (ja) 面発光型照射デバイス、面発光型照射装置、および液滴吐出装置
JP6809928B2 (ja) 光照射装置
JP2009125977A (ja) 光照射器
JP2012206450A (ja) 記録装置
JP2009064979A (ja) 発光ダイオードを用いた光源
JPS6269519A (ja) 紫外線レ−ザ−照射方法
JP2006162298A (ja) 紫外線照射装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120724