JP2008101155A - Water-repellent porous structure and its manufacturing method - Google Patents

Water-repellent porous structure and its manufacturing method Download PDF

Info

Publication number
JP2008101155A
JP2008101155A JP2006286204A JP2006286204A JP2008101155A JP 2008101155 A JP2008101155 A JP 2008101155A JP 2006286204 A JP2006286204 A JP 2006286204A JP 2006286204 A JP2006286204 A JP 2006286204A JP 2008101155 A JP2008101155 A JP 2008101155A
Authority
JP
Japan
Prior art keywords
water
porous structure
repellent
molded body
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006286204A
Other languages
Japanese (ja)
Other versions
JP5039361B2 (en
Inventor
Takuzo Imaizumi
卓三 今泉
Naomi Goto
直美 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futamura Chemical Co Ltd
Original Assignee
Futamura Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futamura Chemical Co Ltd filed Critical Futamura Chemical Co Ltd
Priority to JP2006286204A priority Critical patent/JP5039361B2/en
Publication of JP2008101155A publication Critical patent/JP2008101155A/en
Application granted granted Critical
Publication of JP5039361B2 publication Critical patent/JP5039361B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water-repellent porous structure which very easily exhibits surface water repellency and a method for manufacturing a water-repellent structure which can obtain a surface fine irregular structure exhibiting water repellency by a simple technique from the same material as the porous structure base material and has reduced restriction on the selection of the material constituting the base material. <P>SOLUTION: The water-repellent porous structure 10A has a base material 11 whose interior is formed as a porous structure 13 having fine voids 12 and to the surface 14 of which the section 15 of the porous structure is exposed and endowed with surface water-repellency. The method for manufacturing a water-repellent porous structure comprises a molding step of mixing a subsequently soluble substance to be dissolved into a molding material to mold a molded product having a predetermined shape, a porous body-forming step of dissolving the substance to be dissolved within the molded product to obtain a porous structure having fine voids formed, and a section exposure step of removing the surface of the porous structure to expose the section of the porous structure. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、撥水性多孔構造体及びその製法に関し、特に基材内部に発達した多孔質由来の微細な凹凸構造を利用することにより撥水性を向上させた撥水性多孔構造体並びにその製法に関する。   The present invention relates to a water-repellent porous structure and a method for producing the same, and more particularly to a water-repellent porous structure having improved water repellency by utilizing a fine concavo-convex structure derived from a porous developed inside a substrate and a method for producing the same.

一般に物体の表面が撥水性を有するとは、物体表面に微細な凹凸を形成することによって、接触する水滴の表面張力を利用しながら水滴の接触角を大きくして水滴と表面の接触面積を減少させる現象である。水滴と物体表面との接触角が120°付近では撥水状態と称され、この接触角が150°付近では超撥水状態と称される。このように、撥水性が高まるほど物体表面への水の付着が阻止され、水の残留による汚染等が低減される。また、繊維等の分野においては、撥水性を高めることにより、水の浸透を防ぎ、乾燥を容易にできる利点がある。   Generally, the surface of an object has water repellency. By forming fine irregularities on the surface of the object, the contact angle of the water droplet is increased while using the surface tension of the water droplet in contact to reduce the contact area between the water droplet and the surface. It is a phenomenon that causes When the contact angle between the water droplet and the object surface is around 120 °, it is called a water-repellent state, and when the contact angle is around 150 °, it is called a super-water-repellent state. Thus, the higher the water repellency, the more water is prevented from adhering to the object surface, and the contamination due to the remaining water is reduced. In the field of fibers and the like, there is an advantage that water permeation can be prevented and drying can be facilitated by increasing water repellency.

そのため、物体表面に微細な凹凸を形成する手法が数多く報告されている。例えば、物体の表面を正または負に帯電後、その電荷と逆の電荷に帯電した電解質ポリマーに金属酸化物微粒子を塗布し、続いてこれとは逆の電荷に帯電した電解質ポリマーを塗布する。これらの塗布を繰り返す超撥水性膜の製造方法が提案されている(特許文献1参照)。また、平均粒径0.1〜0.5μmのテトラフルオロエチレン樹脂粒子の積み重なりにより形成された非定形多孔質体の表面に直径10〜100μmの窪み、幅5〜150μmの亀裂を生じさせた多孔質体及びその製法が提案されている(特許文献2参照)。   Therefore, many methods for forming fine irregularities on the object surface have been reported. For example, after the surface of an object is charged positively or negatively, metal oxide fine particles are applied to an electrolyte polymer charged to a charge opposite to the charge, and subsequently an electrolyte polymer charged to a charge opposite to the charge is applied. A method of manufacturing a super water-repellent film that repeats these coatings has been proposed (see Patent Document 1). Further, a porous material in which a recess having a diameter of 10 to 100 μm and a crack having a width of 5 to 150 μm is formed on the surface of an amorphous porous body formed by stacking tetrafluoroethylene resin particles having an average particle diameter of 0.1 to 0.5 μm. A mass and a method for producing the same have been proposed (see Patent Document 2).

さらに、含フッ素重合体を適度に含有する有機溶剤溶液を塗布し、この有機溶剤を蒸散させながら結露させて表面にハニカム構造を有した撥水撥油膜及びその製法が提案されている(特許文献3参照)。他に、高分子有機材料と低分子有機材料とを混合して構造体とした後、この構造体より有機溶剤を用いて低分子有機材料のみを抽出除去した超撥水性部材及びその製法が提案されている(特許文献4参照)。   Furthermore, a water- and oil-repellent film having a honeycomb structure on the surface by applying an organic solvent solution appropriately containing a fluorine-containing polymer and condensing while evaporating the organic solvent has been proposed (Patent Document). 3). In addition, a super water-repellent member and a method for producing the same are proposed, in which a polymer organic material and a low molecular organic material are mixed to form a structure, and then only the low molecular organic material is extracted and removed from the structure using an organic solvent. (See Patent Document 4).

開示の特許文献1ないし3によると、物体表面に微細な凹凸を発達させるため、金属成分、各種フッ素樹脂を用いた複雑な工程から撥水面は形成される。これらの撥水面の形成に用いられる材料は、通常、難分解性である。そのため、使用後の環境影響等を勘案すると処置にもコストを要する点が指摘できる。特許文献4の場合、特許文献1ないし3と比較して環境負荷の点では改善が図られている。ただし、選択的に低分子有機材料を溶出させる必要があるため、撥水性部材を構成する材料の種類が限られやすい。つまり、需要者の要求に応じた材質の選択に柔軟に応えることが難しい。   According to the disclosed Patent Documents 1 to 3, in order to develop fine irregularities on the object surface, the water repellent surface is formed from a complicated process using a metal component and various fluororesins. The materials used for forming these water repellent surfaces are usually hardly decomposable. Therefore, it can be pointed out that the cost of the treatment is also required in consideration of the environmental impact after use. In the case of Patent Document 4, improvement is achieved in terms of environmental load compared to Patent Documents 1 to 3. However, since it is necessary to selectively elute the low molecular weight organic material, the types of materials constituting the water repellent member are likely to be limited. That is, it is difficult to flexibly respond to the selection of the material according to the demand of the consumer.

特に近年では、既存の樹脂素材の代わりに生分解性能に優れた樹脂素材に対する注目も高まっている。しかしながら、撥水加工の分野においてはその一部分に使用されることはあっても、ほぼ部材の全体を生分解性樹脂素材から形成するには至っていない。
特許3533606号公報 特許3685876号公報 特開2005−23122号公報 特開2005−53104号公報
In particular, in recent years, attention has been focused on resin materials excellent in biodegradability in place of existing resin materials. However, in the field of water repellent finishing, even though it is used as a part thereof, almost the entire member has not been formed from a biodegradable resin material.
Japanese Patent No. 3533606 Japanese Patent No. 3685876 Japanese Patent Laid-Open No. 2005-23122 JP 2005-53104 A

本発明は、前記の点に鑑みなされたものであり、多孔質体に特有の構造を利用して極めて容易に表面撥水性を発現する撥水性多孔構造体を提供すると共に、簡便な手法によって撥水性を発現する表面の微細な凹凸構造を多孔構造体基材と同一材質から得ることができ、しかも、基材となる素材の選択の制限が少ない撥水性構造体の製法を提供する。   The present invention has been made in view of the above points, and provides a water-repellent porous structure that exhibits surface water repellency very easily by utilizing a structure peculiar to a porous body, and repels it by a simple method. Provided is a method for producing a water-repellent structure which can obtain a fine uneven structure on the surface expressing water based on the same material as that of the porous structure base material, and has few restrictions on selection of the material to be the base material.

すなわち、請求項1の発明は、基材内部が、微細な空洞を有する多孔構造体として形成されていると共に、基材表面には前記多孔構造体の断面が露出していて表面撥水性が付与されていることを特徴とする撥水性多孔構造体に係る。   That is, in the invention of claim 1, the inside of the base material is formed as a porous structure having fine cavities, and the cross section of the porous structure is exposed on the surface of the base material, so that surface water repellency is imparted. The present invention relates to a water repellent porous structure.

請求項2の発明は、前記多孔構造体の微細な空洞の大きさが1〜100μmである請求項1に記載の撥水性多孔構造体に係る。   The invention according to claim 2 relates to the water-repellent porous structure according to claim 1, wherein a size of a fine cavity of the porous structure is 1 to 100 μm.

請求項3の発明は、事後的に溶解可能な被溶解物を成形材料に混入して所定形状の成形体に成形する成形工程と、前記成形工程後に前記成形体内の被溶解物を溶解し、前記成形体内に微細な空洞部を形成した多孔構造体を得る多孔体形成工程と、前記多孔体形成工程後に前記多孔構造体の表面を除去して前記多孔構造体の断面を露出させる断面露出工程とを含むことを特徴とする撥水性多孔構造体の製法に係る。   The invention of claim 3 is a molding step in which a material to be dissolved afterwards is mixed into a molding material and molded into a molded body having a predetermined shape, and the material to be dissolved in the molded body is dissolved after the molding step, A porous body forming step for obtaining a porous structure in which fine cavities are formed in the molded body, and a cross-section exposure step for exposing the cross section of the porous structure by removing the surface of the porous structure after the porous body forming step. And a method for producing a water repellent porous structure.

請求項4の発明は、事後的に溶解可能な被溶解物を成形材料に混入して所定形状の成形体に成形する成形工程と、前記成形工程後に前記成形体の表面を除去して前記成形体の断面を露出させる断面露出工程と、前記断面露出工程後に前記成形体内の被溶解物を溶解し、前記成形体内に微細な空洞部を形成した多孔構造体を得る多孔体形成工程とを含むことを特徴とする撥水性多孔構造体の製法に係る。   According to a fourth aspect of the present invention, there is provided a molding step in which a material that can be dissolved afterwards is mixed into a molding material and molded into a molded body having a predetermined shape, and the molding body is removed after the molding step by removing the surface of the molded body. A cross-section exposing step for exposing a cross-section of the body, and a porous body forming step for obtaining a porous structure in which fine objects are formed in the molded body by dissolving a material to be dissolved in the molded body after the cross-section exposing step. The present invention relates to a method for producing a water-repellent porous structure.

請求項5の発明は、事後的に溶解可能な被溶解物を成形材料に混入して所定形状の成形体に成形する成形工程と、前記成形工程後に前記成形体内の被溶解物を溶解し、前記成形体内に微細な空洞部を形成した多孔構造体を得る多孔体形成工程と、前記多孔体形成工程中に前記成形体に凝集破壊を生じさせ前記成形体の断面を露出させる断面露出工程とを含むことを特徴とする撥水性多孔構造体の製法に係る。   The invention of claim 5 includes a molding step in which a material that can be dissolved afterwards is mixed into a molding material and molded into a molded body having a predetermined shape, and the material to be melted in the molded body is melted after the molding step. A porous body forming step for obtaining a porous structure in which fine cavities are formed in the molded body, and a cross-section exposing step for exposing the cross section of the molded body to cause cohesive failure in the molded body during the porous body forming step. It relates to the manufacturing method of the water-repellent porous structure characterized by including this.

請求項6の発明は、前記断面露出工程において、前記成形体の表面の除去が研磨である請求項3又は4に記載の撥水性多孔構造体の製法に係る。   Invention of Claim 6 concerns on the manufacturing method of the water-repellent porous structure of Claim 3 or 4 whose removal of the surface of the said molded object is grinding | polishing in the said cross-section exposure process.

請求項7の発明は、前記断面露出工程において、前記成形体の表面の除去が剥離である請求項3又は4に記載の撥水性多孔構造体の製法に係る。   Invention of Claim 7 concerns on the manufacturing method of the water-repellent porous structure of Claim 3 or 4 whose removal of the surface of the said molded object is peeling in the said cross-section exposure process.

請求項8の発明は、前記多孔体形成工程において、前記被溶解物が水に溶解可能である請求項3ないし7のいずれか1項に記載の撥水性多孔構造体の製法に係る。   Invention of Claim 8 concerns on the manufacturing method of the water repellent porous structure of any one of Claim 3 thru | or 7 in which the said to-be-dissolved substance can melt | dissolve in water in the said porous body formation process.

請求項9の発明は、前記多孔体形成工程において、前記被溶解物が酵素により分解されて溶解可能である請求項3ないし7のいずれか1項に記載の撥水性多孔構造体の製法に係る。   Invention of Claim 9 concerns on the manufacturing method of the water-repellent porous structure of any one of Claim 3 thru | or 7 in which the said to-be-dissolved material is decomposed | disassembled and dissolved by an enzyme in the said porous body formation process. .

請求項10の発明は、前記多孔体形成工程において、前記被溶解物が有機溶剤に溶解可能である請求項3ないし7のいずれか1項に記載の撥水性多孔構造体の製法に係る。   The invention of claim 10 relates to the method for producing a water-repellent porous structure according to any one of claims 3 to 7, wherein in the porous body forming step, the substance to be dissolved is soluble in an organic solvent.

請求項11の発明は、前記成形体を構成する成形材料が生分解性樹脂である請求項3ないし10のいずれか1項に記載の撥水性多孔構造体の製法に係る。   Invention of Claim 11 concerns on the manufacturing method of the water-repellent porous structure of any one of Claim 3 thru | or 10 whose molding material which comprises the said molded object is biodegradable resin.

請求項12の発明は、前記成形体内の微細な空洞の大きさが1〜100μmである請求項3ないし11のいずれか1項に記載の撥水性多孔構造体の製法に係る。   The invention of claim 12 relates to the method for producing a water-repellent porous structure according to any one of claims 3 to 11, wherein the size of the fine cavity in the molded body is 1 to 100 μm.

請求項13の発明は、前記成形体がフィルム状物又はシート状物である請求項3ないし12のいずれか1項に記載の撥水性多孔構造体の製法に係る。   The invention of claim 13 relates to the method for producing a water-repellent porous structure according to any one of claims 3 to 12, wherein the molded body is a film or sheet.

請求項1の発明に係る撥水性多孔構造体によると、基材内部が、微細な空洞を有する多孔構造体として形成されていると共に、基材表面には前記多孔構造体の断面が露出していて表面撥水性が付与されているため、多孔質体特有の空洞構造を利用して極めて簡便に表面撥水性を発現する撥水性多孔構造体とすることができる。   According to the water-repellent porous structure according to the invention of claim 1, the inside of the substrate is formed as a porous structure having fine cavities, and the cross-section of the porous structure is exposed on the surface of the substrate. Since the surface water repellency is imparted, the water-repellent porous structure that expresses the surface water repellency can be obtained very easily using the cavity structure unique to the porous body.

請求項2の発明に係る撥水性多孔構造体によると、請求項1に記載の発明において、前記多孔構造体の微細な空洞の大きさが1〜100μmであるため、当該撥水性多孔構造体に接触する水滴の表面張力に起因する大きな接触角を生じさせ、撥水性能を確保できる。   According to the water repellent porous structure according to the invention of claim 2, in the invention of claim 1, since the size of the fine cavity of the porous structure is 1 to 100 μm, A large contact angle resulting from the surface tension of the water droplets in contact with each other is generated, and water repellency can be ensured.

請求項3の発明に係る撥水性多孔構造体の製法によると、事後的に溶解可能な被溶解物を成形材料に混入して所定形状の成形体に成形する成形工程と、前記成形工程後に前記成形体内の被溶解物を溶解し、前記成形体内に微細な空洞部を形成した多孔構造体を得る多孔体形成工程と、前記多孔体形成工程後に前記多孔構造体の表面を除去して前記多孔構造体の断面を露出させる断面露出工程とを含むため、簡便な手法によって撥水性を発現する表面の微細な凹凸構造を多孔構造体基材と同一材質から得ることができる。特に、同項の発明によると、成形体の形成から被溶解物の溶出、表面の除去の工程を連続して実行可能なため、撥水性多孔構造体の生産効率が極めて高い。   According to the method for producing a water-repellent porous structure according to the invention of claim 3, a molding step of mixing a material that can be dissolved afterwards into a molding material to form a molded body of a predetermined shape, and after the molding step, A porous body forming step of dissolving a material to be dissolved in the molded body to obtain a porous structure in which fine cavities are formed in the molded body, and removing the surface of the porous structure after the porous body forming step to form the porous body Since the cross-section exposing step for exposing the cross section of the structure is included, a fine concavo-convex structure on the surface expressing water repellency can be obtained from the same material as the porous structure base material by a simple method. In particular, according to the invention of the same paragraph, the production efficiency of the water-repellent porous structure is extremely high because the steps of forming the molded body, elution of the substance to be dissolved, and removal of the surface can be performed continuously.

請求項4の発明に係る撥水性多孔構造体の製法によると、事後的に溶解可能な被溶解物を成形材料に混入して所定形状の成形体に成形する成形工程と、前記成形工程後に前記成形体の表面を除去して前記成形体の断面を露出させる断面露出工程と、前記断面露出工程後に前記成形体内の被溶解物を溶解し、前記成形体内に微細な空洞部を形成した多孔構造体を得る多孔体形成工程とを含むため、簡便な手法によって撥水性を発現する表面の微細な凹凸構造を多孔構造体基材と同一材質から得ることができる。特に、同項の発明によると、基材となる成形材料が構造強度面で脆弱な樹脂素材である場合、被溶解物は成形体内に残存することにより、成形体全体としての強度は維持され加工時の負荷が生じた際の損傷は生じにくく、多孔構造体としての構造、形状が維持されやすくなる。   According to the method for producing a water-repellent porous structure according to the invention of claim 4, a molding step of mixing a material to be dissolved that can be dissolved afterwards into a molding material to form a molded body of a predetermined shape, and after the molding step, A cross-section exposing step of removing the surface of the molded body to expose a cross section of the molded body, and a porous structure in which a material to be dissolved in the molded body is dissolved after the cross-section exposing step to form a fine cavity in the molded body And a porous body forming step for obtaining a body, it is possible to obtain a fine concavo-convex structure on the surface expressing water repellency from the same material as the porous structure base material by a simple method. In particular, according to the invention of the same paragraph, when the molding material used as the base material is a resin material that is brittle in terms of structural strength, the material to be dissolved remains in the molded body, so that the strength of the entire molded body is maintained and processed. It is difficult to cause damage when a load is applied, and the structure and shape of the porous structure are easily maintained.

請求項5の発明に係る撥水性多孔構造体の製法によると、事後的に溶解可能な被溶解物を成形材料に混入して所定形状の成形体に成形する成形工程と、前記成形工程後に前記成形体内の被溶解物を溶解し、前記成形体内に微細な空洞部を形成した多孔構造体を得る多孔体形成工程と、前記多孔体形成工程中に前記成形体に凝集破壊を生じさせ前記成形体の断面を露出させる断面露出工程とを含むため、簡便な手法によって撥水性を発現する表面の微細な凹凸構造を多孔構造体基材と同一材質から得ることができる。特に、同項の発明によると、凝集破壊を利用して断面を露出させることから、表面除去のための専用装置を省略することもできる。   According to the method for producing a water-repellent porous structure according to the invention of claim 5, a molding step in which a material to be dissolved afterwards is mixed into a molding material and molded into a molded body having a predetermined shape, and after the molding step, A porous body forming step of dissolving a material to be dissolved in the molded body to obtain a porous structure in which fine cavities are formed in the molded body, and causing the molded body to undergo cohesive failure during the porous body forming step Since the cross-section exposure step for exposing the cross-section of the body is included, a fine uneven structure on the surface that exhibits water repellency can be obtained from the same material as the porous structure base material by a simple method. In particular, according to the invention of the same paragraph, since the cross section is exposed using cohesive failure, a dedicated device for removing the surface can be omitted.

請求項6の発明に係る撥水性多孔構造体の製法によると、請求項3又は4に記載の発明において、前記断面露出工程における前記成形体の表面の除去が研磨であるため、連続して基材表面を除去可能となり量産性に優れ、単位時間当たりの生産能力の向上が見込まれる。   According to the method for producing a water-repellent porous structure according to the invention of claim 6, in the invention of claim 3 or 4, since the removal of the surface of the molded body in the cross-section exposure step is polishing, The material surface can be removed, which is excellent in mass productivity and the production capacity per unit time is expected to improve.

請求項7の発明に係る撥水性多孔構造体の製法によると、請求項3又は4に記載の発明において、前記断面露出工程における前記成形体の表面の除去が剥離であるため、基材表面の所望の箇所に適宜形状の撥水性表面を形成することができ、単一基材表面上に撥水部位と非撥水部位を自在に配置することができる。   According to the manufacturing method of the water-repellent porous structure according to the invention of claim 7, in the invention of claim 3 or 4, since the removal of the surface of the molded body in the cross-section exposure step is peeling, A water-repellent surface having an appropriate shape can be formed at a desired location, and a water-repellent portion and a non-water-repellent portion can be freely arranged on the surface of a single substrate.

請求項8の発明に係る撥水性多孔構造体の製法によると、請求項3ないし7のいずれか1項に記載の発明において、前記多孔体形成工程における前記被溶解物が水に溶解可能であるため、被除去物の溶解を安価かつ容易に行うことができる。また、被除去物の溶解後の処理として、乾燥のみで済むことから製造に要する処理が簡便となる。   According to the method for producing a water-repellent porous structure according to the invention of claim 8, in the invention according to any one of claims 3 to 7, the substance to be dissolved in the porous body forming step can be dissolved in water. Therefore, it is possible to easily and inexpensively dissolve the object to be removed. In addition, since only the drying process is required after the object to be removed is dissolved, the process required for manufacturing is simplified.

請求項9の発明に係る撥水性多孔構造体の製法によると、請求項3ないし7のいずれか1項に記載の発明において、前記多孔体形成工程における前記被溶解物が酵素により分解されて溶解可能であるため、水に不溶、難溶、あるいは水溶時にゲル化、粘調化する被溶解物を用いて微細な空洞を形成可能である。   According to the method for producing a water-repellent porous structure according to the invention of claim 9, in the invention according to any one of claims 3 to 7, the substance to be dissolved in the porous body forming step is decomposed and dissolved by an enzyme. Therefore, it is possible to form a fine cavity by using a substance to be dissolved that is insoluble, hardly soluble in water, or gelled or thickened in water.

請求項10の発明に係る撥水性多孔構造体の製法によると、請求項3ないし7のいずれか1項に記載の発明において、前記多孔体形成工程における前記被溶解物が有機溶剤に溶解可能であるため、基材、被溶解物の性質に応じた溶媒の選択が可能となる。   According to the method for producing a water-repellent porous structure according to the invention of claim 10, in the invention according to any one of claims 3 to 7, the substance to be dissolved in the porous body forming step can be dissolved in an organic solvent. Therefore, it is possible to select a solvent according to the properties of the substrate and the substance to be dissolved.

請求項11の発明に係る撥水性多孔構造体の製法によると、請求項3ないし10のいずれか1項に記載の発明において、前記成形体を構成する成形材料が生分解性樹脂であるため、撥水性多孔構造体の全体を生分解性樹脂素材から形成可能となり、容易に微生物的分解が促進し環境負荷の低減に大きく寄与することができる。   According to the method for producing a water-repellent porous structure according to the invention of claim 11, in the invention according to any one of claims 3 to 10, the molding material constituting the molded body is a biodegradable resin. The entire water-repellent porous structure can be formed from a biodegradable resin material, which facilitates microbial degradation and can greatly contribute to the reduction of environmental burden.

請求項12の発明に係る撥水性多孔構造体の製法によると、請求項3ないし11のいずれか1項に記載の発明において、前記成形体内の微細な空洞の大きさが1〜100μmであるため、完成後の撥水性多孔構造体に接触する水滴の表面張力に起因する大きな接触角を生じさせ、撥水性能を確保できる。   According to the method for producing a water-repellent porous structure according to the invention of claim 12, in the invention according to any one of claims 3 to 11, the size of the fine cavity in the molded body is 1 to 100 μm. A large contact angle resulting from the surface tension of the water droplets in contact with the water-repellent porous structure after completion can be generated, and the water-repellent performance can be ensured.

請求項13の発明に係る撥水性多孔構造体の製法によると、請求項3ないし12のいずれか1項に記載の発明において、前記成形体がフィルム状物又はシート状物であるため、撥水フィルムや撥水シートの製造が簡便となる。   According to the method for producing a water-repellent porous structure according to the invention of claim 13, in the invention according to any one of claims 3 to 12, the molded body is a film-like product or a sheet-like product. Manufacture of a film and a water repellent sheet becomes easy.

以下添付の図面に従って本発明を説明する。
図1は第1実施形態の撥水性多孔構造体の断面図、図2は第2実施形態の撥水性多孔構造体の断面図、図3は第3実施形態の撥水性多孔構造体の断面図、図4は第1製造形態の撥水性多孔構造体の概略工程図、図5は図4の工程断面模式図、図6は第2製造形態の撥水性多孔構造体の概略工程図、図7は図6の工程断面模式図、図8は第3製造形態の撥水性多孔構造体の概略工程図、図9は図8の工程断面模式図、図10は研磨時の模式図、図11は剥離時の模式図である。
The present invention will be described below with reference to the accompanying drawings.
1 is a cross-sectional view of the water-repellent porous structure according to the first embodiment, FIG. 2 is a cross-sectional view of the water-repellent porous structure according to the second embodiment, and FIG. 3 is a cross-sectional view of the water-repellent porous structure according to the third embodiment. 4 is a schematic process diagram of the water-repellent porous structure of the first production form, FIG. 5 is a schematic cross-sectional view of the process of FIG. 4, FIG. 6 is a schematic process diagram of the water-repellent porous structure of the second production form, and FIG. 6 is a schematic cross-sectional view of the process in FIG. 6, FIG. 8 is a schematic cross-sectional view of the water-repellent porous structure of the third production form, FIG. 9 is a schematic cross-sectional view of the process in FIG. It is a schematic diagram at the time of peeling.

撥水性を有する多孔質の構造体について、始めに構造形態面から説明する。請求項1の発明に規定し、図1より理解されるように、第1実施形態の撥水性多孔構造体10Aは、その基材11の内部に微細な空洞12を有する多孔構造体13として形成されている。同時に、撥水性多孔構造体10Aの基材表面14には、当該構造体10Aの微細な多孔質形状の断面15が露出している(後出の電子顕微鏡写真参照)。   First, the porous structure having water repellency will be described from the aspect of the structure. As defined in the invention of claim 1 and understood from FIG. 1, the water repellent porous structure 10 </ b> A of the first embodiment is formed as a porous structure 13 having fine cavities 12 inside the base material 11. Has been. At the same time, a fine porous cross section 15 of the structure 10A is exposed on the base material surface 14 of the water repellent porous structure 10A (see the electron micrograph shown later).

基材11内部の微細な空洞(微細空洞部)12の形状は、特段限定されることはなく、球形状、楕円体、紡錘体等、多角形状体等の適宜である。微細な空洞が略球形状の場合には、大きさSzは直径であり、楕円体、紡錘体等であれば、大きさはそれらの最大長となる。請求項2の発明に規定するように、微細な空洞(微細空洞部)12の大きさSzは、約1〜100μmの範囲内である。微細な空洞の形状、大きさは、後述する製法における被溶解物の形状、大きさに依存して規定される。   The shape of the fine cavities (fine cavities) 12 inside the base material 11 is not particularly limited, and may be an appropriate shape such as a spherical shape, an ellipsoid, a spindle, or a polygonal shape. When the minute cavity is substantially spherical, the size Sz is a diameter, and when it is an ellipsoid, spindle, etc., the size is the maximum length thereof. As defined in the invention of claim 2, the size Sz of the fine cavity (fine cavity) 12 is in the range of about 1 to 100 μm. The shape and size of the fine cavity are defined depending on the shape and size of the material to be dissolved in the manufacturing method described later.

すなわち、適宜形状の微細な空洞12を適当に切断して得られる断面15の略凹状の陥没部分20が撥水性多孔構造体10Aの基材表面14に現れる。よって、略凹状の陥没部分20の大きさは、微細な空洞12の大きさに概ね近似する。このため、基材表面14は、微細空洞の大きさに準じた微細な凹凸を保持することができる。基材表面に接触する水滴は、基材表面の凹凸に準じることによって表面張力を生じ真球に近づこうとする。このため、結果的に水滴と基材表面の接触角は大きくなり、基材表面は表面撥水性を獲得することができる。   That is, a substantially concave depression 20 having a cross section 15 obtained by appropriately cutting the fine cavity 12 having an appropriate shape appears on the substrate surface 14 of the water repellent porous structure 10A. Therefore, the size of the substantially concave recessed portion 20 is approximately approximate to the size of the fine cavity 12. For this reason, the base material surface 14 can hold | maintain the fine unevenness | corrugation according to the magnitude | size of a fine cavity. Water droplets that come into contact with the substrate surface generate surface tension according to the irregularities on the substrate surface and try to approach the true sphere. For this reason, as a result, the contact angle between the water droplet and the substrate surface is increased, and the substrate surface can acquire surface water repellency.

微細な空洞(微細空洞部)の大きさとは、撥水性多孔構造体の用途、これに接触する水滴の量等に応じて約1〜100μmの範囲内から自由に選択できる。ただし、微細な空洞の大きさが1μmを下回る場合、基材表面はほぼ平滑とみなされ、水の表面張力に作用しないおそれがある。つまり、水滴の大きさに比べて基材表面の凹凸があまりに微細と考えられる。また、微細な空洞の大きさが100μmを上回る場合、基材表面の凹凸が水滴の大きさに比べて大きすぎであり、水滴の表面張力形成に寄与せず、撥水性能は生じない。微細な空洞の大きさ、形状については、前記の範囲としながらも撥水性多孔構造体自体の強度、用途等に影響を与えない範囲において規定される。むろん、必ずしも空洞が均一形状とは限らない。   The size of the fine cavities (fine cavities) can be freely selected from the range of about 1 to 100 μm according to the use of the water-repellent porous structure, the amount of water droplets in contact therewith, and the like. However, when the size of the fine cavities is less than 1 μm, the surface of the base material is regarded as almost smooth and may not affect the surface tension of water. That is, the unevenness of the substrate surface is considered to be too fine compared to the size of the water droplets. When the size of the fine cavities exceeds 100 μm, the irregularities on the surface of the substrate are too large compared to the size of the water droplets, do not contribute to the formation of the surface tension of the water droplets, and water repellent performance does not occur. The size and shape of the fine cavities are defined within a range that does not affect the strength, application, and the like of the water-repellent porous structure itself while being within the above range. Of course, the cavity is not necessarily a uniform shape.

図1に開示する第1実施形態の撥水性多孔構造体10Aによると、各々の微細な空洞同士は、互いに接触した連通構造として形成されている。従って、撥水性多孔構造体10Aにおいて、微細な空洞12を適当に切断して得られる断面は、基材11の部位に依存することなく、略凹状の陥没部分20を容易に基材表面14に露出させることができる。   According to the water repellent porous structure 10 </ b> A of the first embodiment disclosed in FIG. 1, the fine cavities are formed as a communication structure in contact with each other. Therefore, in the water repellent porous structure 10A, the cross section obtained by appropriately cutting the fine cavity 12 does not depend on the portion of the base material 11, and the substantially concave depressed portion 20 can be easily formed on the base material surface 14. Can be exposed.

図2に示す第2実施形態の撥水性多孔構造体10Bは、基材11b内部の微細な空洞12が一部側に偏在して連通する多孔構造体13bとして形成されている。撥水性多孔構造体10Bの基材表面14bにも、同様に微細な多孔質の断面形状が露出し、表面撥水性を発現している。第2実施形態のように基材の一部側、特に図2では基材内の一面側のみに微細な空洞を有する多孔構造体とすることにより、撥水性能を備えた部位と、既存の非撥水性の部位との作り分けが可能となる。よって、既存の非撥水性側に適宜ラミネート加工等を施した製品とすることも可能である。   The water repellent porous structure 10B of the second embodiment shown in FIG. 2 is formed as a porous structure 13b in which fine cavities 12 inside the base material 11b are unevenly distributed and communicate with each other. Similarly, a fine porous cross-sectional shape is exposed on the base material surface 14b of the water-repellent porous structure 10B to express surface water repellency. As in the second embodiment, by forming a porous structure having a fine cavity only on one side of the substrate, particularly in FIG. It is possible to make it separately from the non-water-repellent part. Therefore, it is possible to obtain a product in which the existing non-water-repellent side is appropriately laminated.

図3に示す第3実施形態の撥水性多孔構造体10Cは、基材11c内部の微細な空洞12が互いに連通することなく各々分散して存在する多孔構造体13cとして形成されている。撥水性多孔構造体10Cの基材表面14cにも、同様に微細な多孔質の断面形状が露出し、表面撥水性を発現している。図3の多孔構造体の場合、多孔構造体の単位体積に占める微細空洞部の体積は前出の第1,第2実施形態と比して少なくなる。従って、多孔構造体としての強度が求められる利用分野に適する。図1ないし図3において同一符号は共通箇所を示す。   The water repellent porous structure 10C of the third embodiment shown in FIG. 3 is formed as a porous structure 13c in which fine cavities 12 inside the base material 11c are dispersed and not communicated with each other. Similarly, a fine porous cross-sectional shape is exposed on the substrate surface 14c of the water-repellent porous structure 10C, and surface repellency is expressed. In the case of the porous structure of FIG. 3, the volume of the fine cavity portion occupying the unit volume of the porous structure is smaller than that in the first and second embodiments. Therefore, it is suitable for an application field where strength as a porous structure is required. 1 to 3, the same reference numerals indicate common portions.

前掲の図1ないし図3に開示した各実施形態の撥水性多孔構造体は、多孔質体特有の空洞構造を利用することにより極めて容易に表面撥水性を発現することができる。そこで、撥水性多孔構造体の製法を図4ないし図11を順に用い説明する。図示に当たり、前出の第1実施形態の撥水性多孔構造体10Aに基づき、その製法を開示する。   The water-repellent porous structure of each embodiment disclosed in the above-described FIGS. 1 to 3 can express surface water repellency very easily by utilizing the cavity structure unique to the porous body. Then, the manufacturing method of a water repellent porous structure is demonstrated using FIG. 4 thru | or FIG. In illustration, the manufacturing method is disclosed based on the water repellent porous structure 10A of the first embodiment described above.

第1製造形態の撥水性多孔構造体の製法は、請求項3の発明に規定するとおり、図4の概略工程図、図5の工程断面模式図として示すことができる。始めに、事後的に溶解可能な被溶解物が成形材料中に混入され、所定形状の成形体に成形される(成形工程:S11)。図5(a)のとおり、成形体101において、成形材料からなる基材110中に被溶解物120が適度に分散されている。むろん、この成形段階では、被溶解物の溶解は始まっておらず、ほぼ混入時の形状を維持している。   The manufacturing method of the water-repellent porous structure of the first production form can be shown as a schematic process diagram in FIG. 4 and a process cross-sectional schematic diagram in FIG. 5 as defined in the invention of claim 3. First, a material that can be dissolved afterwards is mixed in the molding material and molded into a molded body having a predetermined shape (molding step: S11). As shown in FIG. 5A, in the molded body 101, the material 120 to be dissolved is appropriately dispersed in the base material 110 made of a molding material. Of course, at this molding stage, dissolution of the material to be dissolved has not started, and the shape at the time of mixing is maintained.

S11の成形工程後、成形体101内の被溶解物の溶解が進行して、当該成形体内に微細な空洞部を形成した多孔構造体が得られる(多孔体形成工程:S12)。図5(b)では、成形体101内の被溶解物120の溶解に伴い被溶解物が縮小し、図5(c)のように、成形体101内の被溶解物120は消失し、その空間は微細空洞部12となる。こうして基材110が取り残され多孔構造体13が得られる。   After the molding step of S11, dissolution of the material to be dissolved in the molded body 101 proceeds to obtain a porous structure in which fine cavities are formed in the molded body (porous body forming step: S12). In FIG. 5 (b), the melted object shrinks with the dissolution of the melted object 120 in the molded body 101, and the melted object 120 in the molded body 101 disappears as shown in FIG. 5 (c). The space becomes a fine cavity 12. In this way, the base material 110 is left and the porous structure 13 is obtained.

S12の多孔体形成工程後、多孔構造体の表面が除去されることにより当該多孔構造体の断面は露出する(断面露出工程:S13)。多孔構造体表面の除去に際し、図5(c)では、多孔構造体の内部断面を露出させる除去予定位置BRが設定される。そこで、図5(d)のとおり、後述する除去により多孔構造体の一部N1が取り除かれ、撥水性多孔構造体10A(完成品)が出来上がる。除去予定位置BRの除去部位に断面15が露出して同部位は基材表面14となる。図示はしないが、必要に応じて撥水性多孔構造体の洗浄、乾燥等が行われ精製される。   After the porous body forming step of S12, the cross section of the porous structure is exposed by removing the surface of the porous structure (cross section exposing step: S13). When removing the surface of the porous structure, in FIG. 5C, a planned removal position BR that exposes the internal cross section of the porous structure is set. Therefore, as shown in FIG. 5D, part N1 of the porous structure is removed by the removal described later, and the water-repellent porous structure 10A (finished product) is completed. The cross section 15 is exposed at the removal site of the planned removal position BR, and the same site becomes the substrate surface 14. Although not shown, the water-repellent porous structure is purified by washing, drying, etc. as necessary.

第1製造形態の製法を用いて撥水性多孔構造体10B(図2参照)、撥水性多孔構造体10C(図3参照)を製造する場合には、被溶解物の混入量、成形材料に分散させる位置、成形材料中への被溶解物の混入方法や条件、被溶解物の比重等の諸条件が制御される。そこで、基材の最適な部分に除去予定位置が規定され、不要部分が除去される。   When manufacturing the water-repellent porous structure 10B (see FIG. 2) and the water-repellent porous structure 10C (see FIG. 3) using the manufacturing method of the first manufacturing mode, the amount of the dissolved material mixed in the molding material is dispersed. Various conditions such as the position to be melted, the mixing method and conditions of the material to be dissolved in the molding material, and the specific gravity of the material to be dissolved are controlled. Therefore, the scheduled removal position is defined in the optimum part of the base material, and the unnecessary part is removed.

図示に開示の撥水性多孔構造体及びその製法において、撥水性多孔構造体の基材、すなわち本製法における成形材料は樹脂よりなる。これは、多種多様な形状への成形が容易であるためである。また、出来上がる製品も軽量、安価となり極めて利便性が高いためである。例えば、ポリオレフィン樹脂、ポリアミド樹脂、あるいはポリエステル樹脂等の有機高分子化合物である。   In the water-repellent porous structure disclosed in the drawing and its manufacturing method, the base material of the water-repellent porous structure, that is, the molding material in this manufacturing method is made of resin. This is because it can be easily formed into various shapes. In addition, the finished product is light and inexpensive and extremely convenient. For example, organic polymer compounds such as polyolefin resin, polyamide resin, or polyester resin.

ポリオレフィン樹脂を例示すると、エチレン単独重合体、エチレンとプロピレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン等の1種または2種以上のα−オレフィンとのランダムまたはブロック共重合体、エチレンと酢酸ビニル、アクリル酸、メタクリル酸、アクリル酸メチルとの1種または2種以上のランダムまたはブロック共重合体、プロピレン単独重合体、プロピレンとプロピレン以外のエチレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン等の1種または2種以上のα−オレフィンとのランダムまたはブロック共重合体、1−ブテン単独重合体、アイオノマー樹脂、さらに前記したこれら重合体の混合物等のポリオレフィン系樹脂、石油樹脂及びテルペン樹脂等の炭化水素系樹脂である。   Examples of polyolefin resins include ethylene homopolymer, random and one or more α-olefins such as ethylene and propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, etc. Block copolymer, one or more random or block copolymers of ethylene and vinyl acetate, acrylic acid, methacrylic acid, methyl acrylate, propylene homopolymer, ethylene other than propylene and propylene, 1-butene , 1-pentene, 1-hexene, 4-methyl-1-pentene, etc., one or more random or block copolymers with α-olefin, 1-butene homopolymer, ionomer resin, and Hydrocarbon resins such as polyolefin resins such as mixtures of these polymers, petroleum resins and terpene resins Resin.

ポリアミド樹脂を例示すると、ナイロン6、ナイロン66、ナイロン11、ナイロン12、ナイロン610、ナイロン6/66、ナイロン66/610及びナイロンMXD等のポリアミド系樹脂である。   Examples of the polyamide resin include polyamide resins such as nylon 6, nylon 66, nylon 11, nylon 12, nylon 610, nylon 6/66, nylon 66/610, and nylon MXD.

ポリエステル樹脂を例示すると、ポリエチレンテレフタレート、ポリブチレンテレフタレート及びポリエチレンナフタレート等のポリエステル系樹脂である。   Examples of the polyester resin include polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate.

その他に利用可能な樹脂として、ポリメチルメタクリレート等のアクリル系樹脂、ポリスチレン、スチレン−アクリロニトリル共重合体等のスチレン−アクリロニトリル系樹脂、PTFE等のフッ素樹脂、ポリイソプレン系樹脂、SRB等のブタジエン系のゴム、ポリイミド樹脂、エチレン−ビニルアルコール共重合体等の水素結合性樹脂、ポリカーボネート樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂、ポリエーテルイミド樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂、尿素樹脂、シリコーン樹脂、ポリケトン樹脂等を挙げることができる。   Other usable resins include acrylic resins such as polymethyl methacrylate, styrene-acrylonitrile resins such as polystyrene and styrene-acrylonitrile copolymers, fluorine resins such as PTFE, polyisoprene resins, and butadiene resins such as SRB. Rubber, polyimide resin, hydrogen bonding resin such as ethylene-vinyl alcohol copolymer, polycarbonate resin, vinyl chloride resin, vinylidene chloride resin, polyetherimide resin, phenol resin, melamine resin, epoxy resin, urea resin, silicone resin, Examples include polyketone resins.

列記の有機高分子化合物は、撥水性多孔構造体としての安定性、加工容易性、価格等が重視される場合に選択される。既存の撥水性樹脂製品の代替適用が容易である。   The organic polymer compounds listed are selected when importance is attached to the stability, ease of processing, price, etc. of the water-repellent porous structure. Alternative application of existing water-repellent resin products is easy.

これらに加えて、撥水性多孔構造体の基材(成形材料)は、請求項11の発明に規定するように、生分解性樹脂を用いることができる。生分解性樹脂は、動物、植物からの産生物をほぼそのまま利用した化合物と、この化合物を出発原料として適宜調製した樹脂素材の両方が含まれる。前者の天然物には、キチン、キトサン、天然ゴム、アラビアゴム、ダンマル、コパール、ロジン、グッタベルカ等である。後者の樹脂素材には、羊毛等のケラチン由来のタンパク質樹脂、例えばバチルス属等の細菌から産生されるポリ−3−ヒドロキシ酪酸、あるいはポリ−3−ヒドロキシ吉草酸、並びに両分子からなる共重合体、カゼインプラスチック、大豆タンパクプラスチック、セルロースアセテート(アセチルブチルセルロース)、セルロースアセテートブチレート、カルボキシメチルセルロース、ニトロセルロース、加えてセルロース由来のビスコースより調製される再生セルロース樹脂、デンプンから調製されるポリ乳酸等、種々の樹脂が該当する。さらに、これら以外にも、微生物的生分解性能に優れたポリカプロラクトン、ポリエチレンサクシネート、ポリブチレンサクシネート等も含めることができる。   In addition to these, a biodegradable resin can be used for the substrate (molding material) of the water-repellent porous structure, as defined in the invention of claim 11. Biodegradable resins include both compounds that use products from animals and plants almost as they are and resin materials that are appropriately prepared using this compound as a starting material. Examples of the former natural products are chitin, chitosan, natural rubber, gum arabic, dammar, copal, rosin, and Guttavelca. The latter resin material includes protein resins derived from keratin such as wool, for example, poly-3-hydroxybutyric acid or poly-3-hydroxyvaleric acid produced from bacteria such as Bacillus, and a copolymer comprising both molecules Casein plastic, soy protein plastic, cellulose acetate (acetylbutylcellulose), cellulose acetate butyrate, carboxymethylcellulose, nitrocellulose, regenerated cellulose resin prepared from viscose derived from cellulose, polylactic acid prepared from starch, etc. Various resins are applicable. In addition to these, polycaprolactone, polyethylene succinate, polybutylene succinate and the like excellent in microbial biodegradability can also be included.

列記の生分解性樹脂は、成形体としての安定性、加工容易性に加え、撥水性樹脂素材としての環境負荷に対応するべく分解性能等が重視される場合に選択される。   The listed biodegradable resins are selected when degradability and the like are important in order to cope with the environmental load as a water-repellent resin material in addition to the stability and ease of processing as a molded body.

列記の各種樹脂(生分解性樹脂も含む。)の基材材料としての選択は、耐水性素材である前提において、微細な空洞形成に用いる被溶解物の種類、特性等を勘案して適切に行われる。   Selection of various listed resins (including biodegradable resins) as a base material is appropriate in consideration of the type and characteristics of the material to be used for forming fine cavities on the assumption that it is a water-resistant material. Done.

続いて、被溶解物並びに多孔構造体内の微細空洞部の形成手法を述べる。図4にて既に開示のとおり、被溶解物はS12の多孔体形成工程においてのみ溶解可能な材料である。被溶解物の溶解としては、請求項8の発明に規定するように、水を溶媒として成形体をその中に浸漬して、成形体内部の被溶解物を溶解させる。水には、温水、熱水、亜臨界水も含まれる。また、酸・アルカリのpH値の調整や適宜の塩類の溶解液も含まれる。これらは総称して水系の溶剤である。   Next, a method for forming a substance to be dissolved and a fine cavity in the porous structure will be described. As already disclosed in FIG. 4, the material to be dissolved is a material that can be dissolved only in the porous body forming step of S12. As the dissolution of the material to be dissolved, as defined in the invention of claim 8, the molded body is immersed in water as a solvent to dissolve the material to be dissolved inside the molded body. Water includes warm water, hot water, and subcritical water. Moreover, adjustment of the pH value of an acid / alkali and a solution of an appropriate salt are also included. These are generically water-based solvents.

被溶解物の大きさは、請求項12の発明に規定するように、微細空洞部の大きさ(1〜100μm)に合致する程度の大きさとする必要がある。水溶性の被溶解物を具体的に挙げるならば、糖類の結晶、例えば、グルコースの結晶、氷砂糖、角砂糖(糖の凝固物)等である。塩類の結晶の場合、例えば、塩化ナトリウムの結晶、みょうばんの結晶、硝酸カリウムの結晶等である。他に、所定の粒子径に粉砕、分級された石灰岩や炭酸カルシウム結晶を水溶性の被溶解物とすることも可能である。この場合、水系の溶媒として希塩酸を用い溶解が行われる。自明ながら、基材(成形材料)は水系の溶剤に不溶、難溶な材料から構成される。   As defined in the invention of claim 12, the size of the material to be dissolved needs to be a size that matches the size (1 to 100 μm) of the fine cavity. Specific examples of water-soluble substances to be dissolved include saccharide crystals, such as glucose crystals, icing sugar, sugar cubes (sugar coagulum), and the like. In the case of salt crystals, for example, sodium chloride crystals, alum crystals, potassium nitrate crystals, and the like. In addition, limestone or calcium carbonate crystals pulverized and classified to a predetermined particle diameter can be used as a water-soluble substance to be dissolved. In this case, dissolution is performed using dilute hydrochloric acid as an aqueous solvent. As is obvious, the base material (molding material) is made of a material that is insoluble and hardly soluble in an aqueous solvent.

水系の溶剤を用いる利点は、被除去物の溶解を安価かつ容易に行うことができる。また、被除去物の溶解後の処理として、乾燥のみで済むことから製造に要する処理が簡便となり、相対的に製造原価の圧縮が可能となる。   The advantage of using an aqueous solvent is that the material to be removed can be dissolved inexpensively and easily. In addition, since only the drying process is required after the dissolution of the object to be removed, the process required for the manufacture is simplified, and the manufacturing cost can be relatively reduced.

水系の溶剤の別形態として、請求項9に規定する発明のように、被溶解物は酵素により分解されて溶解可能な物質から選択される。すなわち当該酵素の基質が用いられる。使用する酵素は、アミラーゼ、プルラナーゼ、セルラーゼ、リパーゼ、プロテアーゼ(ペプチダーゼ)等の加水分解酵素から適切に選択され、基質に応じて単一種の酵素、あるいは複数種の酵素としても良い。   As another form of the aqueous solvent, as in the invention defined in claim 9, the substance to be dissolved is selected from substances that can be decomposed and dissolved by an enzyme. That is, the enzyme substrate is used. The enzyme used is appropriately selected from hydrolases such as amylase, pullulanase, cellulase, lipase, and protease (peptidase), and may be a single type of enzyme or a plurality of types of enzymes depending on the substrate.

酵素と被溶解物との対応は両者間の基質特異性に依存する。アミラーゼ、プルラナーゼ、セルラーゼ等による場合、基質となる被除去物は糖鎖化合物となる。リパーゼは直鎖カルボン酸、トリグリセリド、パラフィン等の油脂類の分解に用いられる。プロテアーゼ(ペプチダーゼ)はタンパク質、あるいはペプチド結合、アミド結合を有する高分子化合物、ポリ乳酸等の加水分解に用いられる。   The correspondence between the enzyme and the substance to be lysed depends on the substrate specificity between them. In the case of amylase, pullulanase, cellulase, etc., the substance to be removed becomes a sugar chain compound. Lipase is used for the decomposition of fats and oils such as linear carboxylic acids, triglycerides and paraffins. Proteases (peptidases) are used for hydrolysis of proteins, polymer compounds having peptide bonds or amide bonds, polylactic acid, and the like.

具体例を明示すると、基質となる被溶解物がデンプンの場合、酵素はα,β−アミラーゼ、加えてプルラナーゼ等が選択される。同時に、撥水性多孔構造体の成形体を成す基材は、前記のアミラーゼ等の加水分解を受けない組成とする必要がある。例えば、基材はポリエチレン、ポリ乳酸等の樹脂素材となる。   If a specific example is specified, when the substance to be dissolved as a substrate is starch, α, β-amylase, pullulanase, etc. are selected as the enzyme. At the same time, the base material forming the molded body of the water-repellent porous structure needs to have a composition that does not undergo hydrolysis of the amylase or the like. For example, the base material is a resin material such as polyethylene or polylactic acid.

デンプン粒子の形態や粒径は植物種によって異なり、粒径は約1〜100μmである。例えば、馬鈴薯デンプンの粒子は平均粒径約30〜40μmの楕円形であり、コーンスターチ粒子は平均粒径13〜15μm程度でその形状はやや角張っている。目的とする撥水性多孔構造体の微細空洞部の形態により、これらのデンプン粒子が選択され、1種類のみ、あるいは複数種類のデンプン粒子が用いられる。被除去材を上記のデンプン粒子とする場合、酵素分解を容易にするため、成形体は分解するデンプンの糊化温度以上の温水浴中にて加温され、デンプンの糊化(アルファ化)が促進される。   The form and particle size of starch particles vary depending on the plant species, and the particle size is about 1 to 100 μm. For example, potato starch particles have an elliptical shape with an average particle size of about 30 to 40 μm, and corn starch particles have an average particle size of about 13 to 15 μm, and the shape thereof is somewhat angular. These starch particles are selected depending on the shape of the microcavity of the target water-repellent porous structure, and only one type or a plurality of types of starch particles are used. When the material to be removed is the above-mentioned starch particles, the molded product is heated in a warm water bath at or above the gelatinization temperature of the starch to be decomposed in order to facilitate enzymatic degradation, and starch gelatinization (alphalation) is performed. Promoted.

別例として、酵素をプロテアーゼ(Proteinase K)とする場合、基質となる被溶解物にポリ乳酸(poly(L−lactide))が選択される。同時に、撥水性多孔構造体の成形体を成す基材は、プロテアーゼの加水分解を受けない樹脂種とする必要がある。そこで、基材はセルロース、ポリエチレン等となる。また、酵素をリパーゼとする場合、基質となる被除去物には比較的融点が高い油脂類(高分子量の油脂類)、パラフィン類等が用いられる。   As another example, when the enzyme is protease (Proteinase K), polylactic acid (poly (L-lactide)) is selected as the substance to be dissolved. At the same time, the base material forming the molded body of the water-repellent porous structure must be a resin species that is not subject to protease hydrolysis. Therefore, the base material is cellulose, polyethylene or the like. When the enzyme is lipase, fats and oils (high molecular weight fats and oils) having a relatively high melting point, paraffins, and the like are used as the substrate to be removed.

酵素処理に供する酵素溶液は、当該酵素の活性が最適に反映される至適温度、至適pHに維持される。被溶解物(基質)の酵素加水分解物により、酵素溶液自体のpH等が変化することもあり得るため、適宜の緩衝液が添加されることもある。また、酵素加水分解物が反応阻害剤としても作用する懸念もあり得ることから、図4の多孔体形成工程(S12)、図5(b),(c)にあっては、連続処理、回分処理を適式に組み合わせて行われる。併せて、用途に応じ、必要により残存する酵素の失活を行う場合もある。例えば、アルコール、高塩溶液、酸や塩基の溶液への浸す他、加熱することもある。なお、基材や封入物の性質によるものの、速度反応論を加味して、至適温度を高めとする酵素の選択が好ましい。   The enzyme solution subjected to the enzyme treatment is maintained at an optimal temperature and an optimal pH at which the activity of the enzyme is optimally reflected. Since the pH of the enzyme solution itself may change due to the enzyme hydrolyzate of the substance to be dissolved (substrate), an appropriate buffer may be added. In addition, since the enzyme hydrolyzate may also act as a reaction inhibitor, in the porous body forming step (S12) and FIGS. 5 (b) and 5 (c) in FIG. It is performed by combining processing appropriately. In addition, depending on the application, the remaining enzyme may be deactivated if necessary. For example, it may be heated in addition to dipping in an alcohol, high salt solution, acid or base solution. In addition, although it depends on the properties of the substrate and the inclusion, it is preferable to select an enzyme that increases the optimum temperature in consideration of the kinetics.

酵素処理の利点は、水に不溶、難溶、あるいは含水に伴いゲル化や粘調化する被溶解物を用いてより速い処理速度により微細空洞部を形成可能な点である。例えば、粒度分布の狭いデンプン等を用い酵素で分解除去することにより、大半が均一な大きさの微細空洞部を得ることができる(図1等参照)。そのため、基材内に形成される微細空洞部の大きさはいずれも一致し、事後的に基材表面に露出する多孔構造体断面の凹凸構造の大きさが概ね揃う。従って、撥水性多孔構造体表面(撥水面側)の凹凸にばらつきが少なく、性能が安定する。   The advantage of the enzyme treatment is that a fine cavity can be formed at a higher treatment speed by using a substance to be dissolved that is insoluble in water, hardly soluble, or gelled or thickened with water content. For example, by using starch or the like having a narrow particle size distribution to decompose and remove with an enzyme, a fine cavity having a uniform size can be obtained (see FIG. 1 and the like). Therefore, the sizes of the fine cavities formed in the base material are all the same, and the size of the concavo-convex structure of the cross section of the porous structure that is exposed to the base material surface afterwards is almost uniform. Therefore, the unevenness on the surface of the water repellent porous structure (water repellent surface side) is less uneven and the performance is stable.

既述の水系の溶剤に加え、請求項10の発明に規定するように、溶剤に有機溶剤を用い、被溶解物を有機溶剤により除去可能な物質とすることができる。有機溶剤の種類は、メタノール、エタノール、イソプロパノール、ブタノールをはじめとする各種アルコール類、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル等のエーテル類、他にアセトン、メチルエチルケトン等のケトン類、酢酸エチル、他にアセトニトリル等、また、へキサン、シクロヘキサン、オクタン、ベンゼン、トルエン、キシレン、ピリジン、クロロホルム、テトラクロロエチレン、シリコーンオイル、テルペン類、リモネン等のいずれであっても良い。これらは、単独種で用いることもできるが、基材及び被溶解物の溶解性に鑑み複数種の有機溶剤を混合調整して用いることができる。   In addition to the aqueous solvent described above, as defined in the invention of claim 10, an organic solvent can be used as the solvent, and the substance to be dissolved can be removed by the organic solvent. The types of organic solvents are methanol, ethanol, isopropanol, butanol and other alcohols, ethers such as dimethyl ether, diethyl ether and methyl ethyl ether, ketones such as acetone and methyl ethyl ketone, ethyl acetate, and acetonitrile. Or any of hexane, cyclohexane, octane, benzene, toluene, xylene, pyridine, chloroform, tetrachloroethylene, silicone oil, terpenes, limonene, and the like. These can be used alone, but a plurality of types of organic solvents can be mixed and used in view of the solubility of the substrate and the substance to be dissolved.

有機溶剤に対応する被溶解物には、例えば、スチレン等の微粒子を用いることが検討される。基材並びに被溶解物が共に油溶性成分である場合であっても、被溶解物のみ特に有機溶剤に溶解しやすい樹脂種を選択し、基材の溶解が進行する以前に溶剤を除去することも考えられる。被除去物を有機溶剤に溶出させた後、基材並びに被溶解物は適宜乾燥を経て所望の撥水性多孔構造体が得られる。   For example, it is considered to use fine particles such as styrene as the material to be dissolved corresponding to the organic solvent. Even if the base material and the material to be dissolved are both oil-soluble components, select a resin type that is easy to dissolve in the organic solvent, and remove the solvent before the base material is dissolved. Is also possible. After the material to be removed is eluted in an organic solvent, the substrate and the material to be dissolved are appropriately dried to obtain a desired water-repellent porous structure.

上記のとおり、撥水性多孔構造体の基材に関しては、広汎な樹脂素材の使用が可能である。これらの高分子化合物からの加工は、形状いかんによるものの比較的に容易である。そこで、撥水性能を有した所望形状の成形体、ブロック状、繊維状とする他、特に、請求項13の発明に規定するように、その成形体をフィルム状物またはシート状物の形態とすることもできる。この結果、新規の撥水フィルム、撥水シートを得ることができる。繊維状の成形体からは撥水性の織布が得られる。   As described above, a wide variety of resin materials can be used for the substrate of the water-repellent porous structure. Processing from these polymer compounds is relatively easy although it depends on the shape. Therefore, in addition to forming a molded body having a desired shape with water repellency, a block shape, and a fiber shape, in particular, as defined in the invention of claim 13, the molded body is in the form of a film or sheet. You can also As a result, a novel water repellent film and water repellent sheet can be obtained. A water-repellent woven fabric can be obtained from the fibrous shaped body.

以上列記した成形材料及び被溶解物からなる成形体について、これらの成形には、押出成形、ブロー成形、プレス成形等の適宜樹脂加工分野の公知成形手法が用いられる。この結果、所望の成形形状が得られる。これらの他に、冷間静水圧プレス(CIP)、テープキャスティング法等を用いても良い。また、成形体を繊維状に加工することを所望の場合には、公知の紡出装置が用いられる。   For the moldings composed of the molding materials and the materials to be melted as described above, known molding techniques in the resin processing field such as extrusion molding, blow molding, press molding and the like are appropriately used for these moldings. As a result, a desired molded shape is obtained. In addition to these, a cold isostatic press (CIP), a tape casting method, or the like may be used. When it is desired to process the molded body into a fiber, a known spinning device is used.

とりわけ、請求項13の発明に規定するように、成形体がフィルム状物またはシート状物とする場合にあっては、溶液キャスト法、Tダイ法、チューブラー法、カレンダー法等の公知の方法が使用される。成形材料を熱可塑性樹脂とするフィルムは、その機械的物性等から、延伸フィルムとしてもよい。延伸フィルムを製造する際の延伸方法には、ロール−一軸延伸、圧延、逐次二軸延伸、同時二軸延伸、チューブラー延伸等の公知の方法が使用できる。特に、逐次二軸延伸、同時二軸延伸が、厚薄精度、機械的物性等の点で優れているため好ましい。   In particular, as defined in the invention of claim 13, when the molded body is a film or sheet, a known method such as a solution casting method, a T-die method, a tubular method, or a calendar method is used. Is used. A film using a molding material as a thermoplastic resin may be a stretched film because of its mechanical properties. As a stretching method for producing a stretched film, known methods such as roll-uniaxial stretching, rolling, sequential biaxial stretching, simultaneous biaxial stretching, and tubular stretching can be used. In particular, sequential biaxial stretching and simultaneous biaxial stretching are preferred because they are excellent in terms of thickness accuracy and mechanical properties.

前出の第2,第3実施形態の撥水性多孔構造体10B,10Cにおいて、図示から把握されるように、水や有機溶剤による溶解、酵素分解を用いたとしても、被溶解物の一部が基材内に残留することもある。この場合、被溶解物が基材である多孔構造体を腐蝕させる等の問題を招来しなければ特段問題視されることはない。むしろ、撥水性多孔構造体10B,10Cの構造特性を生かした機能性樹脂素材としての撥水性用途が重視される場合に好適に用いられる。   In the water-repellent porous structures 10B and 10C of the second and third embodiments described above, as understood from the drawing, even if dissolution with water or an organic solvent or enzymatic decomposition is used, a part of the substance to be dissolved May remain in the substrate. In this case, it is not regarded as a particular problem unless a problem such as the material to be dissolved corrodes the porous structure as a base material. Rather, it is suitably used when water-repellent use as a functional resin material that takes advantage of the structural characteristics of the water-repellent porous structures 10B and 10C is important.

次に、図4に示す断面露出工程(S13)、図5(d)に示した多孔構造体の表面除去の具体手法を説明する。すなわち、請求項6の発明に規定するように、当該断面露出工程において、成形体(基材)の表面の除去は研磨による。この研磨の一例としては、図10(a)の模式図に示すとおり、適宜の研磨ローラRg(一部のみ図示)を基材表面に押し当てて、所定の深さまで削り出すことにより、多孔構造体の内部が断面としてその表面に露出する。研磨に際し、当該研磨ローラRgを用いる他、研磨ベルト、サンドペーパー等のやすり掛け、ガラスやアルミナの吹きつけによるサンドブラスト、多孔構造体同士の擦り合わせ等をはじめとする各種手法を用いることも可能である。さらに、研磨には、かんな掛け等による表面の切削も含まれる。研磨は量産性に優れ、単位時間当たりの生産能力の向上に好適である。例えば、半製品である多孔構造体を巻き取ったロール反から、連続して基材表面を除去可能である。   Next, a specific method for removing the surface of the porous structure shown in FIG. 5 (d) and the cross-section exposing step (S13) shown in FIG. 5 will be described. That is, as defined in the invention of claim 6, in the cross-section exposing step, the removal of the surface of the molded body (base material) is performed by polishing. As an example of this polishing, as shown in the schematic diagram of FIG. 10 (a), an appropriate polishing roller Rg (only part of which is shown) is pressed against the surface of the substrate and cut to a predetermined depth, thereby producing a porous structure. The inside of the body is exposed on the surface as a cross section. For polishing, in addition to using the polishing roller Rg, various methods such as sanding of a polishing belt or sandpaper, sandblasting by blowing glass or alumina, rubbing of porous structures, etc. can be used. is there. Further, the polishing includes cutting of the surface by cutting or the like. Polishing is excellent in mass productivity and suitable for improving the production capacity per unit time. For example, it is possible to continuously remove the surface of the substrate from a roll obtained by winding up a porous structure that is a semi-finished product.

前記の例に加えて、請求項7の発明に規定するように、当該断面露出工程において、成形体(基材)の表面の除去は剥離による。この剥離の一例としては、図11(a)の模式図に示すとおり、粘着層adhを有する粘着フィルムSdが基材表面に押し当てられて、互いに圧着させられる。その後、粘着フィルムSdを引き剥がす際に、基材の一部が粘着層adhに引きずられることにより、成形体内に破断が生じて多孔構造体の内部が断面としてその表面に露出する。すなわち、微細空洞部を内包する多孔構造体となったことにより脆弱化が進み、断裂されやすくなったと言える。剥離に際し、当該粘着フィルムSdを用いる他、適宜のローラに粘着剤を塗布し、これを基材表面に押し当てながら基材の一部をはぎ取ることも可能である。剥離の場合、基材表面の選択した箇所のみに粘着フィルムを貼り付けて、単一基材表面上に撥水部位と非撥水部位を形成することができる。これらに加え、剥離に際し、成形体(基材)の表面にこの基材と同種の組成からなる剥離用樹脂フィルムを用いることができる。この剥離用樹脂フィルムを成形体(基材)の微細空洞部をつぶしすぎない程度に加熱融着させ、当該剥離用樹脂フィルムを引き剥がす方法を採ることもできる。   In addition to the above example, as defined in the invention of claim 7, in the cross-section exposing step, the removal of the surface of the molded body (base material) is by peeling. As an example of this peeling, as shown in the schematic diagram of FIG. 11A, the pressure-sensitive adhesive film Sd having the pressure-sensitive adhesive layer adh is pressed against the surface of the base material and is pressure-bonded to each other. Thereafter, when the adhesive film Sd is peeled off, a part of the base material is dragged by the adhesive layer adh, so that the molded body is broken and the inside of the porous structure is exposed as a cross section on the surface. In other words, it can be said that since the porous structure encloses the fine cavity portion, the embrittlement has progressed and it has been easily broken. In peeling, in addition to using the adhesive film Sd, it is possible to apply a pressure-sensitive adhesive to an appropriate roller and peel off a part of the base material while pressing it against the surface of the base material. In the case of peeling, a pressure-sensitive adhesive film can be pasted only on a selected location on the surface of the base material to form a water-repellent site and a non-water-repellent site on the single base material surface. In addition to these, a peeling resin film having the same composition as that of the base material can be used on the surface of the molded body (base material) during peeling. It is also possible to adopt a method in which this peeling resin film is heat-sealed to such an extent that the fine cavity of the molded body (base material) is not crushed, and the peeling resin film is peeled off.

成形体(基材)の表面の除去について、研磨または剥離の選択は、完成後の撥水性多孔構造体の用途等に応じて適切に選択される。むろん、成形体の基材となる成形材料の樹脂特性、強度、製造経費等も当然に考慮される。研磨の場合、完成品である撥水性多孔構造体の表面は比較的均一な凹凸構造となる。一方、剥離の場合、完成品である撥水性多孔構造体の表面は研磨よりも幾分不均一な凹凸構造となる。これらは後出の電子顕微鏡写真から確認できる。   Regarding the removal of the surface of the molded body (base material), the selection of polishing or peeling is appropriately selected according to the use of the water-repellent porous structure after completion. Of course, the resin characteristics, strength, manufacturing cost, etc. of the molding material that is the base material of the molded body are naturally taken into consideration. In the case of polishing, the surface of the finished water-repellent porous structure has a relatively uniform uneven structure. On the other hand, in the case of peeling, the surface of the finished water-repellent porous structure has a concavo-convex structure that is somewhat non-uniform than the polishing. These can be confirmed from the following electron micrographs.

第1製造形態による撥水性多孔構造体の製法の利点として、簡便な手法によって撥水性を発現する表面の微細な凹凸構造を多孔構造体基材と同一材質から得ることができる。このことから先行技術のように撥水性表面の形成に難分解性素材を使用する必要がない。成形体の形成から被溶解物の溶出、研磨、剥離等の一連の工程を連続して処理できるため、撥水性多孔構造体の生産効率が極めて高い。また、被溶解物を溶解して多孔構造体としたままの半製品に留め、需要に応じて多孔構造体の表面を除去して出荷できるため、生産調整上の自由度が高い。   As an advantage of the method for producing a water-repellent porous structure according to the first production mode, a fine concavo-convex structure on the surface that exhibits water repellency can be obtained from the same material as the porous structure substrate by a simple method. Therefore, unlike the prior art, it is not necessary to use a hardly decomposable material for forming the water repellent surface. The production efficiency of the water-repellent porous structure is extremely high because a series of processes such as the formation of the molded body, elution of the dissolved material, polishing, and peeling can be continuously performed. In addition, since the material to be dissolved can be kept in a semi-finished product as a porous structure and the surface of the porous structure can be removed and shipped according to demand, the degree of freedom in production adjustment is high.

第2製造形態の撥水性多孔構造体の製法は、請求項4の発明に規定するとおり、図6の概略工程図、図7の工程断面模式図として示すことができる。始めに、事後的に溶解可能な被溶解物が成形材料中に混入され、所定形状の成形体102に成形される(成形工程:S21)。図7(a)のとおり、成形体102において、成形材料からなる基材110中に被溶解物120が適度に分散されている。むろん、この成形段階では、被溶解物の溶解は始まっておらず、ほぼ混入時の形状を維持している。   The manufacturing method of the water-repellent porous structure of the second production form can be shown as a schematic process diagram in FIG. 6 and a process cross-sectional schematic diagram in FIG. 7 as defined in the invention of claim 4. First, a material that can be dissolved afterwards is mixed in the molding material and molded into a molded body 102 having a predetermined shape (molding step: S21). As shown in FIG. 7A, in the molded body 102, the melt 120 is moderately dispersed in the base material 110 made of a molding material. Of course, at this molding stage, dissolution of the material to be dissolved has not started, and the shape at the time of mixing is maintained.

S21の成形工程後、成形体102の表面が除去されることにより当該成形体の断面は露出する(断面露出工程:S22)。成形体表面の除去に際し、図7(a)では、成形体の内部断面を露出させる除去予定位置BRが設定される。そこで、図7(b)のとおり、成形体の一部N2が取り除かれる。除去予定位置BRの除去部位に断面15が露出し、同部位は将来的に撥水性の基材表面14となる。   After the molding step S21, the surface of the molded body 102 is removed to expose the cross section of the molded body (cross section exposure step: S22). When removing the surface of the molded body, in FIG. 7A, a planned removal position BR for exposing the internal cross section of the molded body is set. Therefore, as shown in FIG. 7B, a part N2 of the molded body is removed. The cross section 15 is exposed at the removal site of the planned removal position BR, and this site will become the water-repellent substrate surface 14 in the future.

S22の断面露出工程後、成形体102内の被溶解物の溶解が進行して、当該成形体内に微細な空洞部を形成した多孔構造体が得られる(多孔体形成工程:S22)。図7(c)では、成形体102内の被溶解物120の溶解に伴い被溶解物が縮小し、図7(d)のように、成形体102内の被溶解物120は消失し、その空間は微細空洞部12となる。こうして基材110が取り残され多孔構造体13が得られ、撥水性多孔構造体10Aが出来上がる。   After the cross-section exposure step of S22, dissolution of the material to be dissolved in the molded body 102 proceeds to obtain a porous structure in which fine cavities are formed in the molded body (porous body forming step: S22). In FIG.7 (c), as the to-be-dissolved object 120 in the molded object 102 melt | dissolves, a to-be-dissolved object shrink | contracts, and as shown in FIG.7 (d), the to-be-dissolved object 120 in the molded object 102 lose | disappears, The space becomes a fine cavity 12. In this way, the base material 110 is left and the porous structure 13 is obtained, and the water repellent porous structure 10A is completed.

第2製造形態の断面露出工程(S22)にて行われる除去に関しても、請求項6の発明に規定し、図10(b)の模式図に示すとおり、適宜の研磨ローラRg(一部のみ図示)が用いられ、成形体表面に押し当てられて所定の深さ分まで削り出される。あるいは、請求項7の発明に規定し、図11(b)の模式図に示すとおり、粘着層adhを有する粘着フィルムSdが用いられ、この引き剥がしに伴って、成形体内に破断が生じて破断面がその表面に露出する。むろん、研磨ローラ、粘着フィルム以外の前記の装置、器具、部材等を用いることも可能である。   The removal performed in the cross-section exposing step (S22) of the second manufacturing mode is also defined in the invention of claim 6 and, as shown in the schematic diagram of FIG. ) Is used, pressed against the surface of the molded body, and cut to a predetermined depth. Alternatively, an adhesive film Sd having an adhesive layer adh is used as defined in the invention of claim 7 and as shown in the schematic diagram of FIG. 11 (b). A cross section is exposed on the surface. Of course, it is also possible to use the above-mentioned devices, instruments, members, etc. other than the polishing roller and the adhesive film.

この第2製造形態の撥水性多孔構造体の製法に当たり、成形材料及び被溶解物の種類、被溶解物の溶解方法(水、酵素、有機溶剤)、微細空洞部の大きさ、成形体の形状等に関しては、請求項8ないし13の発明に規定したとおり、第1製造形態の撥水性多孔構造体の製法(図4,5参照等)に準じ、適切に選択される。   In the manufacturing method of the water-repellent porous structure of the second production form, the type of the molding material and the substance to be dissolved, the method for dissolving the substance to be dissolved (water, enzyme, organic solvent), the size of the fine cavity, the shape of the molded body And the like are appropriately selected according to the method for producing the water-repellent porous structure of the first production form (see FIGS. 4 and 5) as defined in the inventions of claims 8 to 13.

第2製造形態の製法を用いて撥水性多孔構造体10B(図2参照)、撥水性多孔構造体10C(図3参照)を製造する場合も、被溶解物の混入量、成形材料に分散させる位置、成形材料中への被溶解物の混入方法や条件、被溶解物の比重等の諸条件が制御される。   Also in the case of manufacturing the water-repellent porous structure 10B (see FIG. 2) and the water-repellent porous structure 10C (see FIG. 3) by using the manufacturing method of the second manufacturing mode, the amount of the dissolved material is dispersed in the molding material. Various conditions such as position, mixing method and conditions of the object to be dissolved in the molding material, and specific gravity of the object to be dissolved are controlled.

第2製造形態による撥水性多孔構造体の製法の利点として、第1製造形態と同じく簡便な手法によって撥水性を発現する表面の微細な凹凸構造を多孔構造体基材と同一材質から得ることができる。このことから先行技術のように撥水性表面の形成に難分解性素材を使用する必要がない。また、第1製造形態のときよりも基材となる成形材料が、軟らかい等の構造強度面で脆弱な樹脂素材である場合に有効である。被溶解物は成形体内に残存することにより、成形体全体としての強度は維持される。研磨、剥離時の負荷が生じた際の損傷は生じにくく、その上で被溶解物が溶解される。このため、多孔構造体としての構造、形状が維持されやすい。   As an advantage of the method for producing a water-repellent porous structure according to the second production form, a fine uneven structure on the surface that exhibits water repellency can be obtained from the same material as the porous structure substrate by the same simple technique as in the first production form. it can. Therefore, unlike the prior art, it is not necessary to use a hardly decomposable material for forming the water repellent surface. Moreover, it is effective when the molding material used as the base material is a resin material that is weak in terms of structural strength such as softer than in the first manufacturing mode. Since the material to be dissolved remains in the molded body, the strength of the entire molded body is maintained. Damage caused by the occurrence of a load during polishing and peeling is unlikely to occur, and the material to be dissolved is dissolved thereon. For this reason, the structure and shape as a porous structure are easily maintained.

第3製造形態の撥水性多孔構造体の製法は、請求項5の発明に規定するとおり、図8の概略工程図、図9の工程断面模式図として示すことができる。始めに、事後的に溶解可能な被溶解物が成形材料中に混入され、所定形状の成形体103に成形される(成形工程:S31)。図9(a)のとおり、成形体103において、成形材料からなる基材110中に被溶解物120が適度に分散されている。むろん、この成形段階では、被溶解物の溶解は始まっておらず、ほぼ混入時の形状を維持している。   The manufacturing method of the water-repellent porous structure of the third production form can be shown as a schematic process diagram of FIG. 8 and a process cross-sectional schematic diagram of FIG. 9 as defined in the invention of claim 5. First, a material that can be dissolved afterwards is mixed in the molding material and molded into a molded body 103 having a predetermined shape (molding step: S31). As shown in FIG. 9A, in the molded body 103, the material 120 to be dissolved is appropriately dispersed in the base material 110 made of a molding material. Of course, at this molding stage, dissolution of the material to be dissolved has not started, and the shape at the time of mixing is maintained.

S31の成形工程後、成形体103内の被溶解物120の溶解が進行して、当該成形体内に微細な空洞部を形成した多孔構造体が得られる(多孔体形成工程:S32)。図9(b)では、成形体103内の被溶解物120の溶解に伴い、被溶解物はしだいに縮小している。S32の多孔体形成工程の進行と同時に、成形体103に凝集破壊を生じさせることによって当該成形体の断面を露出させる(断面露出工程:S33)。   After the forming step of S31, dissolution of the material 120 to be dissolved in the formed body 103 proceeds to obtain a porous structure in which fine cavities are formed in the formed body (porous body forming step: S32). In FIG.9 (b), the to-be-dissolved object is shrinking gradually with the melt | dissolution of the to-be-dissolved object 120 in the molded object 103. FIG. Simultaneously with the progress of the porous body forming step of S32, the cross section of the molded body is exposed by causing cohesive failure in the molded body 103 (cross section exposing step: S33).

第3製造形態の撥水性多孔構造体の製法にあっては、被溶解物120は膨潤性を有する材質、すなわち、含水、含油等により体積膨張を生じさせる物性種から選択される。具体的には、後記の実施例に示すとおり、デンプンの粒子が該当する。デンプンの結晶は含水に伴い体積膨張を引き起こすことにより、既に成形材料が固化した基材110の内部に歪みや亀裂を生じさせる。これが図9(b)に示す凝集破壊予定部位CFとなる。成形体103は、被溶解物自体の体積膨張による破壊、もしくは極めて少ない剪断作用により二部分またはそれ以上の多部分に分割(開裂)される。この結果、図9(c)に示す凝集破壊面CFsが断面として露出する。同部位は将来的に撥水性の基材表面14となる。   In the manufacturing method of the water-repellent porous structure according to the third manufacturing mode, the material to be dissolved 120 is selected from materials having swelling properties, that is, physical properties that cause volume expansion due to water or oil content. Specifically, as shown in the examples below, starch particles are applicable. The starch crystals cause volume expansion with moisture, thereby causing distortion and cracks in the substrate 110 where the molding material has already solidified. This is the cohesive failure planned site CF shown in FIG. The molded body 103 is divided (cleaved) into two or more multi-parts by breaking due to volume expansion of the material to be melted or by extremely little shearing action. As a result, the cohesive failure surface CFs shown in FIG. 9C is exposed as a cross section. This part will become a water-repellent substrate surface 14 in the future.

引き続き、被溶解物120の溶解、例示のデンプンの含水とデンプンの酵素分解は同時進行し、図9(d)のとおり成形体103内の被溶解物120は消失し、その空間は微細空洞部12となる。こうして基材110が取り残され多孔構造体13が得られ、撥水性多孔構造体10Aが出来上がる。   Subsequently, dissolution of the material 120 to be dissolved, water content of the exemplified starch and enzymatic degradation of the starch proceed simultaneously, and the material 120 to be dissolved in the molded body 103 disappears as shown in FIG. 12 In this way, the base material 110 is left and the porous structure 13 is obtained, and the water repellent porous structure 10A is completed.

この第3製造形態の撥水性多孔構造体の製法に当たり、成形材料及び被溶解物の種類、被溶解物の溶解方法(水、酵素、有機溶剤)、微細空洞部の大きさ、成形体の形状等に関しては、請求項8ないし13の発明に規定したとおり、第1製造形態の撥水性多孔構造体の製法(図4,5参照等)に準じ、適切に選択される。ただし、膨潤性と溶解性を併せ持つ性質を勘案すると、酵素的分解後に水に溶解する組成物となることが多い。   In manufacturing the water-repellent porous structure according to the third production mode, the type of the molding material and the material to be dissolved, the method for dissolving the material to be dissolved (water, enzyme, organic solvent), the size of the fine cavity, the shape of the molded body And the like are appropriately selected according to the method for producing the water-repellent porous structure of the first production form (see FIGS. 4 and 5) as defined in the inventions of claims 8 to 13. However, taking into consideration the properties having both swelling and solubility, the composition often dissolves in water after enzymatic degradation.

第3製造形態の製法を用いて撥水性多孔構造体10B(図2参照)、撥水性多孔構造体10C(図3参照)を製造する場合も、被溶解物の混入量、成形材料に分散させる位置、凝集破壊の予定位置、成形材料中への被溶解物の混入方法や条件、被溶解物の比重等の諸条件が制御される。   Also in the case of manufacturing the water-repellent porous structure 10B (see FIG. 2) and the water-repellent porous structure 10C (see FIG. 3) using the manufacturing method of the third manufacturing mode, the mixing amount of the substance to be dissolved is dispersed in the molding material. Various conditions such as the position, the expected position of cohesive failure, the mixing method and conditions of the object to be dissolved in the molding material, and the specific gravity of the object to be dissolved are controlled.

第3製造形態による撥水性多孔構造体の製法の利点として、第1製造形態と同じく簡便な手法によって撥水性を発現する表面の微細な凹凸構造を多孔構造体基材と同一材質から得ることができる。このことから先行技術のように撥水性表面の形成に難分解性素材を使用する必要がない。また、研磨や剥離等の専用装置を必要とすることなく、専ら水系内の処理のみにより撥水性多孔構造体を得ることができ、設備負担が少なくなる。   As an advantage of the method for producing a water-repellent porous structure according to the third production form, a fine uneven structure on the surface that exhibits water repellency can be obtained from the same material as the porous structure substrate by the same simple technique as in the first production form. it can. Therefore, unlike the prior art, it is not necessary to use a hardly decomposable material for forming the water repellent surface. In addition, the water-repellent porous structure can be obtained only by the treatment in the aqueous system without requiring a dedicated device such as polishing and peeling, and the equipment burden is reduced.

以上のとおり詳述した撥水性多孔構造体に関し、例えばフィルム状、またはシート状の成形体とした場合、当然撥水フィルム、撥水シートが得られる。その利用用途としては、レインコート等の撥水性衣料、帽子、傘、靴等の水濡れを抑制したい物品、撥水性能を備えた建築用の養生シート、乗用車の保管用の撥水性保護シート等が検討される。また、多孔構造体の性質より、空気や水蒸気等は選択的に通過可能であるため、透湿・撥水(防水)の機能性衣料への適用、機械用、電子部品用の防錆保護フィルムも可能である。   As for the water-repellent porous structure described in detail above, for example, when a film-like or sheet-like molded body is used, a water-repellent film and a water-repellent sheet are naturally obtained. Applications include water-repellent clothing such as raincoats, hats, umbrellas, shoes, and other articles that want to control water wetting, building curing sheets with water-repellent performance, water-repellent protective sheets for storing passenger cars, etc. Is considered. In addition, air and water vapor can be selectively passed due to the properties of the porous structure, so it can be applied to functional clothing such as moisture and water repellency (waterproof), rust-proof protective film for machinery and electronic parts. Is also possible.

発明者らは、内部連通を有する撥水性多孔構造体(図1参照)を既述の第1ないし第3製造形態(図4ないし図9参照)に基づいて試作した。そこで、水滴を滴下した際の接触角度、並びに電子顕微鏡による表面、断面を観察した。   The inventors made a prototype of a water-repellent porous structure (see FIG. 1) having internal communication based on the first to third manufacturing modes (see FIGS. 4 to 9) described above. Therefore, the contact angle when the water droplet was dropped, and the surface and cross section by an electron microscope were observed.

[試作例の作成]
・試作例1
試作例1の作成に当たり、基材に直鎖状低密度ポリエチレン樹脂(宇部丸善ポリエチレン株式会社製:ユメリット 0540F)を用いた。以下同樹脂を「LLDPE樹脂」と略記する。被溶解物に馬鈴薯デンプン(東海澱粉株式会社製)を用いた。同馬鈴薯デンプンの平均粒子径は約30μmである。
[Creation of prototype example]
・ Prototype example 1
In making Prototype Example 1, a linear low-density polyethylene resin (manufactured by Ube Maruzen Polyethylene Co., Ltd .: Umerit 0540F) was used as the base material. Hereinafter, this resin is abbreviated as “LLDPE resin”. Potato starch (manufactured by Tokai Starch Co., Ltd.) was used as the material to be dissolved. The average particle size of the potato starch is about 30 μm.

馬鈴薯デンプン7重量部をLLDPE樹脂3重量部に混入し、170℃に加熱して樹脂を溶融しながら混錬し混合樹脂体とした。この混合樹脂体をステンレス鏡面板内に注入し、140℃を維持しながら10MPaで5分間押圧してプレス成形した。成形後、冷却してシート状成形体Sle(縦10cm×横10cm、厚さ300μm)を得た。   7 parts by weight of potato starch was mixed in 3 parts by weight of LLDPE resin and heated to 170 ° C. and kneaded while melting the resin to obtain a mixed resin body. This mixed resin body was poured into a stainless steel mirror face plate, and pressed at 10 MPa for 5 minutes while maintaining 140 ° C., and press molded. After molding, it was cooled to obtain a sheet-like molded body Sle (length 10 cm × width 10 cm, thickness 300 μm).

酵素としてアミラーゼ(大和化成株式会社製:クライスターゼT−5)を用い、同酵素を1重量%含み、85℃に加温した熱水浴中にシート状成形体Sleを2時間浸漬した後、40℃の超音波浴中に5分間浸漬し、さらに1分間流水で洗浄した。水洗を終えた後、80℃の乾燥機内で24時間乾燥した。こうして、ポリエチレン樹脂を基材とする酵素処理を経た連通多孔構造体を得た。   After immersing the sheet-like molded body Sle in a hot water bath containing 1% by weight of the enzyme and heating at 85 ° C. for 2 hours using amylase (Daiwa Kasei Co., Ltd .: Christase T-5) as an enzyme, It was immersed in an ultrasonic bath at 40 ° C. for 5 minutes and further washed with running water for 1 minute. After rinsing with water, it was dried in a dryer at 80 ° C. for 24 hours. In this way, a continuous porous structure was obtained through an enzyme treatment using a polyethylene resin as a base material.

前出の連通多孔構造体の表面をサンドペーパーにより研磨した。サンドペーパーには、#200、#400、#1000の3種類を用い、記載の順序により表面を磨いた。研磨の後、連通多孔構造体を水洗、乾燥し、試作例1の撥水性多孔構造体(縦10cm×横10cm、厚さ280μm)を試作した。試作例1の撥水性多孔構造体の製法(事後研磨法)は図4,5に開示の第1製造形態に相当する。   The surface of the above-mentioned communicating porous structure was polished with sandpaper. Three types of sandpaper, # 200, # 400, and # 1000 were used, and the surface was polished in the order described. After polishing, the continuous porous structure was washed with water and dried to make a prototype of the water-repellent porous structure (10 cm long × 10 cm wide, 280 μm thick) of Prototype Example 1. The manufacturing method (post polishing method) of the water-repellent porous structure of Prototype Example 1 corresponds to the first manufacturing mode disclosed in FIGS.

・試作例2
引き剥がし目的に直鎖状低密度ポリエチレン樹脂フィルム(フタムラ化学株式会社製:LL−XMTN,膜厚100μm)(以下同フィルムを「LLDPEフィルム」と略記する。)を用いた。図12に概略を示すとおり、熱板201上に試作例1にて得た連通多孔構造体110の表面にLLDPEフィルム220を重ね、連通多孔構造体110の周囲にスペーサー205を配置した。当初のLLDPEフィルム220の膜厚t1は100μm、連通多孔構造体110の膜厚t2は300μm、スペーサー205の厚さt3は400μmであった。
・ Prototype example 2
A linear low density polyethylene resin film (Futamura Chemical Co., Ltd .: LL-XMTN, film thickness 100 μm) (hereinafter, the film is abbreviated as “LLDPE film”) was used for the purpose of peeling. As schematically shown in FIG. 12, the LLDPE film 220 was placed on the surface of the continuous porous structure 110 obtained in Prototype Example 1 on the hot plate 201, and the spacer 205 was disposed around the continuous porous structure 110. The initial film thickness t1 of the LLDPE film 220 was 100 μm, the film thickness t2 of the communicating porous structure 110 was 300 μm, and the thickness t3 of the spacer 205 was 400 μm.

上下の熱板201,201を加熱することにより、連通多孔構造体110とLLDPEフィルム220を加熱融着した。スペーサーは連通多孔構造体の微細空洞部を加熱溶融時に押しつぶしてしまわないために配置した。その後、LLDPEフィルムを引き剥がし、連通多孔構造体を水洗、乾燥し、試作例2の撥水性多孔構造体(縦10cm×横10cm、厚さ250μm)を試作した。試作例2の撥水性多孔構造体の製法(事後剥離法)は図4,5に開示の第1製造形態に相当する。   By heating the upper and lower hot plates 201, 201, the communicating porous structure 110 and the LLDPE film 220 were heat-sealed. The spacer was arranged so as not to crush the fine cavity of the continuous porous structure during heating and melting. Thereafter, the LLDPE film was peeled off, and the continuous porous structure was washed with water and dried, and a water-repellent porous structure (10 cm long × 10 cm wide, 250 μm thick) of Prototype Example 2 was prototyped. The manufacturing method (post-peeling method) of the water-repellent porous structure of Prototype Example 2 corresponds to the first manufacturing mode disclosed in FIGS.

・試作例3
試作例1の中間段階より得られるシート状成形体Sleの表面を試作例1と同様の手法によりサンドペーパーで研磨し、研磨成形体を得た。この研磨成形体を試作例1と同様の酵素、温度条件の下で浸漬、洗浄、乾燥し、試作例3の撥水多孔構造体(縦10cm×横10cm、厚さ280μm)を試作した。試作例3の撥水性多孔構造体の製法(事前研磨法)は図6,7に開示の第2製造形態に相当する。
・ Prototype example 3
The surface of the sheet-like molded body Sle obtained from the intermediate stage of Prototype Example 1 was polished with sandpaper in the same manner as in Prototype Example 1 to obtain an abrasive molded body. This polished molded body was dipped, washed and dried under the same enzyme and temperature conditions as in Prototype Example 1, and a water-repellent porous structure of Prototype Example 3 (length 10 cm × width 10 cm, thickness 280 μm) was prototyped. The manufacturing method (pre-polishing method) of the water-repellent porous structure of Prototype Example 3 corresponds to the second manufacturing mode disclosed in FIGS.

・試作例4
試作例1の中間段階より得られるシート状成形体Sleの表面に対して試作例2と同様の手法に基づいてLLDPEフィルムによる引き剥がしを行い、剥離成形体を得た。この剥離成形体を試作例1と同様の酵素、温度条件の下で浸漬、洗浄、乾燥し、試作例4の撥水多孔構造体(縦10cm×横10cm、厚さ280μm)を試作した。試作例4の撥水性多孔構造体の製法(事前剥離法)は図6,7に開示の第2製造形態に相当する。
・ Prototype example 4
The surface of the sheet-like molded body Sle obtained from the intermediate stage of Prototype Example 1 was peeled off with an LLDPE film based on the same method as in Prototype Example 2 to obtain a peeled molded body. This peel-molded body was immersed, washed and dried under the same enzyme and temperature conditions as in Prototype Example 1, and a water-repellent porous structure of Prototype Example 4 (length 10 cm × width 10 cm, thickness 280 μm) was prototyped. The manufacturing method (preliminary peeling method) of the water-repellent porous structure of Prototype Example 4 corresponds to the second manufacturing mode disclosed in FIGS.

・試作例5
試作例5の作成では、基材にポリエチレンオリゴマー樹脂(三井化学株式会社製:エクセレックス 48070B)を用いた。以下同樹脂を「PEO樹脂」と略記する。被溶解物には前出の馬鈴薯デンプン(東海澱粉株式会社製)を用いた。
・ Prototype 5
In the production of Prototype Example 5, a polyethylene oligomer resin (Mitsui Chemicals, Inc .: EXELEX 48070B) was used as the base material. Hereinafter, this resin is abbreviated as “PEO resin”. The above-mentioned potato starch (manufactured by Tokai Starch Co., Ltd.) was used as the material to be dissolved.

馬鈴薯デンプン7重量部をPEO樹脂3重量部に混入し、170℃に加熱して樹脂を溶融しながら混錬し混合樹脂体とした。混合樹脂体をステンレス鏡面板内に注入し、140℃を維持しながら10MPaで5分間押圧してプレス成形した。成形後、冷却してシート状成形体Seo(縦10cm×横10cm、厚さ400μm)を得た。   7 parts by weight of potato starch was mixed in 3 parts by weight of PEO resin and heated to 170 ° C. and kneaded while melting the resin to obtain a mixed resin body. The mixed resin body was poured into a stainless steel mirror face plate and pressed by pressing at 10 MPa for 5 minutes while maintaining 140 ° C. After the molding, it was cooled to obtain a sheet-like molded product Seo (length 10 cm × width 10 cm, thickness 400 μm).

シート状成形体Seoを前出のアミラーゼが1重量%含まれ85℃に加温された熱水浴中に2時間浸漬した。この間、被溶解物である馬鈴薯デンプンの膨潤に伴った脆弱化(凝集破壊)が適度に進行したことを確認しながら、当該シート状成形体を浴中内で厚さ方向の中間位置付近でめくりながら引き離して、2枚のシート状物とした。このシート状物を40℃の超音波浴中に5分間浸漬し、さらに1分間流水で洗浄した。水洗を終えた後、80℃の乾燥機内で24時間乾燥した。こうして、ポリエチレンオリゴマー樹脂を基材とし酵素処理と共に凝集破壊を経た試作例5の撥水性多孔構造体(縦10cm×横10cm、厚さ190μm)を試作した。試作例5の撥水性多孔構造体の製法(凝集破壊法)は図8,9に開示の第3製造形態に相当する。   The sheet-like molded product Seo was immersed in a hot water bath containing 1% by weight of the above-mentioned amylase and heated to 85 ° C. for 2 hours. During this time, while confirming that the weakening (cohesive failure) accompanied by swelling of the potato starch, which is to be dissolved, has progressed moderately, the sheet-like molded product is turned around in the middle of the thickness direction in the bath. The two sheets were separated while being separated. This sheet was immersed in an ultrasonic bath at 40 ° C. for 5 minutes and further washed with running water for 1 minute. After rinsing with water, it was dried in a dryer at 80 ° C. for 24 hours. Thus, a water-repellent porous structure (10 cm long × 10 cm wide, 190 μm thick) of Prototype Example 5 which was made of polyethylene oligomer resin as a base material and was subjected to cohesive failure along with enzyme treatment was produced as a prototype. The manufacturing method (cohesive fracture method) of the water-repellent porous structure of Prototype Example 5 corresponds to the third manufacturing mode disclosed in FIGS.

・試作例6
試作例6の作成に当たり、基材に生分解性樹脂であるポリ乳酸樹脂(和光純薬株式会社製:PLA−0020)を用いた。以下同樹脂を「PLA樹脂」と略記する。被溶解物には同じく馬鈴薯デンプン(東海澱粉株式会社製)を用いた。
-Prototype example 6
In making Prototype Example 6, a polylactic acid resin (Wako Pure Chemical Industries, Ltd .: PLA-0020), which is a biodegradable resin, was used as a base material. Hereinafter, this resin is abbreviated as “PLA resin”. Similarly, potato starch (manufactured by Tokai Starch Co., Ltd.) was used as the material to be dissolved.

馬鈴薯デンプン7重量部をPLA樹脂3重量部に混入し、170℃に加熱して樹脂を溶融しながら混錬し混合樹脂体とした。この混合樹脂体をステンレス鏡面板内に注入し、140℃を維持しながら10MPaで5分間押圧してプレス成形した。成形後、冷却してシート状成形体Pla(縦10cm×横10cm、厚さ400μm)を得た。   7 parts by weight of potato starch was mixed in 3 parts by weight of PLA resin, and kneaded while melting the resin by heating to 170 ° C. to obtain a mixed resin body. This mixed resin body was poured into a stainless steel mirror face plate, and pressed at 10 MPa for 5 minutes while maintaining 140 ° C., and press molded. After molding, it was cooled to obtain a sheet-like molded product Pla (length 10 cm × width 10 cm, thickness 400 μm).

シート状成形体Plaを前出のアミラーゼが1重量%含まれ85℃に加温された熱水浴中に2時間浸漬した。この間、被溶解物である馬鈴薯デンプンの膨潤に伴った脆弱化(凝集破壊)が適度に進行したことを確認しながら、当該シート状成形体を浴中内で厚さ方向の中間位置付近でめくりながら引き離して、2枚のシート状物とした。このシート状物を40℃の超音波浴中に5分間浸漬し、さらに1分間流水で洗浄した。水洗を終えた後、80℃の乾燥機内で24時間乾燥した。こうして、ポリ乳酸樹脂を基材とし酵素処理と共に凝集破壊を経た試作例6の撥水性多孔構造体(縦10cm×横10cm、厚さ190μm)を作成した。試作例6の撥水性多孔構造体の製法(凝集破壊法)は図8,9に開示の第3製造形態に相当する。   The sheet-like molded product Pla was immersed in a hot water bath containing 1% by weight of the above-mentioned amylase and heated to 85 ° C. for 2 hours. During this time, while confirming that the weakening (cohesive failure) accompanied by swelling of the potato starch, which is to be dissolved, has progressed moderately, the sheet-like molded product is turned around in the middle of the thickness direction in the bath. The two sheets were separated while being separated. This sheet was immersed in an ultrasonic bath at 40 ° C. for 5 minutes and further washed with running water for 1 minute. After rinsing with water, it was dried in a dryer at 80 ° C. for 24 hours. In this way, a water-repellent porous structure (10 cm long × 10 cm wide, 190 μm thick) of Prototype Example 6 was produced, which was polylactic acid resin as a base material and was subjected to cohesive failure along with enzyme treatment. The manufacturing method (cohesive fracture method) of the water-repellent porous structure of Prototype Example 6 corresponds to the third manufacturing mode disclosed in FIGS.

[接触角の計測]
接触角の計測に際し、温度23℃、相対湿度50%RHの条件下において、マイクロピペット(株式会社伊藤製作所製:MS−P05)により、純水を5μLずつの一定量滴下できることを確認した後、純水を5μLずつ試作例1ないし5の撥水性多孔構造体に滴下した。滴下して水滴となりしだい写真撮影し、写真から接触角(°)を計測した。1つの試作例の撥水性多孔構造体について、滴下場所を変えながらおよそ10回純水を滴下、撮影して接触角を求め単純平均を算出した。この平均値を当該試作例における接触角と評価した。写真撮影には株式会社キーエンス製のマイクロスコープ(レンズ倍率30倍)を用いた。
[Measurement of contact angle]
Upon measuring the contact angle, after confirming that a fixed amount of pure water could be dropped in a volume of 5 μL by a micropipette (manufactured by Ito Manufacturing Co., Ltd .: MS-P05) under the conditions of a temperature of 23 ° C. and a relative humidity of 50% RH, 5 μL of pure water was added dropwise to the water-repellent porous structures of Prototype Examples 1 to 5. The photograph was taken as soon as it dropped to form water droplets, and the contact angle (°) was measured from the photograph. With respect to one water-repellent porous structure of a prototype, pure water was dropped and photographed about 10 times while changing the dropping place, and a contact angle was obtained to calculate a simple average. This average value was evaluated as the contact angle in the prototype. A microscope made by Keyence Corporation (lens magnification of 30 times) was used for photography.

併せて、試作例1の中間生成物に当たるシート状成形体Sle由来のポリエチレン樹脂を基材とし酵素処理を経た連通多孔構造体(比較例1;LLDPE樹脂多孔体)、試作例6においてシート状成形体Plaに酵素処理のみ施して凝集破壊によるシート状物の引き剥がしを行うことなく得たポリ乳酸樹脂を基材として酵素処理経た撥水性多孔構造体(比較例2;PLA樹脂多孔体)を作成した。比較例1、比較例2の多孔構造体も試作例と同様に水滴の接触角を計測した。   In addition, a continuous porous structure (Comparative Example 1; LLDPE resin porous body) subjected to an enzyme treatment using the polyethylene resin derived from the sheet-like molded body Sle corresponding to the intermediate product of Prototype Example 1 as a base material, and the sheet-like molding in Prototype Example 6 A water-repellent porous structure (Comparative Example 2; PLA resin porous body) that has been subjected to an enzyme treatment based on a polylactic acid resin obtained by subjecting the body Pla only to enzyme treatment and without peeling off the sheet-like material by cohesive failure did. In the porous structures of Comparative Example 1 and Comparative Example 2, the contact angle of water droplets was measured in the same manner as the prototype.

下記の表1は試作例1ないし6の撥水性多孔構造体、及び比較例1,2の多孔構造体の接触角(平均)を示す。同表1に各試作例、比較例に対応する滴下水滴の写真(図の番号)も付記する。   Table 1 below shows the contact angles (average) of the water-repellent porous structures of Prototype Examples 1 to 6 and the porous structures of Comparative Examples 1 and 2. Table 1 also includes photographs (numbers in the figure) of dripping water droplets corresponding to each prototype and comparative example.

Figure 2008101155
Figure 2008101155

[撥水性能の結果・評価]
いずれの試作例の撥水性多孔構造体とも、接触角の評価から表面における撥水性能の発現が確認できた(表1,各図示参照)。また、試作例の撥水性多孔構造体と、比較例1,2の多孔構造体との比較より、試作例の接触角の増大は顕著である。試作例1,2については、150°付近さらにはそれを超過する接触角が得られたことから、超撥水性能を認めることができる。この結果より、撥水性能の発現に際し多孔構造体に対する研磨、剥離、及び凝集破壊の処理の有効性が実証できた。
[Results and evaluation of water repellency]
In any of the prototype water-repellent porous structures, the expression of water-repellent performance on the surface was confirmed from the evaluation of the contact angle (see Table 1, each illustration). In addition, the increase in the contact angle of the prototype example is remarkable from the comparison between the water-repellent porous structure of the prototype example and the porous structures of Comparative Examples 1 and 2. For prototype examples 1 and 2, a super-water-repellent performance can be recognized because a contact angle of about 150 ° or more is obtained. From these results, the effectiveness of the polishing, peeling, and cohesive failure treatments for the porous structure when the water repellency performance was manifested.

[表面構造の観察]
撥水性能の発現は、基材表面の微細な凹凸構造の形成が主要因と考えられている。そこで、試作例及び比較例の表面、断面を走査型電子顕微鏡(SEM)により観察し写真撮影した。図21は比較例1の表面の写真、図22は試作例1の表面の写真、図23は試作例1の断面の写真、図24は比較例2の表面の写真、図25は試作例6の表面の写真、図26は試作例6の断面の写真である。各写真とも倍率はいずれも200倍である。
[Observation of surface structure]
The development of water repellency is considered to be caused mainly by the formation of a fine uneven structure on the surface of the substrate. Therefore, the surface and cross section of the prototype and the comparative example were observed with a scanning electron microscope (SEM) and photographed. 21 is a photograph of the surface of Comparative Example 1, FIG. 22 is a photograph of the surface of Prototype Example 1, FIG. 23 is a photograph of a cross section of Prototype Example 1, FIG. 24 is a photograph of the surface of Comparative Example 2, and FIG. FIG. 26 is a cross-sectional photograph of Prototype Example 6. Each photograph has a magnification of 200 times.

図21の比較例1(LLDPE樹脂多孔体)の表面からわかるように、表面に一様に細孔の開口部が見られるものの全体的に平滑である。これに対し、図22に示す試作例1の表面のように、比較例1の多孔構造体を事後的に研磨したことにより多孔構造体の表面部分が喪失し、微細な空洞を有する多孔構造体の内部の表面への露出が確認できた。このことは図23の断面写真からも把握されるとおり、ほぼ連続した微細な空洞が内部に形成されていることから、どの部分を切除したとしても残存する基材は微細な凹凸構造を発達させて撥水性能向上に寄与するものと想定できる。   As can be seen from the surface of Comparative Example 1 (LLDPE resin porous body) in FIG. 21, although the pore openings are uniformly seen on the surface, the surface is generally smooth. On the other hand, like the surface of Prototype Example 1 shown in FIG. 22, the porous structure of Comparative Example 1 was later polished so that the surface portion of the porous structure was lost, and the porous structure having fine cavities. The exposure to the inner surface of the was confirmed. As can be seen from the cross-sectional photograph of FIG. 23, since almost continuous fine cavities are formed inside, the remaining base material develops a fine concavo-convex structure no matter what part is removed. Therefore, it can be assumed that it contributes to the improvement of water repellency.

続いて、成形材料の樹脂種を変えて調製した図24の比較例2(PLA樹脂多孔体)に関しては、比較例1よりも大きな細孔の開口部が見られるものの、全体的な凹凸構造の分布が少ない。これに対し、図25に示す試作例6の表面のように、凝集破壊を経て得られた破断面によると、多孔構造体の表面部分の代わりに微細な空洞を有する多孔構造体の内部の露出が確認できた。図示のように、概ね微細な空洞の輪郭(壁状構造)が維持され、これが微細な凹凸構造を発達させて撥水性能向上に寄与するものと想定できる。図26の構造体の下部側からわかるように、凝集破壊を経た破断面は複雑な凹凸をした断面構造を露出させている。   Subsequently, regarding Comparative Example 2 (PLA resin porous body) of FIG. 24 prepared by changing the resin type of the molding material, although an opening portion of a larger pore than that of Comparative Example 1 is seen, Distribution is small. On the other hand, according to the fractured surface obtained through the cohesive failure as in the surface of Prototype Example 6 shown in FIG. 25, the internal exposure of the porous structure having fine cavities instead of the surface portion of the porous structure. Was confirmed. As shown in the drawing, it can be assumed that a generally fine cavity outline (wall-like structure) is maintained, which develops a fine concavo-convex structure and contributes to an improvement in water repellency. As can be seen from the lower side of the structure of FIG. 26, the fractured surface that has undergone cohesive failure exposes a sectional structure with complex irregularities.

[考察]
以上の実施例の知見を踏まえた結果、撥水性表面を有する部材の製造に当たり、空洞化、表面の除去等の比較的簡便な手法に基づき製造することができる。また、撥水性表面は基材と同一成分(同一樹脂成分)により形成可能である。そのため、表面の凹凸構造形成に当たり複数の薬剤の調製を必要とすることもない。この結果、本発明の撥水性多孔構造体においては、回収、再利用を行うリサイクル時の異種成分混入等の問題が少ないと考えられる。撥水性多孔構造体の基材に適用できる樹脂は、製造条件の自由度もあいまって広汎な種類から選択できる。従前、生分解性の撥水体はほとんど皆無であるにもかかわらず、試作例6のような生分解性樹脂を基材とした撥水性多孔構造体の開発にも成功した。従って、廃棄時等の環境負荷低減に有効な撥水性部材の開発の途を開くことができる。
[Discussion]
As a result of taking into account the knowledge of the above examples, in the production of a member having a water-repellent surface, it can be produced based on a relatively simple technique such as cavitation and surface removal. The water repellent surface can be formed of the same component (same resin component) as the substrate. Therefore, it is not necessary to prepare a plurality of drugs for forming the uneven structure on the surface. As a result, in the water-repellent porous structure of the present invention, it is considered that there are few problems such as mixing of different components during recycling for recovery and reuse. Resins that can be applied to the base material of the water-repellent porous structure can be selected from a wide variety of types in combination with the degree of freedom of manufacturing conditions. In the past, although there were almost no biodegradable water-repellent bodies, a water-repellent porous structure based on a biodegradable resin as in Prototype Example 6 was also successfully developed. Therefore, it is possible to open the way to develop a water-repellent member effective for reducing the environmental load at the time of disposal or the like.

加えて、従来の撥水体によると、基材上に微細な凹凸構造を形成する製法が大半であった。従って、凹凸構造の付着強度等の問題点から表面の摩耗耐性は必ずしも良好と言えないことが多い。これに対し、本発明の撥水性多孔構造体では、撥水性発現のために敢えて内部構造を露出させている。つまり、表面が摩耗して損傷したとしても順次内部の多孔構造体が露出して容易に置換が進む可能性が示唆される。   In addition, according to the conventional water-repellent body, most of the production methods have a fine uneven structure on the base material. Therefore, the surface wear resistance is often not always good due to problems such as adhesion strength of the concavo-convex structure. On the other hand, in the water-repellent porous structure of the present invention, the internal structure is intentionally exposed for water repellency. That is, even if the surface is worn and damaged, it is suggested that the internal porous structure is sequentially exposed and the replacement can easily proceed.

第1実施形態の撥水性多孔構造体の断面図である。It is sectional drawing of the water repellent porous structure of 1st Embodiment. 第2実施形態の撥水性多孔構造体の断面図である。It is sectional drawing of the water repellent porous structure of 2nd Embodiment. 第3実施形態の撥水性多孔構造体の断面図である。It is sectional drawing of the water repellent porous structure of 3rd Embodiment. 第1製造形態の撥水性多孔構造体の概略工程図である。It is a schematic process drawing of the water-repellent porous structure of the first production form. 図4の工程断面模式図である。It is a process cross-sectional schematic diagram of FIG. 第2製造形態の撥水性多孔構造体の概略工程図である。It is a schematic process drawing of the water repellent porous structure of the second production form. 図6の工程断面模式図である。FIG. 7 is a process cross-sectional schematic diagram of FIG. 6. 第3製造形態の撥水性多孔構造体の概略工程図である。It is a schematic process drawing of the water-repellent porous structure of the third production form. 図8の工程断面模式図である。It is a process cross-sectional schematic diagram of FIG. 研磨時の模式図である。It is a schematic diagram at the time of grinding | polishing. 剥離時の模式図である。It is a schematic diagram at the time of peeling. 試作例2の作成状況を示す概略図である。It is the schematic which shows the creation condition of the prototype example 2. FIG. 試作例1の水滴の接触角を測定した時の写真である。It is a photograph when the contact angle of the water droplet of Prototype Example 1 is measured. 試作例2の水滴の接触角を測定した時の写真である。It is a photograph when the contact angle of the water droplet of Prototype Example 2 is measured. 試作例3の水滴の接触角を測定した時の写真である。It is a photograph when the contact angle of the water droplet of Prototype Example 3 is measured. 試作例4の水滴の接触角を測定した時の写真である。It is a photograph when the contact angle of the water droplet of Prototype Example 4 is measured. 試作例5の水滴の接触角を測定した時の写真である。It is a photograph when the contact angle of the water droplet of Prototype Example 5 is measured. 試作例6の水滴の接触角を測定した時の写真である。It is a photograph when the contact angle of the water droplet of Prototype Example 6 is measured. 比較例1の水滴の接触角を測定した時の写真である。It is a photograph when the contact angle of the water droplet of Comparative Example 1 is measured. 比較例2の水滴の接触角を測定した時の写真である。It is a photograph when the contact angle of the water droplet of Comparative Example 2 is measured. 比較例1の表面の電子顕微鏡写真である。4 is an electron micrograph of the surface of Comparative Example 1. 試作例1の表面の電子顕微鏡写真である。2 is an electron micrograph of the surface of Prototype Example 1. 試作例1の断面の電子顕微鏡写真である。2 is an electron micrograph of a cross section of Prototype Example 1. 比較例2の表面の電子顕微鏡写真である。4 is an electron micrograph of the surface of Comparative Example 2. 試作例6の表面の電子顕微鏡写真である。6 is an electron micrograph of the surface of Prototype Example 6. 試作例6の断面の電子顕微鏡写真である。10 is an electron micrograph of a cross section of Prototype Example 6.

符号の説明Explanation of symbols

10A,10B,10C 撥水性多孔構造体
11,11b,11c 基材
12 微細な空洞(微細空洞部)
13,13b,13c 多孔構造体
14 基材表面
15 断面
101,102,103 成形体
120 被溶解物
10A, 10B, 10C Water-repellent porous structure 11, 11b, 11c Base material 12 Fine cavity (fine cavity)
13, 13b, 13c Porous structure 14 Substrate surface 15 Cross section 101, 102, 103 Molded body 120 Dissolved material

Claims (13)

基材内部が、微細な空洞を有する多孔構造体として形成されていると共に、基材表面には前記多孔構造体の断面が露出していて表面撥水性が付与されていることを特徴とする撥水性多孔構造体。   The inside of the substrate is formed as a porous structure having fine cavities, and a cross-section of the porous structure is exposed on the surface of the substrate to impart surface water repellency. Aqueous porous structure. 前記多孔構造体の微細な空洞の大きさが1〜100μmである請求項1に記載の撥水性多孔構造体。   The water-repellent porous structure according to claim 1, wherein a size of a fine cavity of the porous structure is 1 to 100 μm. 事後的に溶解可能な被溶解物を成形材料に混入して所定形状の成形体に成形する成形工程と、
前記成形工程後に前記成形体内の被溶解物を溶解し、前記成形体内に微細な空洞部を形成した多孔構造体を得る多孔体形成工程と、
前記多孔体形成工程後に前記多孔構造体の表面を除去して前記多孔構造体の断面を露出させる断面露出工程
とを含むことを特徴とする撥水性多孔構造体の製法。
A molding process in which a material to be melted afterwards is mixed into a molding material and molded into a molded body of a predetermined shape,
A porous body forming step of obtaining a porous structure in which fine cavities are formed in the molded body by dissolving the material to be dissolved in the molded body after the molding step;
A method for producing a water repellent porous structure, comprising: a step of exposing a cross section of the porous structure after the porous body forming step to expose a cross section of the porous structure.
事後的に溶解可能な被溶解物を成形材料に混入して所定形状の成形体に成形する成形工程と、
前記成形工程後に前記成形体の表面を除去して前記成形体の断面を露出させる断面露出工程と、
前記断面露出工程後に前記成形体内の被溶解物を溶解し、前記成形体内に微細な空洞部を形成した多孔構造体を得る多孔体形成工程
とを含むことを特徴とする撥水性多孔構造体の製法。
A molding process in which a material to be melted afterwards is mixed into a molding material and molded into a molded body of a predetermined shape,
A cross-section exposure step of removing the surface of the molded body after the molding step to expose a cross section of the molded body;
A porous body forming step of dissolving a substance to be dissolved in the molded body after the cross-section exposing step to obtain a porous structure in which fine cavities are formed in the molded body. Manufacturing method.
事後的に溶解可能な被溶解物を成形材料に混入して所定形状の成形体に成形する成形工程と、
前記成形工程後に前記成形体内の被溶解物を溶解し、前記成形体内に微細な空洞部を形成した多孔構造体を得る多孔体形成工程と、
前記多孔体形成工程中に前記成形体に凝集破壊を生じさせ前記成形体の断面を露出させる断面露出工程
とを含むことを特徴とする撥水性多孔構造体の製法。
A molding process in which a material to be melted afterwards is mixed into a molding material and molded into a molded body of a predetermined shape,
A porous body forming step of obtaining a porous structure in which fine cavities are formed in the molded body by dissolving the material to be dissolved in the molded body after the molding step;
A method of producing a water-repellent porous structure, comprising: a cross-section exposing step of causing cohesive failure in the molded body during the porous body forming step to expose a cross section of the molded body.
前記断面露出工程において、前記成形体の表面の除去が研磨である請求項3又は4に記載の撥水性多孔構造体の製法。   The method for producing a water-repellent porous structure according to claim 3 or 4, wherein, in the cross-section exposing step, the removal of the surface of the molded body is polishing. 前記断面露出工程において、前記成形体の表面の除去が剥離である請求項3又は4に記載の撥水性多孔構造体の製法。   The method for producing a water-repellent porous structure according to claim 3 or 4, wherein in the cross-section exposing step, the removal of the surface of the molded body is peeling. 前記多孔体形成工程において、前記被溶解物が水に溶解可能である請求項3ないし7のいずれか1項に記載の撥水性多孔構造体の製法。   The method for producing a water-repellent porous structure according to any one of claims 3 to 7, wherein in the porous body forming step, the substance to be dissolved is soluble in water. 前記多孔体形成工程において、前記被溶解物が酵素により分解されて溶解可能である請求項3ないし7のいずれか1項に記載の撥水性多孔構造体の製法。   The method for producing a water-repellent porous structure according to any one of claims 3 to 7, wherein in the porous body forming step, the substance to be dissolved is decomposed and dissolved by an enzyme. 前記多孔体形成工程において、前記被溶解物が有機溶剤に溶解可能である請求項3ないし7のいずれか1項に記載の撥水性多孔構造体の製法。   The method for producing a water-repellent porous structure according to any one of claims 3 to 7, wherein in the porous body forming step, the substance to be dissolved is soluble in an organic solvent. 前記成形体を構成する成形材料が生分解性樹脂である請求項3ないし10のいずれか1項に記載の撥水性多孔構造体の製法。   The method for producing a water-repellent porous structure according to any one of claims 3 to 10, wherein a molding material constituting the molded body is a biodegradable resin. 前記成形体内の微細な空洞の大きさが1〜100μmである請求項3ないし11のいずれか1項に記載の撥水性多孔構造体の製法。   The method for producing a water-repellent porous structure according to any one of claims 3 to 11, wherein a size of a fine cavity in the molded body is 1 to 100 µm. 前記成形体がフィルム状物又はシート状物である請求項3ないし12のいずれか1項に記載の撥水性多孔構造体の製法。   The method for producing a water-repellent porous structure according to any one of claims 3 to 12, wherein the molded body is a film or a sheet.
JP2006286204A 2006-10-20 2006-10-20 Manufacturing method of water repellent porous structure Expired - Fee Related JP5039361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006286204A JP5039361B2 (en) 2006-10-20 2006-10-20 Manufacturing method of water repellent porous structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006286204A JP5039361B2 (en) 2006-10-20 2006-10-20 Manufacturing method of water repellent porous structure

Publications (2)

Publication Number Publication Date
JP2008101155A true JP2008101155A (en) 2008-05-01
JP5039361B2 JP5039361B2 (en) 2012-10-03

Family

ID=39435730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006286204A Expired - Fee Related JP5039361B2 (en) 2006-10-20 2006-10-20 Manufacturing method of water repellent porous structure

Country Status (1)

Country Link
JP (1) JP5039361B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI498923B (en) * 2013-09-23 2015-09-01 Taiwan Green Point Entpr Co Plastic body with conductive wiring layer and its making method
JP2016066797A (en) * 2014-09-19 2016-04-28 積水化学工業株式会社 Piezoelectric sheet and method for manufacturing the same, and piezoelectric sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63152482A (en) * 1986-08-09 1988-06-24 Ain Eng Kk Synthetic leather
JP2004188586A (en) * 2002-11-25 2004-07-08 Sumitomo Bakelite Co Ltd Foam sheet for polishing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63152482A (en) * 1986-08-09 1988-06-24 Ain Eng Kk Synthetic leather
JP2004188586A (en) * 2002-11-25 2004-07-08 Sumitomo Bakelite Co Ltd Foam sheet for polishing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI498923B (en) * 2013-09-23 2015-09-01 Taiwan Green Point Entpr Co Plastic body with conductive wiring layer and its making method
JP2016066797A (en) * 2014-09-19 2016-04-28 積水化学工業株式会社 Piezoelectric sheet and method for manufacturing the same, and piezoelectric sensor
JP2021177565A (en) * 2014-09-19 2021-11-11 積水化学工業株式会社 Piezoelectric sheet and method for manufacturing the same, and piezoelectric sensor
JP7208308B2 (en) 2014-09-19 2023-01-18 積水化学工業株式会社 Piezoelectric sheet, manufacturing method thereof, and piezoelectric sensor

Also Published As

Publication number Publication date
JP5039361B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
CN1882670B (en) Structured paper release liner, adhesive-backed article assembly and method of making same
EP1843672B1 (en) Latex gloves and articles with geometrically defined surface texture providing enhanced grip and method for in-line processing thereof
EP1983854B1 (en) Highly chemical-resistant glove
CA2570437A1 (en) Hydroxyl polymer web structures comprising a tuft
CN102281992A (en) Method of making abrasive shards, shaped abrasive particles with an opening, or dish-shaped abrasive particles
CN105408421B (en) Chitin nano whisker composite material and method
JP5039361B2 (en) Manufacturing method of water repellent porous structure
KR20150045076A (en) A Cutting Method of Plastic Film for Flexible Display and Plastic Film for Flexible Display Manufactured by The Same
JP2014140978A (en) Sheet-like laminate and method for producing the same
US9205454B2 (en) Bearing components and processes for depositing additives, especially fluoropolymers, on cellulose
FR2479288A1 (en) PROCESS FOR PRODUCING CHEMICALLY LINED NONWOVEN SHEET MATERIALS CONTAINING MICROHETEROPOROUS STRUCTURE BINDER
JP6267590B2 (en) Manufacturing method of fiber composite sheet
Shi et al. Bacterial cellulose integrated irregularly shaped microcapsules enhance self-healing efficiency and mechanical properties of green soy protein resins
CN113214613A (en) Film and laminate formed from waste thermoplastic elastomer and recycled polyester
EP1880827B1 (en) Method of thermoforming used to obtain complex shapes
JP6539431B2 (en) Sheet-like laminate and method of manufacturing sheet-like laminate
CN102062884A (en) Diffusion membrane and manufacturing method thereof
EP0335050A1 (en) Alveolar wiping cellulose material
JP2018158973A (en) Method for producing thin polymer film dispersion
JP2017008478A (en) Substrate for artificial leather
JP6398467B2 (en) Sheet
EP3049120B1 (en) Method for producing an adhesive material for medical application
JP6840361B2 (en) Method for manufacturing polymer thin film laminate and method for manufacturing polymer thin film dispersion
JP5865086B2 (en) Manufacturing method of base material for artificial leather
JP2009072856A (en) Lens holding material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5039361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees