JP2008100856A - Method for producing zinc oxide laminated chip varistor - Google Patents

Method for producing zinc oxide laminated chip varistor Download PDF

Info

Publication number
JP2008100856A
JP2008100856A JP2006282645A JP2006282645A JP2008100856A JP 2008100856 A JP2008100856 A JP 2008100856A JP 2006282645 A JP2006282645 A JP 2006282645A JP 2006282645 A JP2006282645 A JP 2006282645A JP 2008100856 A JP2008100856 A JP 2008100856A
Authority
JP
Japan
Prior art keywords
mol
oxide
zno
zinc oxide
varistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006282645A
Other languages
Japanese (ja)
Inventor
Yoji Gomi
洋二 五味
Tatsuya Kanzaki
達也 神崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Original Assignee
Koa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp filed Critical Koa Corp
Priority to JP2006282645A priority Critical patent/JP2008100856A/en
Publication of JP2008100856A publication Critical patent/JP2008100856A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a zinc oxide laminated chip varistor which has excellent clamping voltage properties and also impulse endurance properties in the zinc oxide laminated chip varistor having a structure that a plurality of thin sheets are laminated. <P>SOLUTION: Raw materials are prepared so that a composition contains zinc oxide (ZnO) of 100 mol%, bismuth oxide (Bi<SB>2</SB>O<SB>3</SB>) of 0.1 to 1.5 mol%, antimony oxide (Sb<SB>2</SB>O<SB>3</SB>) of 0.01 to 2.0 mol%, one or more kinds selected from cobalt oxide (CoO) and manganese oxide (MnO<SB>2</SB>) of 0.1 to 1.5 mol%, chromium oxide (Cr<SB>2</SB>O<SB>3</SB>) of 0.01 to 2 mol%, boric acid (H<SB>3</SB>BO<SB>3</SB>) of 0.01 to 2 mol%, and aluminum oxide (Al<SB>2</SB>O<SB>3</SB>) in an concentration of 10 to 1,000 ppm. In these raw materials, the calcining raw materials comprising the total content of the bismuth oxide (Bi<SB>2</SB>O<SB>3</SB>) and antimony oxide (Sb<SB>2</SB>O<SB>3</SB>), and the zinc oxide (ZnO) of 0.1 to 1.0 mol% are heat-treated in the temperature range of 700 to 1,000°C, and the calcining raw materials and the other raw materials are added, so as to form green sheets, the green sheets are laminated and cut, so as to form green chips, and the green chips are fired. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、各種電気・電子機器において、ロードダンプサージ、イグニッションサージ、雷サージ、静電気(ESD)、スイッチングサージなどから半導体素子などを保護するためのバリスタ素子に係り、特に表面実装が可能な小型の酸化亜鉛積層チップバリスタの製造方法に関する。   The present invention relates to a varistor element for protecting a semiconductor element from load dump surge, ignition surge, lightning surge, static electricity (ESD), switching surge, etc., in various electrical and electronic devices, and in particular, a small size capable of surface mounting. The present invention relates to a method for producing a zinc oxide laminated chip varistor.

携帯電話などの電気・電子機器においては、近年の急激な高周波化、大容量化に伴い、各種サージやパルス性ノイズ、静電気(ESD)等から回路を保護して動作の安定性を確保し、また、ノイズ規制への対応をする為に、より高性能な過電圧保護素子であるバリスタへのニーズが高まっている。また、機器の小型化から、リード付きディスクバリスタよりも小型であり表面実装が可能な酸化亜鉛積層チップバリスタが用いられることが多い。   In electric and electronic devices such as mobile phones, with the recent rapid increase in frequency and capacity, the circuit is protected from various surges, pulse noise, static electricity (ESD), etc., and stable operation is ensured. In addition, there is a growing need for varistors that are higher performance overvoltage protection elements in order to comply with noise regulations. Further, due to the downsizing of devices, zinc oxide multilayer chip varistors that are smaller than leaded disk varistors and can be surface-mounted are often used.

一般に酸化亜鉛バリスタは、酸化亜鉛(ZnO)を主成分とし、酸化亜鉛の粒成長を促進する酸化ビスマス(Bi2O3)や粒成長を抑制する酸化アンチモン(Sb2O3)が添加される。又、焼結助剤として各種ガラス等が添加される。 In general, zinc oxide varistors contain zinc oxide (ZnO) as the main component, and bismuth oxide (Bi 2 O 3 ) that promotes zinc oxide grain growth and antimony oxide (Sb 2 O 3 ) that inhibits grain growth are added. . Various glasses are added as sintering aids.

バリスタの基本添加物は、その添加量の組み合わせによって、バリスタの電気的特性や信頼性が大きく変わる。即ち、添加される原料の混合比率により焼結時の粒成長のバラツキ、粒界準位と言われるダブルショットキー障壁のバラツキが発生し、その結果、バリスタの基本特性である電圧印加時の漏れ電流、非直線性を表すα値、バリスタ電圧、制限電圧、更には大サージ印加時のインパルス耐量に大きな差異が見られることになる。
バリスタ焼結体として望ましい姿は、次の様になる。
・グレイン(ZnO粒)が均一であること。
・グレイン(ZnO粒)間の空隙が少ないこと。
・粒界準位(ダブルショットキー障壁)が形成され、そのバラツキが少ないこと。
・グレイン(ZnO粒)の比抵抗が小さいこと。
The basic characteristics of varistors vary greatly in the electrical characteristics and reliability of the varistors depending on the combination of the amounts added. That is, variation in grain growth during sintering and double Schottky barrier variation called grain boundary levels occur depending on the mixing ratio of the added raw materials, and as a result, leakage during voltage application, which is a basic characteristic of varistors. A large difference is observed in the current, the α value representing the non-linearity, the varistor voltage, the limiting voltage, and further, the impulse resistance when a large surge is applied.
The desirable shape as a varistor sintered body is as follows.
・ The grains (ZnO grains) are uniform.
・ There are few voids between grains (ZnO grains).
-Grain boundary levels (double Schottky barrier) are formed and there are few variations.
-The specific resistance of grains (ZnO grains) is small.

特許文献1には、酸化亜鉛(ZnO):3モル%以上、酸化ビスマス(Bi2O3):0.025モル%以上、酸化アンチモン(Sb2O3):0.025モル%以上をあらかじめ混合し、700℃以上で仮焼し、この仮焼原料に主原料である酸化亜鉛(ZnO)を加え、本焼成することで、バリスタを形成することが開示されている。この文献では、仮焼によりパイロクロア相が形成されることにより、バリスタ電圧のバラツキが小さくなり、また制限電圧特性も優れたものになると記載されている。 In Patent Document 1, zinc oxide (ZnO): 3 mol% or more, bismuth oxide (Bi 2 O 3 ): 0.025 mol% or more, antimony oxide (Sb 2 O 3 ): 0.025 mol% or more are mixed in advance, and 700 It is disclosed that a varistor is formed by calcining at a temperature of ℃ or higher, adding zinc oxide (ZnO) as a main raw material to the calcined raw material, and performing main firing. This document describes that the formation of a pyrochlore phase by calcination reduces the variation in varistor voltage and provides excellent limiting voltage characteristics.

しかしながら、ZnOの結晶粒成長には方向性があり、C軸方向に粒成長することからグレインの不均一性をもたらし、これが特性の悪化の原因となっているが、特許文献1のように、仮焼により形成されたごく少量のパイロクロア相が、酸化亜鉛(ZnO)を主体とする残りの原料に添加されたとしても、全てのZnOの粒成長を制御するには不十分と考えられる。また、特許文献1はディスクタイプのバリスタを前提としており、これは一対の電極間におけるバリスタ素体としての有効部分が積層チップタイプに比べて格段に大きいことから、特許文献1による特性の改善が得られるものと考えられる。本発明の対象である積層チップタイプバリスタの場合、薄いシートを複数層積層した構造であることから、グレインの粒子の状態が特性に大きく影響するため、特許文献1の構成では十分な効果を得ることができないと考えられる。
特開平3−211705号公報
However, ZnO crystal grain growth has directionality, and grain growth occurs in the C-axis direction, resulting in grain non-uniformity, which causes deterioration of characteristics. Even if a very small amount of pyrochlore phase formed by calcination is added to the remaining raw material mainly composed of zinc oxide (ZnO), it is considered insufficient to control the grain growth of all ZnO. Patent Document 1 presupposes a disk type varistor. This is because the effective portion as a varistor element body between a pair of electrodes is much larger than that of the multilayer chip type. It is considered to be obtained. In the case of the multilayer chip type varistor which is the subject of the present invention, since the structure of a plurality of thin sheets is laminated, the state of the grain particles greatly affects the characteristics. It is considered impossible.
JP-A-3-217055

本発明は上述した事情に鑑みて為されたもので、薄いシートを複数層積層した構造の酸化亜鉛積層チップバリスタにおいて、制限電圧特性とインパルス耐量特性が共に優れた酸化亜鉛積層チップバリスタの製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and a zinc oxide laminated chip varistor having a structure in which a plurality of thin sheets are laminated, and a manufacturing method of a zinc oxide laminated chip varistor excellent in both limiting voltage characteristics and impulse withstand characteristics. The purpose is to provide.

本発明の酸化亜鉛積層チップバリスタの製造方法は、酸化亜鉛(ZnO)100mol%と、これに対する外掛け量で、酸化ビスマス(Bi2O3)を0.1〜1.5mol%と、酸化アンチモン(Sb2O3)を0.01〜2.0mol%と、酸化コバルト(CoO)および酸化マンガン(MnO2)の内一種類以上を0.1〜1.5mol%と、酸化クロム(Cr2O3)を0.01〜2mol%と、ホウ酸(H3BO3)を0.01〜2mol%と、更に、酸化アルミニウム(Al2O3)濃度が10〜1000ppmになるように、これらの原料を準備し、この原料のうち、酸化ビスマス(Bi2O3)および酸化アンチモン(Sb2O3)の全量と、酸化亜鉛(ZnO)0.1〜1.0mol%を含む仮焼原料に700〜1000℃の温度範囲で熱処理を行い、該仮焼原料とその他の原料とを加えてグリーンシートを形成し、該グリーンシートに導電材ペーストパターンを形成し、該グリーンシートを積層し、切断してグリーンチップを形成後、焼成することを特徴とする。これにより、制限電圧特性とインパルス耐量特性が共に優れた酸化亜鉛積層チップバリスタを製造することができる。 The manufacturing method of the zinc oxide laminated chip varistor of the present invention is as follows: zinc oxide (ZnO) 100 mol%, and the amount of this coating is 0.1 to 1.5 mol% of bismuth oxide (Bi 2 O 3 ), antimony oxide (Sb 2 and 0.01~2.0Mol% of O 3), and 0.1~1.5Mol% of one or more of cobalt oxide (CoO) and manganese oxide (MnO 2), and 0.01 to 2 mol% of chromium oxide (Cr 2 O 3) These raw materials were prepared so that the concentration of boric acid (H 3 BO 3 ) was 0.01 to 2 mol% and the aluminum oxide (Al 2 O 3 ) concentration was 10 to 1000 ppm. Among these raw materials, bismuth oxide was prepared. A calcined raw material containing the total amount of (Bi 2 O 3 ) and antimony oxide (Sb 2 O 3 ) and zinc oxide (ZnO) 0.1 to 1.0 mol% is subjected to heat treatment at a temperature range of 700 to 1000 ° C. The raw material and other raw materials are added to form a green sheet, a conductive material paste pattern is formed on the green sheet, the green sheet is laminated, cut and cut into green chips. After the formation, and firing. Thereby, it is possible to manufacture a zinc oxide multilayer chip varistor that is excellent in both the voltage limiting characteristic and the impulse withstand characteristic.

以下、本発明の実施形態について、添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は、酸化亜鉛積層チップバリスタの素子構造例を示す。この酸化亜鉛積層チップバリスタ10は、バリスタ素材となる酸化亜鉛を主成分とし、酸化アンチモン、酸化ビスマス等の添加物を含有させたグリーンシート11に白金(Pt)またはパラジウム(Pd)などの導電材ペーストパターン(内部電極パターン)を配置したものを積層し、焼成して作製された積層型の焼結体素子である。酸化亜鉛を主成分とし、アンチモン、ビスマス等の添加物を含有した焼結体11の内部に、平行平板状に交互に導電材の内部電極12a,12bが積層配置され、積層コンデンサと同様の電極配置となっている。   FIG. 1 shows an example of the element structure of a zinc oxide laminated chip varistor. This zinc oxide laminated chip varistor 10 is made of a conductive material such as platinum (Pt) or palladium (Pd) in a green sheet 11 containing zinc oxide as a main component as a varistor material and containing additives such as antimony oxide and bismuth oxide. It is a laminated type sintered body produced by laminating and firing paste patterns (internal electrode patterns). Inside the sintered body 11 containing zinc oxide as a main component and containing additives such as antimony and bismuth, internal electrodes 12a and 12b made of conductive material are alternately arranged in parallel plate shapes, and the same electrode as the multilayer capacitor It is an arrangement.

そして、複数の内部電極12a,12bは、それぞれ左右の外部電極13a,13bに接続されている。従って、左右の外部電極13a,13b間に印加された電圧は、バリスタ焼結体11の内部に平行平板状に配置された電極12a,12b間のバリスタ焼結体部分に印加される。この実施形態では、4層のバリスタ焼結体層によって、バリスタ素子が構成されている。外部電極13a,13bは、銀などの電極にニッケルメッキ、ハンダまたはスズメッキが施され、実装性を良好なものとしている。なお、酸化亜鉛積層チップバリスタ10は、例えば、3.2mm×1.6mm(3216型)などの標準的なチップ部品としてのサイズを有する表面実装型の部品である。   The plurality of internal electrodes 12a and 12b are connected to the left and right external electrodes 13a and 13b, respectively. Therefore, the voltage applied between the left and right external electrodes 13 a and 13 b is applied to the varistor sintered body portion between the electrodes 12 a and 12 b arranged in a parallel plate shape inside the varistor sintered body 11. In this embodiment, a varistor element is constituted by four varistor sintered body layers. The external electrodes 13a and 13b are made of silver or the like and are plated with nickel, solder, or tin, so that the mountability is good. The zinc oxide multilayer chip varistor 10 is a surface-mount type component having a size as a standard chip component such as 3.2 mm × 1.6 mm (3216 type), for example.

バリスタは、印加電圧がある一定値以上になると、電流が急に流れ出し、それ以上の電圧を制限する電圧制限機能素子である。バリスタの電圧制限機能により、各種異常電圧から、電気・電子機器の回路や半導体素子を保護する。まず、バリスタの基本特性である3特性(漏れ電流、制限電圧、インパルス耐量)およびα値について以下に説明する。   The varistor is a voltage limiting function element that limits the voltage when the applied voltage exceeds a certain value, and the current suddenly flows out. The voltage limit function of the varistor protects the circuits and semiconductor elements of electrical and electronic equipment from various abnormal voltages. First, three characteristics (leakage current, limiting voltage, impulse withstand capability) and α value, which are basic characteristics of a varistor, will be described below.

(漏れ電流)
漏れ電流は、通常は、最大許容回路電圧の印加時に流れる電流を示す。つまりバリスタが使用される時に、外部電極に連続してかかりうる電圧環境の下で、どれだけの電流が流れるかを示す指標であり、少ないことが望ましい。一方でその評価においては、より過酷な条件であるバリスタ電圧の0.9垳(倍)の電圧印加時に流れる電流で評価を行う。後述の本発明の実施例においてもバリスタ電圧の0.9垳(倍)の電圧印加時の漏れ電流にて評価を行っている。漏れ電流を少なく抑える為には、酸化亜鉛粒子の粒界に形成されるダブルショットキー障壁の均一性と、その厚みを厚くすることが重要となる。同時に粒界の形成に際して液相晶が得られると高抵抗化し、漏れ電流を少なくすることができる。
(Leak current)
Leakage current usually indicates the current that flows when the maximum allowable circuit voltage is applied. That is, it is an index indicating how much current flows under a voltage environment that can be continuously applied to the external electrode when the varistor is used, and it is desirable that the number be small. On the other hand, in the evaluation, evaluation is performed with a current that flows when a voltage of 0.9 垳 (times) the varistor voltage, which is a more severe condition, is applied. Also in the examples of the present invention described later, the evaluation is performed by a leakage current when a voltage of 0.9 垳 (times) of the varistor voltage is applied. In order to suppress the leakage current, it is important to increase the uniformity and thickness of the double Schottky barrier formed at the grain boundaries of the zinc oxide particles. At the same time, when a liquid phase crystal is obtained in forming the grain boundary, the resistance is increased and the leakage current can be reduced.

(制限電圧)
通常、バリスタ電圧とは、1(mA)の電流が流れた時にバリスタの両端に示される電圧V1mAである。これに対し、バリスタの制限電圧とは、1(A)、2(A)、10(A)程度の比較的大きな電流が流れた時にバリスタの両端に示される電圧V1A、V2A、V10Aである。バリスタ電圧(V1mA)に対する制限電圧(V2A,10A)との比(制限電圧/バリスタ電圧)を制限電圧比という。バリスタは、保護したい部品と並列に接続し、静電気(ESD)等の異常電流に対してバリスタの特徴である非直線性を利用し回路電圧を低く抑える機能を示すが、かかる制限電圧は、低いほど回路電圧、保護部品にかかる異常電圧を減らすことを示す。この制限電圧を低く抑える特性を出す為には、焼結体の酸化亜鉛(ZnO)粒の均一性を上げる必要がある。これにより電界が分散し、粒界により出現する非直線特性が大きくなり、制限電圧が低下する。
(Limit voltage)
Usually, the varistor voltage is a voltage V 1 mA indicated at both ends of the varistor when a current of 1 (mA) flows. On the other hand, the varistor's limiting voltage is the voltage V 1A , V 2A , V 10A shown at both ends of the varistor when a relatively large current of about 1 (A), 2 (A), 10 (A) flows. It is. The ratio (limit voltage / varistor voltage) with the limit voltage (V 2A, 10A ) to the varistor voltage (V 1mA ) is called the limit voltage ratio. The varistor is connected in parallel with the component to be protected, and shows the function to keep the circuit voltage low by using the non-linearity that is the feature of the varistor against abnormal current such as static electricity (ESD). It shows that the abnormal voltage applied to the circuit voltage and protection parts is reduced. In order to obtain the characteristic that suppresses the limiting voltage to a low level, it is necessary to increase the uniformity of zinc oxide (ZnO) grains in the sintered body. As a result, the electric field is dispersed, nonlinear characteristics appearing at the grain boundaries are increased, and the limiting voltage is lowered.

(インパルス耐量)
インパルス耐量とは、雷サージ、イグニッションサージ、ロードダンプサージの様なインパルス性の大電流が入ってきた時のバリスタの耐量を示す。この耐量は、サージ波形で500(A)等の大電流を印加し、サージ印加前とサージ印加後のバリスタ電圧変化率で評価する。このインパルス耐量を上げる為には、バリスタの基本構成であるグレイン(酸化亜鉛粒)とグレインバウンダリ(粒界)の両方での対応が必要となる。先ず、グレインは低抵抗化を図り、入ってきた大電流がグレインバウンダリでジュール熱に変わるその熱を素早くバルク全体へ拡散し、1粒界の破壊を防ぐことが望まれる。一方で、グレインバウンダリは、ダブルショットキー障壁の厚みを厚くして、突入してくる大電流に対し破壊を招かないことが重要である。
(Impulse withstand)
Impulse withstand indicates the withstand capability of a varistor when a large impulse current such as lightning surge, ignition surge, or load dump surge enters. This withstand capability is evaluated based on the rate of change of the varistor voltage before and after applying a large current such as 500 (A) in a surge waveform. In order to increase the impulse resistance, it is necessary to deal with both grains (zinc oxide grains) and grain boundaries (grain boundaries), which are the basic components of a varistor. First, it is desired that the grain has a low resistance, and that the large current that has entered changes to Joule heat at the grain boundary to quickly diffuse the heat throughout the bulk to prevent the breakage of one grain boundary. On the other hand, in the grain boundary, it is important that the thickness of the double Schottky barrier is increased so as not to cause destruction against a large current that enters.

(α値)
バリスタでは、電極間に配置された焼結体が、電圧によって抵抗値が急変し、ある電圧以上になると、それまで殆ど流れなかった電流が急に流れ出す。バリスタ電圧のわずかな変化で、電流は10倍の単位で変化する。この時の非直線性(即ち、オームの法則では電流と電圧が直線関係であるが)をα値と言い、非直線性が良いほどα値は大きくなる。α値が大きい程、待機・動作漏れ電流が小さく低消費電力であると共に、自己暴走による発熱破壊が起こりにくいことを示している。
(Α value)
In the varistor, the resistance value of the sintered body arranged between the electrodes suddenly changes depending on the voltage, and when the voltage exceeds a certain voltage, the current that has hardly flowed until then suddenly flows out. With a slight change in the varistor voltage, the current changes by a factor of ten. The non-linearity at this time (that is, the current and voltage are linearly related in Ohm's law) is called the α value, and the α value increases as the non-linearity becomes better. The larger the α value, the smaller the standby / operation leakage current and the lower the power consumption, and the less the heat destruction caused by the self-runaway.

次に、本発明のバリスタの製造工程について、図2を参照して説明する。   Next, the manufacturing process of the varistor of this invention is demonstrated with reference to FIG.

まず、酸化亜鉛(ZnO)100mol%と、これに対する外掛け量で、酸化ビスマス(Bi2O3)を0.1〜1.5mol%と、酸化アンチモン(Sb2O3)を0.01〜2.0mol%と、酸化コバルト(CoO)および酸化マンガン(MnO2)の内一種類以上を0.1〜1.5mol%と、酸化クロム(Cr2O3)を0.01〜2mol%と、ホウ酸(H3BO3)を0.01〜2mol%と、更に、酸化アルミニウム(Al2O3)濃度が10〜1000ppmになるように、これらの原料を準備する。この原料のうち、酸化ビスマス(Bi2O3)および酸化アンチモン(Sb2O3)の全量と、酸化亜鉛(ZnO)0.1〜1.0mol%を調合して(ステップ100)仮焼原料とし、これをボールミル等で粉砕・整粒し(ステップ101)、700〜1000℃の温度範囲で酸化雰囲気で仮焼を行い(ステップ102)、ボールミル等で粉砕・整粒する(ステップ103)。なお、仮焼原料とは、便宜上、ステップ102の熱処理前の状態と、熱処理後の状態のいずれか、若しくは、双方を示す場合がある。 First, zinc oxide (ZnO) 100 mol%, and the amount of the outer coating, bismuth oxide (Bi 2 O 3 ) 0.1-1.5 mol%, antimony oxide (Sb 2 O 3 ) 0.01-2.0 mol%, One or more of cobalt oxide (CoO) and manganese oxide (MnO 2 ) is 0.1 to 1.5 mol%, chromium oxide (Cr 2 O 3 ) is 0.01 to 2 mol%, and boric acid (H 3 BO 3 ) is 0.01 These raw materials are prepared so that the concentration of aluminum oxide (Al 2 O 3 ) is 10 to 1000 ppm. Among these raw materials, the total amount of bismuth oxide (Bi 2 O 3 ) and antimony oxide (Sb 2 O 3 ) and zinc oxide (ZnO) 0.1 to 1.0 mol% were prepared (step 100) to obtain a calcined raw material. Is pulverized and sized with a ball mill or the like (step 101), calcined in an oxidizing atmosphere within a temperature range of 700 to 1000 ° C. (step 102), and pulverized and sized with a ball mill or the like (step 103). In addition, for the sake of convenience, the calcining raw material may indicate either or both of the state before the heat treatment in step 102 and the state after the heat treatment.

そして、この仮焼原料と、その他の原料、即ち、主原料である酸化亜鉛(ZnO)の残り分と、酸化コバルト(CoO)、酸化マンガン(MnO2)の内一種類以上を0.1〜1.5mol%、酸化クロム(Cr2O3)を0.01〜2mol%、ホウ酸(H3BO3)を0.01〜2mol%、酸化アルミニウム(Al2O3)濃度が10〜1000ppmになるように各種添加物を加えて原料調合する(ステップ104)。そして、ボールミル等で粉砕し粒を揃え(ステップ105)、PVB、可塑剤、分散剤、離型材、希釈溶剤を加えスラリーを作製する(ステップ106)。 And this calcined raw material and other raw materials, that is, the remainder of zinc oxide (ZnO) which is the main raw material, and one or more of cobalt oxide (CoO) and manganese oxide (MnO 2 ) 0.1 to 1.5 mol %, Chromium oxide (Cr 2 O 3 ) 0.01-2 mol%, boric acid (H 3 BO 3 ) 0.01-2 mol%, various additives so that the aluminum oxide (Al 2 O 3 ) concentration is 10-1000 ppm Is added to prepare the raw material (step 104). And it grind | pulverizes with a ball mill etc. and arranges a grain (step 105), PVB, a plasticizer, a dispersing agent, a mold release material, and a dilution solvent are added, and a slurry is produced (step 106).

次に、ドクターブレードにて成膜し、厚さが10〜100μm程度のグリーンシートを作製する(ステップ107)。該グリーンシートに、白金(Pt)もしくはパラジウム(Pd)ペーストパターンを印刷して内部電極パターンを形成し、ホットプレス等で積層する(ステップ108)。そして、製品サイズ(3216サイズ)に合わせて切断してグリーンチップを形成し(ステップ109)、500℃10時間で脱バインダーを行い(ステップ110)、950〜1300℃で焼成を行う(ステップ111)。   Next, a film is formed with a doctor blade to produce a green sheet having a thickness of about 10 to 100 μm (step 107). A platinum (Pt) or palladium (Pd) paste pattern is printed on the green sheet to form an internal electrode pattern, which is laminated by hot pressing or the like (step 108). Then, a green chip is formed by cutting according to the product size (3216 size) (step 109), debinding is performed at 500 ° C. for 10 hours (step 110), and baking is performed at 950 to 1300 ° C. (step 111). .

さらに、700℃でアニールを行い(ステップ112)、端子電極(外部電極)を銀(Ag)もしくは銀/パラジウム(Ag/Pd)ペーストを塗布し、焼成することで形成する(ステップ113)。そして、端子電極にニッケル(Ni)層、スズ(Sn)層の順にメッキを施し(ステップ114)、バリスタ電圧、漏れ電流等の電気的特性を検測し(ステップ115)、完成品となる。   Further, annealing is performed at 700 ° C. (step 112), and a terminal electrode (external electrode) is formed by applying silver (Ag) or silver / palladium (Ag / Pd) paste and baking (step 113). Then, the terminal electrode is plated in the order of a nickel (Ni) layer and a tin (Sn) layer (step 114), and electrical characteristics such as varistor voltage and leakage current are measured (step 115), and a finished product is obtained.

上記製造工程で製作されたバリスタは、特に低制限電圧化および高インパルス耐量化を達成することができる。すなわち、酸化亜鉛(ZnO)100mol%に対する外掛け量で、酸化ビスマス(Bi2O3)0.1〜1.5mol%と、酸化アンチモン(Sb2O3)0.01〜2.0mol%と、酸化亜鉛(ZnO)0.1〜1.0mol%の範囲で含まれる仮焼原料に予め700〜1000℃の温度範囲で仮焼を行い、この仮焼原料に主原料である酸化亜鉛(ZnO)を加え、焼成することで、バリスタの低制限電圧化を達成できる。この点について以下に説明する。 The varistor manufactured in the above manufacturing process can achieve particularly a low limit voltage and a high impulse resistance. That is, with an outer amount with respect to 100 mol% of zinc oxide (ZnO), bismuth oxide (Bi 2 O 3 ) 0.1 to 1.5 mol%, antimony oxide (Sb 2 O 3 ) 0.01 to 2.0 mol%, zinc oxide (ZnO) By pre-calcining to a calcined raw material contained in a range of 0.1 to 1.0 mol% in a temperature range of 700 to 1000 ° C., adding zinc oxide (ZnO) as a main raw material to this calcined raw material, and firing, The voltage limit of the varistor can be lowered. This will be described below.

一般的に、酸化アンチモンは焼成段階の比較的低温でSb2O4となり酸化亜鉛(ZnO)粒の表面に物理的に吸着して粒成長を阻害し、また、高温ではパイロクロア相やスピネル相を形成し、同じく粒成長を妨げるといわれている。しかし、酸化亜鉛(ZnO)の粒成長は900℃付近から始まる為、実際に粒成長をばらつかせ問題となるのは、パイロクロア相やスピネル相形成時に、粒成長を始めようとする酸化亜鉛(ZnO)粒が相互に影響し合うことであると予想される。従って、酸化亜鉛(ZnO)の粒成長と、パイロクロア相やスピネル相の形成とを別々に分けることができれば、粒成長に影響を及ぼすこと無く、酸化亜鉛(ZnO)の粒の均一性が得られ低制限電圧化を実現出来ると予想される。 In general, antimony oxide becomes Sb 2 O 4 at a relatively low temperature in the firing stage and physically adsorbs on the surface of zinc oxide (ZnO) grains to inhibit grain growth. At high temperatures, pyrochlore and spinel phases are formed. It is said to form and also hinder grain growth. However, since the grain growth of zinc oxide (ZnO) starts at around 900 ° C, the problem is that the grain growth actually varies and the problem is that zinc oxide that tries to start grain growth when the pyrochlore phase or spinel phase is formed ( It is expected that the ZnO) grains will interact with each other. Therefore, if the grain growth of zinc oxide (ZnO) and the formation of pyrochlore and spinel phases can be separated separately, the uniformity of zinc oxide (ZnO) grains can be obtained without affecting grain growth. It is expected that lower voltage limit can be realized.

すなわち、粒成長促進・抑制効果のあるBi2O3、Sb2O3だけを予め仮焼しても、制限電圧に優れたバリスタが得られる訳ではないので、酸化亜鉛(ZnO)の粒成長と、ZnO-Bi2O3-Sb2O3系で起こるパイロクロア相・スピネル相形成の反応とを切り離すようにすることで、酸化亜鉛(ZnO)粒の均一性が得られ、低制限電圧化が図れると予想される。 In other words, pre-calcination of Bi 2 O 3 and Sb 2 O 3 that have the effect of promoting / suppressing grain growth does not always produce a varistor with excellent limiting voltage, so grain growth of zinc oxide (ZnO) By separating the pyrochlore phase and spinel phase formation reaction that occurs in the ZnO-Bi 2 O 3 -Sb 2 O 3 system, the uniformity of zinc oxide (ZnO) grains can be obtained, and the voltage limit can be lowered. Is expected.

本発明では、仮焼の段階では、Sb2O3の酸化反応によりSb2O4が形成され、相転移するBiとの間で層状の化合物を作り、一部はSb2O4単体として存在し、またBi2O3単体として存在するが、700℃以上の温度で仮焼を行うことで粒成長を部分的に抑制するSb2O3は無くなり、この時にZnもBiガラスとして取り込まれると考えられる。この仮焼原料を添加して酸化亜鉛(主原料)を本焼成すると、パイロクロア相を形成し、スピネル相を形成し、粒成長を制御する。パイロクロア相とスピネル相は酸化亜鉛粒(ZnO)内には取り込まれないので、粒の均一性を促すことで、低制限電圧化を実現出来ると考えられる。すなわち、粒成長をばらつかせるSb2O3を仮焼の段階で酸化させ、Sb2O4にし、且つ、パイロクロア相とスピネル相とを仮焼原料により形成することで、粒成長の均一性が得られると考えられる。 In the present invention, in the calcination stage, Sb 2 O 4 is formed by the oxidation reaction of Sb 2 O 3 , and a layered compound is formed with Bi which undergoes phase transition, and some of them exist as Sb 2 O 4 alone In addition, although Bi 2 O 3 exists as a simple substance, Sb 2 O 3 that partially suppresses grain growth by performing calcination at a temperature of 700 ° C. or higher disappears, and at this time Zn is also taken in as Bi glass Conceivable. When this calcined raw material is added and zinc oxide (main raw material) is calcined, a pyrochlore phase is formed, a spinel phase is formed, and grain growth is controlled. Since the pyrochlore phase and the spinel phase are not taken into the zinc oxide grains (ZnO), it is considered that a low limiting voltage can be realized by promoting the uniformity of the grains. In other words, Sb 2 O 3 that disperses grain growth is oxidized at the stage of calcination to form Sb 2 O 4 , and the pyrochlore phase and the spinel phase are formed from the calcination raw material, thereby making the grain growth uniform. Can be obtained.

以下に、パイロクロア相形成と、スピネル相形成の一般的な反応式を示す。
2Sb2O3+O2→2Sb2O4(酸化による蒸発・凝縮によりZnO粒表面に付着)…(1)
15ZnO+20Bi2O3+20Sb2O4+42O2→30Zn2Bi3Sb3O14(パイロクロア相形成)…(2)
2Zn2Bi3Sb3O14+17ZnO→3Zn7Sb2O12+3Bi2O3(スピネル相形成及びビスマス液相形成)…(3)
そこで、一連のスピネル相形成に至るまでに反応に寄与するBi2O3-Sb2O3-ZnO系の混合物を用意しこれを仮焼したところ、本焼成段階の低温で(1)の反応が起こらず、その後の反応選択性を得ることができ、低制限電圧化が可能となったと考えられる。
Below, the general reaction formula of pyrochlore phase formation and spinel phase formation is shown.
2Sb 2 O 3 + O 2 → 2Sb 2 O 4 (attached to ZnO grain surface by evaporation / condensation by oxidation)… (1)
15ZnO + 20Bi 2 O 3 + 20Sb 2 O 4 + 42O 2 → 30Zn 2 Bi 3 Sb 3 O 14 (Pyrochlore phase formation)… (2)
2Zn 2 Bi 3 Sb 3 O 14 + 17ZnO → 3Zn 7 Sb 2 O 12 + 3Bi 2 O 3 (Formation of spinel phase and bismuth liquid phase)… (3)
Therefore, a mixture of Bi 2 O 3 -Sb 2 O 3 -ZnO that contributes to the reaction until a series of spinel phase formation was prepared and calcined. Thus, it is considered that the subsequent reaction selectivity can be obtained, and the voltage limit can be lowered.

すなわち、従来の方法では、Sb2O3は500℃付近で急激に酸化反応を起こし、ZnO表面に物理的に吸着し、Sb2O3からSb2O4の酸化過程で一部蒸発・吸着を起こす。この吸着したSb2O3は、全て均一に吸着するはずが無く、これが粒成長の不均一を招き特性を劣化させる。従って、Sb2O3がZnOに吸着するのを防ぐ目的で、添加する元素の中から液相を形成するBi2O3とSb2O3を予め仮焼し化合物を形成する。これによりBi2O3とSb2O3は完全なるパイロクロア相のような結晶にはならず、ZnOの粒成長をばらつかせる要因が排除できる。 That is, in the conventional method, Sb 2 O 3 undergoes a rapid oxidation reaction at around 500 ° C, physically adsorbs on the ZnO surface, and partially evaporates and adsorbs during the oxidation of Sb 2 O 3 to Sb 2 O 4 Wake up. All of the adsorbed Sb 2 O 3 cannot be adsorbed uniformly, which causes non-uniform grain growth and deteriorates the characteristics. Therefore, in order to prevent Sb 2 O 3 from adsorbing to ZnO, Bi 2 O 3 and Sb 2 O 3 that form a liquid phase are preliminarily calcined from the elements to be added to form a compound. As a result, Bi 2 O 3 and Sb 2 O 3 do not become crystals like a complete pyrochlore phase, and it is possible to eliminate the factors that cause ZnO grain growth to vary.

しかし、この化合物は、結局Sb2O3からSb2O4になる際の粒成長をばらつかせる要因が排除出来ただけで、ZnOがその後粒成長において均一性を維持できることを示すわけではなく、ここでZnOが必要になる。化合物にZnが微量に含まれると、その後の化合物は主原料であるZnOと少なからず反応する。その反応過程で、元々Zn-Bi、Zn-Sbは化合物を作る、つまり反応性が高いので、仮焼温度を超えるとその反動で急激に反応が始まってしまう。そこで、Znを微量に添加しておくことで、その急激な反応が緩和し異常粒成長を抑制できると考えられる。 However, this compound does not show that ZnO can maintain uniformity in subsequent grain growth just by eliminating the factors that cause the grain growth to vary from Sb 2 O 3 to Sb 2 O 4 after all. And here you need ZnO. When a compound contains a small amount of Zn, the subsequent compound reacts with ZnO, which is the main raw material, not a little. In the reaction process, Zn-Bi and Zn-Sb originally form compounds, that is, they are highly reactive, so when the calcination temperature is exceeded, the reaction starts abruptly due to the reaction. Therefore, it is considered that by adding a small amount of Zn, the rapid reaction is relaxed and abnormal grain growth can be suppressed.

BiはZnOと反応しなくともその後焼結の過程で液相を形成する。バリスタでは粒界を形成しているのはBiであると言われていて、つまり、Biは、粒成長制御と言う観点で添加していると言うより、粒界を形成するために添加している。しかし、ただ添加したのでは、粒界を形成するだけでなく粒の不均一性に影響を与えてしまう為、如何に粒成長をばらつかせずに添加するかが重要になる。同じ様に、Sbは特に粒成長に影響を与えるが、添加することでZnとの間で形成されるスピネル相は、高温時での粒成長の均一化制御には重要な役割を示す。スピネル相結晶にはBiは存在しないが、スピネル相の前駆体と言われるパイロクロア相にはBiが必要な為にBiも一緒に仮焼する。Znを過剰に入れると、Bi-SbによるSbがZnに吸着するのを抑えたいのに、ZnとSbの核形成が主役となり、異常粒成長の種を作ってしまう。少量であるからこそ確率論でBi-Sbの化合物が大半を占め、その一部にZnが吸着して上記の反応制御が得られるのであり、多く入れてBi-Zn化合物を支配的にしてしまったら、結局その後の焼成過程で異常粒成長が生じる。従って、仮焼段階で、酸化ビスマス(Bi2O3)0.1〜1.5mol%、酸化アンチモン(Sb2O3)0.01〜2.0mol%、酸化亜鉛(ZnO)0.1〜1.0mol%に設定している。 Bi does not react with ZnO, but forms a liquid phase during the subsequent sintering process. In varistors, it is said that it is Bi that forms the grain boundaries, that is, Bi is added to form grain boundaries rather than being added in terms of grain growth control. Yes. However, the addition does not only form grain boundaries, but also affects the non-uniformity of grains, so it is important how to add grains without causing variation in grain growth. Similarly, Sb particularly affects grain growth, but the spinel phase formed with Zn by adding it plays an important role in controlling the uniform growth of grain growth at high temperatures. Bi is not present in the spinel phase crystal, but Bi is also calcined together because Bi is necessary for the pyrochlore phase, which is said to be the precursor of the spinel phase. When Zn is added in excess, the nucleation of Zn and Sb plays a leading role in the formation of abnormal grain growth seeds in order to suppress the adsorption of Sb by Bi-Sb to Zn. Because of the small amount, most of the Bi-Sb compounds occupy the probability theory, and Zn is adsorbed on a part of them, and the above reaction control can be obtained. After that, abnormal grain growth occurs in the subsequent firing process. Therefore, bismuth oxide (Bi 2 O 3 ) 0.1 to 1.5 mol%, antimony oxide (Sb 2 O 3 ) 0.01 to 2.0 mol%, zinc oxide (ZnO) 0.1 to 1.0 mol% are set in the calcination stage. .

次に、ドナー元素の添加によるバリスタの高インパルス耐量化について検討する。先に述べた様に、高インパルス耐量化には2つの手法がある。1つが粒界のダブルショットキー障壁の厚みを厚くし、大電流が印加された時にトンネル効果による雪崩式に電子が粒界を飛び越える現象を抑えることにある。もう1つが酸化亜鉛(ZnO)粒の比抵抗を下げて、熱拡散効率を上げることで、発生したジュール熱を素子全体に素早く拡散させ、粒界の局部的な破壊を防ぐことにある。   Next, we will consider how to improve the impulse tolerance of a varistor by adding a donor element. As described above, there are two methods for increasing the impulse tolerance. One is to increase the thickness of the double-Schottky barrier at the grain boundary and suppress the phenomenon that electrons jump over the grain boundary due to the tunnel effect when a large current is applied. The other is to reduce the specific resistance of the zinc oxide (ZnO) grains and increase the thermal diffusion efficiency, thereby quickly diffusing the generated Joule heat throughout the device and preventing local destruction of the grain boundaries.

しかし、ダブルショットキー障壁の厚みを厚くし、大きな電流に耐えられる粒界を形成しても、発生するジュール熱が大きく、また発生するジュール熱が局部的に粒界に集中すると、良好な耐量を得ることは難しくなる。従って、インパルス耐量を向上させる為には、後者の酸化亜鉛(ZnO)粒の比抵抗を下げて熱拡散効率を向上させることが重要である。この組成系にドナー元素であるアルミニウム(Al)を添加することで、インパルス耐量を大幅に向上させることができる。   However, even if the thickness of the double Schottky barrier is increased and a grain boundary that can withstand a large current is formed, the generated Joule heat is large. Getting harder. Therefore, in order to improve the impulse resistance, it is important to improve the thermal diffusion efficiency by lowering the specific resistance of the latter zinc oxide (ZnO) grains. By adding aluminum (Al), which is a donor element, to this composition system, the impulse withstand can be greatly improved.

また、上記Bi2O3-Sb2O3-ZnO系の混合物に同じくスピネル相を形成するチタン(Ti)や、粒界形成物質である希土類元素や、Si系ガラスを加え、仮焼原料に添加することで更にバリスタ特性を向上させることができる。同時に、酸化コバルト、酸化マンガン、酸化クロム、ホウ酸の添加量を最適化することで、高性能なバリスタ特性が得られる。 In addition, titanium (Ti) that forms the spinel phase, rare earth elements that are grain boundary forming substances, and Si-based glass are added to the Bi 2 O 3 —Sb 2 O 3 —ZnO-based mixture, and the calcined raw material is added. By adding it, the varistor characteristics can be further improved. At the same time, high performance varistor characteristics can be obtained by optimizing the amount of cobalt oxide, manganese oxide, chromium oxide and boric acid added.

以下、試作評価結果について説明する。すべての試作評価結果で、焼成温度は1100℃で5時間保持とし、製品形状は3216サイズとし、内部電極層数を4層の積層構造で作製し、電極材は白金(Pt)100%の導電材ペーストを用いた。   Hereinafter, the trial evaluation results will be described. In all prototype evaluation results, the firing temperature was held at 1100 ° C for 5 hours, the product shape was 3216 size, the number of internal electrode layers was 4 layers, and the electrode material was 100% platinum (Pt) conductive A material paste was used.

まず、比較例として、従来の製造工程で試作したバリスタの評価結果を表1に示す。この試作品は、酸化亜鉛(ZnO)100mol%に対し、外掛けで酸化ビスマス(Bi2O3)0.5mol%、酸化アンチモン(Sb2O3)1.0mol%、酸化コバルト(CoO)1.0mol%、酸化マンガン(MnO2)1.0mol%、酸化クロム(Cr2O3)0.5mol%、ホウ酸(H3BO3)0.5mol%、酸化アルミニウム(Al2O3)0.0001mol%、酸化チタン(TiO2)0.1mol%、酸化ケイ素(SiO2)0.5mol%を原料調合し、図2に示す製造工程のステップ104−115に従って製作したものである。なお、酸化ビスマス(Bi2O3)と酸化アンチモン(Sb2O3)は予め800℃、1時間で仮焼を行ってから添加している。グリーンシートの厚みを変更し、低圧バリスタ、中圧バリスタ、高圧バリスタの3種類を作製している。数値は平均値とバラツキを表すσを示し、サンプル数は20である。 First, as a comparative example, Table 1 shows the evaluation results of a varistor prototyped in a conventional manufacturing process. This prototype consists of 100 mol% of zinc oxide (ZnO) and 0.5 mol% of bismuth oxide (Bi 2 O 3 ), 1.0 mol% of antimony oxide (Sb 2 O 3 ), 1.0 mol% of cobalt oxide (CoO). , Manganese oxide (MnO 2 ) 1.0 mol%, Chromium oxide (Cr 2 O 3 ) 0.5 mol%, Boric acid (H 3 BO 3 ) 0.5 mol%, Aluminum oxide (Al 2 O 3 ) 0.0001 mol%, Titanium oxide ( TiO 2 ) 0.1 mol% and silicon oxide (SiO 2 ) 0.5 mol% were prepared as raw materials and manufactured according to steps 104 to 115 of the manufacturing process shown in FIG. Note that bismuth oxide (Bi 2 O 3 ) and antimony oxide (Sb 2 O 3 ) are added after calcination in advance at 800 ° C. for 1 hour. Three types of low-pressure varistors, medium-pressure varistors, and high-pressure varistors are manufactured by changing the thickness of the green sheet. The numerical value indicates σ representing the average value and variation, and the number of samples is 20.

Figure 2008100856
Figure 2008100856

粒成長促進・抑制効果のある酸化ビスマス(Bi2O3)、酸化アンチモン(Sb2O3)だけを予め仮焼しても、表1に示す結果から分かるように、制限電圧に優れたバリスタが得られる訳ではない。このため、ZnOの粒成長と、ZnO-Bi2O3-Sb2O3系で起こるパイロクロア・スピネル相形成の反応とを切り離すようにすることで、ZnOの均一性が得られ、低制限電圧化が図れると予想される。そこで、Bi2O3-Sb2O3混合物に酸化亜鉛(ZnO)を添加し、酸化亜鉛(ZnO)の添加量を変化させ、予め仮焼しておくことで、制限電圧がどう変化するのか確認した結果を表2に示す。尚、添加量は酸化亜鉛(ZnO)100mol%に対する外掛けの添加量で示す。Bi/Sb比はバリスタ電圧を低くしたい時には大きく、高くしたい時には小さくすれば良い。本試作結果では、Bi/Sb比を1とし、各0.5mol%添加した混合物にZnO添加量を変化させ、試験を行った。その他の組成は表1に示すバリスタの組成と同じである。 As can be seen from the results shown in Table 1, even if only bismuth oxide (Bi 2 O 3 ) and antimony oxide (Sb 2 O 3 ), which have the effect of promoting and suppressing grain growth, are preliminarily calcined, the varistor has an excellent limiting voltage. Is not necessarily obtained. For this reason, by separating ZnO grain growth from the reaction of pyrochlore spinel phase formation that occurs in the ZnO-Bi 2 O 3 -Sb 2 O 3 system, uniformity of ZnO can be obtained, and low limiting voltage can be obtained. It is expected that So, how does the limit voltage change by adding zinc oxide (ZnO) to the Bi 2 O 3 -Sb 2 O 3 mixture, changing the amount of zinc oxide (ZnO) added, and pre-calcining in advance? The confirmed results are shown in Table 2. The addition amount is shown as an addition amount with respect to 100 mol% of zinc oxide (ZnO). The Bi / Sb ratio can be increased when it is desired to lower the varistor voltage, and can be decreased when it is desired to increase it. In this trial production result, the Bi / Sb ratio was set to 1, and the test was performed by changing the amount of ZnO added to the mixture in which 0.5 mol% was added. Other compositions are the same as those of the varistor shown in Table 1.

Figure 2008100856
Figure 2008100856

この結果、Bi2O3-Sb2O3混合物と一緒に、酸化亜鉛(ZnO)を0.1〜1mol%の範囲で加え仮焼することで、制限電圧比が1.5となり、制限電圧特性が改善されることが確認出来た。 As a result, by adding zinc oxide (ZnO) in the range of 0.1 to 1 mol% together with the Bi 2 O 3 —Sb 2 O 3 mixture and calcining, the limiting voltage ratio becomes 1.5, and the limiting voltage characteristic is It was confirmed that it was improved.

ドナー元素としてアルミニウム(Al)を添加し、高インパルス耐量化を図ることを検討した。インパルス耐量を向上させる為には、酸化亜鉛(ZnO)粒の比抵抗を下げて熱拡散効率を向上させることが重要である。そこで、ZnOに対してドナー元素となるAl2O3の添加量を変化させた試作品を作製し、8/20μsサージ波形で500(A)印加し、バリスタ電圧のサージ印加前後における変化率を測定した。その結果を表3に示す。Al2O3の添加量は原料中に含まれるAl2O3の濃度(ppm)で示した。その他の添加物、添加量は表2に示す試作結果と同じであり、ZnOの添加量は0.5mol%である。この結果、Al2O3を10〜1000ppmの範囲で添加することで高インパルス耐量化が図れることが確認出来た。 We studied the addition of aluminum (Al) as a donor element to achieve high impulse resistance. In order to improve the impulse resistance, it is important to improve the thermal diffusion efficiency by lowering the specific resistance of zinc oxide (ZnO) grains. Therefore, a prototype was made by changing the additive amount of Al 2 O 3 as a donor element to ZnO, 500 (A) was applied with an 8/20 μs surge waveform, and the rate of change of the varistor voltage before and after the surge was applied. It was measured. The results are shown in Table 3. The amount of Al 2 O 3 added is indicated by the concentration (ppm) of Al 2 O 3 contained in the raw material. Other additives and addition amounts are the same as the experimental results shown in Table 2, and the addition amount of ZnO is 0.5 mol%. As a result, it was confirmed that high impulse resistance could be achieved by adding Al 2 O 3 in the range of 10 to 1000 ppm.

Figure 2008100856
Figure 2008100856

上記試作評価結果により、酸化亜鉛積層チップバリスタの低制限電圧化、高インパルス耐量化が確認できた。しかし、上記バリスタとしてのその他の特性についても検討する必要がある。そこで、その他の添加物添加量との相互関係を検討し、バリスタ組成とバリスタ特性の関係の検証を行った。
組成の検討は、以下7項目に分けて試作評価を行った。
(a)酸化亜鉛(ZnO)と共に仮焼するBi2O3-Sb2O3組成比の検討
(b)粒界形成 基本添加物の検討 (CoO、MnO)
(c)信頼性安定化物質の検討 (Cr2O3)
(d)ガラス且つドナー効果のある添加物の検討 (H3BO3)
(e)仮焼原料組成の高性能化1、酸化チタンの検討 (TiO2)
(f)仮焼原料組成の高性能化2、希土類添加の検討 (Y、Sc、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)
(g)仮焼原料組成の高性能化3、二酸化珪素の検討 (SiO2)
From the trial evaluation results, it was confirmed that the zinc oxide multilayer chip varistor had a lower limit voltage and a higher impulse withstand capability. However, it is necessary to examine other characteristics as the varistor. Therefore, the relationship between the amount of other additives added was examined, and the relationship between the varistor composition and the varistor characteristics was verified.
The examination of the composition was divided into the following 7 items and the prototype evaluation was performed.
(a) Investigation of the composition ratio of Bi 2 O 3 -Sb 2 O 3 calcined with zinc oxide (ZnO)
(b) Grain boundary formation Study of basic additives (CoO, MnO)
(c) Examination of reliability stabilizing material (Cr 2 O 3 )
(d) Examination of additives with glass and donor effect (H 3 BO 3 )
(e) Improving the performance of calcined raw material composition 1, study of titanium oxide (TiO 2 )
(f) High-performance calcining raw material composition 2, study of rare earth addition (Y, Sc, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu)
(g) Improving the calcining raw material composition 3, studying silicon dioxide (SiO 2 )

(a)酸化亜鉛(ZnO)と共に仮焼するBi2O3-Sb2O3組成比の検討
仮焼原料として、基本組成であるBi2O3-Sb2O3の組成比組み合わせを検討した。評価はバリスタの非直線性の評価指標であるα値にて行った。α値の評価基準は実用性を考慮し、バリスタ電流0.01mA〜1mA間で、20を下限値として評価した。評価結果を表4に示す。この結果から、酸化亜鉛(ZnO)100mol%に対し、外掛けでBi2O3添加量0.1〜1.5mol%、Sb2O3添加量0.01〜2.0mol%添加することが望ましいことが判明した。なお、ZnOの添加量は0.5mol%である。
(a) Examination of the composition ratio of Bi 2 O 3 -Sb 2 O 3 calcined with zinc oxide (ZnO) The composition ratio combination of the basic composition Bi 2 O 3 -Sb 2 O 3 was examined as a calcining raw material . The evaluation was performed using an α value that is an evaluation index of the nonlinearity of the varistor. The evaluation standard of α value was evaluated by considering 20 as the lower limit value between varistor currents of 0.01 mA to 1 mA in consideration of practicality. The evaluation results are shown in Table 4. From this result, it was found that it is desirable to add Bi 2 O 3 addition amount 0.1 to 1.5 mol% and Sb 2 O 3 addition amount 0.01 to 2.0 mol% with respect to 100 mol% of zinc oxide (ZnO). The amount of ZnO added is 0.5 mol%.

Figure 2008100856
Figure 2008100856

次に、低制限電圧化を得る為の仮焼温度の検討を行った。表4に示す試作結果で、Bi2O30.5mol%、Sb2O3:0.5mol%の添加量の仮焼原料の仮焼温度を変化させて作製した試作品について、その制限電圧比と仮焼温度との関係を表5に示す。試作品の組成は、ZnO:100mol%,Bi2O3:0.5mol%,Sb2O3:0.5mol%,Cr2O3:0.5mol%,H3BO3:0.5mol%,CoO:0.5mol%,MnO:0.5mol%,Al2O3濃度:20ppmである。この試作評価結果から、仮焼温度は700〜1000℃の範囲が望ましいことが確認出来た。 Next, the calcining temperature for obtaining a lower limit voltage was examined. In the prototype results shown in Table 4, with respect to the prototype manufactured by changing the calcining temperature of the calcining raw material with the addition amount of Bi 2 O 3 0.5 mol% and Sb 2 O 3 : 0.5 mol%, Table 5 shows the relationship with the calcination temperature. The composition of the prototype, ZnO: 100mol%, Bi 2 O 3: 0.5mol%, Sb 2 O 3: 0.5mol%, Cr 2 O 3: 0.5mol%, H 3 BO 3: 0.5mol%, CoO: 0.5 mol%, MnO: 0.5 mol%, Al 2 O 3 concentration: 20 ppm. From this trial evaluation result, it was confirmed that the calcining temperature is preferably in the range of 700 to 1000 ° C.

Figure 2008100856
Figure 2008100856

(b)粒界形成 基本添加物の検討 (CoO、MnO)
粒界形成基本添加物として、酸化コバルト(CoO)と酸化マンガン(MnO)の添加量を検討した。表4に示す評価結果と同様にα値にて行った。α値の評価基準は実用性を考慮し0.01mA〜1mA間で20を下限値として評価した。なお、仮焼原料は、ZnO:100mol%に対し外掛けで0.5Bi2O3-0.5Sb2O3-0.5ZnOを添加し、CoO、MnO以外の組成条件は表1および表2に示す評価試験と同様である。評価結果を表6、7に示す。この結果、コバルト(CoO)とマンガン(MnO)の添加量がそれぞれ0.1〜1.5mol%の時、α値20以上を達成することが確認できた。
(b) Grain boundary formation Study of basic additives (CoO, MnO)
The addition amounts of cobalt oxide (CoO) and manganese oxide (MnO) were studied as basic additives for grain boundary formation. It carried out by (alpha) value similarly to the evaluation result shown in Table 4. The evaluation standard of α value was evaluated with 20 as the lower limit between 0.01 mA and 1 mA in consideration of practicality. The calcined raw material was added 0.5Bi 2 O 3 -0.5Sb 2 O 3 -0.5ZnO as an outer coating to ZnO: 100 mol%, and the composition conditions other than CoO and MnO were evaluated as shown in Table 1 and Table 2. Similar to the test. The evaluation results are shown in Tables 6 and 7. As a result, it was confirmed that an α value of 20 or more was achieved when the addition amounts of cobalt (CoO) and manganese (MnO) were 0.1 to 1.5 mol%, respectively.

Figure 2008100856
Figure 2008100856

Figure 2008100856
Figure 2008100856

次に、同じ遷移金属であるコバルトとマンガンを組み合わせて添加し、α値の評価を行った。その結果を表8に示す。コバルトとマンガン以外の試作品の組成は、ZnO:100mol%,Bi2O3:0.5mol%,Sb2O3:0.5mol%,Cr2O3:0.5mol%,H2BO3:0.5mol%,Al2O3濃度:20ppmである。この結果、コバルト(CoO)とマンガン(MnO)の添加量は一種類以上を合計0.1〜1.5mol%添加することでα値20以上が得られることが確認できた。 Next, cobalt and manganese, which are the same transition metals, were added in combination, and the α value was evaluated. The results are shown in Table 8. The composition of cobalt than the manganese prototype, ZnO: 100mol%, Bi 2 O 3: 0.5mol%, Sb 2 O 3: 0.5mol%, Cr 2 O 3: 0.5mol%, H 2 BO 3: 0.5mol %, Al 2 O 3 concentration: 20 ppm. As a result, it was confirmed that an α value of 20 or more can be obtained by adding one or more kinds of cobalt (CoO) and manganese (MnO) in a total amount of 0.1 to 1.5 mol%.

Figure 2008100856
Figure 2008100856

(c)信頼性安定化物質の検討 (Cr2O3)
信頼性安定化物質として酸化クロム(Cr2O3)の添加量を検討した。評価はサージ電流印加前後のバリスタ電圧変化率で行った。印加するサージ電流は一律300Aとし良品判定は、バリスタ電圧変化率10%以内と設定した。なお、仮焼原料はZnO:100mol%に対し外掛けで0.5Bi2O3-0.5Sb2O3-0.5ZnOであり、酸化コバルトをZnO:100mol%に対し外掛けで0.5mol%添加した。結果を表9に示す。この結果、酸化クロム(Cr2O3)の添加量をZnO:100mol%に対し0.01〜2mol%添加することで信頼性の高いバリスタが得られることを確認できた。
(C) Investigation of reliability stabilizing materials (Cr 2 O 3 )
The amount of chromium oxide (Cr 2 O 3 ) added as a reliability stabilizer was investigated. The evaluation was performed based on the varistor voltage change rate before and after applying the surge current. The applied surge current is uniformly 300A, and the non-defective product judgment is set to be within 10% of the varistor voltage change rate. Incidentally, calcined raw material is ZnO: 100 mol% relative to a 0.5Bi 2 O 3 -0.5Sb 2 O 3 -0.5ZnO in outer percentage, cobalt oxide ZnO: was added 0.5 mol% in outer percentage relative to 100 mol%. The results are shown in Table 9. As a result, it was confirmed that a highly reliable varistor can be obtained by adding 0.01 to 2 mol% of chromium oxide (Cr 2 O 3 ) to ZnO: 100 mol%.

Figure 2008100856
Figure 2008100856

(d)ガラス添加物の検討 (H3BO3、SiO2)
ガラス添加物の添加量最適化については、サージ・エネルギー耐量と高温時の漏れ電流と言う2試験の検討を行った。サージ・エネルギー耐量は大きいもの程、大電流時の耐量に優れ、高温時の漏れ電流は待機時に流れてしまう漏洩電流である為、小さい物程優れている。
ホウ酸(H3BO3)添加量について検討する。
仮焼原料ZnO:100mol%に対し外掛けで0.5Bi2O3-0.5Sb2O3-0.5ZnO、酸化コバルトをZnO:100mol%に対し外掛けで0.5mol% 酸化クロムをZnO:100mol%に対し外掛けで0.3mol%添加した。表10にサージ耐量(アンペア:A)、表11にエネルギー耐量(ジュール:J)、表12に高温時の漏れ電流(マイクロアンペアμA)を示す。これらの結果、ZnO:100mol%に対し外掛けでホウ酸(H3BO3)0.01〜2.0mol%加えることで高性能化が図れることが確認出来た。
(d) Examination of glass additives (H 3 BO 3 , SiO 2 )
Regarding the optimization of the additive amount of glass additives, two tests, surge energy tolerance and leakage current at high temperature, were examined. The larger the surge energy withstand, the better the withstand at a large current, and the leakage current at high temperature is the leakage current that flows during standby, so the smaller the better.
Consider the amount of boric acid (H 3 BO 3 ) added.
Calcination raw material ZnO: 0.5Bi 2 O 3 -0.5Sb 2 O 3 -0.5ZnO with 100 mol% outer coating, cobalt oxide with 0.5 mol% outer coating with ZnO: 100 mol% Chrome oxide with ZnO: 100 mol% On the other hand, 0.3 mol% was added as an outer coat. Table 10 shows the surge resistance (ampere: A), Table 11 shows the energy resistance (joule: J), and Table 12 shows the leakage current (microampere μA) at high temperature. As a result, it was confirmed that high performance could be achieved by adding 0.01 to 2.0 mol% boric acid (H 3 BO 3 ) as an outer coating with respect to ZnO: 100 mol%.

Figure 2008100856
Figure 2008100856

Figure 2008100856
Figure 2008100856

Figure 2008100856
Figure 2008100856

(e)仮焼原料組成の高性能化1、酸化チタンの検討(TiO2)
上述した結果から、仮焼原料をZnO:100mol%に対し外掛けで(0.1〜1.5mol%)Bi2O3-(0.01〜2mol%)Sb2O3-(0.1〜1mol%)ZnOとなる様に添加することで、低制限電圧化が可能であり、且つα値20以上の高性能バリスタを得ることが確認出来た。更なる改善として、酸化チタンを仮焼原料組成に加えることでサージ・エネルギー耐量の高性能化を検討した。サージ耐量を表15、エネルギー耐量を表16に評価結果をそれぞれ示す。なお、組成は上記試験結果を受けて、ZnO100mol%に対して外掛けでCoO:0.5mol%、Cr2O3:0.3mol%、H3BO3:0.3mol%を添加し、仮焼原料を検討した。この結果、酸化チタン(TiO2)をZnO:100mol%に対し外掛けで0.01〜0.5mol%仮焼原料であるBi2O3-Sb2O3-ZnOに添加することで、サージ・エネルギー耐量が更に向上することが確認できた。
(e) Improving the performance of calcining raw material composition 1, study of titanium oxide (TiO 2 )
From the above-mentioned results, the calcined raw material becomes (0.1 to 1.5 mol%) Bi 2 O 3- (0.01 to 2 mol%) Sb 2 O 3- (0.1 to 1 mol%) ZnO as an outer coating with respect to ZnO: 100 mol%. It was confirmed that a high-performance varistor having an α value of 20 or more can be obtained by adding in this manner. As a further improvement, we examined the improvement of surge energy resistance by adding titanium oxide to the calcined raw material composition. The evaluation results are shown in Table 15 for surge resistance and Table 16 for energy resistance. The composition is subjected to the above test results, CoO in outer percentage relative ZnO100mol%: 0.5mol%, Cr 2 O 3: 0.3mol%, H 3 BO 3: addition of 0.3 mol%, the calcined material investigated. As a result, by adding titanium oxide (TiO 2 ) to ZnO: 100 mol% as an outer coating of Bi 2 O 3 --Sb 2 O 3 --ZnO, 0.01 to 0.5 mol%, it is possible to withstand surge energy. Has been confirmed to be further improved.

Figure 2008100856
Figure 2008100856

Figure 2008100856
Figure 2008100856

(f)仮焼原料組成の高性能化2、希土類添加の検討 (Y、Sc、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)
上述した結果から、仮焼原料をZnO:100mol%に対し外掛けで(0.1〜1.5mol%)Bi2O3-(0.01〜2mol%)Sb2O3-(0.1〜1mol%)ZnOとなる様に添加することで、低制限電圧化が可能であり、且つα値20以上の高性能バリスタを得ることが確認出来た。更なる改善として、希土類元素を仮焼原料組成に加えることでサージ・エネルギー耐量の高性能化を検討した。サージ耐量を表15に、エネルギー耐量を表16に評価結果をそれぞれ示す。なお、組成は上記試験結果を受けて、ZnO100mol%に対して外掛けでCoO:0.5mol%、Cr2O3:0.3mol%、H3BO3:0.3mol%を添加し、仮焼原料を検討した。この結果、希土類酸化物(A2B3)をZnO:100mol%に対し外掛けで0.01〜0.5mol%仮焼原料であるBi2O3-Sb2O3-ZnOに添加することで、サージ耐量、エネルギー耐量が更に向上することが確認出来た。
(f) High-performance calcining raw material composition 2, study of rare earth addition (Y, Sc, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu)
From the above-mentioned results, the calcined raw material becomes (0.1 to 1.5 mol%) Bi 2 O 3- (0.01 to 2 mol%) Sb 2 O 3- (0.1 to 1 mol%) ZnO as an outer coating with respect to ZnO: 100 mol%. It was confirmed that a high-performance varistor having an α value of 20 or more can be obtained by adding in this manner. As a further improvement, we examined the improvement of surge energy resistance by adding rare earth elements to the calcined raw material composition. The evaluation results are shown in Table 15 for the surge resistance and Table 16 for the energy resistance. The composition is subjected to the above test results, CoO in outer percentage relative ZnO100mol%: 0.5mol%, Cr 2 O 3: 0.3mol%, H 3 BO 3: addition of 0.3 mol%, the calcined material investigated. As a result, by adding rare earth oxide (A 2 B 3 ) to Bi 2 O 3 -Sb 2 O 3 -ZnO, which is 0.01 to 0.5 mol% calcined raw material, with respect to ZnO: 100 mol%, surge It was confirmed that the tolerance and energy tolerance were further improved.

Figure 2008100856
Figure 2008100856

Figure 2008100856
Figure 2008100856

(g)仮焼原料組成の高性能化3、二酸化珪素の検討(SiO2)
上述した結果から、仮焼原料をZnO:100mol%に対し外掛けで(0.1〜1.5mol%)Bi2O3-(0.01〜2mol%)Sb2O3-(0.1〜1mol%)ZnOとなる様に添加することで、低制限電圧化が可能であり、且つα値20以上の高性能バリスタを得ることが確認出来た。更なる改善として、酸化ケイ素(SiO2)を仮焼原料組成に加えることで、サージ耐量・エネルギー耐量の高性能化を検討した。サージ耐量を表17に、エネルギー耐量を表18に評価結果をそれぞれ示す。なお、上記の結果を受けて、ZnO100mol%に対して外掛けでCoO:0.5mol%、H3BO3:0.3mol%、Cr2O3:0.3mol%を添加し基本組成とした上で、部分仮焼原料を検討した。この結果、酸化ケイ素(SiO2)をZnO100mol%に対して外掛けで0.01〜0.5mol%仮焼原料であるBi2O3-Sb2O3-ZnOに添加することで、サージ耐量、エネルギー耐量が更に向上することが確認出来た。
(g) Improving the composition of calcined raw materials3, Examination of silicon dioxide (SiO 2 )
From the above-mentioned results, the calcined raw material becomes (0.1 to 1.5 mol%) Bi 2 O 3- (0.01 to 2 mol%) Sb 2 O 3- (0.1 to 1 mol%) ZnO as an outer coating with respect to ZnO: 100 mol%. It was confirmed that a high-performance varistor having an α value of 20 or more can be obtained by adding in this manner. As a further improvement, we investigated the improvement of surge resistance and energy resistance by adding silicon oxide (SiO 2 ) to the calcined raw material composition. The evaluation results are shown in Table 17 for the surge resistance and Table 18 for the energy resistance. Incidentally, in response to the above results, CoO in outer percentage relative ZnO100mol%: 0.5mol%, H 3 BO 3: 0.3mol%, Cr 2 O 3: addition of 0.3 mol% in terms of the basic composition, Partially calcined raw materials were examined. Consequently, by adding silicon oxide to (SiO 2) to Bi 2 O 3 -Sb 2 O 3 -ZnO is 0.01 to 0.5 mol% calcined material in outer percentage relative ZnO100mol%, surge resistance, energy capability Has been confirmed to improve further.

Figure 2008100856
Figure 2008100856

Figure 2008100856
Figure 2008100856

以上の結果から、酸化亜鉛(ZnO)100mol%に対し、外掛けで酸化ビスマス(Bi2O3)0.1〜1.5mol%、酸化アンチモン(Sb2O3)0.01〜2.0mol%、酸化亜鉛(ZnO)0.1〜1.0mol%の範囲で含む原料を予め700〜1000℃の温度範囲で仮焼して仮焼原料とし、この仮焼原料に、主原料である酸化亜鉛(ZnO)を仮焼原料に含まれる酸化亜鉛(ZnO)と合わせて100mol%となるように加え、更に、酸化コバルト(CoO)、酸化マンガン(MnO2)の内一種類以上を0.1〜1.5mol%、酸化クロム(Cr2O3)を0.01〜2mol%、ホウ酸(H3BO3)を0.01〜2mol%、酸化アルミニウム(Al2O3)を10〜1000ppmになるように加えて本焼成することで、高性能積層チップバリスタを得ることができる。また、仮焼原料として、酸化チタン(TiO2)を0.01〜0.5mol%さらに含むこと、希土類元素(Pr、Y、Nb等)をA2B3(A:希土類元素、B:酸素元素)の形で、0.01〜0.5mol%さらに含むこと、酸化ケイ素(SiO2)を0.01〜0.5mol%さらに含むことも高性能積層チップバリスタを得るうえで有効である。 From the above results, with respect to 100 mol% of zinc oxide (ZnO), bismuth oxide (Bi 2 O 3 ) 0.1 to 1.5 mol%, antimony oxide (Sb 2 O 3 ) 0.01 to 2.0 mol%, zinc oxide (ZnO) as an outer coating ) A raw material containing 0.1 to 1.0 mol% in advance is calcined in a temperature range of 700 to 1000 ° C. to obtain a calcined raw material, and zinc calcined raw material (ZnO) is used as the calcined raw material. added in an amount of 100 mol% together with zinc oxide (ZnO) contained, further, 0.1~1.5Mol% of one or more of cobalt oxide (CoO), manganese oxide (MnO 2), chromium oxide (Cr 2 O 3) 0.01 to 2 mol%, 0.01 to 2 mol% boric acid (H 3 BO 3), aluminum oxide (Al 2 O 3) by addition the firing to be 10-1000 ppm, high-performance multilayer chip A varistor can be obtained. Further, as a calcining raw material, further containing 0.01 to 0.5 mol% of titanium oxide (TiO 2 ), rare earth elements (Pr, Y, Nb, etc.) of A 2 B 3 (A: rare earth element, B: oxygen element) It is also effective for obtaining a high-performance multilayer chip varistor to further contain 0.01 to 0.5 mol% and to further contain 0.01 to 0.5 mol% of silicon oxide (SiO 2 ).

これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことはいうまでもない。   Although one embodiment of the present invention has been described so far, it is needless to say that the present invention is not limited to the above-described embodiment, and may be implemented in various forms within the scope of the technical idea.

酸化亜鉛積層チップバリスタの断面図である。It is sectional drawing of a zinc oxide laminated chip varistor. 本発明の一実施形態の酸化亜鉛積層チップバリスタの製造方法のフロー図である。It is a flowchart of the manufacturing method of the zinc oxide multilayer chip varistor of one Embodiment of this invention.

符号の説明Explanation of symbols

10 酸化亜鉛積層チップバリスタ
11 バリスタ焼結体
12a,12b 内部電極
13a,13b 外部電極
10 Zinc Oxide Chip Chip Varistor 11 Varistor Sintered Body 12a, 12b Internal Electrode 13a, 13b External Electrode

Claims (4)

酸化亜鉛(ZnO)100mol%と、これに対する外掛け量で、酸化ビスマス(Bi2O3)を0.1〜1.5mol%と、酸化アンチモン(Sb2O3)を0.01〜2.0mol%と、酸化コバルト(CoO)および酸化マンガン(MnO2)の内一種類以上を0.1〜1.5mol%と、酸化クロム(Cr2O3)を0.01〜2mol%と、ホウ酸(H3BO3)を0.01〜2mol%と、更に、酸化アルミニウム(Al2O3)濃度が10〜1000ppmになるように、これらの原料を準備し、
この原料のうち、酸化ビスマス(Bi2O3)および酸化アンチモン(Sb2O3)の全量と、酸化亜鉛(ZnO)0.1〜1.0mol%を含む仮焼原料に700〜1000℃の温度範囲で熱処理を行い、
該仮焼原料とその他の原料とを加えてグリーンシートを形成し、
該グリーンシートに導電材ペーストパターンを形成し、該グリーンシートを積層し、切断してグリーンチップを形成後、焼成することを特徴とする酸化亜鉛積層チップバリスタの製造方法。
Zinc oxide (ZnO) 100 mol%, and the amount of coating on this, bismuth oxide (Bi 2 O 3 ) 0.1-1.5 mol%, antimony oxide (Sb 2 O 3 ) 0.01-2.0 mol%, cobalt oxide 0.01 to 2 mol and 0.1~1.5Mol% of one or more of (CoO) and manganese oxide (MnO 2), and 0.01 to 2 mol% of chromium oxide (Cr 2 O 3), boric acid (H 3 BO 3) %, And further, prepare these raw materials so that the aluminum oxide (Al 2 O 3 ) concentration is 10 to 1000 ppm,
Of these raw materials, the total amount of bismuth oxide (Bi 2 O 3 ) and antimony oxide (Sb 2 O 3 ) and the calcined raw material containing 0.1 to 1.0 mol% of zinc oxide (ZnO) in the temperature range of 700 to 1000 ° C. Heat treatment,
Adding the calcined raw material and other raw materials to form a green sheet,
A method for producing a zinc oxide laminated chip varistor, comprising forming a conductive material paste pattern on the green sheet, laminating the green sheet, cutting to form a green chip, and firing.
仮焼原料は、酸化亜鉛(ZnO)100mol%に対する外掛け量で、酸化チタン(TiO2)を0.01〜0.5mol%さらに含むことを特徴とする請求項1記載の酸化亜鉛積層チップバリスタの製造方法。 Calcining raw materials, in outer percentage amount with respect to zinc oxide (ZnO) 100 mol%, the production method of the zinc oxide laminated chip varistor according to claim 1, characterized in that it comprises a titanium oxide (TiO 2) further 0.01 to 0.5 mol% . 仮焼原料は、酸化亜鉛(ZnO)100mol%に対する外掛け量で、希土類元素(Pr、Y、Nb等)をA2B3(A:希土類元素、B:酸素元素)の形で、0.01〜0.5mol%さらに含むことを特徴とする請求項1記載の酸化亜鉛積層チップバリスタの製造方法。 The calcined raw material is an outer coating amount with respect to 100 mol% of zinc oxide (ZnO), and rare earth elements (Pr, Y, Nb, etc.) in the form of A 2 B 3 (A: rare earth element, B: oxygen element), 0.01 to The method for producing a zinc oxide multilayer chip varistor according to claim 1, further comprising 0.5 mol%. 仮焼原料は、酸化亜鉛(ZnO)100mol%に対する外掛け量で、酸化ケイ素(SiO2)を0.01〜0.5mol%さらに含むことを特徴とする請求項1記載の酸化亜鉛積層チップバリスタの製造方法。 Calcining raw materials, in outer percentage amount with respect to zinc oxide (ZnO) 100 mol%, the production method of the zinc oxide laminated chip varistor according to claim 1, characterized in that it comprises a silicon oxide (SiO 2) further 0.01 to 0.5 mol% .
JP2006282645A 2006-10-17 2006-10-17 Method for producing zinc oxide laminated chip varistor Pending JP2008100856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006282645A JP2008100856A (en) 2006-10-17 2006-10-17 Method for producing zinc oxide laminated chip varistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006282645A JP2008100856A (en) 2006-10-17 2006-10-17 Method for producing zinc oxide laminated chip varistor

Publications (1)

Publication Number Publication Date
JP2008100856A true JP2008100856A (en) 2008-05-01

Family

ID=39435485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006282645A Pending JP2008100856A (en) 2006-10-17 2006-10-17 Method for producing zinc oxide laminated chip varistor

Country Status (1)

Country Link
JP (1) JP2008100856A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133013A (en) * 2008-10-27 2010-06-17 Mitsubishi Materials Corp METHOD OF PRODUCING ZnO VAPOR DEPOSITION MATERIAL
JP2013251385A (en) * 2012-05-31 2013-12-12 Toshiba Corp Current and voltage nonlinear resistor and manufacturing method thereof
WO2015083822A1 (en) * 2013-12-06 2015-06-11 日立金属株式会社 Sintered body for varistor, multilayer substrate using same, and production method for these
CN115368129A (en) * 2022-08-23 2022-11-22 如东宝联电子科技有限公司 Laminated zinc oxide composition for reducing residual pressure and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03211705A (en) * 1990-01-16 1991-09-17 Matsushita Electric Ind Co Ltd Manufacture of voltage non-linear resistor
JPH09320814A (en) * 1996-05-31 1997-12-12 Matsushita Electric Ind Co Ltd Manufacture of zinc oxide multilayer chip varistor
JP2001089228A (en) * 1999-09-24 2001-04-03 Osaka Prefecture Zinc oxide porcelain composition, its production method and zinc oxide varistor
JP2004342745A (en) * 2003-05-14 2004-12-02 Taiyo Yuden Co Ltd Voltage nonlinear resistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03211705A (en) * 1990-01-16 1991-09-17 Matsushita Electric Ind Co Ltd Manufacture of voltage non-linear resistor
JPH09320814A (en) * 1996-05-31 1997-12-12 Matsushita Electric Ind Co Ltd Manufacture of zinc oxide multilayer chip varistor
JP2001089228A (en) * 1999-09-24 2001-04-03 Osaka Prefecture Zinc oxide porcelain composition, its production method and zinc oxide varistor
JP2004342745A (en) * 2003-05-14 2004-12-02 Taiyo Yuden Co Ltd Voltage nonlinear resistor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133013A (en) * 2008-10-27 2010-06-17 Mitsubishi Materials Corp METHOD OF PRODUCING ZnO VAPOR DEPOSITION MATERIAL
JP2013251385A (en) * 2012-05-31 2013-12-12 Toshiba Corp Current and voltage nonlinear resistor and manufacturing method thereof
WO2015083822A1 (en) * 2013-12-06 2015-06-11 日立金属株式会社 Sintered body for varistor, multilayer substrate using same, and production method for these
CN105706188A (en) * 2013-12-06 2016-06-22 日立金属株式会社 Sintered body for varistor, multilayer substrate using same, and production method for these
JPWO2015083822A1 (en) * 2013-12-06 2017-03-16 日立金属株式会社 Sintered body for varistor, multilayer substrate using the same, and manufacturing method thereof
US9741477B2 (en) 2013-12-06 2017-08-22 Hitachi Metals, Ltd. Sintered body for varistor, multilayer substrate using same, and production method for these
CN105706188B (en) * 2013-12-06 2018-11-09 日立金属株式会社 Rheostat sintered body and use its multilager base plate and their manufacturing method
CN115368129A (en) * 2022-08-23 2022-11-22 如东宝联电子科技有限公司 Laminated zinc oxide composition for reducing residual pressure and preparation method thereof

Similar Documents

Publication Publication Date Title
US7969277B2 (en) Nonlinear resistor ceramic composition, electronic component, and multilayer chip varistor
JP4915153B2 (en) Multilayer varistor
JP2013503474A (en) ZnO-based varistor composition
WO1990010941A1 (en) Laminated and grain boundary insulated type semiconductor ceramic capacitor and method of producing the same
JP4690123B2 (en) Method for producing zinc oxide laminated varistor
JP2008100856A (en) Method for producing zinc oxide laminated chip varistor
JP5830715B2 (en) Multilayer varistor and manufacturing method thereof
JP5301852B2 (en) Multilayer chip varistor
JP2013197447A (en) Manufacturing method of multilayer varistor
JP4184172B2 (en) Voltage nonlinear resistor ceramic composition, electronic component and multilayer chip varistor
JP2727626B2 (en) Ceramic capacitor and method of manufacturing the same
JP5282332B2 (en) Manufacturing method of zinc oxide laminated chip varistor
JP5301853B2 (en) Zinc oxide chip varistor
KR101889678B1 (en) Zinc oxide varistor
JP5674317B2 (en) Zinc oxide varistor and method for producing the same
KR101397499B1 (en) Vanadium-based zinc oxide varistor and manufacturing method for the same
JP2705221B2 (en) Ceramic capacitor and method of manufacturing the same
JP2007141953A (en) Method for manufacturing laminated chip varistor
JP2725357B2 (en) Ceramic capacitor and method of manufacturing the same
JP2006245111A (en) Bismuth-based zinc oxide varistor
JP2697095B2 (en) Ceramic capacitor and method of manufacturing the same
JP2737280B2 (en) Ceramic capacitor and method of manufacturing the same
JP2850355B2 (en) Ceramic capacitor and method of manufacturing the same
JPH07201531A (en) Voltage non-linear resistor porcelain composition and voltage non-linear resistor porcelain
JP2715529B2 (en) Ceramic capacitor and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004