JP2008096428A - Observation device for corrosion part of surface-treated steel plate, and method and device for observing white rust part of galvanized sheet - Google Patents

Observation device for corrosion part of surface-treated steel plate, and method and device for observing white rust part of galvanized sheet Download PDF

Info

Publication number
JP2008096428A
JP2008096428A JP2007231780A JP2007231780A JP2008096428A JP 2008096428 A JP2008096428 A JP 2008096428A JP 2007231780 A JP2007231780 A JP 2007231780A JP 2007231780 A JP2007231780 A JP 2007231780A JP 2008096428 A JP2008096428 A JP 2008096428A
Authority
JP
Japan
Prior art keywords
imaging
steel sheet
white rust
moving
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007231780A
Other languages
Japanese (ja)
Other versions
JP5056286B2 (en
Inventor
Hiroshi Kajiyama
浩志 梶山
Sakae Fujita
栄 藤田
Mitsuaki Uesugi
満昭 上杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007231780A priority Critical patent/JP5056286B2/en
Publication of JP2008096428A publication Critical patent/JP2008096428A/en
Application granted granted Critical
Publication of JP5056286B2 publication Critical patent/JP5056286B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To observe the corrosion part or white rust part of a corrosion test piece, having proper contrast with identical contrast for all the points on the test piece. <P>SOLUTION: This observation device of the corrosion part of a surface-treated steel plate is equipped with an illumination device 2 for irradiating the corrosion test piece 1 with light at a predetermined incident angle from one direction of a plurality of directions; a linear stage 4 for moving the corrosion test piece 1 in the predetermined direction; a linear array camera 3 for imaging the reflected luminance pattern in the moving direction or the direction crossing it at right angles of the surface of the corrosion test piece 1; an image memory 5 for successively reading the reflected luminance pattern imaged by the linear array camera 3 for accumulating and imaging the same; and a display device 6 for displaying this image. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、鋼板腐食試験片の腐食部、特に亜鉛めっき鋼板腐食試験片の白錆部を、健全部に対してコントラストよく、且つ試験片全面に亘って均一な感度で観察する観察装置及び観察方法に関する。   The present invention provides an observation apparatus and an observation device for observing a corroded portion of a steel plate corrosion test piece, particularly a white rust portion of a galvanized steel plate corrosion test piece with a good contrast and a uniform sensitivity over the entire surface of the test piece. Regarding the method.

電機・自動車・建材など防錆性が強く要求される鋼板の耐食性の評価は、鋼板試験片を用いた暴露試験・促進試験(例:塩水噴霧試験,サイクル腐食試験など)により行われ、試験結果は、試験片表面の腐食部を検査員が目視で観察し、その面積率を評価して求める。しかしながら、一目で腐食と判るサンプルは兎も角、亜鉛めっき鋼板の白錆のように目視では極めて観察しづらい腐食については、検査員の認識の個人差による評価のばらつきが大きく、素人でも認識できるような、より客観性ある観察方式が求められていた。   Evaluation of corrosion resistance of steel sheets that are strongly required to have rust prevention, such as electrical machinery, automobiles, and building materials, is performed by exposure tests and accelerated tests (eg, salt spray test, cycle corrosion test, etc.) using steel sheet test pieces. Is obtained by visually observing the corroded portion of the test piece surface and evaluating the area ratio. However, for samples that are known to be corroded at a glance, corrosion that is extremely difficult to observe visually, such as white rust on galvanized steel sheets, varies greatly depending on individual differences in the inspector's perception, and even amateurs can recognize it. Such a more objective observation method has been demanded.

白錆の観察方法としては、例えばカラーテレビカメラを用いて対象サンプル表面を撮像し「明るく」「色相がない」部分を白錆と認識する方式が提案されている(例えば特許文献1参照)。
特開平7−77499号公報
As a method for observing white rust, for example, a method has been proposed in which a surface of a target sample is imaged using a color TV camera and a “bright” or “no hue” portion is recognized as white rust (for example, see Patent Document 1).
JP 7-77499 A

上記の特許文献1に提案されている方式は、赤錆が出るほどまで腐食の進んだ試験片については有効ではあるが、腐食レベルの低い試験片については、健全部・白錆部の何れも「色相がなく」かつこれらの間の「明るさの差が小さい」ことから、十分な識別能を発揮することは難しい。   The method proposed in Patent Document 1 is effective for a test piece that has been corroded to such an extent that red rust appears, but for a test piece with a low corrosion level, both the healthy part and the white rust part are " Since there is no hue and “the difference in brightness is small” between them, it is difficult to exhibit sufficient discrimination ability.

腐食レベルの低い試験片において、腐食部を健全部と区別してコントラストよく観察するためには、以下の2つの条件を満足する光学系を用いることが不可欠である。
(1)腐食部を健全部と区別して最もコントラストよく観察できるよう、照明入射角度と撮像角度とが自由に選択できること。
(2)試験片表面のあらゆる点が、同一の照明入射角度・撮像角度で観察が可能であること。
In a test piece having a low corrosion level, in order to distinguish a corroded portion from a healthy portion and observe with good contrast, it is essential to use an optical system that satisfies the following two conditions.
(1) The illumination incident angle and the imaging angle can be freely selected so that the corroded portion can be observed from the healthy portion with the highest contrast.
(2) Every point on the surface of the test piece can be observed at the same illumination incident angle and imaging angle.

上記の特許文献1において提案されている測定方法を含めて、試験片の表面をスチルカメラやテレビカメラで「面」の画像としていきなり撮像する方式は、以下の理由により、上記の必要条件を満足することは難しい。
(1)撮像角度の選定:発生し始めの腐食は極めて小さいので、撮像にあたってピント合わせが重要な調整要素である。スチルカメラやテレビカメラのような「面領域」の撮像装置の場合には、試験片全体をピントを合わせて撮影する必要があるため、カメラは対象に対して正対して設置せざるを得ず、撮像角度は0度(法線方向)以外の選択肢はない。
(2)入射・撮像角度の均一性:スチルカメラやテレビカメラのような「面領域」観察系を用いて試験片表面を有限の距離から撮影する場合には、パースペクティブ(遠近効果)の影響により、試験片上の場所によって入射角度と撮像角度が変化する。たとえば、図13に示されるように、対象試験片を、斜め45゜方向から照明し法線方向から撮像する場合には、画面中央部では入射角度45゜、撮像角度0゜となるが、照明に近い側では入射角度はより浅くなり、また撮像角度も斜めに傾く。一方、照明と反対側では入射角度はより深く、また撮像角度は逆方向に斜めに傾く。このような光学系では、健全部と極めて微妙なコントラスト差の腐食部を、試験片の全面に亘って安定して観察・識別することは難しい。
The method of capturing the surface of the test piece as a “surface” image with a still camera or a television camera, including the measurement method proposed in Patent Document 1 above, satisfies the above requirements for the following reason. Difficult to do.
(1) Selection of imaging angle: Since corrosion at the beginning of occurrence is extremely small, focusing is an important adjustment factor in imaging. In the case of an “surface area” imaging device such as a still camera or a TV camera, the entire specimen must be focused and photographed, so the camera must be installed directly facing the target. The imaging angle has no choice other than 0 degrees (normal direction).
(2) Uniformity of incidence and imaging angle: When photographing the surface of a specimen from a finite distance using a “surface area” observation system such as a still camera or a TV camera, it is due to the influence of perspective. The incident angle and the imaging angle vary depending on the location on the test piece. For example, as shown in FIG. 13, when the target specimen is illuminated from an oblique 45 ° direction and imaged from the normal direction, the incident angle is 45 ° and the imaging angle is 0 ° at the center of the screen. Nearer the angle, the incident angle becomes shallower, and the imaging angle also tilts obliquely. On the other hand, on the side opposite to the illumination, the incident angle is deeper and the imaging angle is inclined obliquely in the opposite direction. In such an optical system, it is difficult to stably observe and identify the sound part and the corroded part having a very slight contrast difference over the entire surface of the test piece.

本発明は、このような問題点を解決するためになされたものであり、腐食試験片の腐食部又は白錆部をコントラストよく、かつ試験片上のあらゆる点で同一のコントラストで観察することを可能にした表面処理鋼板の腐食部の観察装置、亜鉛めっき鋼板の白錆部の観察装置及び亜鉛めっき鋼板の白錆部の観察方法を提供することを目的とする。   The present invention has been made to solve such a problem, and it is possible to observe the corroded portion or white rust portion of the corrosion test piece with good contrast and at the same contrast at every point on the test piece. It aims at providing the observation apparatus of the corrosion part of the made surface-treated steel plate, the observation apparatus of the white rust part of a galvanized steel plate, and the observation method of the white rust part of a galvanized steel plate.

本発明に係る表面処理鋼板の腐食部の観察装置は、鋼板に対して一方向又は複数の方向から所定の入射角度で光を照射する投光手段と、前記鋼板を所定の方向に移動する移動手段と、前記鋼板表面の前記移動方向と直交する方向の反射輝度パタンを撮像する撮像手段と、前記撮像手段により撮像された反射輝度パタンを順次読み込んで蓄積し画像化する画像化手段と、前記画像化手段により得られた画像を表示する表示手段とを備えたものである。   An apparatus for observing a corrosion portion of a surface-treated steel sheet according to the present invention includes a light projecting unit that irradiates light at a predetermined incident angle from one direction or a plurality of directions with respect to a steel sheet, and a movement that moves the steel sheet in a predetermined direction Means, imaging means for imaging a reflection luminance pattern in a direction orthogonal to the moving direction of the steel sheet surface, imaging means for sequentially reading, storing and imaging the reflection luminance pattern imaged by the imaging means, Display means for displaying an image obtained by the imaging means.

本発明に係る亜鉛めっき鋼板の白錆部の観察装置は、鋼板に対して一方向又は複数の方向から所定の入射角度で光を照射する投光手段と、前記鋼板を所定の方向に移動する移動手段と、前記鋼板表面の前記移動方向と直交する方向の反射輝度パタンを撮像する撮像手段と、前記撮像手段により撮像された反射輝度パタンを順次読み込んで蓄積し画像化する画像化手段と、前記画像化手段により得られた画像を表示する表示手段とを備えたものである。
本発明に係る亜鉛めっき鋼板の白錆部の観察装置において、前記投光手段は、直線状の光源から構成される。
本発明に係る亜鉛めっき鋼板の白錆部の観察装置において、前記移動手段は、前記画像化手段により得られる画像の縦横の分解能が略1:1となるよう設定された一定速度の移動機構から構成される。
本発明に係る亜鉛めっき鋼板の白錆部の観察装置において、前記撮像手段は、リニアアレイカメラから構成される。
本発明に係る亜鉛めっき鋼板の白錆部の観察装置において、前記投光手段は、照射される光の波長λに対する前記入射角度θの余弦の値の比cosθ/λが、前記鋼板の表面粗さに対応して決定される所定の値以下となるように、前記波長と前記入射角の関係が選定されて、前記鋼板を片側又は両側から照射し、且つ、前記撮像手段は、前記鋼板の概略法線方向から撮像する。
本発明に係る亜鉛めっき鋼板の白錆部の観察装置において、前記投光手段は、入射角度を鋼板表面法線方向に対して80度以上とし、前記鋼板を片側又は両側から照射し、且つ、前記撮像手段は、前記鋼板の概略法線方向から撮像する。
本発明に係る亜鉛めっき鋼板の白錆部の観察装置において、前記投光手段は、撮像方向と同じ方向から鋼板表面法線方向に対して撮像角度以上の入射角度をもって前記鋼板を照射し、且つ、前記撮像手段は、前記鋼板を斜め上方から撮像する。
An apparatus for observing a white rust portion of a galvanized steel sheet according to the present invention includes a light projecting unit that irradiates light at a predetermined incident angle from one direction or a plurality of directions with respect to the steel sheet, and moves the steel sheet in a predetermined direction. Moving means, imaging means for imaging a reflected luminance pattern in a direction orthogonal to the moving direction of the steel sheet surface, imaging means for sequentially reading, storing, and imaging the reflected luminance pattern imaged by the imaging means, Display means for displaying an image obtained by the imaging means.
In the observation apparatus for the white rust portion of the galvanized steel sheet according to the present invention, the light projecting means is composed of a linear light source.
In the observation apparatus for the white rust portion of the galvanized steel sheet according to the present invention, the moving means is from a constant speed moving mechanism set so that the vertical and horizontal resolution of the image obtained by the imaging means is approximately 1: 1. Composed.
In the observation apparatus for the white rust portion of the galvanized steel sheet according to the present invention, the imaging means is constituted by a linear array camera.
In the observation device for the white rust portion of the galvanized steel sheet according to the present invention, the light projecting means has a ratio cosine θ / λ of the cosine value of the incident angle θ to the wavelength λ of the irradiated light, wherein the surface roughness of the steel sheet is The relationship between the wavelength and the incident angle is selected so as to be equal to or less than a predetermined value determined corresponding to the thickness, the steel plate is irradiated from one side or both sides, and the imaging means is the steel plate Image is taken from the approximate normal direction.
In the observation device of the white rust portion of the galvanized steel sheet according to the present invention, the light projecting means has an incident angle of 80 degrees or more with respect to the steel sheet surface normal direction, and irradiates the steel sheet from one side or both sides, and The image pickup means picks up an image from a direction of a substantially normal line of the steel plate.
In the observation apparatus for the white rust portion of the galvanized steel sheet according to the present invention, the light projecting means irradiates the steel sheet with an incident angle equal to or greater than the imaging angle with respect to the steel sheet surface normal direction from the same direction as the imaging direction, and The imaging means images the steel sheet from obliquely above.

本発明に係る亜鉛めっき鋼板の白錆部の観察方法は、鋼板に対して入射角度が鋼板表面法線方向に対して80度以上で、片側又は両側から光を照射する投光工程と、前記投光工程の鋼板を所定の方向に移動させる移動工程と、前記鋼板表面の前記移動方向と直交する方向の反射輝度パタンを前記鋼板の概略法線方向から撮像する撮像工程と、前記反射輝度パタンを順次読み込んで蓄積し画像化する画像化工程と、前記画像化工程で得られた画像を表示する工程とを備えたものである。
本発明に係る亜鉛めっき鋼板の白錆部の観察方法は、鋼板に対して撮像方向と同じ方向から、入射角度が鋼板表面法線方向に対して撮像角度以上の角度をもって光を照射する投光工程と、前記投光工程の鋼板を所定の方向に移動する移動工程と、前記鋼板表面の反射輝度パタンを斜め上方から撮像する撮像工程と、前記反射輝度パタンを順次読み込んで蓄積し画像化する画像化工程と、前記画像化工程で得られた画像を表示する工程とを備えたものである。
The method for observing the white rust portion of the galvanized steel sheet according to the present invention includes a projecting step of irradiating light from one side or both sides with an incident angle of 80 degrees or more with respect to the steel sheet surface normal direction with respect to the steel sheet, A moving step of moving the steel plate in the light projecting step in a predetermined direction; an imaging step of imaging a reflection luminance pattern in a direction perpendicular to the moving direction of the surface of the steel plate from a substantially normal direction of the steel plate; and the reflection luminance pattern Are sequentially read, stored, and imaged, and an image obtained by the imaging step is displayed.
The method for observing the white rust portion of the galvanized steel sheet according to the present invention is to project light from the same direction as the imaging direction with respect to the steel sheet so that the incident angle is greater than the imaging angle with respect to the steel sheet surface normal direction. A step of moving the steel plate in the light projecting step in a predetermined direction, an imaging step of imaging the reflection luminance pattern on the surface of the steel plate from obliquely above, and sequentially reading and storing the reflection luminance pattern for imaging. An imaging step and a step of displaying the image obtained in the imaging step.

本発明によれば、表面処理鋼板の腐食部、特に亜鉛めっき鋼板腐食試験片の白錆部を、健全部に対してコントラストよく、かつ試験片全面に亘って均一な感度で観察することが可能となっており、その結果、熟練した検査員でなくとも容易に腐食部を識別できるようになり、腐食試験結果の評価の標準化が図れる。   According to the present invention, it is possible to observe a corroded portion of a surface-treated steel sheet, in particular, a white rust portion of a galvanized steel sheet corrosion test piece with good contrast and a uniform sensitivity over the entire test piece. As a result, the corroded part can be easily identified even by a skilled inspector, and the standardization of the evaluation of the corrosion test result can be achieved.

実施形態1.
本発明の基本構成を実施形態1として以下説明する。図1は本発明の基本構成例を示した図である。図1の亜鉛めっき鋼板など表面処理鋼板の鋼板腐食試験片の腐食部(又は白錆部)の観察装置(以下、観察装置という)は、腐食試験片1を照明する(光を照射する)照明装置2、腐食試験片1の反射輝度パタンを撮像するリニアアレイカメラ3、腐食試験片1を移動するリニアステージ4、リニアアレイカメラ3により撮像された反射輝度パタンを取り込んで蓄積して画像を化する画像メモリ5、及び画像メモリ5により画像化された画像(2次元画像)を表示する表示装置6を備えている。なお、上記の照明装置2は本発明の投光手段を構成し、また、リニアアレイカメラ3は本発明の撮像手段を、画像メモリ5は画像化手段をそれぞれ構成している。
Embodiment 1. FIG.
A basic configuration of the present invention will be described below as a first embodiment. FIG. 1 is a diagram showing a basic configuration example of the present invention. An observation device (hereinafter referred to as an observation device) of a corrosion portion (or white rust portion) of a steel plate corrosion test piece of a surface-treated steel plate such as the galvanized steel plate of FIG. 1 illuminates the corrosion test piece 1 (irradiates light). The apparatus 2, the linear array camera 3 that images the reflected luminance pattern of the corrosion test piece 1, the linear stage 4 that moves the corrosion test piece 1, and the reflected luminance pattern imaged by the linear array camera 3 are captured and accumulated to form an image. And a display device 6 for displaying an image (two-dimensional image) imaged by the image memory 5. The illumination device 2 constitutes the light projecting means of the present invention, the linear array camera 3 constitutes the imaging means of the present invention, and the image memory 5 constitutes the imaging means.

本発明に係る観察装置は、腐食試験片1の腐食部の観察方式として、スチルカメラ乃至テレビカメラでいきなり全領域を撮像するかわりに、リニアアレイカメラ3を用いて試験片1の線状撮像領域Lを照明装置2の照明の下に撮像し、試験片1をリニアステージ4を用いて線状撮像領域Lと直交する方向に移動させながら反射輝度パタンを順次画像メモリ5に読み込んで蓄積し、反射輝度パタンの1次元画像を2次元画像にし、その画像(2次元画像)を表示装置6により表示する。照明装置2の照明の入射角度とリニアアレイカメラ3の撮像角度とは、腐食部が周辺の健全部と最もコントラストよく観察されるよう、腐食部及び健全部の光学的な表面性状(鏡面性/拡散性,ミクロな凹凸形状,反射率etc.)の差に基づいて決定する。   The observation apparatus according to the present invention uses a linear array camera 3 as a linear imaging region of the test piece 1 as a method for observing the corroded portion of the corrosion test piece 1 instead of suddenly imaging the entire area with a still camera or a television camera. L is imaged under illumination of the illuminating device 2, and the reflected luminance pattern is sequentially read and stored in the image memory 5 while moving the test piece 1 in the direction orthogonal to the linear imaging region L using the linear stage 4. The one-dimensional image of the reflected luminance pattern is converted into a two-dimensional image, and the image (two-dimensional image) is displayed on the display device 6. The incident angle of illumination of the illuminating device 2 and the imaging angle of the linear array camera 3 are such that the corroded part and the healthy part are observed with the best contrast with the surrounding healthy part (the specularity / Diffusivity, micro uneven shape, reflectance etc.).

この方式によれば、「面領域」観察光学系の代わり「線領域」観察光学系を用いているため、以下の問題点が解決されて入射角度・撮像角度の任意の選択が可能になり、極めて微妙なコントラストの腐食部の観察が容易となる。
(1)リニアアレイカメラ3の線状視野と直交する方向に撮像角度を如何様に変化させても、線状視野内の全ての点でピントを合わせることが可能となり、撮像角度の最適設定にあたっての角度選定の制約がなくなる。
(2)リニアアレイカメラ3の線状視野内の各点で、照明装置2の入射角度とリニアアレイカメラ3の撮像角度が均一になり、視野内のコントラストの「ムラ」が小さくなる。
ここで、リニアアレイカメラ3については、その代わりに例えばファクシミリなどで使われている密着型イメージセンサ(セルフォックレンズアレイ付)のような線状の撮像手段であれば、その種類は問わない。また、照明装置2として点状光源を使用した場合には、線状視野の幅方向に入射角度が変化して「ムラ」が出やすいので、照明装置2としては、蛍光灯や光ファイバライン照明など線状光源を用いることが望ましい。したがって、以下の説明においては、照明装置2を線状照明装置2と称するものとする。
According to this method, since the “line region” observation optical system is used instead of the “surface region” observation optical system, the following problems are solved and an arbitrary selection of the incident angle and the imaging angle becomes possible. It becomes easy to observe the corroded portion with extremely delicate contrast.
(1) Regardless of how the imaging angle is changed in a direction orthogonal to the linear field of view of the linear array camera 3, it becomes possible to focus on all points in the linear field of view, and in setting the optimal imaging angle. The restriction of angle selection is eliminated.
(2) At each point in the linear field of view of the linear array camera 3, the incident angle of the illumination device 2 and the imaging angle of the linear array camera 3 are uniform, and the “unevenness” of the contrast in the field of view is reduced.
Here, the linear array camera 3 may be of any type as long as it is a linear imaging unit such as a contact image sensor (with a Selfoc lens array) used in a facsimile or the like instead. Further, when a point light source is used as the illumination device 2, the incident angle changes in the width direction of the linear visual field, and “unevenness” is likely to occur. Therefore, as the illumination device 2, a fluorescent lamp or an optical fiber line illumination is used. It is desirable to use a linear light source. Therefore, in the following description, the illumination device 2 is referred to as a linear illumination device 2.

なお、腐食部の観察において、一般的には、得られる画像のアスペクト比(縦横比)が1:1であるほうが好ましい。この条件を満足するには、リニアアレイカメラ3の電子走査周期T秒,線状視野サイズWmm,リニアアレイカメラ素子数N,試験片移動速度Vmm/秒として、これらを以下の関係が成り立つよう設定すればよい。
W=NVT … (1)
In observation of the corroded part, it is generally preferable that the aspect ratio (aspect ratio) of the obtained image is 1: 1. In order to satisfy this condition, the electronic scanning cycle T of the linear array camera 3, the linear visual field size W mm, the number N of linear array camera elements, and the specimen moving speed V mm / second are set so that the following relationship is established. do it.
W = NVT (1)

次に、本方式の適用対象として、腐食試験片の中でも、腐食部と健全部との識別が極めて難しいとされる亜鉛めっき鋼板腐食試験片の白錆観察への適用を考える。白錆観察への適用にあたっては、照明装置2の入射角度とリニアアレイカメラ3の撮像角度の選定が特に重要である。
「溶融」亜鉛めっき鋼板の場合には、所謂「スパングル」と称する亜鉛の結晶が表面処理工程で成長し、健全部において大きさが数mmから数十mmの「うろこ状」の模様が観察される。「スパングル」の影響を受けず白錆だけを観察しうる光学系を確立するべく、図1の光学系を用いて照明撮像角度を検討した。検討結果を図2〜図5に示す。なお、これらの図並びに後述の図6及び図7の画像の1辺は実物の30mmに相当する。
Next, as an application target of this method, consider the application of a galvanized steel sheet corrosion test piece, which is considered to be extremely difficult to distinguish between a corroded part and a healthy part among corrosion test pieces, to white rust observation. In application to white rust observation, selection of the incident angle of the illumination device 2 and the imaging angle of the linear array camera 3 is particularly important.
In the case of “molten” galvanized steel sheets, so-called “spangle” zinc crystals grow in the surface treatment process, and a “scale-like” pattern with a size of several to several tens of millimeters is observed in the healthy part. The In order to establish an optical system that can observe only white rust without being affected by "spangle", the illumination imaging angle was examined using the optical system of FIG. The examination results are shown in FIGS. Note that one side of these images and the images shown in FIGS. 6 and 7 described later corresponds to the actual 30 mm.

図2は、所謂「拡散光観察光学系」を用いて、腐食試験片表面の散乱光パタンを画像化した例である。主には下地のスパングルのみが見え、白錆は殆ど観察されない。
図3は、所謂「正反射光観察光学系」を用いて、同じ試験片表面の鏡面反射光のパタンを画像化した例である。スパングルがうっすら見えている上に白錆部が黒く観察される。
図4は、所謂「低角入射光観察光学系」を用いて、同じ試験片表面の微妙な凸部を明るく強調して画像化した例である。スパングルは殆ど見えず、白錆部のみが白く観察される。
図5は、所謂「後方散乱光観察光学系」を用いて、同じ試験片表面の粗度の高い部分からの散乱光のパタンを画像化した例である。「低角入射光観察光学系」同様に、スパングルは殆ど見えず、白錆部のみが白く観察される。
FIG. 2 is an example in which a scattered light pattern on the surface of a corrosion test piece is imaged using a so-called “diffuse light observation optical system”. Mainly only the base spangle is visible, and almost no white rust is observed.
FIG. 3 shows an example in which a pattern of specular reflection light on the same specimen surface is imaged using a so-called “regular reflection light observation optical system”. The spangle is slightly visible and the white rust is observed as black.
FIG. 4 is an example in which a so-called “low-angle incident light observation optical system” is used to brightly emphasize and image an image of a delicate convex portion on the surface of the same specimen. Spangles are hardly visible and only the white rust is observed white.
FIG. 5 is an example in which a pattern of scattered light from a portion having a high roughness on the surface of the same specimen is imaged using a so-called “backscattered light observation optical system”. Similar to the “low angle incident light observation optical system”, spangles are hardly seen, and only the white rust portion is observed white.

以上の検討の結果、白錆部の特徴として、反射率が高いのみならず、表面粗度が高く、また成長が進むにつれて一種の「フクレ(凸)形状」をしていることが想像される。この表面性状の特徴に着目すれば、白錆をコントラストよく観察するための条件として「低角入射光観察光学系」あるいは「後方散乱光観察光学系」が適していることが判る。   As a result of the above examination, it is imagined that the white rust part has not only high reflectance but also high surface roughness, and has a kind of “bulge (convex) shape” as the growth proceeds. . Paying attention to the characteristics of this surface property, it can be seen that “low angle incident light observation optical system” or “backscattered light observation optical system” is suitable as a condition for observing white rust with good contrast.

ここで、「低角入射光観察光学系」及び「後方散乱光観察光学系」が適していることを以下に説明する。図6は亜鉛めっき鋼板の経年変化の概念を示した概念図である。亜鉛めっき鋼板11は、図6中に示されるように、鋼板11aの上に亜鉛めっき層11bが形成されたものである。亜鉛めっき層11bが腐食すると白錆11cが発生し、亜鉛めっき層11bの表面に発生した白錆11cの部分に凸部が形成される。   Here, it will be described below that the “low-angle incident light observation optical system” and the “backscattered light observation optical system” are suitable. FIG. 6 is a conceptual diagram showing the concept of aging of the galvanized steel sheet. As shown in FIG. 6, the galvanized steel sheet 11 is obtained by forming a galvanized layer 11b on a steel sheet 11a. When the galvanized layer 11b corrodes, white rust 11c is generated, and a convex portion is formed on the portion of the white rust 11c generated on the surface of the galvanized layer 11b.

図7は腐食前と白錆発生後の亜鉛めっき鋼板に、図4に示される低角入射光観察光学系を適用した場合の概念図である。図7(a)に示す腐食前の亜鉛めっき鋼板11では、鏡面状態に近いので、線状照明装置2から照射された光はその平滑な表面では散乱光成分が少なくなる。その結果、拡散光を受光する位置に設置されたリニアアレイカメラ3では、表面で反射した光は受光されにくく、暗い画像が得られる状態となる。一方、図7(b)に示す白錆発生後の亜鉛めっき鋼板11では、線状照明装置2から発せられた光のうち、白錆11cが発生した凸のある部位で反射した光が、リニアアレイカメラ3の方向に反射することになる。その結果として、微小な凸部が明るく強調されて、白錆11cが明るくなった画像が得られると考えられる。   FIG. 7 is a conceptual diagram when the low-angle incident light observation optical system shown in FIG. 4 is applied to a galvanized steel sheet before corrosion and after white rust is generated. In the galvanized steel sheet 11 before corrosion shown in FIG. 7A, since it is close to a mirror surface state, the light irradiated from the linear illumination device 2 has less scattered light components on its smooth surface. As a result, in the linear array camera 3 installed at the position for receiving the diffused light, the light reflected by the surface is not easily received and a dark image is obtained. On the other hand, in the galvanized steel sheet 11 after the occurrence of white rust shown in FIG. 7B, the light reflected from the convex portion where the white rust 11c is generated out of the light emitted from the linear lighting device 2 is linear. Reflected in the direction of the array camera 3. As a result, it is considered that a fine convex portion is brightly emphasized and an image in which the white rust 11c becomes bright is obtained.

一方、図8は腐食前と白錆発生後の亜鉛めっき鋼板に、図5に示される後方散乱光観察光学系を適用した図である。図8(a)に示した腐食前の亜鉛めっき鋼板11では、低角入射光観察光学系と同様に、鏡面状態に近いので、線状照明装置2から照射された光は、その平滑な表面では散乱光成分が少なく、リニアアレイカメラ3の方向に反射する光はほとんどなく、暗い画像が得られる状態となる。一方、図8(b)に示す白錆発生後の亜鉛めっき鋼板11では、線状照明装置2から照射された光のうち、白錆11cが発生した凸のある部位で反射した光が、リニアアレイカメラの方向に反射することになる。この場合には、線状照明装置2から照射される光の光軸に対し、リニアレイカメラ3の光軸が近いので、低角入射光観察系に比べて、白錆11cがある部位である凸部と白錆11cが無い部位との表面粗度の違いに、より大きく影響されると考えられる。
なお、「低角入射光観察光学系」と「後方散乱光観察光学系」とは、何れも、白錆部を周辺の健全部と識別してコントラストよく観察しうる方法であるという点では共通しているが、異なるのは、「低角入射光観察光学系」の場合には、得られる画像が表面の凹凸の影響が支配的で白錆部の反射率は殆ど反映されないのに対して、「後方散乱光観察光学系」の場合には、得られる画像は白錆部の反射率の影響も強く受けるという点である。
On the other hand, FIG. 8 is a diagram in which the backscattered light observation optical system shown in FIG. 5 is applied to the galvanized steel sheet before corrosion and after the occurrence of white rust. In the galvanized steel sheet 11 before corrosion shown in FIG. 8 (a), similar to the low-angle incident light observation optical system, since it is close to a mirror surface state, the light irradiated from the linear illumination device 2 has a smooth surface. Then, there is little scattered light component, almost no light is reflected in the direction of the linear array camera 3, and a dark image is obtained. On the other hand, in the galvanized steel sheet 11 after white rust generation shown in FIG. 8B, the light reflected from the convex portion where the white rust 11c is generated out of the light irradiated from the linear lighting device 2 is linear. Reflected in the direction of the array camera. In this case, since the optical axis of the linear ray camera 3 is close to the optical axis of the light emitted from the linear illumination device 2, it is a part where the white rust 11c is present as compared with the low-angle incident light observation system. It is considered that the difference in surface roughness between the convex portion and the portion without the white rust 11c is greatly influenced.
The “low-angle incident light observation optical system” and the “backscattered light observation optical system” are both common in that the white rust part can be distinguished from the surrounding healthy part and observed with good contrast. However, the difference is that in the case of the “low-angle incident light observation optical system”, the effect of the surface unevenness is dominant in the obtained image, whereas the reflectance of the white rust portion is hardly reflected. In the case of the “backscattered light observation optical system”, the obtained image is strongly influenced by the reflectance of the white rust portion.

図9は、腐食度の高い白錆試験片を「低角入射光観察光学系」を用いて観察した例であり、図10は、同じサンプルを「後方散乱光観察光学系」を用いて観察した例である。観察画像における反射率の影響の違いが判る。どちらの光学系を使うかは、その特徴に照らして目的に応じて使い分ければよい。これらの「低角入射光観察光学系」及び「後方散乱光観察光学系」を用いた観察装置を、実施形態2(図11)及び実施形態3(図12)として次に説明する。   FIG. 9 is an example in which a white rust test piece having a high degree of corrosion is observed using a “low-angle incident light observation optical system”, and FIG. 10 is an observation of the same sample using a “backscattered light observation optical system”. This is an example. The difference in the influence of the reflectance on the observed image can be seen. Which optical system is used may be selected according to the purpose in light of its characteristics. An observation apparatus using these “low-angle incident light observation optical system” and “backscattered light observation optical system” will be described below as Embodiment 2 (FIG. 11) and Embodiment 3 (FIG. 12).

実施形態2.
図11は本発明の実施形態2に係る観察装置の構成を示した図であり、ここでは光学系として「低角入射光観察光学系」が用いられている。腐食試験片1を線状照明装置2を用いて極めて浅い角度で照明し、試験片1の撮像線状領域Lをリニアアレイカメラ3を用いて撮像する。試験片1をリニアステージ4を用いて撮像線状領域Lと直交する方向に移動させながら反射輝度パタン(1次元画像)を順次画像メモリ5に読み込んで蓄積し画像化し、その画像(2次元画像)を表示装置6に表示させる。照明装置2は片側からだと凸面の照明照射側のみ明るく見え、逆側は影となって暗くなり白錆と認識されづらくなるため、両側照明とすることが好ましい。
Embodiment 2. FIG.
FIG. 11 is a diagram showing a configuration of an observation apparatus according to Embodiment 2 of the present invention. Here, a “low angle incident light observation optical system” is used as an optical system. The corrosion test piece 1 is illuminated at a very shallow angle using the linear illumination device 2, and the imaging linear region L of the test piece 1 is imaged using the linear array camera 3. While moving the test piece 1 in the direction orthogonal to the imaging linear region L using the linear stage 4, the reflection luminance pattern (one-dimensional image) is sequentially read into the image memory 5 and accumulated and imaged, and the image (two-dimensional image) ) Is displayed on the display device 6. Since the illumination device 2 looks bright only from one side of the illumination illumination side when viewed from one side and darkens as the opposite side becomes a shadow and is difficult to be recognized as white rust, it is preferable to use double-sided illumination.

低角入射光観察の照明入射角度については、以下のように選定する。
Beckmannの散乱理論(Petr BECKMANN「TheScattering of Electromagnetic Waves fromRough Surfaces」pp.80-97,Pergamon Press(1963))によれば、表面の鏡面性は、表面粗さ・入射角及び光の波長の関数として次式で表される鏡面性指数gによって決まる。g≪1のとき鏡面として、またg≫1のとき拡散面と見なすことができる。
g=(4πσcosθ/λ)2 … (1)
σ:rms表面粗さ(2乗平均粗さ)
θ:入射角(垂直入射が0゜)
λ:波長(可視光400〜700nm)
低角入射光観察光学系は表面が鏡面に近いのが好ましく、入射角度は鏡面性指数gが、g≪1となるよう設定する。例えば試験片として亜鉛めっき鋼板を観察する場合には、鋼板表面粗さσ=200nm,波長λ=500nmとして、g<1を満足する条件を求めると、以下のガイドラインが得られる。
θ>80゜ … (2)
また、λ=700nmであれば、g<1を満足する条件は、θ>73.8°となるので、73°以上が適用範囲であり、80°以上がより好ましい範囲とすることができる。
The illumination incident angle for low-angle incident light observation is selected as follows.
According to Beckmann's scattering theory (Petr BECKMANN “The Scattering of Electromagnetic Waves from Rough Surfaces” pp. 80-97, Pergamon Press (1963)) It is determined by the specularity index g expressed by the following formula. When g << 1, it can be regarded as a mirror surface, and when g >> 1, it can be regarded as a diffusion surface.
g = (4πσcos θ / λ) 2 (1)
σ: rms surface roughness (root mean square roughness)
θ: Incident angle (normal incidence is 0 °)
λ: Wavelength (visible light 400-700nm)
The low-angle incident light observation optical system preferably has a surface close to a mirror surface, and the incident angle is set so that the specularity index g satisfies g << 1. For example, in the case of observing a galvanized steel sheet as a test piece, the following guidelines can be obtained by obtaining conditions satisfying g <1 with a steel sheet surface roughness σ = 200 nm and a wavelength λ = 500 nm.
θ> 80 ° (2)
Further, if λ = 700 nm, the condition that satisfies g <1 is θ> 73.8 °, and therefore, the applicable range is 73 ° or more, and the more preferable range is 80 ° or more.

一方、上述の例では、波長λを可視光としたが、設備制約などの理由で、線状照明装置2の入射角度を大きくできない制約がある場合は、線状照明装置2の波長を長くしてもよい。例えば、θ=75°が角度を最大にすることができる限界である場合には、式(1)において、鋼板表面粗さσ=200nmのとき、g<1となる条件が、λ=650nmであるので、それ以上の波長となる光、例えば波長が800nmや1μm程度、更にはそれ以上の波長成分を有する赤外線の線状照明装置2を使ってもよい。つまり、線状照明装置2から照射される光の波長λに対する前記入射角度θの余弦の値の比cosθ/λが、前記鋼板の表面粗さσ(rms表面粗さ(2乗平均粗さ=1.25Ra)や凹凸の標準偏差)に対応して、式(1)から決定される所定の値以下となるように、前記波長と前記入射角の関係が選定するようにしてもよい。そうすれば、可視光より波長が長い光を用いれば、可視光のときの入射角度より小さくてもすむ。   On the other hand, in the above example, the wavelength λ is visible light. However, if there is a restriction that the incident angle of the linear illumination device 2 cannot be increased due to equipment restrictions, the wavelength of the linear illumination device 2 is increased. May be. For example, when θ = 75 ° is the limit at which the angle can be maximized, in Equation (1), when the steel sheet surface roughness σ = 200 nm, the condition for g <1 is λ = 650 nm. Therefore, light having a longer wavelength, for example, an infrared linear illumination device 2 having a wavelength component of about 800 nm or 1 μm or more, may be used. That is, the ratio cos θ / λ of the cosine value of the incident angle θ with respect to the wavelength λ of the light emitted from the linear illumination device 2 is the surface roughness σ (rms surface roughness (square mean roughness = The relationship between the wavelength and the incident angle may be selected so as to be equal to or less than a predetermined value determined from Expression (1) corresponding to 1.25 Ra) and the standard deviation of the unevenness. Then, if light having a wavelength longer than that of visible light is used, the incident angle may be smaller than that for visible light.

上述の説明では、g<1を基準としたが、もう一つの指標の考え方としては、例えば、鋼板表面粗さσ=200nmの粗面を有する鋼板の鏡面性gを、σ=25nm程度の鏡面が、可視光の波長λ=500nm、入射角θ=0°に対して有するのと同程度の鏡面性gと同じ程度になるように考えても良い。すなわち、(1)式にσ=25nm、λ=500nm、θ=0°を代入して、
g=(4π・25・cos0/500)2 =0.395
なる値を基準にして、θを決定してもよい。この場合、鋼板の表面粗さσ=200nm、波長λ=500nmの条件であれば、θ=82.8°以下とすればよい。上述したのと同様に、設備制約などの理由で、線状照明装置2の入射角度を大きくできない制約がある場合には、例えば波長が800nmや1μm程度、更にはそれ以上の波長成分を有する線状照明装置2の波長を長くしてもよい。
In the above description, g <1 was used as a reference. However, as another indicator concept, for example, the specularity g of a steel sheet having a rough surface with a steel sheet surface roughness σ = 200 nm is set to a mirror surface with σ = 25 nm. However, it may be considered to have the same degree of specularity g as that of the visible light wavelength λ = 500 nm and the incident angle θ = 0 °. That is, substituting σ = 25 nm, λ = 500 nm, and θ = 0 ° into the equation (1),
g = (4π · 25 · cos 0/500) 2 = 0.395
You may determine (theta) on the basis of the value which becomes. In this case, if the surface roughness of the steel sheet is σ = 200 nm and the wavelength λ = 500 nm, θ = 82.8 ° or less may be set. As described above, when there is a restriction that the incident angle of the linear illumination device 2 cannot be increased due to equipment restrictions or the like, for example, a line having a wavelength component of about 800 nm or about 1 μm or more. The wavelength of the illumination device 2 may be lengthened.

このように、線状照明装置2の波長λに対する入射角θの余弦の値の比cosθ/λが、検査対象となる鋼板の表面粗さに対応して決定される所定の値以下となるように、前記波長と前記入射角の関係を選定し、撮像装置であるリニアアレイカメラ3の位置も含めて、白錆が白錆以外の背景に対して、コントラストよく検出できるように設定すればよい。
なお、入射角度の上限は、原理上では90°であるが、照明装置の大きさなど設備制約上、90°にできない場合があるので、その場合は、それが上限と考えればよい。また、上述のσは、rms表面粗さとしたが、凹凸量の正規分布の標準偏差でもよい。
また、リニアアレイカメラ3の角度は、両側照明からの反射光を両側から同じ条件(均等)で受光するために、鋼板表面法線方向にほぼ一致させるのがよい。法線方向に対して0゜〜±45゜までが適当範囲であるが、好ましくは0゜〜±30゜、さらに好ましくは0゜〜±10゜の範囲がよい。
Thus, the ratio cos θ / λ of the cosine value of the incident angle θ with respect to the wavelength λ of the linear illumination device 2 is equal to or less than a predetermined value determined in accordance with the surface roughness of the steel plate to be inspected. In addition, the relationship between the wavelength and the incident angle may be selected and set so that white rust can be detected with high contrast with respect to a background other than white rust, including the position of the linear array camera 3 that is the imaging device. .
The upper limit of the incident angle is 90 ° in principle, but may not be 90 ° due to equipment restrictions such as the size of the lighting device. In that case, it can be considered as the upper limit. In addition, the above-mentioned σ is the rms surface roughness, but may be a standard deviation of the normal distribution of the unevenness amount.
Further, the angle of the linear array camera 3 is preferably substantially coincident with the normal direction of the steel plate surface in order to receive the reflected light from the both-side illumination under the same conditions (equal) from both sides. An appropriate range is from 0 ° to ± 45 ° with respect to the normal direction, but preferably 0 ° to ± 30 °, more preferably 0 ° to ± 10 °.

実施形態3.
図12は本発明の実施形態3に係る観察装置の構成を示した図であり、ここでは光学系として「後方散乱光観察光学系」が用いられている。腐食試験片1の撮像線状領域Lを、リニアアレイカメラ3を用いて斜め上方から撮像する。後方散乱光を観察するため、線状照明装置2はリニアアレイカメラ3の撮像角度よりも浅い角度で照明する。この光学系の下に、試験片1をリニアステージ4を用いて撮像線状領域Lと直交する方向に移動させながら反射輝度パタンを順次画像メモリ5に読み込んで蓄積し画像化し、その画像を表示装置6に表示させる。
なお、リニアアレイカメラ3の撮像角度は、鋼板表面法線方向に対して30゜以上で、照明から投光角度(入射角度)より小さい角度が適当範囲である。30゜よりも小さい場合には、白錆の凸形状により、反対側に影が形成されて、白錆の発生量が少なく撮像されるからである。また、好ましくは45゜以上、さらに好ましくは60゜以上がよく、投光角度に対しては、照明装置と撮像装置との配置の干渉がある場合には、5゜〜10゜程度離してもよい。
Embodiment 3. FIG.
FIG. 12 is a diagram showing a configuration of an observation apparatus according to Embodiment 3 of the present invention. Here, a “backscattered light observation optical system” is used as an optical system. An image of the imaging linear region L of the corrosion test piece 1 is taken from obliquely above using the linear array camera 3. In order to observe the backscattered light, the linear illumination device 2 illuminates at an angle shallower than the imaging angle of the linear array camera 3. Under this optical system, while moving the test piece 1 in the direction orthogonal to the imaging linear region L using the linear stage 4, the reflected luminance pattern is sequentially read into the image memory 5 and stored and imaged, and the image is displayed. It is displayed on the device 6.
The imaging angle of the linear array camera 3 is 30 ° or more with respect to the normal direction of the steel plate surface, and an angle smaller than the projection angle (incident angle) from illumination is an appropriate range. This is because when the angle is smaller than 30 °, a shadow is formed on the opposite side due to the convex shape of white rust, and the amount of white rust generated is small. Further, it is preferably 45 ° or more, more preferably 60 ° or more. If there is interference between the arrangement of the illumination device and the imaging device, the projection angle may be about 5 ° to 10 ° apart. Good.

本発明の基本構成を示した図である。It is the figure which showed the basic composition of this invention. 拡散光観察光学系及びその画像化パタンの図である。It is a figure of a diffused light observation optical system and its imaging pattern. 正反射光観察光学系及びその画像化パタンの図である。It is a figure of a regular reflection light observation optical system and its imaging pattern. 低角入射光観察光学系及びその画像化パタンの図である。It is a figure of a low angle incident light observation optical system and its imaging pattern. 後方散乱光観察光学系及びその画像化パタンの図である。It is a figure of a backscattered light observation optical system and its imaging pattern. 亜鉛めっき鋼板の経年変化を示した図((a)腐食前、(b)腐食後)である。It is the figure ((a) before corrosion, (b) after corrosion) which showed the secular change of a galvanized steel plate. 亜鉛めっき鋼板に低角入射光観察光学系を適応した図である。It is the figure which applied the low angle incident light observation optical system to the galvanized steel plate. 亜鉛めっき鋼板に後方散乱光観察光学系を適応した図である。It is the figure which applied the backscattered light observation optical system to the galvanized steel plate. 腐食度の高い白錆試験片の低角入射光観察光学系による画像化パタン例の図である。It is a figure of the example of an imaging pattern by the low angle incident light observation optical system of the white rust test piece with a high corrosion degree. 腐食度の高い白錆試験片の後方散乱光観察光学系による画像化パタン例の図である。It is a figure of the example of an imaging pattern by the backscattered light observation optical system of a white rust test piece with a high corrosion degree. 本発明の実施形態2に係る観察装置(低角入射光観察光学系)の構成を示した図である。It is the figure which showed the structure of the observation apparatus (low angle incident light observation optical system) which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係る観察装置(後方散乱光観察光学系)の構成を示した図である。It is the figure which showed the structure of the observation apparatus (backscattered light observation optical system) which concerns on Embodiment 2 of this invention. 面領域観察時の照明・撮像ムラの発生メカニズムの説明図である。It is explanatory drawing of the generation mechanism of the illumination and imaging nonuniformity at the time of surface area observation.

符号の説明Explanation of symbols

1 腐食試験片、2 線状照明装置、3 リニアアレイカメラ、4 リニアステージ、5 画像メモリ、6 表示装置、11 亜鉛めっき鋼板。   1 Corrosion test piece, 2 linear illumination device, 3 linear array camera, 4 linear stage, 5 image memory, 6 display device, 11 galvanized steel sheet.

Claims (10)

鋼板に対して一方向又は複数の方向から所定の入射角度で光を照射する投光手段と、
前記鋼板を所定の方向に移動する移動手段と、
前記鋼板表面の前記移動方向と直交する方向の反射輝度パタンを撮像する撮像手段と、
前記撮像手段により撮像された反射輝度パタンを順次読み込んで蓄積し画像化する画像化手段と、
前記画像化手段により得られた画像を表示する表示手段と
を備えたことを特徴とする表面処理鋼板の腐食部の観察装置。
A light projecting means for irradiating light at a predetermined incident angle from one direction or a plurality of directions with respect to the steel sheet;
Moving means for moving the steel sheet in a predetermined direction;
Imaging means for imaging a reflection luminance pattern in a direction orthogonal to the moving direction of the steel sheet surface;
Imaging means for sequentially reading, storing, and imaging the reflected luminance pattern imaged by the imaging means;
An observation device for a corroded portion of a surface-treated steel sheet, comprising: display means for displaying an image obtained by the imaging means.
鋼板に対して一方向又は複数の方向から所定の入射角度で光を照射する投光手段と、
前記鋼板を所定の方向に移動する移動手段と、
前記鋼板表面の前記移動方向と直交する方向の反射輝度パタンを撮像する撮像手段と、
前記撮像手段により撮像された反射輝度パタンを順次読み込んで蓄積し画像化する画像化手段と、
前記画像化手段により得られた画像を表示する表示手段と
を備えたことを特徴とする亜鉛めっき鋼板の白錆部の観察装置。
A light projecting means for irradiating light at a predetermined incident angle from one direction or a plurality of directions with respect to the steel sheet;
Moving means for moving the steel sheet in a predetermined direction;
Imaging means for imaging a reflection luminance pattern in a direction orthogonal to the moving direction of the steel sheet surface;
Imaging means for sequentially reading, storing, and imaging the reflected luminance pattern imaged by the imaging means;
An observation device for a white rust portion of a galvanized steel sheet, comprising display means for displaying an image obtained by the imaging means.
前記投光手段は、直線状の光源から構成されることを特徴とする請求項2記載の亜鉛めっき鋼板の白錆部の観察装置。   The said light projection means is comprised from a linear light source, The observation apparatus of the white rust part of the galvanized steel plate of Claim 2 characterized by the above-mentioned. 前記移動手段は、前記画像化手段により得られる画像の縦横の分解能が略1:1となるよう設定された一定速度の移動機構から構成されることを特徴とする請求項2又は3記載の亜鉛めっき鋼板の白錆部の観察装置。   4. The zinc according to claim 2, wherein the moving unit includes a moving mechanism having a constant speed set so that a vertical and horizontal resolution of an image obtained by the imaging unit is approximately 1: 1. 5. An observation device for the white rust portion of plated steel sheets. 前記撮像手段は、リニアアレイカメラから構成されることを特徴とする請求項2〜4の何れかに記載の亜鉛めっき鋼板の白錆部の観察装置。   The said imaging means is comprised from a linear array camera, The observation apparatus of the white rust part of the galvanized steel plate in any one of Claims 2-4 characterized by the above-mentioned. 前記投光手段は、照射される光の波長λに対する前記入射角度θの余弦の値の比cosθ/λが、前記鋼板の表面粗さに対応して決定される所定の値以下となるように、前記波長と前記入射角の関係が選定されて、前記鋼板を片側又は両側から照射し、且つ、前記撮像手段は、前記鋼板の概略法線方向から撮像することを特徴とする請求項2〜5の何れかに記載の亜鉛めっき鋼板の白錆部の観察装置。   The light projecting means is configured so that a ratio cos θ / λ of a cosine value of the incident angle θ with respect to a wavelength λ of irradiated light is equal to or less than a predetermined value determined in accordance with the surface roughness of the steel plate. The relationship between the wavelength and the incident angle is selected, the steel sheet is irradiated from one side or both sides, and the imaging means captures an image from a general normal direction of the steel sheet. The observation apparatus of the white rust part of the galvanized steel plate in any one of 5. 前記投光手段は、入射角度を鋼板表面法線方向に対して80度以上とし、前記鋼板を片側又は両側から照射し、且つ、前記撮像手段は、前記鋼板の概略法線方向から撮像することを特徴とする請求項2〜6の何れかに記載の亜鉛めっき鋼板の白錆部の観察装置。   The light projecting means has an incident angle of 80 degrees or more with respect to the normal direction of the steel sheet surface, irradiates the steel sheet from one side or both sides, and the imaging means images from the general normal direction of the steel sheet. The observation apparatus of the white rust part of the galvanized steel plate in any one of Claims 2-6 characterized by these. 前記投光手段は、撮像方向と同じ方向から鋼板表面法線方向に対して撮像角度以上の入射角度をもって前記鋼板を照射し、且つ、前記撮像手段は、前記鋼板を斜め上方から撮像することを特徴とする請求項2〜6の何れかに記載の亜鉛めっき鋼板の白錆部の観察装置。   The light projecting means irradiates the steel sheet with an incident angle equal to or greater than the imaging angle with respect to the normal direction of the steel sheet surface from the same direction as the imaging direction, and the imaging means images the steel sheet obliquely from above. The observation apparatus of the white rust part of the galvanized steel plate in any one of Claims 2-6 characterized by the above-mentioned. 鋼板に対して、入射角度が鋼板表面法線方向に対して80度以上で、片側又は両側から光を照射する投光工程と、
前記投光工程の鋼板を所定の方向に移動する移動工程と、
前記鋼板表面の前記移動方向と直交する方向の反射輝度パタンを前記鋼板の概略法線方向から撮像する撮像工程と、
前記反射輝度パタンを順次読み込んで蓄積し画像化する画像化工程と、
前記画像化工程で得られた画像を表示する工程と
を備えたことを特徴とする亜鉛めっき鋼板の白錆部の観察方法。
For the steel sheet, the incident angle is 80 degrees or more with respect to the normal direction of the steel sheet surface, and a light projecting step of irradiating light from one side or both sides,
A moving step of moving the steel plate in the light projecting step in a predetermined direction;
An imaging step of imaging a reflection luminance pattern in a direction orthogonal to the moving direction of the steel sheet surface from a direction of a substantially normal line of the steel sheet;
An imaging step of sequentially reading, storing and imaging the reflected luminance pattern;
And a step of displaying an image obtained in the imaging step. A method for observing a white rust portion of a galvanized steel sheet.
鋼板に対して撮像方向と同じ方向から、入射角度が鋼板表面法線方向に対して撮像角度以上の角度をもって光を照射する投光工程と、
前記投光工程の鋼板を所定の方向に移動する移動工程と、
前記鋼板表面の反射輝度パタンを斜め上方から撮像する撮像工程と、
前記反射輝度パタンを順次読み込んで蓄積し画像化する画像化工程と、
前記画像化工程で得られた画像を表示する工程と
を備えたことを特徴とする亜鉛めっき鋼板の白錆部の観察方法。
From the same direction as the imaging direction with respect to the steel sheet, a light projecting step of irradiating light with an angle greater than the imaging angle with respect to the normal direction of the steel sheet surface;
A moving step of moving the steel plate in the light projecting step in a predetermined direction;
An imaging step of imaging the reflected luminance pattern of the steel sheet surface from obliquely above;
An imaging step of sequentially reading, storing and imaging the reflected luminance pattern;
And a step of displaying an image obtained in the imaging step. A method for observing a white rust portion of a galvanized steel sheet.
JP2007231780A 2006-09-14 2007-09-06 Observation device for corrosion part of surface-treated steel sheet, observation device and observation method for white rust part of galvanized steel sheet Expired - Fee Related JP5056286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007231780A JP5056286B2 (en) 2006-09-14 2007-09-06 Observation device for corrosion part of surface-treated steel sheet, observation device and observation method for white rust part of galvanized steel sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006249177 2006-09-14
JP2006249177 2006-09-14
JP2007231780A JP5056286B2 (en) 2006-09-14 2007-09-06 Observation device for corrosion part of surface-treated steel sheet, observation device and observation method for white rust part of galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2008096428A true JP2008096428A (en) 2008-04-24
JP5056286B2 JP5056286B2 (en) 2012-10-24

Family

ID=39379400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007231780A Expired - Fee Related JP5056286B2 (en) 2006-09-14 2007-09-06 Observation device for corrosion part of surface-treated steel sheet, observation device and observation method for white rust part of galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP5056286B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022043280A (en) * 2016-07-19 2022-03-15 エコラブ ユーエスエイ インク Control of industrial water treatment via digital imaging
US11953445B2 (en) 2016-07-19 2024-04-09 Ecolab Usa Inc. Control of industrial water treatment via digital imaging

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075117A (en) * 1993-06-14 1995-01-10 Yoshikawa Kogyo Co Ltd Method and equipment for measuring surface condition of sample
JPH0763677A (en) * 1993-06-18 1995-03-10 Kawasaki Steel Corp Method and apparatus for measurement of surface reflection characteristic
JPH0777499A (en) * 1993-09-07 1995-03-20 Nippon Steel Corp Detecting method for white rust section area ratio of steel sheet
JPH10185812A (en) * 1996-12-24 1998-07-14 Sumitomo Metal Ind Ltd Method and equipment for measuring color tone of metal plate
JP2001272341A (en) * 2000-03-27 2001-10-05 Kawasaki Steel Corp Measuring method for uneven brightness of metal plate
JP2005134362A (en) * 2003-05-07 2005-05-26 Nippon Steel Corp Inspection method and inspection device for surface irregularity
JP2005156420A (en) * 2003-11-27 2005-06-16 Nippon Steel Corp Inspection method and device of surface irregularity
JP2005181300A (en) * 2003-11-26 2005-07-07 Sumitomo Bakelite Co Ltd Method for evaluating water vapor permeability
JP2008096429A (en) * 2006-09-14 2008-04-24 Jfe Steel Kk Area ratio measuring instrument of corrosion part for surface-treated steel plate, and method and instrument for measuring area ratio of white rust part of galvanized sheet

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075117A (en) * 1993-06-14 1995-01-10 Yoshikawa Kogyo Co Ltd Method and equipment for measuring surface condition of sample
JPH0763677A (en) * 1993-06-18 1995-03-10 Kawasaki Steel Corp Method and apparatus for measurement of surface reflection characteristic
JPH0777499A (en) * 1993-09-07 1995-03-20 Nippon Steel Corp Detecting method for white rust section area ratio of steel sheet
JPH10185812A (en) * 1996-12-24 1998-07-14 Sumitomo Metal Ind Ltd Method and equipment for measuring color tone of metal plate
JP2001272341A (en) * 2000-03-27 2001-10-05 Kawasaki Steel Corp Measuring method for uneven brightness of metal plate
JP2005134362A (en) * 2003-05-07 2005-05-26 Nippon Steel Corp Inspection method and inspection device for surface irregularity
JP2005181300A (en) * 2003-11-26 2005-07-07 Sumitomo Bakelite Co Ltd Method for evaluating water vapor permeability
JP2005156420A (en) * 2003-11-27 2005-06-16 Nippon Steel Corp Inspection method and device of surface irregularity
JP2008096429A (en) * 2006-09-14 2008-04-24 Jfe Steel Kk Area ratio measuring instrument of corrosion part for surface-treated steel plate, and method and instrument for measuring area ratio of white rust part of galvanized sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022043280A (en) * 2016-07-19 2022-03-15 エコラブ ユーエスエイ インク Control of industrial water treatment via digital imaging
JP7312239B2 (en) 2016-07-19 2023-07-20 エコラブ ユーエスエイ インク Control of industrial water treatment by digital imaging
US11946841B2 (en) 2016-07-19 2024-04-02 Ecolab Usa Inc. Control of industrial water treatment via digital imaging
US11953445B2 (en) 2016-07-19 2024-04-09 Ecolab Usa Inc. Control of industrial water treatment via digital imaging

Also Published As

Publication number Publication date
JP5056286B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
KR100190312B1 (en) Foreign substance inspection apparatus
EP2745073B1 (en) Systems and methods for performing machine vision using diffuse structured light
JP3379805B2 (en) Surface defect inspection equipment
JP4847128B2 (en) Surface defect inspection equipment
JP5056287B2 (en) Area ratio measuring device for corroded portion of surface-treated steel sheet, area ratio measuring device for white rust portion of galvanized steel sheet and measuring method thereof
JP5472096B2 (en) Imaging optical inspection apparatus and method for inspecting planar reflective surface of sample
CN101762611A (en) Wiring pattern checking device
US7684041B2 (en) Color inspection system
KR20190002637A (en) Surface inspection system and surface inspection method
US7791008B2 (en) Single spot focus control
JP5056286B2 (en) Observation device for corrosion part of surface-treated steel sheet, observation device and observation method for white rust part of galvanized steel sheet
JP2008076962A (en) Optical inspection apparatus
JP2015212646A (en) Inspection apparatus for sheet-like object and inspection method of sheet-like object
JP2006003372A (en) Method for measuring property of specularly reflecting surface by ccd camera, and apparatus thereof
JP2014240766A (en) Surface inspection method and device
JP5557586B2 (en) Surface texture measuring device and surface texture measuring method
JP2003202302A (en) Surface defect-inspecting apparatus
JP2013044635A (en) Defect detecting device
JP5479345B2 (en) Equipment for observing the surface of a sample
KR101269128B1 (en) Surface roughness measurement apparatus and method having intermediate view generator
JP4035558B2 (en) Surface inspection device
JPS60228943A (en) Inspection of surface state of stainless steel plate
WO2021039952A1 (en) Skin inspection device
JP2000180379A (en) Surface flaw inspecting apparatus
JP2018091692A (en) Surface inspection device, surface inspection method, surface inspection program, and recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees