JP2008101865A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2008101865A
JP2008101865A JP2006285947A JP2006285947A JP2008101865A JP 2008101865 A JP2008101865 A JP 2008101865A JP 2006285947 A JP2006285947 A JP 2006285947A JP 2006285947 A JP2006285947 A JP 2006285947A JP 2008101865 A JP2008101865 A JP 2008101865A
Authority
JP
Japan
Prior art keywords
air conditioner
temperature
heat
room
conditioned room
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006285947A
Other languages
Japanese (ja)
Other versions
JP4735509B2 (en
Inventor
Yusuke Kono
裕介 河野
Satoshi Tokura
聡 十倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006285947A priority Critical patent/JP4735509B2/en
Publication of JP2008101865A publication Critical patent/JP2008101865A/en
Application granted granted Critical
Publication of JP4735509B2 publication Critical patent/JP4735509B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To automatically execute energy-saving control at a proper timing. <P>SOLUTION: A heat transmission coefficient of a conditioned room is determined when the conditioned room is in a stable state in a cooling operation or a heating operation, and an energy-saving operation is executed when the heat transmission coefficient is small. A capacity required by the conditioned room is judged by calculating the heat transmission coefficient of the conditioned room, that is, as the heat leaking from the conditioned room to the external environment is small when a value of the heat transmission coefficient is smaller than a prescribed value, the energy-saving operation is executed without giving discomfort to a user even when an operation limited in its maximum capacity is performed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、空気調和機に係わり、自動的に被調和室の熱貫流率を計算し、それをもって省エネ運転を行うか行わないか判断し、行うと判断された場合は省エネとなる運転を行うものである。   The present invention relates to an air conditioner, and automatically calculates the heat transmissibility of a conditioned room, and determines whether or not to perform an energy saving operation, and performs an operation that saves energy when it is determined to do so. Is.

従来技術として、図4に示すように、リモコンなどの設定により、最大の電流値を制限することで省エネ運転を実現する空気調和機がある(例えば、特許文献1参照)。
特開平8−54138号公報
As a conventional technique, as shown in FIG. 4, there is an air conditioner that realizes an energy saving operation by limiting a maximum current value by setting a remote controller or the like (see, for example, Patent Document 1).
JP-A-8-54138

しかしながら、このように上記従来の技術ではリモコンなどで一律的に省エネモードを選択した場合、被調和室が必要としている能力を問わず、最大能力を制限してしまうので、能力が足りず、必ずしもユーザにとって快適な状態ではない場合があった。また、その場合、省エネモードを解除するには、リモコンの操作を伴うのでユーザにとって煩雑な思いをさせることがあった。   However, in the above-described conventional technology, when the energy saving mode is uniformly selected by using a remote controller or the like, the maximum capacity is limited regardless of the capacity required by the conditioned room. In some cases, the user is not comfortable. In that case, since the operation of the remote controller is involved in canceling the energy saving mode, the user may feel complicated.

前記従来の課題を解決するために、本発明の空気調和機は、冷房運転あるいは暖房運転時、被調和室が安定状態となった場合、被調和室の熱貫流率を求め、熱貫流率が小さければ省エネ運転を実行するものである。   In order to solve the above-described conventional problems, the air conditioner of the present invention obtains the heat transmissivity of the conditioned room when the conditioned room is in a stable state during cooling operation or heating operation, and the heat transmissivity is If it is small, energy-saving operation is executed.

被調和室の熱貫流率を算出することで、被調和室が必要としている能力を判断することができ、つまり熱貫流率の値が所定の値より小さければ、被調和室から外環境に漏洩する熱量が少ないということであり、最大能力を制限する運転をしたとしても、ユーザが不快に思うことなく、省エネ運転を実行できる。   By calculating the heat transmissibility of the conditioned room, it is possible to determine the capacity required by the conditioned room, that is, if the value of the heat transmissibility is smaller than a predetermined value, leakage from the conditioned room to the outside environment This means that the amount of heat to be generated is small, and even if the operation is performed to limit the maximum capacity, the user can execute the energy saving operation without feeling uncomfortable.

また、熱貫流率が所定の値より大きければ、外環境に漏洩する熱量が多いということになり、最大能力を制限しない方が、ユーザにとって快適であると判断されるので省エネ運転を実行しない。   Further, if the heat transmissibility is larger than a predetermined value, it means that the amount of heat leaking to the outside environment is large, and it is judged that it is more comfortable for the user not to limit the maximum capacity, so the energy saving operation is not executed.

本発明の空気調和機は、自動的に被調和室の熱貫流率を計算し、それをもって省エネ運転を行うか行わないか判断するのでユーザに煩雑な思いをさせることなく、省エネ運転を行うか行わないか適切な運転を選択することができる。   Since the air conditioner of the present invention automatically calculates the heat transmissibility of the conditioned room and determines whether or not to perform the energy saving operation, it can be performed without making the user feel complicated. It is possible to select not to perform or appropriate operation.

第1の発明は、圧縮機、室内熱交換器、室外熱交換器、絞り装置を有する冷凍サイクル及び被調和室の室温と設定温度に基づいて室温が設定温度に至るように圧縮機の運転能力を自動調整する制御部を有する空気調和機において、冷房運転あるいは暖房運転時、被調和室の室温が略一定、かつ空気調和機から投入される熱量が略一定となる安定状態であった場合、空気調和機が被調和室に投入している熱量(N1)を算出し、また室温と外気温の温度差(ΔT1)を算出し、前記投入熱量(N1)を室温と外気温の差(ΔT1)で除算することで熱貫流率(N2)を算出し(N2=N1/ΔT1)、熱貫流率(N2)の値が所定値よりも小さければ、空気調和機が被調和室に投入する最大能力を減少方向に補正する。この結果、自動的に被調和室の熱貫流率を計算し、それをもって省エネ運転を行うか
行わないか判断するのでユーザに煩雑な思いをさせることなく、省エネ運転を行うか行わないか適切な運転を選択することができる。
The first invention is a compressor, an indoor heat exchanger, an outdoor heat exchanger, a refrigeration cycle having a throttle device, and an operating capacity of the compressor so that the room temperature reaches the set temperature based on the room temperature and the set temperature of the conditioned room In the air conditioner having a control unit that automatically adjusts, when the cooling operation or the heating operation, the room temperature of the conditioned room is substantially constant, and the amount of heat input from the air conditioner is in a stable state that is substantially constant, The amount of heat (N1) input to the conditioned room by the air conditioner is calculated, the temperature difference (ΔT1) between the room temperature and the outside air temperature is calculated, and the input heat amount (N1) is calculated as the difference between the room temperature and the outside temperature (ΔT1). ) To calculate the heat flow rate (N2) (N2 = N1 / ΔT1), and if the value of the heat flow rate (N2) is smaller than a predetermined value, the maximum that the air conditioner puts into the conditioned room Correct the ability in the decreasing direction. As a result, the heat transmissibility of the conditioned room is automatically calculated, and it is determined whether or not to perform the energy saving operation, so that it is appropriate whether or not the energy saving operation is performed without making the user feel complicated. Driving can be selected.

第2の発明は、圧縮機、室内熱交換器、室外熱交換器、絞り装置を有する冷凍サイクル及び被調和室の室温と設定温度に基づいて室温が設定温度に至るように圧縮機の運転能力を自動調整する制御部を有する空気調和機において、冷房運転あるいは暖房運転時、被調和室の室温が設定温度に到達し、室温を維持する能力が空気調和機の最小能力以下となり、圧縮機の駆動を断続的に行う運転となった場合、被調和室が安定状態であると判断し、空気調和機が所定時間(T1)中に被調和室に投入している平均投入熱量(N1a)を算出し、また所定時間(T1)中の室温と外気温の平均温度差(ΔT1a)を算出し、前記平均投入熱量(N1a)を室温と外気温の平均温度差(ΔT1a)で除算することで熱貫流率(N2)を算出し(N2=N1a/ΔT1a)、熱貫流率(N2)の値が所定値よりも小さければ、空気調和機が被調和室に投入する最大能力を減少方向に補正する。この結果、自動的に被調和室の熱貫流率を計算し、それをもって省エネ運転を行うか行わないか判断するのでユーザに煩雑な思いをさせることなく、省エネ運転を行うか行わないか適切な運転を選択することができる。   The second invention is a compressor, an indoor heat exchanger, an outdoor heat exchanger, a refrigeration cycle having an expansion device, and an operating capacity of the compressor so that the room temperature reaches the set temperature based on the room temperature and the set temperature of the conditioned room In the air conditioner having a control unit that automatically adjusts the air conditioner, the room temperature of the conditioned room reaches the set temperature during the cooling operation or the heating operation, and the ability to maintain the room temperature is less than the minimum capacity of the air conditioner. When the operation is intermittently performed, it is determined that the conditioned room is in a stable state, and the average input heat amount (N1a) input to the conditioned room by the air conditioner during a predetermined time (T1) is determined. And calculating an average temperature difference (ΔT1a) between the room temperature and the outside air temperature during a predetermined time (T1), and dividing the average input heat amount (N1a) by the average temperature difference between the room temperature and the outside air temperature (ΔT1a). Calculate the heat transmissibility (N2) (N2 = N1 / ΔT1a), if the value of the thermal transmittance (N2) is smaller than a predetermined value, corrects the maximum capacity of the air conditioner is put into the conditioning chamber in the decreasing direction. As a result, the heat transmissibility of the conditioned room is automatically calculated, and it is determined whether or not to perform the energy saving operation, so that it is appropriate whether or not the energy saving operation is performed without making the user feel complicated. Driving can be selected.

第3の発明は、被調和室が安定状態であると判断され、熱貫流率(N2)が算出された場合、予め定められている熱貫流率の初期値(N0)と比較を行い、今回熱貫流率(N2)が熱貫流率の初期値(N0)より大きければ所定の値をN0に加算し(N0=N0+E)、小さければ所定の値をN0に減算し(N0=N0−G)、さらに所定時間経過後、被調和室が安定状態であると判断された場合、熱貫流率(N2)を算出し、N0の補正を行い、N0の補正計算を1回あるいは複数回繰り返した後、N0の値が所定値よりも小くなれば、空気調和機が被調和室に投入する最大能力を減少方向に補正する。この結果、平均的な被調和室の熱貫流率を求めることが可能となる。一回の計算では外乱などの影響で適切な計算結果にならない場合が想定されるが、平均的な熱貫流率を求めることで、外乱などによって一回の計算で生じるバラツキを排除することができ、省エネ運転を行うか行わないか、より適切な判断を行うことができる。   In the third invention, when it is determined that the conditioned room is in a stable state and the heat transmissibility (N2) is calculated, a comparison is made with a predetermined initial value (N0) of the heat transmissivity. If the heat flow rate (N2) is larger than the initial value (N0) of the heat flow rate, a predetermined value is added to N0 (N0 = N0 + E), and if it is smaller, the predetermined value is subtracted from N0 (N0 = N0-G). Further, after a predetermined time has elapsed, if it is determined that the conditioned room is in a stable state, the heat transmissibility (N2) is calculated, N0 is corrected, and N0 correction calculation is repeated one or more times. When the value of N0 becomes smaller than a predetermined value, the maximum capacity that the air conditioner puts into the conditioned room is corrected in the decreasing direction. As a result, it is possible to obtain the average heat transmissibility of the conditioned room. Although it is assumed that an appropriate calculation result may not be obtained due to the influence of disturbance or the like in a single calculation, the variation caused by a single calculation due to disturbance or the like can be eliminated by obtaining the average heat transmissibility. It is possible to make a more appropriate judgment as to whether or not to perform energy saving operation.

第4の発明は、特に第3の発明の空気調和機において、最大能力を圧縮機の運転能力を負側へ補正するように制限するか、最大能力が出力される時間を短くする運転を行うか判断するのに計算される補正熱貫流率(N0)の計算を冷房運転時と暖房運転時で別々に行い、補正熱貫流率(N0)を冷房運転時、暖房運転時、別々に記憶する。暖房時では、空気調和機以外の補助暖房などを使う場合が想定され、同一の平均的な熱貫流率を求める場合、冷房時、暖房時双方で適切な熱貫流率にならない可能性があるが、別々の計算とすることで、冷房時、暖房時双方で適切な熱貫流率を算出することが可能となり、冷房時、暖房時それぞれにおいて、省エネ運転を行うか行わないか、より適切な判断を行うことができる。   In the fourth aspect of the invention, particularly in the air conditioner of the third aspect of the invention, the maximum capacity is limited so as to correct the operating capacity of the compressor to the negative side, or the time for outputting the maximum capacity is shortened. The calculation of the corrected heat flow rate (N0) calculated to determine whether or not is performed separately for the cooling operation and the heating operation, and the corrected heat transfer rate (N0) is stored separately for the cooling operation and the heating operation. . When heating, it is assumed that auxiliary heating other than air conditioners is used, and when obtaining the same average heat transmissivity, there is a possibility that the appropriate heat transmissivity may not be obtained during both cooling and heating. By making separate calculations, it is possible to calculate the appropriate heat transmissivity for both cooling and heating, and more appropriate judgment whether or not to perform energy-saving operation during cooling and heating. It can be performed.

第5の発明は、特に第1〜4のいずれか1つの発明の空気調和機において、室温検出手段、室内熱交換器温度検出手段、室内クロスフローファン回転数検出手段、室外気温検出手段を有する空気調和機において、前記、投入熱量の計算方法において、風量(F)の計算を
F=室内クロスフローファン回転数*A+B (A・Bは所定の定数)
投入熱量(N1)の計算を
N1=(室内熱交換器温度−室温)*F*C (Cは所定の定数)・・・暖房時、
N1=(室温−室内熱交換器温度)*F*D (Dは所定の定数)・・・冷房時、
と簡略的に計算することで、特別な情報・手段がなくても通常空気調和機が取得できる情報の範疇で熱貫流率が計算できるので、余分な機構・機能を必要とせず、簡略的な熱貫流率を算出し、ユーザに煩雑な思いをさせることなく、省エネ運転を行うか行わないか適切
な運転を選択することができる。
The fifth aspect of the invention is the air conditioner of any one of the first to fourth aspects of the invention, and has room temperature detection means, indoor heat exchanger temperature detection means, indoor crossflow fan rotation speed detection means, and outdoor air temperature detection means. In the air conditioner, in the calculation method of the input heat amount, the calculation of the air volume (F) is as follows: F = indoor crossflow fan rotation speed * A + B (A and B are predetermined constants)
Calculate the input heat amount (N1) N1 = (indoor heat exchanger temperature−room temperature) * F * C (C is a predetermined constant).
N1 = (room temperature−indoor heat exchanger temperature) * F * D (D is a predetermined constant)...
By simply calculating, the heat transmissivity can be calculated within the range of information that can be obtained by ordinary air conditioners without special information / means. An appropriate operation can be selected whether or not to perform the energy saving operation without calculating a heat transmissibility and making the user feel complicated.

第6の発明は、特に第1〜5のいずれか1つの発明の空気調和機において、最大能力を制限する手段として、圧縮機又は空気調和機に流れる電流値を通常電流制限値よりも、圧縮機の運転能力を負側へ補正するように電流を制限する。この結果、一般的に最大能力は電流値あるいは圧縮機の最大運転周波数によって制限されるものであるが、そのうちの電流値の最大値の閾値を変更するだけであるので簡単に省エネ制御を実施することができる。   In a sixth aspect of the present invention, in particular, in the air conditioner of any one of the first to fifth aspects, as a means for limiting the maximum capacity, the current value flowing through the compressor or the air conditioner is compressed more than the normal current limit value. Limit the current to correct the machine's driving capability to the negative side. As a result, in general, the maximum capacity is limited by the current value or the maximum operating frequency of the compressor, but simply changing the threshold of the maximum value of the current value, so energy saving control is easily implemented. be able to.

第7の発明は、特に第1〜5のいずれか1つの発明の空気調和機において、最大能力を制限する手段として、圧縮機の通常の最大周波数よりも、圧縮機の運転能力を負側へ補正するように最大周波数を制限する。この結果、一般的に最大能力は電流値あるいは圧縮機の最大運転周波数によって制限されるものであるが、そのうちの運転周波数の最大値の閾値を変更するだけであるので簡単に省エネ制御を実施することができる。   In the seventh aspect of the invention, in particular, in the air conditioner of any one of the first to fifth aspects of the invention, as a means for limiting the maximum capacity, the operating capacity of the compressor is more negative than the normal maximum frequency of the compressor. Limit the maximum frequency to correct. As a result, the maximum capacity is generally limited by the current value or the maximum operating frequency of the compressor, but simply changing the threshold of the maximum value of the operating frequency, so energy saving control is easily implemented. be able to.

第8の発明は、特に第1〜7のいずれか1つの発明の空気調和機において、室温が所定温度に達するまでは、空気調和機が被調和室に投入する最大能力を減少方向に補正しない。この結果、暖房や冷房運転の立ち上げ時に、まだ暖房であれば寒く、冷房であれば暑い環境においては、省エネ運転による最大能力の制限は行わないので、ユーザにとって不快な状況を極力回避できる。   In the eighth aspect of the invention, in particular, in the air conditioner of any one of the first to seventh aspects, the maximum capacity of the air conditioner thrown into the conditioned room is not corrected in a decreasing direction until the room temperature reaches a predetermined temperature. . As a result, when the heating or cooling operation is started, the maximum capacity is not limited by the energy-saving operation in an environment where the heating is still cold and the cooling is hot, so that an unpleasant situation for the user can be avoided as much as possible.

第9の発明は、特に第1から第8のいずれか1つの発明の空気調和機において、暖房運転時、外気温が所定温度未満では、空気調和機が被調和室に投入する最大能力を減少方向に補正しない。この結果、暖房運転時、外気温が低く被調和室への投入能力がより必要な環境においては通常時に対して最大能力を制限しないので、ユーザにとって不快な状況を極力回避できる。   The ninth aspect of the invention relates to the air conditioner of any one of the first to eighth aspects of the invention, particularly when the outside air temperature is lower than a predetermined temperature during the heating operation, the maximum capacity of the air conditioner to be input into the conditioned room is reduced. Do not correct in the direction. As a result, during the heating operation, in an environment where the outside air temperature is low and the input capacity to the conditioned room is more necessary, the maximum capacity is not limited as compared with the normal time, so that a situation uncomfortable for the user can be avoided as much as possible.

第10の発明は、特に第1から第8のいずれか1つの発明の空気調和機において、冷房運転時、外気温が所定温度以上では、空気調和機が被調和室に投入する最大能力を減少方向に補正しない。この結果、冷房運転時、外気温が高く被調和室への投入能力がより必要な環境においては通常時に対して最大能力を制限しないので、ユーザにとって不快な状況を極力回避できる。   According to a tenth aspect of the present invention, in the air conditioner of any one of the first to eighth aspects of the invention, the maximum capacity of the air conditioner thrown into the conditioned room is reduced when the outside air temperature is a predetermined temperature or more during cooling operation. Do not correct in the direction. As a result, during cooling operation, in an environment where the outside air temperature is high and the input capacity to the conditioned room is more necessary, the maximum capacity is not limited with respect to the normal time, so that an unpleasant situation for the user can be avoided as much as possible.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
(Embodiment 1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited by this embodiment.

図1は、本発明の実施の形態における空気調和機の概略図を示すものである。   FIG. 1 shows a schematic diagram of an air conditioner according to an embodiment of the present invention.

図1において、空気調和機1は、室外機2と、室内機3で構成されている。室外機3には圧縮機4、四方弁5、膨張弁6、室外熱交換器7、室外ファン8、吐出温センサ9、室外配管温センサ10、外気温センサ11が設けられている。室内機3には、室内熱交換器12、室内ファン13、室内配管温度センサ17、吸込センサ18が設けられており、室外機と室内機が冷凍サイクルを形成するように接続され、四方弁5を切り替えることによって冷房と暖房をおこなわれるようになっている。また、室外機2、室内機3にはそれぞれに室外制御部20と室内制御部21とが設けられており、両制御部20、21は接続線によって接続されている。室内制御部21には、室内機3の外に設けられたリモコン23
から送信される赤外線信号を受信する受信部22を有しており、ユーザーがリモコン23上で様々な操作をおこなうことが可能となっている。また、両制御部20、21はそれぞれ、数値計算を実行したり、数値計算した計算結果を記憶する手段を有する。
In FIG. 1, the air conditioner 1 includes an outdoor unit 2 and an indoor unit 3. The outdoor unit 3 is provided with a compressor 4, a four-way valve 5, an expansion valve 6, an outdoor heat exchanger 7, an outdoor fan 8, a discharge temperature sensor 9, an outdoor pipe temperature sensor 10, and an outdoor temperature sensor 11. The indoor unit 3 is provided with an indoor heat exchanger 12, an indoor fan 13, an indoor pipe temperature sensor 17, and a suction sensor 18, and the outdoor unit and the indoor unit are connected so as to form a refrigeration cycle. By switching between, cooling and heating are performed. The outdoor unit 2 and the indoor unit 3 are each provided with an outdoor control unit 20 and an indoor control unit 21, and both control units 20 and 21 are connected by a connection line. The indoor controller 21 includes a remote controller 23 provided outside the indoor unit 3.
A receiving unit 22 that receives an infrared signal transmitted from the remote controller 23 is provided, and a user can perform various operations on the remote controller 23. Each of the control units 20 and 21 includes means for executing numerical calculation and storing the calculation result obtained by numerical calculation.

以上のように構成された空気調和機について、以下にその動作、作用を説明する。
図2は本発明の第1の実施の形態における空気調和機の暖房運転時のフローチャートである。まず、図2において暖房運転が行われると、SP21において省エネ制御実行許可中かどうかの判断が行われ、そうであればSP22に、そうでなければSP25に進む。SP22において、外気温がTg℃(例えば−3℃)以上かどうかの判断が行われ、そうであればSP23に、そでなければSP25に進む。SP23において、吸込み温度がTs℃(例えば16℃)以上かどうかの判断が行われ、そうであればSP24、そうでなければSP25に進む。SP24において、省エネ制御を実行する為、電流値の最大設定値を引き下げて(例えば通常時が20Aであれば15Aに変更)SP26に進む。SP25において、電流値の最大設定値を通常の設定値(例えば20A)にしSP26に進む。SP26において、前回熱貫流率を計算して所定時間経過(例えば6時間)かどうかの判断が行われ、そうであればSP27に、そうでなければSP21に進む。SP27において、被調和室は安定状態であるかどうかの判断が行われ、そうであればSP28に、そうでなければSP21に進む。SP28において、N2(今回計算された熱貫流率)がN0(過去計算された熱貫流率の略平均値)より大きいかどうかの判断が行われ、そうであればSP2Aに進み、そうでなければSP2Bに進む。SP2Aにおいて、N0=N0+E(例えばE=1)の計算が実行され、SP2Cに進む。SP2Bにおいて、N0=N0−G(例えばG=1)の計算が実行され、SP2Cに進む。SP2Cにおいて、N0の値が所定値よりも小さいかどうかの判断がおこわなれ、そうであればSP2Dに進み、そうでなければSP2Eに進む。SP2Dにおいて、省エネ制御実行の許可を与え、SP21に進む。SP2Eにおいて、省エネ制御の実行を不許可とし、SP21に進む。
About the air conditioner comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
FIG. 2 is a flowchart at the time of heating operation of the air conditioner according to the first embodiment of the present invention. First, when the heating operation is performed in FIG. 2, it is determined whether or not the execution of energy saving control is permitted in SP21, and if so, the process proceeds to SP22, and otherwise proceeds to SP25. In SP22, it is determined whether or not the outside air temperature is equal to or higher than Tg ° C. (for example, −3 ° C.). If so, the process proceeds to SP23, and otherwise proceeds to SP25. In SP23, it is determined whether or not the suction temperature is equal to or higher than Ts ° C. (for example, 16 ° C.). If so, the process proceeds to SP24, and otherwise proceeds to SP25. In SP24, in order to execute energy saving control, the maximum set value of the current value is reduced (for example, if the normal time is 20A, it is changed to 15A), and the process proceeds to SP26. In SP25, the maximum set value of the current value is set to a normal set value (for example, 20 A), and the process proceeds to SP26. In SP26, it is determined whether or not a predetermined time has elapsed (for example, 6 hours) by calculating the previous heat transmissibility. If so, the process proceeds to SP27, and if not, the process proceeds to SP21. In SP27, it is determined whether or not the conditioned room is in a stable state. In SP28, it is determined whether or not N2 (heat transmissibility calculated this time) is larger than N0 (substantially average value of heat transmissibility calculated in the past). If so, the process proceeds to SP2A. Proceed to SP2B. In SP2A, calculation of N0 = N0 + E (for example, E = 1) is executed, and the process proceeds to SP2C. In SP2B, calculation of N0 = N0-G (for example, G = 1) is executed, and the process proceeds to SP2C. In SP2C, it can be determined whether the value of N0 is smaller than the predetermined value. If so, the process proceeds to SP2D, and if not, the process proceeds to SP2E. In SP2D, permission to execute energy saving control is given, and the process proceeds to SP21. In SP2E, execution of energy saving control is not permitted, and the process proceeds to SP21.

ここで、以上のように図2の制御を実行した場合の効果を図3に示す。内・外気温2℃で暖房運転をスタートし、内気温が16℃に達した段階で、電流値の最大設定値を20Aから15Aに変化させている。この様に制御することで、運転開始、2時間後の積算入力で10〜15%程度の省エネ効果がある。   Here, FIG. 3 shows the effect when the control of FIG. 2 is executed as described above. Heating operation is started at an internal / external temperature of 2 ° C., and the maximum current value is changed from 20A to 15A when the internal temperature reaches 16 ° C. By controlling in this way, there is an energy saving effect of about 10 to 15% by the integrated input after the start of operation and 2 hours later.

冷房運転時の実施例は示さないが、暖房と同様に制御することで同様の効果を得ることができる。   Although the example at the time of cooling operation is not shown, the same effect can be acquired by controlling similarly to heating.

以上のように、本発明にかかる空気調和器は、自動的に被調和室の熱貫流率を計算し、それをもって省エネ運転を行うか行わないか判断するのでユーザに煩雑な思いをさせることなく、省エネ運転を行うか行わないか適切な運転を選択することができるので、種々の空気調和機に適用できる。   As described above, the air conditioner according to the present invention automatically calculates the heat transmissivity of the conditioned room and determines whether to perform energy-saving operation with it, so that the user does not feel complicated. Since an appropriate operation can be selected as to whether or not to perform energy saving operation, it can be applied to various air conditioners.

本発明の実施の形態における空気調和機の概略図Schematic of an air conditioner in an embodiment of the present invention 本発明の実施の形態1におけるフローチャートFlowchart in Embodiment 1 of the present invention 本発明の実施の形態1における省エネ制御の効果を示した図The figure which showed the effect of the energy-saving control in Embodiment 1 of this invention 従来の空気調和器における省エネ制御のフローチャートFlow chart of energy saving control in a conventional air conditioner

符号の説明Explanation of symbols

1 空気調和機
2 室外機
3 室内機
4 圧縮機
5 四方弁
6 膨張弁
7 室外熱交換器
8 室外ファン
9 吐出温センサ
10 室外配管温センサ
11 外気温センサ
12 室内熱交換器
13 室内ファン
17 室内配管温度センサ
18 吸込センサ
20 室外制御部
21 室内制御部
22 受信部
23 リモコン
DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Outdoor unit 3 Indoor unit 4 Compressor 5 Four-way valve 6 Expansion valve 7 Outdoor heat exchanger 8 Outdoor fan 9 Discharge temperature sensor 10 Outdoor piping temperature sensor 11 Outdoor temperature sensor 12 Indoor heat exchanger 13 Indoor fan 17 Indoor Piping temperature sensor 18 Suction sensor 20 Outdoor control unit 21 Indoor control unit 22 Receiving unit 23 Remote control

Claims (10)

圧縮機、室内熱交換器、室外熱交換器、絞り装置を有する冷凍サイクル及び被調和室の室温と設定温度に基づいて室温が設定温度に至るように圧縮機の運転能力を自動調整する制御部を有する空気調和機において、冷房運転あるいは暖房運転時、被調和室の室温が略一定、かつ空気調和機から投入される熱量が略一定となる安定状態であった場合、空気調和機が被調和室に投入している熱量(N1)を算出し、また室温と外気温の温度差(ΔT1)を算出し、前記投入熱量(N1)を室温と外気温の差(ΔT1)で除算することで熱貫流率(N2)を算出し(N2=N1/ΔT1)、熱貫流率(N2)の値が所定値よりも小さければ、空気調和機が被調和室に投入する最大能力を減少方向に補正することを特徴とした空気調和機。 Control unit that automatically adjusts the operating capacity of the compressor so that the room temperature reaches the set temperature based on the room temperature and the set temperature of the compressor, the indoor heat exchanger, the outdoor heat exchanger, the refrigeration cycle and the conditioned room When the air conditioner has a stable state where the room temperature of the conditioned room is substantially constant and the amount of heat input from the air conditioner is substantially constant during cooling or heating operation, the air conditioner is conditioned. Calculate the amount of heat (N1) input to the room, calculate the temperature difference between the room temperature and the outside air temperature (ΔT1), and divide the input heat amount (N1) by the difference between the room temperature and the outside air temperature (ΔT1). Calculate the heat flow rate (N2) (N2 = N1 / ΔT1), and if the value of the heat flow rate (N2) is smaller than the predetermined value, correct the maximum capacity that the air conditioner puts into the conditioned room in the decreasing direction. An air conditioner characterized by 圧縮機、室内熱交換器、室外熱交換器、絞り装置を有する冷凍サイクル及び被調和室の室温と設定温度に基づいて室温が設定温度に至るように圧縮機の運転能力を自動調整する制御部を有する空気調和機において、冷房運転あるいは暖房運転時、被調和室の室温が設定温度に到達し、室温を維持する能力が空気調和機の最小能力以下となり、圧縮機の駆動を断続的に行う運転となった場合、被調和室が安定状態であると判断し、空気調和機が所定時間(T1)中に被調和室に投入している平均投入熱量(N1a)を算出し、また所定時間(T1)中の室温と外気温の平均温度差(ΔT1a)を算出し、前記平均投入熱量(N1a)を室温と外気温の平均温度差(ΔT1a)で除算することで熱貫流率(N2)を算出し(N2=N1a/ΔT1a)、熱貫流率(N2)の値が所定値よりも小さければ、空気調和機が被調和室に投入する最大能力を減少方向に補正することを特徴とした空気調和機。 Control unit that automatically adjusts the operating capacity of the compressor so that the room temperature reaches the set temperature based on the room temperature and the set temperature of the compressor, the indoor heat exchanger, the outdoor heat exchanger, the refrigeration cycle and the conditioned room In the air conditioner having the air conditioner, during the cooling operation or the heating operation, the room temperature of the conditioned room reaches the set temperature, the ability to maintain the room temperature becomes less than the minimum capacity of the air conditioner, and the compressor is driven intermittently. When the operation is started, it is determined that the conditioned room is in a stable state, and the average input heat amount (N1a) input to the conditioned room by the air conditioner during the predetermined time (T1) is calculated. The average temperature difference (ΔT1a) between the room temperature and the outside air temperature in (T1) is calculated, and the average heat input (N1a) is divided by the average temperature difference (ΔT1a) between the room temperature and the outside air temperature (N2). (N2 = N1a / ΔT1a) If the value of the transmission coefficient (N2) is smaller than a predetermined value, the air conditioner is characterized in that the air conditioner is corrected in the decreasing direction of the maximum capacity to put into the conditioning chamber. 被調和室が安定状態であると判断され、熱貫流率(N2)が算出された場合、予め定められている熱貫流率の初期値(N0)と比較を行い、今回熱貫流率(N2)が熱貫流率の初期値(N0)より大きければ所定の値をN0に加算し(N0=N0+E)、小さければ所定の値をN0に減算し(N0=N0−G)、さらに所定時間経過後、被調和室が安定状態であると判断された場合、熱貫流率(N2)を算出し、N0の補正を行い、N0の補正計算を1回あるいは複数回繰り返した後、N0の値が所定値よりも小くなれば、空気調和機が被調和室に投入する最大能力を減少方向に補正することを特徴とした空気調和機。 When it is determined that the conditioned room is in a stable state and the heat transmissibility (N2) is calculated, it is compared with a predetermined initial value (N0) of the heat transmissivity, and this time the heat transmissibility (N2) Is larger than the initial value (N0) of the heat transmissibility, a predetermined value is added to N0 (N0 = N0 + E), and if it is smaller, the predetermined value is subtracted from N0 (N0 = N0-G), and after a predetermined time has passed. When it is determined that the conditioned room is in a stable state, the heat transmissibility (N2) is calculated, N0 is corrected, and after N0 correction calculation is repeated once or a plurality of times, the value of N0 is predetermined. When the air conditioner becomes smaller than the value, the air conditioner corrects the maximum capacity of the air conditioner to be input into the conditioned room in a decreasing direction. 最大能力を圧縮機の運転能力を負側へ補正するように制限するか、最大能力が出力される時間を短くする運転を行うか判断するのに計算される補正熱貫流率(N0)の計算を冷房運転時と暖房運転時で別々に行い、補正熱貫流率(N0)を冷房運転時、暖房運転時、別々に記憶することを特徴とした請求項3に記載の空気調和機。 Calculation of the corrected heat transmissibility (N0) that is calculated to determine whether to limit the maximum capacity so that the operating capacity of the compressor is corrected to the negative side or to perform the operation that shortens the time during which the maximum capacity is output. The air conditioner according to claim 3, wherein the air conditioner is separately performed during cooling operation and heating operation, and the corrected heat transmissibility (N0) is stored separately during cooling operation and heating operation. 室温検出手段、室内熱交換器温度検出手段、室内クロスフローファン回転数検出手段、室外気温検出手段を有する空気調和機において、前記、投入熱量の計算方法において、風量(F)の計算を
F=室内クロスフローファン回転数*A+B (A・Bは所定の定数)
投入熱量(N1)の計算を
N1=(室内熱交換器温度−室温)*F*C (Cは所定の定数)・・・暖房時、
N1=(室温−室内熱交換器温度)*F*D (Dは所定の定数)・・・冷房時、
と簡略的に計算することを特徴とした請求項1〜4に記載の空気調和機。
In an air conditioner having a room temperature detecting means, an indoor heat exchanger temperature detecting means, an indoor cross-flow fan rotation speed detecting means, and an outdoor air temperature detecting means, the calculation of the air volume (F) is performed in the calculation method of the input heat quantity as follows: F = Indoor crossflow fan speed * A + B (A and B are predetermined constants)
Calculate the input heat amount (N1) N1 = (indoor heat exchanger temperature−room temperature) * F * C (C is a predetermined constant).
N1 = (room temperature−indoor heat exchanger temperature) * F * D (D is a predetermined constant)...
The air conditioner according to claim 1, wherein the air conditioner is simply calculated as follows.
最大能力を制限する手段として、圧縮機又は空気調和機に流れる電流値を通常電流制限値よりも、圧縮機の運転能力を負側へ補正するように電流を制限することを特徴とした請求項1〜5に記載の空気調和機。 The means for limiting the maximum capacity is to limit the current so that the current value flowing through the compressor or the air conditioner is corrected to the negative side of the operating capacity of the compressor from the normal current limit value. The air conditioner of 1-5. 最大能力を制限する手段として、圧縮機の通常の最大周波数よりも、圧縮機の運転能力を負側へ補正するように圧縮機の最大運転周波数を制限することを特徴とした請求項1〜5に記載の空気調和機。 6. The maximum operating frequency of the compressor is limited as a means for limiting the maximum capacity so as to correct the operating capacity of the compressor to the negative side rather than the normal maximum frequency of the compressor. Air conditioner as described in. 室温が所定温度に達するまでは、空気調和機が被調和室に投入する最大能力を減少方向に補正しないことを特徴とした請求項1〜7に記載の空気調和機。 The air conditioner according to claim 1, wherein the maximum capacity that the air conditioner puts into the conditioned room is not corrected in a decreasing direction until the room temperature reaches a predetermined temperature. 暖房運転時、外気温が所定温度未満では、空気調和機が被調和室に投入する最大能力を減少方向に補正しないことを特徴とした請求項1〜8に記載の空気調和機。 The air conditioner according to any one of claims 1 to 8, wherein the maximum capacity that the air conditioner puts into the conditioned room is not corrected in a decreasing direction when the outside air temperature is lower than a predetermined temperature during heating operation. 冷房運転時、外気温が所定温度以上では、空気調和機が被調和室に投入する最大能力を減少方向に補正しないことを特徴とした請求項1〜8に記載の空気調和機。 9. The air conditioner according to claim 1, wherein the maximum capacity that the air conditioner puts into the conditioned room is not corrected in a decreasing direction when the outside air temperature is equal to or higher than a predetermined temperature during the cooling operation.
JP2006285947A 2006-10-20 2006-10-20 Air conditioner Expired - Fee Related JP4735509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006285947A JP4735509B2 (en) 2006-10-20 2006-10-20 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006285947A JP4735509B2 (en) 2006-10-20 2006-10-20 Air conditioner

Publications (2)

Publication Number Publication Date
JP2008101865A true JP2008101865A (en) 2008-05-01
JP4735509B2 JP4735509B2 (en) 2011-07-27

Family

ID=39436328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006285947A Expired - Fee Related JP4735509B2 (en) 2006-10-20 2006-10-20 Air conditioner

Country Status (1)

Country Link
JP (1) JP4735509B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015171794A1 (en) * 2014-05-07 2015-11-12 Emerson Climate Technologies, Inc. Building envelope and interior grading systems and methods
US9551495B2 (en) 2014-05-07 2017-01-24 Emerson Electric Co. HVAC system grading systems and methods
JP2018109458A (en) * 2016-12-28 2018-07-12 パナソニック株式会社 Control device for air conditioning system and air conditioning system
US10344997B2 (en) 2014-05-07 2019-07-09 Emerson Climate Technologies, Inc. Heat pump and air conditioning grading systems and methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147041A (en) * 1984-12-20 1986-07-04 Mitsubishi Electric Corp Air conditioning device
JPH09250797A (en) * 1996-03-14 1997-09-22 Toshiba Corp Air conditioner
JPH1019337A (en) * 1996-07-03 1998-01-23 Daikin Ind Ltd Operation control device for air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147041A (en) * 1984-12-20 1986-07-04 Mitsubishi Electric Corp Air conditioning device
JPH09250797A (en) * 1996-03-14 1997-09-22 Toshiba Corp Air conditioner
JPH1019337A (en) * 1996-07-03 1998-01-23 Daikin Ind Ltd Operation control device for air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015171794A1 (en) * 2014-05-07 2015-11-12 Emerson Climate Technologies, Inc. Building envelope and interior grading systems and methods
US9551495B2 (en) 2014-05-07 2017-01-24 Emerson Electric Co. HVAC system grading systems and methods
US10344997B2 (en) 2014-05-07 2019-07-09 Emerson Climate Technologies, Inc. Heat pump and air conditioning grading systems and methods
US10352783B2 (en) 2014-05-07 2019-07-16 Emerson Climate Technologies, Inc. Building envelope and interior grading systems and methods
US10634378B2 (en) 2014-05-07 2020-04-28 Emerson Climate Technologies, Inc. Heat pump and air conditioning grading systems and methods
JP2018109458A (en) * 2016-12-28 2018-07-12 パナソニック株式会社 Control device for air conditioning system and air conditioning system

Also Published As

Publication number Publication date
JP4735509B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
CN110285551B (en) Control method and device of air conditioner, air conditioner and electronic equipment
WO2008016227A1 (en) Method for controlling start-up operation of air conditioner
CN103162385A (en) Device and method of adjusting electronic expansion valve of refrigeration equipment
JP5954538B2 (en) Air conditioner demand control device
JP7148344B2 (en) air conditioner
CN107894062B (en) Control method of mobile air conditioner and mobile air conditioner
CN108518821B (en) Control method and device of air conditioner
CN106871381B (en) Defrosting operation method for air conditioner without stopping
JP2014029222A (en) Air conditioner
JP4735509B2 (en) Air conditioner
JP2015183873A (en) air conditioner
CN107023950B (en) Defrosting operation method for air conditioner without stopping
JP2013130384A (en) Air conditioner
JP2006145204A (en) Air conditioner
JP6022291B2 (en) Air conditioner
JP2009014321A (en) Air conditioner
JP2007303696A (en) Operation control method of multi-chamber type air conditioner
JP2014020730A (en) Air conditioner
CN110779232B (en) Control method and device for multi-connected cold and hot water unit and multi-connected cold and hot water unit
JP2008116155A (en) Operation control method for air conditioner
EP2527757B1 (en) Air conditioner
JP5535849B2 (en) Air conditioner
JP5195814B2 (en) Air conditioning apparatus and control method thereof
JP2009121700A (en) Air conditioner
JP7315434B2 (en) Heat pump hot water heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090608

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110301

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees